1
|
Taks NW, Batstra MD, Kortekaas RF, Stevens FD, Pfeilmeier S, van den Burg HA. Non-Invasive, Bioluminescence-Based Visualisation and Quantification of Bacterial Infections in Arabidopsis Over Time. MOLECULAR PLANT PATHOLOGY 2025; 26:e70055. [PMID: 39895022 PMCID: PMC11788312 DOI: 10.1111/mpp.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/14/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025]
Abstract
Plant-pathogenic bacteria colonise their hosts using various strategies, exploiting both natural openings and wounds in leaves and roots. The vascular pathogen Xanthomonas campestris pv. campestris (Xcc) enters its host through hydathodes, organs at the leaf margin involved in guttation. Subsequently, Xcc breaches the hydathode-xylem barrier and progresses into the xylem vessels causing systemic disease. To elucidate the mechanisms that underpin the different stages of an Xcc infection, a need exists to image bacterial progression in planta in a non-invasive manner. Here, we describe a phenotyping setup and Python image analysis pipeline for capturing 16 independent Xcc infections in Arabidopsis thaliana plants in parallel over time. The setup combines an RGB camera for imaging disease symptoms and an ultrasensitive CCD camera for monitoring bacterial progression inside leaves using bioluminescence. The method reliably quantified bacterial growth in planta for two bacterial species, that is, vascular Xcc and the mesophyll pathogen Pseudomonas syringae pv. tomato (Pst). The camera resolution allowed Xcc imaging already in the hydathodes, yielding reproducible data for the first stages prior to the systemic infection. Data obtained through the image analysis pipeline was robust and validated findings from other bioluminescence imaging methods, while requiring fewer samples. Moreover, bioluminescence was reliably detected within 5 min, offering a significant time advantage over our previously reported method with light-sensitive films. Thus, this method is suitable to quantify the resistance level of a large number of Arabidopsis thaliana accessions and mutant lines to different bacterial strains in a non-invasive manner for phenotypic screenings.
Collapse
Affiliation(s)
- Nanne W. Taks
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamNetherlands
| | - Mathijs D. Batstra
- Technology Center FNWI, Faculty of ScienceUniversity of AmsterdamAmsterdamNetherlands
| | - Ronald F. Kortekaas
- Technology Center FNWI, Faculty of ScienceUniversity of AmsterdamAmsterdamNetherlands
| | - Floris D. Stevens
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamNetherlands
| | - Sebastian Pfeilmeier
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamNetherlands
| | - Harrold A. van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamNetherlands
- Rijk Zwaan Zaadteelt en Zaadhandel B.VBurgemeester Crezéelaan 40De LierNetherlands
| |
Collapse
|
2
|
Dai H, Hu L, Wang J, Yue Z, Wang J, Chen T, Li J, Dou T, Yu J, Liu Z. Constructing a Novel Disease Resistance Mechanism Model for Cruciferous Crops: An Example From Black Rot. MOLECULAR PLANT PATHOLOGY 2025; 26:e70060. [PMID: 39924905 PMCID: PMC11808048 DOI: 10.1111/mpp.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
Cruciferous crops are essential components of global agricultural production due to their rich nutritional value and extensive economic benefits. Black rot caused by Xanthomonas campestris pv. campestris (Xcc) has caused significant losses to cruciferous crops. Therefore, studying the resistance mechanisms of cruciferous crops to improve the disease resistance of cruciferous crops is of significant practical importance. This review introduces the biological characteristics and epidemiological patterns of the Xcc. The main resistance mechanisms including the physical barrier functions, immune responses, systemic resistance, regulation of photosynthesis, antimicrobial effects of secondary metabolites, production and regulation of reactive oxygen species, and the signalling pathways of salicylic acid, jasmonic acid and ethylene of cruciferous crops to Xcc are also summarised. Comprehensive knowledge of these resistance mechanisms will provide theoretical support for enhancing disease resistance in crops.
Collapse
Affiliation(s)
- Haojie Dai
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Linli Hu
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Jie Wang
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Zhibin Yue
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Jue Wang
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Tongyan Chen
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Jinbao Li
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Tingting Dou
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Jihua Yu
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| | - Zeci Liu
- College of HorticultureGansu Agricultural UniversityLanzhouChina
| |
Collapse
|
3
|
Xiao Y, Ray S, Burdman S, Teper D. Host-Driven Selection, Revealed by Comparative Analysis of Xanthomonas Type III Secretion Effectoromes, Unveils Novel Recognized Effectors. PHYTOPATHOLOGY 2024; 114:2207-2220. [PMID: 39133938 DOI: 10.1094/phyto-04-24-0147-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2024]
Abstract
Xanthomonas species are specialized plant pathogens, often exhibiting a narrow host range. They rely on the translocation of effector proteins through the type III secretion system to colonize their respective hosts. The effector arsenal varies among Xanthomonas spp., typically displaying species-specific compositions. This species-specific effector composition, collectively termed the effectorome, is thought to influence host specialization. We determined the plant host-derived effectoromes of more than 300 deposited genomes of Xanthomonas species associated with either Solanaceae or Brassicaceae hosts. Comparative analyses revealed clear species-specific effectorome signatures. However, Solanaceae or Brassicaceae host-associated effectorome signatures were not detected. Nevertheless, host biases in the presence or absence of specific effector classes were observed. To assess whether host-associated effector absence results from selective pressures, we introduced effectors unique to Solanaceae pathogens to X. campestris pv. campestris and effectors unique to Brassicaceae pathogens to X. euvesicatoria pv. euvesicatoria (Xeue) and evaluated if these introductions hindered virulence on their respective hosts. Introducing the effector XopI into X. campestris pv. campestris reduced virulence on white cabbage leaves without affecting localized or systemic colonization. Introducing the XopAC or XopJ5 effectors into Xeue reduced virulence and colonization on tomato but not on pepper. Additionally, XopAC and XopJ5 induced a hypersensitive response on tomato leaves when delivered by Xeue or through Agrobacterium-mediated transient expression, confirming recognition in tomato. This study demonstrates the role of host-derived selection in establishing species-specific effectoromes, identifying XopAC and XopJ5 as recognized effectors in tomato.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-Volcani Institute, Rishon LeZion, Israel
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shatrupa Ray
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-Volcani Institute, Rishon LeZion, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Doron Teper
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
4
|
Hailemariam S, Liao CJ, Mengiste T. Receptor-like cytoplasmic kinases: orchestrating plant cellular communication. TRENDS IN PLANT SCIENCE 2024; 29:1113-1130. [PMID: 38816318 DOI: 10.1016/j.tplants.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
The receptor-like kinase (RLK) family of receptors and the associated receptor-like cytoplasmic kinases (RLCKs) have expanded in plants because of selective pressure from environmental stress and evolving pathogens. RLCKs link pathogen perception to activation of coping mechanisms. RLK-RLCK modules regulate hormone synthesis and responses, reactive oxygen species (ROS) production, Ca2+ signaling, activation of mitogen-activated protein kinase (MAPK), and immune gene expression, all of which contribute to immunity. Some RLCKs integrate responses from multiple receptors recognizing distinct ligands. RLKs/RLCKs and nucleotide-binding domain, leucine-rich repeats (NLRs) were found to synergize, demonstrating the intertwined genetic network in plant immunity. Studies in arabidopsis (Arabidopsis thaliana) have provided paradigms about RLCK functions, but a lack of understanding of crop RLCKs undermines their application. In this review, we summarize current understanding of the diverse functions of RLCKs, based on model systems and observations in crop species, and the emerging role of RLCKs in pathogen and abiotic stress response signaling.
Collapse
Affiliation(s)
- Sara Hailemariam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Chao-Jan Liao
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
5
|
Huang J, Dong Y, Li N, He Y, Zhou H. The Type III Effector XopL Xcc in Xanthomonas campestris pv. campestris Targets the Proton Pump Interactor 1 and Suppresses Innate Immunity in Arabidopsis. Int J Mol Sci 2024; 25:9175. [PMID: 39273124 PMCID: PMC11394911 DOI: 10.3390/ijms25179175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Xanthomonas campestris pathovar campestris (Xcc) is a significant phytopathogen causing black rot disease in crucifers. Xcc injects a variety of type III effectors (T3Es) into the host cell to assist infection or propagation. A number of T3Es inhibit plant immunity, but the biochemical basis for a vast majority of them remains unknown. Previous research has revealed that the evolutionarily conserved XopL-family effector XopLXcc inhibits plant immunity, although the underlying mechanisms remain incompletely elucidated. In this study, we identified proton pump interactor (PPI1) as a specific virulence target of XopLXcc in Arabidopsis. Notably, the C-terminus of PPI1 and the Leucine-rich repeat (LRR) domains of XopLXcc are pivotal for facilitating this interaction. Our findings indicate that PPI1 plays a role in the immune response of Arabidopsis to Xcc. These results propose a model in which XopLXcc binds to PPI1, disrupting the early defense responses activated in Arabidopsis during Xcc infection and providing valuable insights into potential strategies for regulating plasma membrane (PM) H+-ATPase activity during infection. These novel insights enhance our understanding of the pathogenic mechanisms of T3Es and contribute to the development of effective strategies for controlling bacterial diseases.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (J.H.)
| | - Yuru Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (J.H.)
| | - Nana Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (J.H.)
| | - Yongqiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (J.H.)
| | - Hao Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (J.H.)
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning 530006, China
| |
Collapse
|
6
|
Wen Y, Wang F, Wang H, Bi Y, Yan Y, Noman M, Li D, Song F. Melon CmRLCK VII-8 kinase genes CmRLCK27, CmRLCK30 and CmRLCK34 modulate resistance against bacterial and fungal diseases in Arabidopsis. PHYSIOLOGIA PLANTARUM 2024; 176:e14456. [PMID: 39072778 DOI: 10.1111/ppl.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Receptor-like cytoplasmic kinases (RLCKs) represent a distinct class of receptor-like kinases crucial for various aspects of plant biology, including growth, development, and stress responses. This study delves into the characterization of RLCK VII-8 members within cucurbits, particularly in melon, examining both structural features and the phylogenetic relationships of these genes/proteins. The investigation extends to their potential involvement in disease resistance by employing ectopic overexpression in Arabidopsis. The promoters of CmRLCK VII-8 genes harbor multiple phytohormone- and stress-responsive cis-acting elements, with the majority (excluding CmRLCK39) displaying upregulated expression in response to defense hormones and fungal infection. Subcellular localization studies reveal that CmRLCK VII-8 proteins predominantly reside on the plasma membrane, with CmRLCK29 and CmRLCK30 exhibiting additional nuclear distribution. Notably, Arabidopsis plants overexpressing CmRLCK30 manifest dwarfing and delayed flowering phenotypes. Overexpression of CmRLCK27, CmRLCK30, and CmRLCK34 in Arabidopsis imparts enhanced resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000, concomitant with the strengthened expression of defense genes and reactive oxygen species accumulation. The CmRLCK VII-8 members actively participate in chitin- and flg22-triggered immune responses. Furthermore, CmRLCK30 interacts with CmMAPKKK1 and CmARFGAP, adding a layer of complexity to the regulatory network. In summary, this functional characterization underscores the regulatory roles of CmRLCK27, CmRLCK30, and CmRLCK34 in immune responses by influencing pathogen-induced defense gene expression and ROS accumulation.
Collapse
Affiliation(s)
- Ya Wen
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fahao Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Bi
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuqing Yan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Muhammad Noman
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Dayong Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fengming Song
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Paauw M, Hardeman G, Taks NW, Lambalk L, Berg JA, Pfeilmeier S, van den Burg HA. ScAnalyzer: an image processing tool to monitor plant disease symptoms and pathogen spread in Arabidopsis thaliana leaves. PLANT METHODS 2024; 20:80. [PMID: 38822355 PMCID: PMC11141064 DOI: 10.1186/s13007-024-01213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Plants are known to be infected by a wide range of pathogenic microbes. To study plant diseases caused by microbes, it is imperative to be able to monitor disease symptoms and microbial colonization in a quantitative and objective manner. In contrast to more traditional measures that use manual assignments of disease categories, image processing provides a more accurate and objective quantification of plant disease symptoms. Besides monitoring disease symptoms, computational image processing provides additional information on the spatial localization of pathogenic microbes in different plant tissues. RESULTS Here we report on an image analysis tool called ScAnalyzer to monitor disease symptoms and bacterial spread in Arabidopsis thaliana leaves. Thereto, detached leaves are assembled in a grid and scanned, which enables automated separation of individual samples. A pixel color threshold is used to segment healthy (green) from chlorotic (yellow) leaf areas. The spread of luminescence-tagged bacteria is monitored via light-sensitive films, which are processed in a similar manner as the leaf scans. We show that this tool is able to capture previously identified differences in susceptibility of the model plant A. thaliana to the bacterial pathogen Xanthomonas campestris pv. campestris. Moreover, we show that the ScAnalyzer pipeline provides a more detailed assessment of bacterial spread within plant leaves than previously used methods. Finally, by combining the disease symptom values with bacterial spread values from the same leaves, we show that bacterial spread precedes visual disease symptoms. CONCLUSION Taken together, we present an automated script to monitor plant disease symptoms and microbial spread in A. thaliana leaves. The freely available software ( https://github.com/MolPlantPathology/ScAnalyzer ) has the potential to standardize the analysis of disease assays between different groups.
Collapse
Affiliation(s)
- Misha Paauw
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Gerrit Hardeman
- Technologie Centrum FNWI, Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Nanne W Taks
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Lennart Lambalk
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Jeroen A Berg
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Sebastian Pfeilmeier
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Harrold A van den Burg
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands.
| |
Collapse
|
8
|
Huang J, Zhou H, Zhou M, Li N, Jiang B, He Y. Functional Analysis of Type III Effectors in Xanthomonas campestris pv. campestris Reveals Distinct Roles in Modulating Arabidopsis Innate Immunity. Pathogens 2024; 13:448. [PMID: 38921746 PMCID: PMC11206781 DOI: 10.3390/pathogens13060448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Xanthomonas campestris pv. campestris (Xcc) is a significant phytopathogen causing black rot disease in crucifers. Its virulence relies heavily on the type III secretion system (T3SS), facilitating effector translocation into plant cells. The type III effectors (T3Es) disrupt cellular processes, promoting pathogen proliferation. However, only a few T3Es from Xcc have been thoroughly characterized. In this study, we further investigated two effectors using the T3Es-deficient mutant and the Arabidopsis protoplast system. XopE2Xcc triggers Arabidopsis immune responses via an unidentified activator of the salicylic acid (SA) signaling pathway, whereas XopLXcc suppresses the expression of genes associated with patterns-triggered immunity (PTI) and the SA signaling pathway. These two effectors exert opposing effects on Arabidopsis immune responses. Additionally, we examined the relationship between the specific domains and functions of these two effector proteins. Our findings demonstrate that the N-myristoylation motif and N-terminal domain are essential for the subcellular localization and virulence of XopE2Xcc and XopLXcc, respectively. These novel insights enhance our understanding of the pathogenic mechanisms of T3Es and contribute to developing effective strategies for controlling bacterial disease.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (B.J.)
| | - Hao Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (B.J.)
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning 530006, China
| | - Min Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (B.J.)
| | - Nana Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (B.J.)
| | - Bole Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (B.J.)
| | - Yongqiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China; (J.H.); (B.J.)
| |
Collapse
|
9
|
Lauber E, González-Fuente M, Escouboué M, Vicédo C, Luneau JS, Pouzet C, Jauneau A, Gris C, Zhang ZM, Pichereaux C, Carrère S, Deslandes L, Noël LD. Bacterial host adaptation through sequence and structural variations of a single type III effector gene. iScience 2024; 27:109224. [PMID: 38439954 PMCID: PMC10909901 DOI: 10.1016/j.isci.2024.109224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 12/02/2023] [Accepted: 02/08/2024] [Indexed: 03/06/2024] Open
Abstract
Molecular mechanisms underlying quantitative variations of pathogenicity remain elusive. Here, we identified the Xanthomonas campestris XopJ6 effector that triggers disease resistance in cauliflower and Arabidopsis thaliana. XopJ6 is a close homolog of the Ralstoniapseudosolanacearum PopP2 YopJ family acetyltransferase. XopJ6 is recognized by the RRS1-R/RPS4 NLR pair that integrates a WRKY decoy domain mimicking effector targets. We identified a XopJ6 natural variant carrying a single residue substitution in XopJ6 WRKY-binding site that disrupts interaction with WRKY proteins. This mutation allows XopJ6 to evade immune perception while retaining some XopJ6 virulence functions. Interestingly, xopJ6 resides in a Tn3-family transposon likely contributing to xopJ6 copy number variation (CNV). Using synthetic biology, we demonstrate that xopJ6 CNV tunes pathogen virulence on Arabidopsis through gene dosage-mediated modulation of xopJ6 expression. Together, our findings highlight how sequence and structural genetic variations restricted at a particular effector gene contribute to bacterial host adaptation.
Collapse
Affiliation(s)
- Emmanuelle Lauber
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Manuel González-Fuente
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Maxime Escouboué
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Céline Vicédo
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Julien S. Luneau
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Cécile Pouzet
- TRI-FRAIB Imaging Platform Facilities, FRAIB, Université de Toulouse, CNRS, UPS, 31320 Castanet-Tolosan, France
| | - Alain Jauneau
- TRI-FRAIB Imaging Platform Facilities, FRAIB, Université de Toulouse, CNRS, UPS, 31320 Castanet-Tolosan, France
| | - Carine Gris
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Zhi-Min Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Carole Pichereaux
- Fédération de Recherche Agrobiosciences, Interactions et Biodiversité (FRAIB), Université de Toulouse, CNRS, Université de Toulouse III - Paul Sabatier (UT3), Auzeville-Tolosane, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université de Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Infrastructure nationale de protéomique, ProFI, FR 2048, Toulouse, France
| | - Sébastien Carrère
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Laurent Deslandes
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| | - Laurent D. Noël
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), Université de Toulouse, INRAE, CNRS, F-31326 Castanet-Tolosan, France
| |
Collapse
|
10
|
Marzorati F, Rossi R, Bernardo L, Mauri P, Silvestre DD, Lauber E, Noël LD, Murgia I, Morandini P. Arabidopsis thaliana Early Foliar Proteome Response to Root Exposure to the Rhizobacterium Pseudomonas simiae WCS417. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:737-748. [PMID: 37470457 DOI: 10.1094/mpmi-05-23-0071-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Pseudomonas simiae WCS417 is a plant growth-promoting rhizobacterium that improves plant health and development. In this study, we investigate the early leaf responses of Arabidopsis thaliana to WCS417 exposure and the possible involvement of formate dehydrogenase (FDH) in such responses. In vitro-grown A. thaliana seedlings expressing an FDH::GUS reporter show a significant increase in FDH promoter activity in their roots and shoots after 7 days of indirect exposure (without contact) to WCS417. After root exposure to WCS417, the leaves of FDH::GUS plants grown in the soil also show an increased FDH promoter activity in hydathodes. To elucidate early foliar responses to WCS417 as well as FDH involvement, the roots of A. thaliana wild-type Col and atfdh1-5 knock-out mutant plants grown in soil were exposed to WCS417, and proteins from rosette leaves were subjected to proteomic analysis. The results reveal that chloroplasts, in particular several components of the photosystems PSI and PSII, as well as members of the glutathione S-transferase family, are among the early targets of the metabolic changes induced by WCS417. Taken together, the alterations in the foliar proteome, as observed in the atfdh1-5 mutant, especially after exposure to WCS417 and involving stress-responsive genes, suggest that FDH is a node in the early events triggered by the interactions between A. thaliana and the rhizobacterium WCS417. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Francesca Marzorati
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Rossana Rossi
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Letizia Bernardo
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Pierluigi Mauri
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Dario Di Silvestre
- Proteomic and Metabolomic Laboratory, Institute for Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Emmanuelle Lauber
- Laboratoire des interactions plantes-microbes-environnement CNRS-INRAE, University of Toulouse, Castanet-Tolosan, France
| | - Laurent D Noël
- Laboratoire des interactions plantes-microbes-environnement CNRS-INRAE, University of Toulouse, Castanet-Tolosan, France
| | - Irene Murgia
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Piero Morandini
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| |
Collapse
|
11
|
Rachowka J, Anielska-Mazur A, Bucholc M, Stephenson K, Kulik A. SnRK2.10 kinase differentially modulates expression of hub WRKY transcription factors genes under salinity and oxidative stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1135240. [PMID: 37621885 PMCID: PMC10445769 DOI: 10.3389/fpls.2023.1135240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/30/2023] [Indexed: 08/26/2023]
Abstract
In nature, all living organisms must continuously sense their surroundings and react to the occurring changes. In the cell, the information about these changes is transmitted to all cellular compartments, including the nucleus, by multiple phosphorylation cascades. Sucrose Non-Fermenting 1 Related Protein Kinases (SnRK2s) are plant-specific enzymes widely distributed across the plant kingdom and key players controlling abscisic acid (ABA)-dependent and ABA-independent signaling pathways in the plant response to osmotic stress and salinity. The main deleterious effects of salinity comprise water deficiency stress, disturbances in ion balance, and the accompanying appearance of oxidative stress. The reactive oxygen species (ROS) generated at the early stages of salt stress are involved in triggering intracellular signaling required for the fast stress response and modulation of gene expression. Here we established in Arabidopsis thaliana that salt stress or induction of ROS accumulation by treatment of plants with H2O2 or methyl viologen (MV) induces the expression of several genes encoding transcription factors (TFs) from the WRKY DNA-Binding Protein (WRKY) family. Their induction by salinity was dependent on SnRK2.10, an ABA non-activated kinase, as it was strongly reduced in snrk2.10 mutants. The effect of ROS was clearly dependent on their source. Following the H2O2 treatment, SnRK2.10 was activated in wild-type (wt) plants and the induction of the WRKY TFs expression was only moderate and was enhanced in snrk2.10 lines. In contrast, MV did not activate SnRK2.10 and the WRKY induction was very strong and was similar in wt and snrk2.10 plants. A bioinformatic analysis indicated that the WRKY33, WRKY40, WRKY46, and WRKY75 transcription factors have a similar target range comprising numerous stress-responsive protein kinases. Our results indicate that the stress-related functioning of SnRK2.10 is fine-tuned by the source and intracellular distribution of ROS and the co-occurrence of other stress factors.
Collapse
Affiliation(s)
| | | | | | | | - Anna Kulik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
12
|
Iakovidis M, Chung EH, Saile SC, Sauberzweig E, El Kasmi F. The emerging frontier of plant immunity's core hubs. FEBS J 2023; 290:3311-3335. [PMID: 35668694 DOI: 10.1111/febs.16549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022]
Abstract
The ever-growing world population, increasingly frequent extreme weather events and conditions, emergence of novel devastating crop pathogens and the social strive for quality food products represent a huge challenge for current and future agricultural production systems. To address these challenges and find realistic solutions, it is becoming more important by the day to understand the complex interactions between plants and the environment, mainly the associated organisms, but in particular pathogens. In the past several years, research in the fields of plant pathology and plant-microbe interactions has enabled tremendous progress in understanding how certain receptor-based plant innate immune systems function to successfully prevent infections and diseases. In this review, we highlight and discuss some of these new ground-breaking discoveries and point out strategies of how pathogens counteract the function of important core convergence hubs of the plant immune system. For practical reasons, we specifically place emphasis on potential applications that can be detracted by such discoveries and what challenges the future of agriculture has to face, but also how these challenges could be tackled.
Collapse
Affiliation(s)
- Michail Iakovidis
- Horticultural Genetics and Biotechnology Department, Mediterranean Agricultural Institute of Chania, Greece
| | - Eui-Hwan Chung
- Department of Plant Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, Korea
| | - Svenja C Saile
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| | - Elke Sauberzweig
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| | - Farid El Kasmi
- Centre for Plant Molecular Biology, University of Tübingen, Germany
| |
Collapse
|
13
|
Paauw M, van Hulten M, Chatterjee S, Berg JA, Taks NW, Giesbers M, Richard MMS, van den Burg HA. Hydathode immunity protects the Arabidopsis leaf vasculature against colonization by bacterial pathogens. Curr Biol 2023; 33:697-710.e6. [PMID: 36731466 DOI: 10.1016/j.cub.2023.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 10/27/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023]
Abstract
Plants prevent disease by passively and actively protecting potential entry routes against invading microbes. For example, the plant immune system actively guards roots, wounds, and stomata. How plants prevent vascular disease upon bacterial entry via guttation fluids excreted from specialized glands at the leaf margin remains largely unknown. These so-called hydathodes release xylem sap when root pressure is too high. By studying hydathode colonization by both hydathode-adapted (Xanthomonas campestris pv. campestris) and non-adapted pathogenic bacteria (Pseudomonas syringae pv. tomato) in immunocompromised Arabidopsis mutants, we show that the immune hubs BAK1 and EDS1-PAD4-ADR1 restrict bacterial multiplication in hydathodes. Both immune hubs effectively confine bacterial pathogens to hydathodes and lower the number of successful escape events of an hydathode-adapted pathogen toward the xylem. A second layer of defense, which is dependent on the plant hormones' pipecolic acid and to a lesser extent on salicylic acid, reduces the vascular spread of the pathogen. Thus, besides glands, hydathodes represent a potent first line of defense against leaf-invading microbes.
Collapse
Affiliation(s)
- Misha Paauw
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Marieke van Hulten
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sayantani Chatterjee
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jeroen A Berg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Nanne W Taks
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Marcel Giesbers
- Wageningen Electron Microscopy Centre, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Manon M S Richard
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Harrold A van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Huang M, Tan X, Song B, Wang Y, Cheng D, Wang B, Chen H. Comparative genomic analysis of Ralstonia solanacearum reveals candidate avirulence effectors in HA4-1 triggering wild potato immunity. FRONTIERS IN PLANT SCIENCE 2023; 14:1075042. [PMID: 36909411 PMCID: PMC9997847 DOI: 10.3389/fpls.2023.1075042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Ralstonia solanacearum is the causal agent of potato bacterial wilt, a major potato bacterial disease. Among the pathogenicity determinants, the Type III Secretion System Effectors (T3Es) play a vital role in the interaction. Investigating the avirulent T3Es recognized by host resistance proteins is an effective method to uncover the resistance mechanism of potato against R. solanacearum. Two closely related R. solanacearum strains HA4-1 and HZAU091 were found to be avirulent and highly virulent to the wild potato Solanum albicans 28-1, respectively. The complete genome of HZAU091 was sequenced in this study. HZAU091 and HA4-1 shared over 99.9% nucleotide identity with each other. Comparing genomics of closely related strains provides deeper insights into the interaction between hosts and pathogens, especially the mechanism of virulence. The comparison of type III effector repertoires between HA4-1 and HZAU091 uncovered seven distinct effectors. Two predicted effectors RipA5 and the novel effector RipBS in HA4-1 could significantly reduce the virulence of HZAU091 when they were transformed into HZAU091. Furthermore, the pathogenicity assays of mutated strains HA4-1 ΔRipS6, HA4-1 ΔRipO1, HA4-1 ΔRipBS, and HA4-1 ΔHyp6 uncovered that the absence of these T3Es enhanced the HA4-1 virulence to wild potato S. albicans 28-1. This result indicated that these T3Es may be recognized by S. albicans 28-1 as avirulence proteins to trigger the resistance. In summary, this study provides a foundation to unravel the R. solanacearum-potato interaction and facilitates the development of resistance potato against bacterial wilt.
Collapse
Affiliation(s)
- Mengshu Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaodan Tan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Botao Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuqi Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dong Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Bingsen Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huilan Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
15
|
Lakmes A, Jhar A, Brennan AC, Kahriman A. Inheritance of Early and Late Ascochyta Blight Resistance in Wide Crosses of Chickpea. Genes (Basel) 2023; 14:genes14020316. [PMID: 36833243 PMCID: PMC9957483 DOI: 10.3390/genes14020316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Chickpea (Cicer arietinum) is a globally important food legume but its yield is negatively impacted by the fungal pathogen Ascochyta blight (Ascochyta rabiei) causing necrotic lesions leading to plant death. Past studies have found that Ascochyta resistance is polygenic. It is important to find new resistance genes from the wider genepool of chickpeas. This study reports the inheritance of Ascochyta blight resistance of two wide crosses between the cultivar Gokce and wild chickpea accessions of C. reticulatum and C. echinospermum under field conditions in Southern Turkey. Following inoculation, infection damage was scored weekly for six weeks. The families were genotyped for 60 SNPs mapped to the reference genome for quantitative locus (QTL) mapping of resistance. Family lines showed broad resistance score distributions. A late responding QTL on chromosome 7 was identified in the C. reticulatum family and three early responding QTLs on chromosomes 2, 3, and 6 in the C. echinospermum family. Wild alleles mostly showed reduced disease severity, while heterozygous genotypes were most diseased. Interrogation of 200k bp genomic regions of the reference CDC Frontier genome surrounding QTLs identified nine gene candidates involved in disease resistance and cell wall remodeling. This study identifies new candidate chickpea Ascochyta blight resistance QTLs of breeding potential.
Collapse
Affiliation(s)
- Abdulkarim Lakmes
- Department of Field Crops, Harran University, Sanliurfa 63100, Turkey
| | - Abdullah Jhar
- Department of Field Crops, Harran University, Sanliurfa 63100, Turkey
| | - Adrian C. Brennan
- Biosciences Department, Durham University, Durham DH1 3LE, UK
- Correspondence:
| | - Abdullah Kahriman
- Department of Field Crops, Harran University, Sanliurfa 63100, Turkey
| |
Collapse
|
16
|
Carrasco D, Zhou-Tsang A, Rodriguez-Izquierdo A, Ocete R, Revilla MA, Arroyo-García R. Coastal Wild Grapevine Accession ( Vitis vinifera L. ssp. sylvestris) Shows Distinct Late and Early Transcriptome Changes under Salt Stress in Comparison to Commercial Rootstock Richter 110. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202688. [PMID: 36297712 PMCID: PMC9610063 DOI: 10.3390/plants11202688] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 06/01/2023]
Abstract
Increase in soil salinity, driven by climate change, is a widespread constrain for viticulture across several regions, including the Mediterranean basin. The implementation of salt-tolerant varieties is sought after to reduce the negative impact of salinity in grape production. An accession of wild grapevine (Vitis vinifera L. ssp. sylvestris), named AS1B, found on the coastline of Asturias (Spain), could be of interest toward the achievement of salt-tolerant varieties, as it demonstrated the ability to survive and grow under high levels of salinity. In the present study, AS1B is compared against widely cultivated commercial rootstock Richter 110, regarding their survival capabilities, and transcriptomic profiles analysis allowed us to identify the genes by employing RNA-seq and gene ontology analyses under increasing salinity and validate (via RT-qPCR) seven salinity-stress-induced genes. The results suggest contrasting transcriptomic responses between AS1B and Richter 110. AS1B is more responsive to a milder increase in salinity and builds up specific mechanisms of tolerance over a sustained salt stress, while Richter 110 maintains a constitutive expression until high and prolonged saline inputs, when it mainly shows responses to osmotic stress. The genetic basis of AS1B's strategy to confront salinity could be valuable in cultivar breeding programs, to expand the current range of salt-tolerant rootstocks, aiming to improve the adaptation of viticulture against climate change.
Collapse
Affiliation(s)
- David Carrasco
- CSIC-INIA(CBGP) Centro de Biotecnología y Genómica de Plantas, UPM-INIA, Parque Científico y Tecnológico de la UPM Campus de Montegancedo, CtraM-40, Km 38, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Andres Zhou-Tsang
- CSIC-INIA(CBGP) Centro de Biotecnología y Genómica de Plantas, UPM-INIA, Parque Científico y Tecnológico de la UPM Campus de Montegancedo, CtraM-40, Km 38, Pozuelo de Alarcón, 28223 Madrid, Spain
- Waite Research Institute, The School of Agriculture, Food and Wine, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Glen Osmond, SA 5064, Australia
- ARC Industrial Transformation Training Centre for Innovative Wine Production, Waite Research Institute, Glen Osmond, SA 5064, Australia
| | - Alberto Rodriguez-Izquierdo
- CSIC-INIA(CBGP) Centro de Biotecnología y Genómica de Plantas, UPM-INIA, Parque Científico y Tecnológico de la UPM Campus de Montegancedo, CtraM-40, Km 38, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Rafael Ocete
- Laboratorio Entomología Aplicada, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain
| | - María Angeles Revilla
- Departamento Biología de Organismos y Sistemas, Facultad de Biología, Universidad de Oviedo, 33071 Oviedo, Spain
| | - Rosa Arroyo-García
- CSIC-INIA(CBGP) Centro de Biotecnología y Genómica de Plantas, UPM-INIA, Parque Científico y Tecnológico de la UPM Campus de Montegancedo, CtraM-40, Km 38, Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
17
|
Rahmanzadeh A, Khahani B, Taghavi SM, Khojasteh M, Osdaghi E. Genome-wide meta-QTL analyses provide novel insight into disease resistance repertoires in common bean. BMC Genomics 2022; 23:680. [PMID: 36192697 PMCID: PMC9531352 DOI: 10.1186/s12864-022-08914-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 09/27/2022] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Common bean (Phaseolus vulgaris) is considered a staple food in a number of developing countries. Several diseases attack the crop leading to substantial economic losses around the globe. However, the crop has rarely been investigated for multiple disease resistance traits using Meta-analysis approach. RESULTS AND CONCLUSIONS In this study, in order to identify the most reliable and stable quantitative trait loci (QTL) conveying disease resistance in common bean, we carried out a meta-QTL (MQTL) analysis using 152 QTLs belonging to 44 populations reported in 33 publications within the past 20 years. These QTLs were decreased into nine MQTLs and the average of confidence interval (CI) was reduced by 2.64 folds with an average of 5.12 cM in MQTLs. Uneven distribution of MQTLs across common bean genome was noted where sub-telomeric regions carry most of the corresponding genes and MQTLs. One MQTL was identified to be specifically associated with resistance to halo blight disease caused by the bacterial pathogen Pseudomonas savastanoi pv. phaseolicola, while three and one MQTLs were specifically associated with resistance to white mold and anthracnose caused by the fungal pathogens Sclerotinia sclerotiorum and Colletotrichum lindemuthianum, respectively. Furthermore, two MQTLs were detected governing resistance to halo blight and anthracnose, while two MQTLs were detected for resistance against anthracnose and white mold, suggesting putative genes governing resistance against these diseases at a shared locus. Comparative genomics and synteny analyses provide a valuable strategy to identify a number of well‑known functionally described genes as well as numerous putative novels candidate genes in common bean, Arabidopsis and soybean genomes.
Collapse
Affiliation(s)
- Asma Rahmanzadeh
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
| | - Bahman Khahani
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
| | - S Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
| | - Moein Khojasteh
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran.
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, 31587-77871, Iran.
| |
Collapse
|
18
|
Breit-McNally C, Laflamme B, Singh RA, Desveaux D, Guttman DS. ZAR1: Guardian of plant kinases. FRONTIERS IN PLANT SCIENCE 2022; 13:981684. [PMID: 36212348 PMCID: PMC9539561 DOI: 10.3389/fpls.2022.981684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/07/2022] [Indexed: 05/25/2023]
Abstract
A key facet of innate immunity in plants entails the recognition of pathogen "effector" virulence proteins by host Nucleotide-Binding Leucine-Rich Repeat Receptors (NLRs). Among characterized NLRs, the broadly conserved ZAR1 NLR is particularly remarkable due to its capacity to recognize at least six distinct families of effectors from at least two bacterial genera. This expanded recognition spectrum is conferred through interactions between ZAR1 and a dynamic network of two families of Receptor-Like Cytoplasmic Kinases (RLCKs): ZED1-Related Kinases (ZRKs) and PBS1-Like Kinases (PBLs). In this review, we survey the history of functional studies on ZAR1, with an emphasis on how the ZAR1-RLCK network functions to trap diverse effectors. We discuss 1) the dynamics of the ZAR1-associated RLCK network; 2) the specificity between ZRKs and PBLs; and 3) the specificity between effectors and the RLCK network. We posit that the shared protein fold of kinases and the switch-like properties of their interactions make them ideal effector sensors, enabling ZAR1 to act as a broad spectrum guardian of host kinases.
Collapse
Affiliation(s)
- Clare Breit-McNally
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Bradley Laflamme
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Racquel A. Singh
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
| | - David S. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Dubrow ZE, Carpenter SCD, Carter ME, Grinage A, Gris C, Lauber E, Butchachas J, Jacobs JM, Smart CD, Tancos MA, Noël LD, Bogdanove AJ. Cruciferous Weed Isolates of Xanthomonas campestris Yield Insight into Pathovar Genomic Relationships and Genetic Determinants of Host and Tissue Specificity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:791-802. [PMID: 35536128 DOI: 10.1094/mpmi-01-22-0024-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pathovars of Xanthomonas campestris cause distinct diseases on different brassicaceous hosts. The genomic relationships among pathovars as well as the genetic determinants of host range and tissue specificity remain poorly understood despite decades of research. Here, leveraging advances in multiplexed long-read technology, we fully sequenced the genomes of a collection of X. campestris strains isolated from cruciferous crops and weeds in New York and California as well as strains from global collections, to investigate pathovar relationships and candidate genes for host- and tissue-specificity. Pathogenicity assays and genomic comparisons across this collection and publicly available X. campestris genomes revealed a correlation between pathovar and genomic relatedness and provide support for X. campestris pv. barbareae, the validity of which had been questioned. Linking strain host range with type III effector repertoires identified AvrAC (also 'XopAC') as a candidate host-range determinant, preventing infection of Matthiola incana, and this was confirmed experimentally. Furthermore, the presence of a copy of the cellobiosidase gene cbsA with coding sequence for a signal peptide was found to correlate with the ability to infect vascular tissues, in agreement with a previous study of diverse Xanthomonas species; however, heterologous expression in strains lacking the gene gave mixed results, indicating that factors in addition to cbsA influence tissue specificity of X. campestris pathovars. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Zoë E Dubrow
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - Sara C D Carpenter
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - Morgan E Carter
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
- School of Plant Sciences, University of Arizona, Tucson, AZ, U.S.A
| | - Ayress Grinage
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - Carine Gris
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul Sabatier, Castanet-Tolosan, France
| | - Emmanuelle Lauber
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul Sabatier, Castanet-Tolosan, France
| | - Jules Butchachas
- Department of Plant Pathology, The Ohio State University, Columbus, OH, U.S.A
| | - Jonathan M Jacobs
- Department of Plant Pathology, The Ohio State University, Columbus, OH, U.S.A
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - Matthew A Tancos
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Frederick, MD, U.S.A
| | - Laurent D Noël
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul Sabatier, Castanet-Tolosan, France
| | - Adam J Bogdanove
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| |
Collapse
|
20
|
Luneau JS, Noël LD, Lauber E, Boulanger A. A β-glucuronidase (GUS) Based Bacterial Competition Assay to Assess Fine Differencesin Fitness during Plant Infection. Bio Protoc 2022; 12:e3776. [PMID: 35991161 PMCID: PMC9382408 DOI: 10.21769/bioprotoc.3776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 12/29/2022] Open
Abstract
Competition assays are a simple phenotyping strategy that confront two bacterial strains to evaluate their relative fitness. Because they are more accurate than single-strain growth assays, competition assays can be used to highlight slight differences that would not otherwise be detectable. In the frame of host-pathogens interactions, they can be very useful to study the contribution of individual bacterial genes to bacterial fitness and lead to the identification of new adaptive traits. Here, we describe how to perform such competition assays by taking the example of the model phytopathogenic bacterium Xanthomonas campestris pv. campestris during infection of the mesophyll of its cauliflower host. This phenotypic assay is based on the use of a Competitive Index (CI) that compares the relative abundance of co-inoculated strains before and after inoculation. Since multiplication is a direct proxy for bacterial fitness, the evolution of the ratio between both strains in the mixed population is a direct way to assess differences in fitness in a given environment. In this protocol, we exploit the blue staining of GUS-expressing bacteria to count blue vs. white colonies on plates and estimate the competitiveness of the strains of interest in plant mesophyll.
Collapse
Affiliation(s)
- Julien S. Luneau
- Laboratory of Plant-Microbes Interactions, Université de Toulouse, INRAE, CNRS, UPS, Castanet-Tolosan, France
| | - Laurent D. Noël
- Laboratory of Plant-Microbes Interactions, Université de Toulouse, INRAE, CNRS, UPS, Castanet-Tolosan, France
| | - Emmanuelle Lauber
- Laboratory of Plant-Microbes Interactions, Université de Toulouse, INRAE, CNRS, UPS, Castanet-Tolosan, France
| | - Alice Boulanger
- Laboratory of Plant-Microbes Interactions, Université de Toulouse, INRAE, CNRS, UPS, Castanet-Tolosan, France,
*For correspondence:
| |
Collapse
|
21
|
Liang X, Zhang J. Regulation of plant responses to biotic and abiotic stress by receptor-like cytoplasmic kinases. STRESS BIOLOGY 2022; 2:25. [PMID: 37676353 PMCID: PMC10441961 DOI: 10.1007/s44154-022-00045-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/09/2022] [Indexed: 09/08/2023]
Abstract
As sessile organisms, plants have to cope with environmental change and numerous biotic and abiotic stress. Upon perceiving environmental cues and stress signals using different types of receptors, plant cells initiate immediate and complicated signaling to regulate cellular processes and respond to stress. Receptor-like cytoplasmic kinases (RLCKs) transduce signals from receptors to cellular components and play roles in diverse biological processes. Recent studies have revealed the hubbing roles of RLCKs in plant responses to biotic stress. Emerging evidence indicates the important regulatory roles of RLCKs in plant responses to abiotic stress, growth, and development. As a pivot of cellular signaling, the activity and stability of RLCKs are dynamically and tightly controlled. Here, we summarize the current understanding of how RLCKs regulate plant responses to biotic and abiotic stress.
Collapse
Affiliation(s)
- Xiangxiu Liang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Yang G, Yang J, Zhang Q, Wang W, Feng L, Zhao L, An B, Wang Q, He C, Luo H. The Effector Protein CgNLP1 of Colletotrichum gloeosporioides Affects Invasion and Disrupts Nuclear Localization of Necrosis-Induced Transcription Factor HbMYB8-Like to Suppress Plant Defense Signaling. Front Microbiol 2022; 13:911479. [PMID: 35770165 PMCID: PMC9234567 DOI: 10.3389/fmicb.2022.911479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Fungi secrete numerous effectors to modulate host defense systems. Understanding the molecular mechanisms by which fungal effectors regulate plant defense is of great importance for the development of novel strategies for disease control. In this study, we identified necrosis- and ethylene-inducing protein 1 (Nep1)-like protein (NLP) effector gene, CgNLP1, which contributed to conidial germination, appressorium formation, invasive growth, and virulence of Colletotrichum gloeosporioides to the rubber tree. Transient expression of CgNLP1 in the leaves of Nicotiana benthamiana induced ethylene production in plants. Ectopic expression of CgNLP1 in Arabidopsis significantly enhanced the resistance to Botrytis cinerea and Alternaria brassicicola. An R2R3 type transcription factor HbMYB8-like of rubber tree was identified as the target of CgNLP1.HbMYB8-like, localized on the nucleus, and induced cell death in N. benthamiana. CgNLP1 disrupted nuclear accumulation of HbMYB8-like and suppressed HbMYB8-like induced cell death, which is mediated by the salicylic acid (SA) signal pathway. This study suggested a new strategy whereby C. gloeosporioides exploited the CgNLP1 effector to affect invasion and suppress a host defense regulator HbMYB8-like to facilitate infection.
Collapse
Affiliation(s)
- Guangyong Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Jie Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Qiwei Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Wenfeng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
| | - Liping Feng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
| | - Li Zhao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
| | - Bang An
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Qiannan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Hongli Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- *Correspondence: Hongli Luo
| |
Collapse
|
23
|
Offor BC, Mhlongo MI, Dubery IA, Piater LA. Plasma Membrane-Associated Proteins Identified in Arabidopsis Wild Type, lbr2-2 and bak1-4 Mutants Treated with LPSs from Pseudomonas syringae and Xanthomonas campestris. MEMBRANES 2022; 12:membranes12060606. [PMID: 35736313 PMCID: PMC9230897 DOI: 10.3390/membranes12060606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023]
Abstract
Plants recognise bacterial microbe-associated molecular patterns (MAMPs) from the environment via plasma membrane (PM)-localised pattern recognition receptor(s) (PRRs). Lipopolysaccharides (LPSs) are known as MAMPs from gram-negative bacteria that are most likely recognised by PRRs and trigger defence responses in plants. The Arabidopsis PRR(s) and/or co-receptor(s) complex for LPS and the associated defence signalling remains elusive. As such, proteomic identification of LPS receptors and/or co-receptor complexes will help to elucidate the molecular mechanisms that underly LPS perception and defence signalling in plants. The Arabidopsis LPS-binding protein (LBP) and bactericidal/permeability-increasing protein (BPI)-related-2 (LBR2) have been shown to recognise LPS and trigger defence responses while brassinosteroid insensitive 1 (BRI1)-associated receptor kinase 1 (BAK1) acts as a co-receptor for several PRRs. In this study, Arabidopsis wild type (WT) and T-DNA knock out mutants (lbr2-2 and bak1-4) were treated with LPS chemotypes from Pseudomonas syringae pv. tomato DC3000 (Pst) and Xanthomonas campestris pv. campestris 8004 (Xcc) over a 24 h period. The PM-associated protein fractions were separated by liquid chromatography and analysed by tandem mass spectrometry (LC-MS/MS) followed by data analysis using ByonicTM software. Using Gene Ontology (GO) for molecular function and biological processes, significant LPS-responsive proteins were grouped according to defence and stress response, perception and signalling, membrane transport and trafficking, metabolic processes and others. Venn diagrams demarcated the MAMP-responsive proteins that were common and distinct to the WT and mutant lines following treatment with the two LPS chemotypes, suggesting contributions from differential LPS sub-structural moieties and involvement of LBR2 and BAK1 in the LPS-induced MAMP-triggered immunity (MTI). Moreover, the identification of RLKs and RLPs that participate in other bacterial and fungal MAMP signalling proposes the involvement of more than one receptor and/or co-receptor for LPS perception as well as signalling in Arabidopsis defence responses.
Collapse
|
24
|
Gong Z, Qi J, Hu M, Bi G, Zhou JM, Han GZ. The origin and evolution of a plant resistosome. THE PLANT CELL 2022; 34:1600-1620. [PMID: 35166827 PMCID: PMC9048963 DOI: 10.1093/plcell/koac053] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/08/2022] [Indexed: 05/25/2023]
Abstract
The nucleotide-binding, leucine-rich receptor (NLR) protein HOPZ-ACTIVATED RESISTANCE 1 (ZAR1), an immune receptor, interacts with HOPZ-ETI-DEFICIENT 1 (ZED1)-related kinases (ZRKs) and AVRPPHB SUSCEPTIBLE 1-like proteins to form a pentameric resistosome, triggering immune responses. Here, we show that ZAR1 emerged through gene duplication and that ZRKs were derived from the cell surface immune receptors wall-associated protein kinases (WAKs) through the loss of the extracellular domain before the split of eudicots and monocots during the Jurassic period. Many angiosperm ZAR1 orthologs, but not ZAR1 paralogs, are capable of oligomerization in the presence of AtZRKs and triggering cell death, suggesting that the functional ZAR1 resistosome might have originated during the early evolution of angiosperms. Surprisingly, inter-specific pairing of ZAR1 and AtZRKs sometimes results in the formation of a resistosome in the absence of pathogen stimulation, suggesting within-species compatibility between ZAR1 and ZRKs as a result of co-evolution. Numerous concerted losses of ZAR1 and ZRKs occurred in angiosperms, further supporting the ancient co-evolution between ZAR1 and ZRKs. Our findings provide insights into the origin of new plant immune surveillance networks.
Collapse
Affiliation(s)
- Zhen Gong
- College of Life Sciences, Jiangsu Key Laboratory for Microbes and Functional Genomics, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jinfeng Qi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meijuan Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guozhi Bi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guan-Zhu Han
- College of Life Sciences, Jiangsu Key Laboratory for Microbes and Functional Genomics, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
25
|
Hou S, Zhao T, Yang Z, Liang L, Ma W, Wang G, Ma Q. Stigmatic Transcriptome Analysis of Self-Incompatible and Compatible Pollination in Corylus heterophylla Fisch. × Corylus avellana L. FRONTIERS IN PLANT SCIENCE 2022; 13:800768. [PMID: 35300011 PMCID: PMC8921776 DOI: 10.3389/fpls.2022.800768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Self-incompatibility (SI) protects plants from inbreeding depression due to self-pollination and promotes the outcrossing process to maintain a high degree of heterozygosity during evolution. Corylus is an important woody oil and nut species that shows sporophytic SI (SSI). Yet the molecular mechanism of SI in Corylus remains largely unknown. Here we conducted self- ("Dawei" × "Dawei") and cross-pollination ("Dawei" × "Liaozhen No. 7") experiments and then performed an RNA-Seq analysis to investigate the mechanism of pollen-stigma interactions and identify those genes that may be responsible for SSI in Corylus. We uncovered 19,163 up- and 13,314 downregulated genes from the comparison of different pollination treatments. These differentially expressed genes (DEGs) were significantly enriched in plant-pathogen interaction, plant hormone signal transduction, and MAPK signaling pathway-plant. We found many notable genes potentially involved in pollen-stigma interactions and SSI mechanisms, including genes encoding receptor-like protein kinases (RLK), calcium-related genes, disease-resistance genes, and WRKY transcription factors. Four upregulated and five downregulated DEGs were consistently identified in those comparison groups involving self-incompatible pollination, suggesting they had important roles in pollen-pistil interactions. We further identified the S-locus region of the Corylus heterophylla genome based on molecular marker location. This predicted S-locus contains 38 genes, of which 8 share the same functional annotation as the S-locus genes of Corylus avellana: two PIX7 homologous genes (EVM0002129 and EVM0025536), three MIK2 homologous genes (EVM0002422, EVM0005666, and EVM0009820), one aldose 1-epimerase (EVM0002095), one 3-dehydroquinate synthase II (EVM0021283), and one At3g28850 homologous gene (EVM0016149). By characterizing the pistil process during the early postpollination phase via transcriptomic analysis, this study provides new knowledge and lays the foundation for subsequent analyses of pollen-pistil interactions.
Collapse
Affiliation(s)
- Sihao Hou
- State Key Laboratory of Tree Genetics and Breeding, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, China
- National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing, China
| | - Tiantian Zhao
- State Key Laboratory of Tree Genetics and Breeding, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, China
- National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing, China
| | - Zhen Yang
- State Key Laboratory of Tree Genetics and Breeding, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, China
- National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing, China
| | - Lisong Liang
- State Key Laboratory of Tree Genetics and Breeding, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, China
- National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing, China
| | - Wenxu Ma
- State Key Laboratory of Tree Genetics and Breeding, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, China
- National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing, China
| | - Guixi Wang
- State Key Laboratory of Tree Genetics and Breeding, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, China
- National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing, China
| | - Qinghua Ma
- State Key Laboratory of Tree Genetics and Breeding, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, China
- National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing, China
| |
Collapse
|
26
|
Luneau JS, Cerutti A, Roux B, Carrère S, Jardinaud M, Gaillac A, Gris C, Lauber E, Berthomé R, Arlat M, Boulanger A, Noël LD. Xanthomonas transcriptome inside cauliflower hydathodes reveals bacterial virulence strategies and physiological adaptations at early infection stages. MOLECULAR PLANT PATHOLOGY 2022; 23:159-174. [PMID: 34837293 PMCID: PMC8743013 DOI: 10.1111/mpp.13117] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 06/01/2023]
Abstract
Xanthomonas campestris pv. campestris (Xcc) is a seed-transmitted vascular pathogen causing black rot disease on cultivated and wild Brassicaceae. Xcc enters the plant tissues preferentially via hydathodes, which are organs localized at leaf margins. To decipher both physiological and virulence strategies deployed by Xcc during early stages of infection, the transcriptomic profile of Xcc was analysed 3 days after entry into cauliflower hydathodes. Despite the absence of visible plant tissue alterations and despite a biotrophic lifestyle, 18% of Xcc genes were differentially expressed, including a striking repression of chemotaxis and motility functions. The Xcc full repertoire of virulence factors had not yet been activated but the expression of the HrpG regulon composed of 95 genes, including genes coding for the type III secretion machinery important for suppression of plant immunity, was induced. The expression of genes involved in metabolic adaptations such as catabolism of plant compounds, transport functions, sulphur and phosphate metabolism was upregulated while limited stress responses were observed 3 days postinfection. We confirmed experimentally that high-affinity phosphate transport is needed for bacterial fitness inside hydathodes. This analysis provides information about the nutritional and stress status of bacteria during the early biotrophic infection stages and helps to decipher the adaptive strategy of Xcc to the hydathode environment.
Collapse
Affiliation(s)
- Julien S. Luneau
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | - Aude Cerutti
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | - Brice Roux
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
- Present address:
Brice Roux, HalioDx, Luminy Biotech EntreprisesMarseille Cedex 9France
| | - Sébastien Carrère
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | | | - Antoine Gaillac
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | - Carine Gris
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | - Emmanuelle Lauber
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | - Richard Berthomé
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | - Matthieu Arlat
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | - Alice Boulanger
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| | - Laurent D. Noël
- LIPME, Université de Toulouse, INRAE, CNRS, Université Paul SabatierCastanet‐TolosanFrance
| |
Collapse
|
27
|
Giglione C, Meinnel T. Mapping the myristoylome through a complete understanding of protein myristoylation biochemistry. Prog Lipid Res 2021; 85:101139. [PMID: 34793862 DOI: 10.1016/j.plipres.2021.101139] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/22/2022]
Abstract
Protein myristoylation is a C14 fatty acid modification found in all living organisms. Myristoylation tags either the N-terminal alpha groups of cysteine or glycine residues through amide bonds or lysine and cysteine side chains directly or indirectly via glycerol thioester and ester linkages. Before transfer to proteins, myristate must be activated into myristoyl coenzyme A in eukaryotes or, in bacteria, to derivatives like phosphatidylethanolamine. Myristate originates through de novo biosynthesis (e.g., plants), from external uptake (e.g., human tissues), or from mixed origins (e.g., unicellular organisms). Myristate usually serves as a molecular anchor, allowing tagged proteins to be targeted to membranes and travel across endomembrane networks in eukaryotes. In this review, we describe and discuss the metabolic origins of protein-bound myristate. We review strategies for in vivo protein labeling that take advantage of click-chemistry with reactive analogs, and we discuss new approaches to the proteome-wide discovery of myristate-containing proteins. The machineries of myristoylation are described, along with how protein targets can be generated directly from translating precursors or from processed proteins. Few myristoylation catalysts are currently described, with only N-myristoyltransferase described to date in eukaryotes. Finally, we describe how viruses and bacteria hijack and exploit myristoylation for their pathogenicity.
Collapse
Affiliation(s)
- Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
28
|
Li P, Zhao L, Qi F, Htwe NMPS, Li Q, Zhang D, Lin F, Shang-Guan K, Liang Y. The receptor-like cytoplasmic kinase RIPK regulates broad-spectrum ROS signaling in multiple layers of plant immune system. MOLECULAR PLANT 2021; 14:1652-1667. [PMID: 34129947 DOI: 10.1016/j.molp.2021.06.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 05/19/2023]
Abstract
Production of reactive oxygen species (ROS) via the activity of respiratory burst oxidase homologs (RBOHs) plays a vital role in multiple layers of the plant immune system, including pathogen-associated molecular pattern-triggered immunity (PTI), damage-associated molecular pattern-triggered immunity (DTI), effector-triggered immunity (ETI), and systemic acquired resistance (SAR). It is generally established that RBOHD is activated by different receptor-like cytoplasmic kinases (RLCKs) in response to various immune elicitors. In this study, we showed that RPM1-INDUCED PROTEIN KINASE (RIPK), an RLCK VII subfamily member, contributes to ROS production in multiple layers of plant immune system. The ripk mutants showed reduced ROS production in response to treatment with all examined immune elicitors that trigger PTI, DTI, ETI, and SAR. We found that RIPK can directly phosphorylate the N-terminal region of RBOHD in vitro, and the levels of phosphorylated S343/S347 residues of RBOHD are sigfniciantly lower in ripk mutants compared with the wild type upon treatment with all tested immune elicitors. We further demonstrated that phosphorylation of RIPK is required for its function in regulating RBOHD-mediated ROS production. Similar to rbohd, ripk mutants showed reduced stomatal closure and impaired SAR, and were susceptible to the necrotrophic bacterium Pectobacterium carotovorum. Collectively, our results indicate that RIPK regulates broad-spectrum RBOHD-mediated ROS signaling during PTI, DTI, ETI, and SAR, leading to subsequent RBOHD-dependent immune responses.
Collapse
Affiliation(s)
- Ping Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lulu Zhao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fan Qi
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Nang Myint Phyu Sin Htwe
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qiuying Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dawei Zhang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fucheng Lin
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Hangzhou 310058, China
| | - Keke Shang-Guan
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yan Liang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
29
|
The Same against Many: AtCML8, a Ca 2+ Sensor Acting as a Positive Regulator of Defense Responses against Several Plant Pathogens. Int J Mol Sci 2021; 22:ijms221910469. [PMID: 34638807 PMCID: PMC8508799 DOI: 10.3390/ijms221910469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 01/11/2023] Open
Abstract
Calcium signals are crucial for the activation and coordination of signaling cascades leading to the establishment of plant defense mechanisms. Here, we studied the contribution of CML8, an Arabidopsis calmodulin-like protein in response to Ralstonia solanacearum and to pathogens with different lifestyles, such as Xanthomonas campestris pv. campestris and Phytophtora capsici. We used pathogenic infection assays, gene expression, RNA-seq approaches, and comparative analysis of public data on CML8 knockdown and overexpressing Arabidopsis lines to demonstrate that CML8 contributes to defense mechanisms against pathogenic bacteria and oomycetes. CML8 gene expression is finely regulated at the root level and manipulated during infection with Ralstonia, and CML8 overexpression confers better plant tolerance. To understand the processes controlled by CML8, genes differentially expressed at the root level in the first hours of infection have been identified. Overexpression of CML8 also confers better tolerance against Xanthomonas and Phytophtora, and most of the genes differentially expressed in response to Ralstonia are differentially expressed in these different pathosystems. Collectively, CML8 acts as a positive regulator against Ralstonia solanaceraum and against other vascular or root pathogens, suggesting that CML8 is a multifunctional protein that regulates common downstream processes involved in the defense response of plants to several pathogens.
Collapse
|
30
|
Secrete or perish: The role of secretion systems in Xanthomonas biology. Comput Struct Biotechnol J 2020; 19:279-302. [PMID: 33425257 PMCID: PMC7777525 DOI: 10.1016/j.csbj.2020.12.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 12/22/2022] Open
Abstract
Bacteria of the Xanthomonas genus are mainly phytopathogens of a large variety of crops of economic importance worldwide. Xanthomonas spp. rely on an arsenal of protein effectors, toxins and adhesins to adapt to the environment, compete with other microorganisms and colonize plant hosts, often causing disease. These protein effectors are mainly delivered to their targets by the action of bacterial secretion systems, dedicated multiprotein complexes that translocate proteins to the extracellular environment or directly into eukaryotic and prokaryotic cells. Type I to type VI secretion systems have been identified in Xanthomonas genomes. Recent studies have unravelled the diverse roles played by the distinct types of secretion systems in adaptation and virulence in xanthomonads, unveiling new aspects of their biology. In addition, genome sequence information from a wide range of Xanthomonas species and pathovars have become available recently, uncovering a heterogeneous distribution of the distinct families of secretion systems within the genus. In this review, we describe the architecture and mode of action of bacterial type I to type VI secretion systems and the distribution and functions associated with these important nanoweapons within the Xanthomonas genus.
Collapse
|
31
|
Zurn JD, Norelli JL, Montanari S, Bell R, Bassil NV. Dissecting Genetic Resistance to Fire Blight in Three Pear Populations. PHYTOPATHOLOGY 2020; 110:1305-1311. [PMID: 32175827 DOI: 10.1094/phyto-02-20-0051-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fire blight, caused by the bacterial pathogen Erwinia amylovora, is a persistent problem for pear (Pyrus spp.) growers in the United States. Growing resistant cultivars is one of the best options for managing fire blight. The cultivars Potomac and Old Home and the selection NJA2R59T69 display resistance to fire blight. As such, three mapping populations (El Dorado × Potomac, Old Home × Bartlett, and NJA2R59T69 × Bartlett) were developed to identify genomic regions associated with resistance to fire blight. Progeny were phenotyped during 2017 and 2018 by inoculating multiple actively growing shoots of field-grown seedling trees with E. amylovora isolate E153n via the cut-leaf method. Genotyping was conducted using the recently developed Axiom Pear 70 K Genotyping Array and chromosomal linkage groups were created for each population. An integrated two-way pseudo-testcross approach was used to map quantitative trait loci (QTLs). Resistance QTLs were identified on chromosome 2 for each population. The QTLs identified in the El Dorado × Potomac and Old Home × Bartlett populations are in the same region as QTLs that were previously identified in Harrow Sweet and Moonglow. The QTL in NJA2R59T69 mapped proximally to the previously identified QTLs and originated from an unknown Asian or occidental source. Future research will focus on further characterizing the resistance regions and developing tools for DNA-informed breeding.
Collapse
Affiliation(s)
- Jason D Zurn
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS) National Clonal Germplasm Repository, Corvallis, OR, U.S.A
| | - John L Norelli
- USDA-ARS Appalachian Fruit Research Laboratory, Kearneysville, WV, U.S.A
| | - Sara Montanari
- Department of Plant Sciences, University of California Davis, Davis, CA, U.S.A
| | - Richard Bell
- USDA-ARS Appalachian Fruit Research Laboratory, Kearneysville, WV, U.S.A
| | - Nahla V Bassil
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS) National Clonal Germplasm Repository, Corvallis, OR, U.S.A
| |
Collapse
|
32
|
Characterization of Atypical Protein Tyrosine Kinase (PTK) Genes and Their Role in Abiotic Stress Response in Rice. PLANTS 2020; 9:plants9050664. [PMID: 32456239 PMCID: PMC7284356 DOI: 10.3390/plants9050664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 02/02/2023]
Abstract
Tyrosine phosphorylation constitutes up to 5% of the total phophoproteome. However, only limited studies are available on protein tyrosine kinases (PTKs) that catalyze protein tyrosine phosphorylation in plants. In this study, domain analysis of the 27 annotated PTK genes in rice genome led to the identification of 18 PTKs with tyrosine kinase domain. The kinase domain of rice PTKs shared high homology with that of dual specificity kinase BRASSINOSTEROID-INSENSITIVE 1 (BRI1) of Arabidopsis. In phylogenetic analysis, rice PTKs clustered with receptor-like cytoplasmic kinases-VII (RLCKs-VII) of Arabidopsis. mRNAseq analysis using Genevestigator revealed that rice PTKs except PTK9 and PTK16 express at moderate to high level in most tissues. PTK16 expression was highly abundant in panicle at flowering stage. mRNAseq data analysis led to the identification of drought, heat, salt, and submergence stress regulated PTK genes in rice. PTK14 was upregulated under all stresses. qRT-PCR analysis also showed that all PTKs except PTK10 were significantly upregulated in root under osmotic stress. Tissue specificity and abiotic stress mediated differential regulation of PTKs suggest their potential role in development and stress response of rice. The candidate dual specificity PTKs identified in this study paves way for molecular analysis of tyrosine phosphorylation in rice.
Collapse
|
33
|
Hu M, Qi J, Bi G, Zhou JM. Bacterial Effectors Induce Oligomerization of Immune Receptor ZAR1 In Vivo. MOLECULAR PLANT 2020; 13:793-801. [PMID: 32194243 DOI: 10.1016/j.molp.2020.03.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/02/2020] [Accepted: 03/11/2020] [Indexed: 05/22/2023]
Abstract
Plants utilize nucleotide-binding, leucine-rich repeat receptors (NLRs) to detect pathogen effectors, leading to effector-triggered immunity. The NLR ZAR1 indirectly recognizes the Xanthomonas campestris pv. campestris effector AvrAC and Pseudomonas syringae effector HopZ1a by associating with closely related receptor-like cytoplasmic kinase subfamily XII-2 (RLCK XII-2) members RKS1 and ZED1, respectively. ZAR1, RKS1, and the AvrAC-modified decoy PBL2UMP form a pentameric resistosome in vitro, and the ability of resistosome formation is required for AvrAC-triggered cell death and disease resistance. However, it remains unknown whether the effectors induce ZAR1 oligomerization in the plant cell. In this study, we show that both AvrAC and HopZ1a can induce oligomerization of ZAR1 in Arabidopsis protoplasts. Residues mediating ZAR1-ZED1 interaction are indispensable for HopZ1a-induced ZAR1 oligomerization in vivo and disease resistance. In addition, ZAR1 residues required for the assembly of ZAR1 resistosome in vitro are also essential for HopZ1a-induced ZAR1 oligomerization in vivo and disease resistance. Our study provides evidence that pathogen effectors induce ZAR1 resistosome formation in the plant cell and that the resistosome formation triggers disease resistance.
Collapse
Affiliation(s)
- Meijuan Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinfeng Qi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guozhi Bi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China.
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| |
Collapse
|
34
|
Méline V, Brin C, Lebreton G, Ledroit L, Sochard D, Hunault G, Boureau T, Belin E. A Computation Method Based on the Combination of Chlorophyll Fluorescence Parameters to Improve the Discrimination of Visually Similar Phenotypes Induced by Bacterial Virulence Factors. FRONTIERS IN PLANT SCIENCE 2020; 11:213. [PMID: 32174949 PMCID: PMC7055487 DOI: 10.3389/fpls.2020.00213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 02/11/2020] [Indexed: 05/24/2023]
Abstract
Phenotyping biotic stresses in plant-pathogen interactions studies is often hindered by phenotypes that can hardly be discriminated by visual assessment. Particularly, single gene mutants in virulence factors could lack visible phenotypes. Chlorophyll fluorescence (CF) imaging is a valuable tool to monitor plant-pathogen interactions. However, while numerous CF parameters can be measured, studies on plant-pathogen interactions often focus on a restricted number of parameters. It could result in limited abilities to discriminate visually similar phenotypes. In this study, we assess the ability of the combination of multiple CF parameters to improve the discrimination of such phenotypes. Such an approach could be of interest for screening and discriminating the impact of bacterial virulence factors without prior knowledge. A computation method was developed, based on the combination of multiple CF parameters, without any parameter selection. It involves histogram Bhattacharyya distance calculations and hierarchical clustering, with a normalization approach to take into account the inter-leaves and intra-phenotypes heterogeneities. To assess the efficiency of the method, two datasets were analyzed the same way. The first dataset featured single gene mutants of a Xanthomonas strain which differed only by their abilities to secrete bacterial virulence proteins. This dataset displayed expected phenotypes at 6 days post-inoculation and was used as ground truth dataset to setup the method. The efficiency of the computation method was demonstrated by the relevant discrimination of phenotypes at 3 days post-inoculation. A second dataset was composed of transient expression (agrotransformation) of Type 3 Effectors. This second dataset displayed phenotypes that cannot be discriminated by visual assessment and no prior knowledge can be made on the respective impact of each Type 3 Effectors on leaf tissues. Using the computation method resulted in clustering the leaf samples according to the Type 3 Effectors, thereby demonstrating an improvement of the discrimination of the visually similar phenotypes. The relevant discrimination of visually similar phenotypes induced by bacterial strains differing only by one virulence factor illustrated the importance of using a combination of CF parameters to monitor plant-pathogen interactions. It opens a perspective for the identification of specific signatures of biotic stresses.
Collapse
Affiliation(s)
- Valérian Méline
- Emersys, SFR 4207 QUASAV, IRHS, UMR1345, Université d'Angers, Angers, France
- ImHorPhen, SFR 4207 QUASAV, IRHS, UMR1345, Université d'Angers, Angers, France
| | - Chrystelle Brin
- Emersys, SFR 4207 QUASAV, IRHS, UMR1345, Université d'Angers, Angers, France
| | - Guillaume Lebreton
- Phenotic Platform, SFR 4207 QUASAV, IRHS, UMR1345, Université d'Angers, Angers, France
| | - Lydie Ledroit
- Phenotic Platform, SFR 4207 QUASAV, IRHS, UMR1345, Université d'Angers, Angers, France
| | - Daniel Sochard
- Phenotic Platform, SFR 4207 QUASAV, IRHS, UMR1345, Université d'Angers, Angers, France
| | - Gilles Hunault
- ImHorPhen, SFR 4207 QUASAV, IRHS, UMR1345, Université d'Angers, Angers, France
- Laboratoire HIFIH, UPRES EA 3859, SFR 4208, Université d'Angers, Angers, France
| | - Tristan Boureau
- Emersys, SFR 4207 QUASAV, IRHS, UMR1345, Université d'Angers, Angers, France
- ImHorPhen, SFR 4207 QUASAV, IRHS, UMR1345, Université d'Angers, Angers, France
- Phenotic Platform, SFR 4207 QUASAV, IRHS, UMR1345, Université d'Angers, Angers, France
| | - Etienne Belin
- ImHorPhen, SFR 4207 QUASAV, IRHS, UMR1345, Université d'Angers, Angers, France
- Phenotic Platform, SFR 4207 QUASAV, IRHS, UMR1345, Université d'Angers, Angers, France
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes, Université d'Angers, Angers, France
| |
Collapse
|
35
|
Tan X, Qiu H, Li F, Cheng D, Zheng X, Wang B, Huang M, Li W, Li Y, Sang K, Song B, Du J, Chen H, Xie C. Complete Genome Sequence of Sequevar 14M Ralstonia solanacearum Strain HA4-1 Reveals Novel Type III Effectors Acquired Through Horizontal Gene Transfer. Front Microbiol 2019; 10:1893. [PMID: 31474968 PMCID: PMC6703095 DOI: 10.3389/fmicb.2019.01893] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/31/2019] [Indexed: 01/08/2023] Open
Abstract
Ralstonia solanacearum, which causes bacterial wilt in a broad range of plants, is considered a "species complex" due to its significant genetic diversity. Recently, we have isolated a new R. solanacearum strain HA4-1 from Hong'an county in Hubei province of China and identified it being phylotype I, sequevar 14M (phylotype I-14M). Interestingly, we found that it can cause various disease symptoms among different potato genotypes and display different pathogenic behavior compared to a phylogenetically related strain, GMI1000. To dissect the pathogenic mechanisms of HA4-1, we sequenced its whole genome by combined sequencing technologies including Illumina HiSeq2000, PacBio RS II, and BAC-end sequencing. Genome assembly results revealed the presence of a conventional chromosome, a megaplasmid as well as a 143 kb plasmid in HA4-1. Comparative genome analysis between HA4-1 and GMI1000 shows high conservation of the general virulence factors such as secretion systems, motility, exopolysaccharides (EPS), and key regulatory factors, but significant variation in the repertoire and structure of type III effectors, which could be the determinants of their differential pathogenesis in certain potato species or genotypes. We have identified two novel type III effectors that were probably acquired through horizontal gene transfer (HGT). These novel R. solanacearum effectors display homology to several YopJ and XopAC family members. We named them as RipBR and RipBS. Notably, the copy of RipBR on the plasmid is a pseudogene, while the other on the megaplasmid is normal. For RipBS, there are three copies located in the megaplasmid and plasmid, respectively. Our results have not only enriched the genome information on R. solanacearum species complex by sequencing the first sequevar 14M strain and the largest plasmid reported in R. solanacearum to date but also revealed the variation in the repertoire of type III effectors. This will greatly contribute to the future studies on the pathogenic evolution, host adaptation, and interaction between R. solanacearum and potato.
Collapse
Affiliation(s)
- Xiaodan Tan
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Huishan Qiu
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Feng Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Dong Cheng
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Xueao Zheng
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Bingsen Wang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Mengshu Huang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Wenhao Li
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Yanping Li
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Kangqi Sang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Botao Song
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Juan Du
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Huilan Chen
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| |
Collapse
|
36
|
Rao S, Zhou Z, Miao P, Bi G, Hu M, Wu Y, Feng F, Zhang X, Zhou JM. Roles of Receptor-Like Cytoplasmic Kinase VII Members in Pattern-Triggered Immune Signaling. PLANT PHYSIOLOGY 2018; 177:1679-1690. [PMID: 29907700 PMCID: PMC6084675 DOI: 10.1104/pp.18.00486] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/04/2018] [Indexed: 05/19/2023]
Abstract
Pattern-recognition receptors (PRRs), which consist of receptor kinases (RKs) and receptor-like proteins, sense microbe- and host-derived molecular patterns associated with pathogen infection to trigger immune responses in plants. Several kinases of the 46-member Arabidopsis (Arabidopsis thaliana) receptor-like cytoplasmic kinase (RLCK) subfamily VII play important roles in pattern-triggered immunity, but it is unclear whether different RLCK VII members act specifically or redundantly in immune signaling. Here, we constructed nine higher order mutants of this subfamily (named rlck vii-1 to rlck vii-9) and systematically characterized their immune phenotypes. The mutants rlck vii-5, -7, and -8 had compromised reactive oxygen species production in response to all patterns tested, indicating that the corresponding members are broadly required for the signaling of multiple PRRs. However, rlck vii-4 was defective specifically in chitin-induced reactive oxygen species production, suggesting that RCLK VII-4 members mediate the signaling of specific PRRs. Furthermore, RLCK VII-4 members were required for the chitin-triggered activation of MAPK, demonstrating that these kinases link a PRR to MAPK activation. Moreover, we found that RLCK VII-6 and -8 also were required for RK-mediated root growth. Together, these results show that numerous RLCK VII members are involved in pattern-triggered immune signaling and uncover both common and specific roles of these kinases in plant development and immunity mediated by various RKs.
Collapse
Affiliation(s)
- Shaofei Rao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Zhaoyang Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Pei Miao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Guozhi Bi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Man Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Ying Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Feng Feng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Xiaojuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| |
Collapse
|
37
|
Liang X, Zhou JM. Receptor-Like Cytoplasmic Kinases: Central Players in Plant Receptor Kinase-Mediated Signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:267-299. [PMID: 29719165 DOI: 10.1146/annurev-arplant-042817-040540] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Receptor kinases (RKs) are of paramount importance in transmembrane signaling that governs plant reproduction, growth, development, and adaptation to diverse environmental conditions. Receptor-like cytoplasmic kinases (RLCKs), which lack extracellular ligand-binding domains, have emerged as a major class of signaling proteins that regulate plant cellular activities in response to biotic/abiotic stresses and endogenous extracellular signaling molecules. By associating with immune RKs, RLCKs regulate multiple downstream signaling nodes to orchestrate a complex array of defense responses against microbial pathogens. RLCKs also associate with RKs that perceive brassinosteroids and signaling peptides to coordinate growth, pollen tube guidance, embryonic and stomatal patterning, floral organ abscission, and abiotic stress responses. The activity and stability of RLCKs are dynamically regulated not only by RKs but also by other RLCK-associated proteins. Analyses of RLCK-associated components and substrates have suggested phosphorylation relays as a major mechanism underlying RK-mediated signaling.
Collapse
Affiliation(s)
- Xiangxiu Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, 100101 Beijing, China;
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, 100101 Beijing, China;
| |
Collapse
|
38
|
Su J, Spears BJ, Kim SH, Gassmann W. Constant vigilance: plant functions guarded by resistance proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:637-650. [PMID: 29232015 DOI: 10.1111/tpj.13798] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 05/09/2023]
Abstract
Unlike animals, plants do not have an adaptive immune system and have instead evolved sophisticated and multi-layered innate immune mechanisms. To overcome plant immunity, pathogens secrete a diverse array of effectors into the apoplast and virtually all cellular compartments to dampen immune signaling and interfere with plant functions. Here we describe the scope of the arms race throughout the cell and summarize various strategies used by both plants and pathogens. Through studying the ongoing evolutionary battle between plants and key pathogens, we may yet uncover potential ways to achieve the ultimate goal of engineering broad-spectrum resistant crops without affecting food quality or productivity.
Collapse
Affiliation(s)
- Jianbin Su
- Division of Plant Sciences, C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Benjamin J Spears
- Division of Plant Sciences, C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Sang Hee Kim
- Division of Applied Life Science (BK 21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Division of Life Science, Gyeongsang National University, Jinju, 52828, Korea
| | - Walter Gassmann
- Division of Plant Sciences, C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
39
|
Khan M, Seto D, Subramaniam R, Desveaux D. Oh, the places they'll go! A survey of phytopathogen effectors and their host targets. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:651-663. [PMID: 29160935 DOI: 10.1111/tpj.13780] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 05/09/2023]
Abstract
Phytopathogens translocate effector proteins into plant cells where they sabotage the host cellular machinery to promote infection. An individual pathogen can translocate numerous distinct effectors during the infection process to target an array of host macromolecules (proteins, metabolites, DNA, etc.) and manipulate them using a variety of enzymatic activities. In this review, we have surveyed the literature for effector targets and curated them to convey the range of functions carried out by phytopathogenic proteins inside host cells. In particular, we have curated the locations of effector targets, as well as their biological and molecular functions and compared these properties across diverse phytopathogens. This analysis validates previous observations about effector functions (e.g. immunosuppression), and also highlights some interesting features regarding effector specificity as well as functional diversification of phytopathogen virulence strategies.
Collapse
Affiliation(s)
- Madiha Khan
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Derek Seto
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Rajagopal Subramaniam
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Agriculture and Agri-Food Canada/Agriculture et Agroalimentaire Canada, KW Neatby bldg, 960 Carling Ave., Ottawa, ON, K1A 0C6, Canada
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Centre for the Analysis of Genome Function and Evolution, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
40
|
Büttner D. Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol Rev 2018; 40:894-937. [PMID: 28201715 PMCID: PMC5091034 DOI: 10.1093/femsre/fuw026] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2016] [Accepted: 07/03/2016] [Indexed: 01/30/2023] Open
Abstract
Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed.
Collapse
Affiliation(s)
- Daniela Büttner
- Genetics Department, Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
41
|
Zhang X, Dodds PN, Bernoux M. What Do We Know About NOD-Like Receptors in Plant Immunity? ANNUAL REVIEW OF PHYTOPATHOLOGY 2017. [PMID: 28637398 DOI: 10.1146/annurev-phyto-080516-035250] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The first plant disease resistance (R) genes were identified and cloned more than two decades ago. Since then, many more R genes have been identified and characterized in numerous plant pathosystems. Most of these encode members of the large family of intracellular NLRs (NOD-like receptors), which also includes animal immune receptors. New discoveries in this expanding field of research provide new elements for our understanding of plant NLR function. But what do we know about plant NLR function today? Genetic, structural, and functional analyses have uncovered a number of commonalities and differences in pathogen recognition strategies as well as how NLRs are regulated and activate defense signaling, but many unknowns remain. This review gives an update on the latest discoveries and breakthroughs in this field, with an emphasis on structural findings and some comparison to animal NLRs, which can provide additional insights and paradigms in plant NLR function.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2601, Australia;
| | - Peter N Dodds
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2601, Australia;
| | - Maud Bernoux
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2601, Australia;
| |
Collapse
|
42
|
Cerutti A, Jauneau A, Auriac MC, Lauber E, Martinez Y, Chiarenza S, Leonhardt N, Berthomé R, Noël LD. Immunity at Cauliflower Hydathodes Controls Systemic Infection by Xanthomonas campestris pv campestris. PLANT PHYSIOLOGY 2017; 174:700-716. [PMID: 28184011 PMCID: PMC5462019 DOI: 10.1104/pp.16.01852] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/06/2017] [Indexed: 05/20/2023]
Abstract
Hydathodes are water pores found on leaves of a wide range of vascular plants and are the sites of guttation. We report here on the detailed anatomy of cauliflower (Brassicaoleracea) and Arabidopsis (Arabidopsis thaliana) hydathodes. Hydathode surface presents pores resembling stomata giving access to large cavities. Beneath, the epithem is composed of a lacunar and highly vascularized parenchyma offering a direct connection between leaf surface and xylem vessels. Arabidopsis hydathode pores were responsive to ABA and light similar to stomata. The flg22 flagellin peptide, a well-characterized elicitor of plant basal immunity, did not induce closure of hydathode pores in contrast to stomata. Because hydathodes are natural infection routes for several pathogens, we investigated hydathode infection by the adapted vascular phytopathogenic bacterium Xanthomonas campestris pv campestris (Xcc), the causal agent of black rot disease of Brassicaceae. Microscopic observations of hydathodes six days postinoculation indicated a digestion of the epithem cells and a high bacterial multiplication. Postinvasive immunity was shown to limit pathogen growth in the epithem and is actively suppressed by the type III secretion system and its effector proteins. Altogether, these results give a detailed anatomic description of Brassicaceae hydathodes and highlight the efficient use of this tissue as an initial niche for subsequent vascular systemic dissemination of Xcc in distant plant tissues.
Collapse
Affiliation(s)
- Aude Cerutti
- LIPM, Université de Toulouse, INRA, CNRS, UPS, F-31326 Castanet-Tolosan, France (A.C., E.L., R.B., L.D.N.)
- Institut Fédératif de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, F-31326 Castanet-Tolosan, France (A.J., M.-C.A., Y.M.); and
- UMR7265, Laboratoire de Biologie du Développement des Plantes, Service de Biologie Végétale et de Microbiologie Environnementales, Institut de Biologie Environnementale et Biotechnologie, Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille, F-13108 Saint Paul-Les-Durance, France (S.C., N.L.)
| | - Alain Jauneau
- LIPM, Université de Toulouse, INRA, CNRS, UPS, F-31326 Castanet-Tolosan, France (A.C., E.L., R.B., L.D.N.)
- Institut Fédératif de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, F-31326 Castanet-Tolosan, France (A.J., M.-C.A., Y.M.); and
- UMR7265, Laboratoire de Biologie du Développement des Plantes, Service de Biologie Végétale et de Microbiologie Environnementales, Institut de Biologie Environnementale et Biotechnologie, Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille, F-13108 Saint Paul-Les-Durance, France (S.C., N.L.)
| | - Marie-Christine Auriac
- LIPM, Université de Toulouse, INRA, CNRS, UPS, F-31326 Castanet-Tolosan, France (A.C., E.L., R.B., L.D.N.)
- Institut Fédératif de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, F-31326 Castanet-Tolosan, France (A.J., M.-C.A., Y.M.); and
- UMR7265, Laboratoire de Biologie du Développement des Plantes, Service de Biologie Végétale et de Microbiologie Environnementales, Institut de Biologie Environnementale et Biotechnologie, Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille, F-13108 Saint Paul-Les-Durance, France (S.C., N.L.)
| | - Emmanuelle Lauber
- LIPM, Université de Toulouse, INRA, CNRS, UPS, F-31326 Castanet-Tolosan, France (A.C., E.L., R.B., L.D.N.)
- Institut Fédératif de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, F-31326 Castanet-Tolosan, France (A.J., M.-C.A., Y.M.); and
- UMR7265, Laboratoire de Biologie du Développement des Plantes, Service de Biologie Végétale et de Microbiologie Environnementales, Institut de Biologie Environnementale et Biotechnologie, Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille, F-13108 Saint Paul-Les-Durance, France (S.C., N.L.)
| | - Yves Martinez
- LIPM, Université de Toulouse, INRA, CNRS, UPS, F-31326 Castanet-Tolosan, France (A.C., E.L., R.B., L.D.N.)
- Institut Fédératif de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, F-31326 Castanet-Tolosan, France (A.J., M.-C.A., Y.M.); and
- UMR7265, Laboratoire de Biologie du Développement des Plantes, Service de Biologie Végétale et de Microbiologie Environnementales, Institut de Biologie Environnementale et Biotechnologie, Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille, F-13108 Saint Paul-Les-Durance, France (S.C., N.L.)
| | - Serge Chiarenza
- LIPM, Université de Toulouse, INRA, CNRS, UPS, F-31326 Castanet-Tolosan, France (A.C., E.L., R.B., L.D.N.)
- Institut Fédératif de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, F-31326 Castanet-Tolosan, France (A.J., M.-C.A., Y.M.); and
- UMR7265, Laboratoire de Biologie du Développement des Plantes, Service de Biologie Végétale et de Microbiologie Environnementales, Institut de Biologie Environnementale et Biotechnologie, Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille, F-13108 Saint Paul-Les-Durance, France (S.C., N.L.)
| | - Nathalie Leonhardt
- LIPM, Université de Toulouse, INRA, CNRS, UPS, F-31326 Castanet-Tolosan, France (A.C., E.L., R.B., L.D.N.)
- Institut Fédératif de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, F-31326 Castanet-Tolosan, France (A.J., M.-C.A., Y.M.); and
- UMR7265, Laboratoire de Biologie du Développement des Plantes, Service de Biologie Végétale et de Microbiologie Environnementales, Institut de Biologie Environnementale et Biotechnologie, Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille, F-13108 Saint Paul-Les-Durance, France (S.C., N.L.)
| | - Richard Berthomé
- LIPM, Université de Toulouse, INRA, CNRS, UPS, F-31326 Castanet-Tolosan, France (A.C., E.L., R.B., L.D.N.)
- Institut Fédératif de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, F-31326 Castanet-Tolosan, France (A.J., M.-C.A., Y.M.); and
- UMR7265, Laboratoire de Biologie du Développement des Plantes, Service de Biologie Végétale et de Microbiologie Environnementales, Institut de Biologie Environnementale et Biotechnologie, Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille, F-13108 Saint Paul-Les-Durance, France (S.C., N.L.)
| | - Laurent D Noël
- LIPM, Université de Toulouse, INRA, CNRS, UPS, F-31326 Castanet-Tolosan, France (A.C., E.L., R.B., L.D.N.);
- Institut Fédératif de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, F-31326 Castanet-Tolosan, France (A.J., M.-C.A., Y.M.); and
- UMR7265, Laboratoire de Biologie du Développement des Plantes, Service de Biologie Végétale et de Microbiologie Environnementales, Institut de Biologie Environnementale et Biotechnologie, Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille, F-13108 Saint Paul-Les-Durance, France (S.C., N.L.)
| |
Collapse
|
43
|
Jacques MA, Arlat M, Boulanger A, Boureau T, Carrère S, Cesbron S, Chen NWG, Cociancich S, Darrasse A, Denancé N, Fischer-Le Saux M, Gagnevin L, Koebnik R, Lauber E, Noël LD, Pieretti I, Portier P, Pruvost O, Rieux A, Robène I, Royer M, Szurek B, Verdier V, Vernière C. Using Ecology, Physiology, and Genomics to Understand Host Specificity in Xanthomonas. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:163-87. [PMID: 27296145 DOI: 10.1146/annurev-phyto-080615-100147] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
How pathogens coevolve with and adapt to their hosts are critical to understanding how host jumps and/or acquisition of novel traits can lead to new disease emergences. The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria that collectively infect a broad range of crops and wild plant species. However, individual Xanthomonas strains usually cause disease on only a few plant species and are highly adapted to their hosts, making them pertinent models to study host specificity. This review summarizes our current understanding of the molecular basis of host specificity in the Xanthomonas genus, with a particular focus on the ecology, physiology, and pathogenicity of the bacterium. Despite our limited understanding of the basis of host specificity, type III effectors, microbe-associated molecular patterns, lipopolysaccharides, transcriptional regulators, and chemotactic sensors emerge as key determinants for shaping host specificity.
Collapse
Affiliation(s)
- Marie-Agnès Jacques
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Matthieu Arlat
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
- CNRS, UMR 2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France
- Université de Toulouse, Université Paul Sabatier, F-31062 Toulouse, France
| | - Alice Boulanger
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
- CNRS, UMR 2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France
- Université de Toulouse, Université Paul Sabatier, F-31062 Toulouse, France
| | - Tristan Boureau
- Université Angers, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France;
| | - Sébastien Carrère
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
| | - Sophie Cesbron
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Nicolas W G Chen
- Agrocampus Ouest, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France;
| | - Stéphane Cociancich
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite (BGPI), F-34398 Montpellier, France; , , ,
| | - Armelle Darrasse
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Nicolas Denancé
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Marion Fischer-Le Saux
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Lionel Gagnevin
- IRD, CIRAD, University of Montpellier, Interactions Plantes Micro-organismes Environnement (IPME), F-34394 Montpellier, France; , , ,
| | - Ralf Koebnik
- IRD, CIRAD, University of Montpellier, Interactions Plantes Micro-organismes Environnement (IPME), F-34394 Montpellier, France; , , ,
| | - Emmanuelle Lauber
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
- CNRS, UMR 2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France
| | - Laurent D Noël
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
- CNRS, UMR 2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France
| | - Isabelle Pieretti
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite (BGPI), F-34398 Montpellier, France; , , ,
| | - Perrine Portier
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Olivier Pruvost
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), F-97410 Saint-Pierre, La Réunion, France; , ,
| | - Adrien Rieux
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), F-97410 Saint-Pierre, La Réunion, France; , ,
| | - Isabelle Robène
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), F-97410 Saint-Pierre, La Réunion, France; , ,
| | - Monique Royer
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite (BGPI), F-34398 Montpellier, France; , , ,
| | - Boris Szurek
- IRD, CIRAD, University of Montpellier, Interactions Plantes Micro-organismes Environnement (IPME), F-34394 Montpellier, France; , , ,
| | - Valérie Verdier
- IRD, CIRAD, University of Montpellier, Interactions Plantes Micro-organismes Environnement (IPME), F-34394 Montpellier, France; , , ,
| | - Christian Vernière
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite (BGPI), F-34398 Montpellier, France; , , ,
| |
Collapse
|
44
|
Toruño TY, Stergiopoulos I, Coaker G. Plant-Pathogen Effectors: Cellular Probes Interfering with Plant Defenses in Spatial and Temporal Manners. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:419-41. [PMID: 27359369 PMCID: PMC5283857 DOI: 10.1146/annurev-phyto-080615-100204] [Citation(s) in RCA: 411] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plants possess large arsenals of immune receptors capable of recognizing all pathogen classes. To cause disease, pathogenic organisms must be able to overcome physical barriers, suppress or evade immune perception, and derive nutrients from host tissues. Consequently, to facilitate some of these processes, pathogens secrete effector proteins that promote colonization. This review covers recent advances in the field of effector biology, focusing on conserved cellular processes targeted by effectors from diverse pathogens. The ability of effectors to facilitate pathogen entry into the host interior, suppress plant immune perception, and alter host physiology for pathogen benefit is discussed. Pathogens also deploy effectors in a spatial and temporal manner, depending on infection stage. Recent advances have also enhanced our understanding of effectors acting in specific plant organs and tissues. Effectors are excellent cellular probes that facilitate insight into biological processes as well as key points of vulnerability in plant immune signaling networks.
Collapse
Affiliation(s)
- Tania Y Toruño
- Department of Plant Pathology, University of California, Davis, California; , ,
| | | | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, California; , ,
| |
Collapse
|
45
|
Schreiber KJ, Baudin M, Hassan JA, Lewis JD. Die another day: Molecular mechanisms of effector-triggered immunity elicited by type III secreted effector proteins. Semin Cell Dev Biol 2016; 56:124-133. [DOI: 10.1016/j.semcdb.2016.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/02/2016] [Indexed: 11/27/2022]
|
46
|
Abstract
Intracellular nucleotide-binding leucine-rich repeat (NLR) receptors play central roles in human and plant innate immunity. In this issue of Cell Host & Microbe, Wang et al. (2015) show that a single plant NLR can detect diverse pathogen effectors by partnering with different scaffolding proteins, which can each recognize distinct effector targets.
Collapse
Affiliation(s)
- Roger W Innes
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA.
| |
Collapse
|
47
|
Genomics and transcriptomics of Xanthomonas campestris species challenge the concept of core type III effectome. BMC Genomics 2015; 16:975. [PMID: 26581393 PMCID: PMC4652430 DOI: 10.1186/s12864-015-2190-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/03/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The bacterial species Xanthomonas campestris infects a wide range of Brassicaceae. Specific pathovars of this species cause black rot (pv. campestris), bacterial blight of stock (pv. incanae) or bacterial leaf spot (pv. raphani). RESULTS In this study, we extended the genomic coverage of the species by sequencing and annotating the genomes of strains from pathovar incanae (CFBP 1606R and CFBP 2527R), pathovar raphani (CFBP 5828R) and a pathovar formerly named barbareae (CFBP 5825R). While comparative analyses identified a large core ORFeome at the species level, the core type III effectome was limited to only three putative type III effectors (XopP, XopF1 and XopAL1). In Xanthomonas, these effector proteins are injected inside the plant cells by the type III secretion system and contribute collectively to virulence. A deep and strand-specific RNA sequencing strategy was adopted in order to experimentally refine genome annotation for strain CFBP 5828R. This approach also allowed the experimental definition of novel ORFs and non-coding RNA transcripts. Using a constitutively active allele of hrpG, a master regulator of the type III secretion system, a HrpG-dependent regulon of 141 genes co-regulated with the type III secretion system was identified. Importantly, all these genes but seven are positively regulated by HrpG and 56 of those encode components of the Hrp type III secretion system and putative effector proteins. CONCLUSIONS This dataset is an important resource to mine for novel type III effector proteins as well as for bacterial genes which could contribute to pathogenicity of X. campestris.
Collapse
|
48
|
The Decoy Substrate of a Pathogen Effector and a Pseudokinase Specify Pathogen-Induced Modified-Self Recognition and Immunity in Plants. Cell Host Microbe 2015; 18:285-95. [DOI: 10.1016/j.chom.2015.08.004] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/31/2015] [Accepted: 08/12/2015] [Indexed: 01/09/2023]
|
49
|
Harding DP, Raizada MN. Controlling weeds with fungi, bacteria and viruses: a review. FRONTIERS IN PLANT SCIENCE 2015; 6:659. [PMID: 26379687 PMCID: PMC4551831 DOI: 10.3389/fpls.2015.00659] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/10/2015] [Indexed: 05/05/2023]
Abstract
Weeds are a nuisance in a variety of land uses. The increasing prevalence of both herbicide resistant weeds and bans on cosmetic pesticide use has created a strong impetus to develop novel strategies for controlling weeds. The application of bacteria, fungi and viruses to achieving this goal has received increasingly great attention over the last three decades. Proposed benefits to this strategy include reduced environmental impact, increased target specificity, reduced development costs compared to conventional herbicides and the identification of novel herbicidal mechanisms. This review focuses on examples from North America. Among fungi, the prominent genera to receive attention as bioherbicide candidates include Colletotrichum, Phoma, and Sclerotinia. Among bacteria, Xanthomonas and Pseudomonas share this distinction. The available reports on the application of viruses to controlling weeds are also reviewed. Focus is given to the phytotoxic mechanisms associated with bioherbicide candidates. Achieving consistent suppression of weeds in field conditions is a common challenge to this control strategy, as the efficacy of a bioherbicide candidate is generally more sensitive to environmental variation than a conventional herbicide. Common themes and lessons emerging from the available literature in regard to this challenge are presented. Additionally, future directions for this crop protection strategy are suggested.
Collapse
Affiliation(s)
| | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
50
|
Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Curr Opin Microbiol 2015; 23:14-22. [DOI: 10.1016/j.mib.2014.10.009] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/16/2014] [Accepted: 10/24/2014] [Indexed: 01/08/2023]
|