1
|
Kuang W, Zinner D, Li Y, Yao X, Roos C, Yu L. Recent Advances in Genetics and Genomics of Snub-Nosed Monkeys ( Rhinopithecus) and Their Implications for Phylogeny, Conservation, and Adaptation. Genes (Basel) 2023; 14:985. [PMID: 37239345 PMCID: PMC10218336 DOI: 10.3390/genes14050985] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The snub-nosed monkey genus Rhinopithecus (Colobinae) comprises five species (Rhinopithecus roxellana, Rhinopithecus brelichi, Rhinopithecus bieti, Rhinopithecus strykeri, and Rhinopithecus avunculus). They are range-restricted species occurring only in small areas in China, Vietnam, and Myanmar. All extant species are listed as endangered or critically endangered by the International Union for Conservation of Nature (IUCN) Red List, all with decreasing populations. With the development of molecular genetics and the improvement and cost reduction in whole-genome sequencing, knowledge about evolutionary processes has improved largely in recent years. Here, we review recent major advances in snub-nosed monkey genetics and genomics and their impact on our understanding of the phylogeny, phylogeography, population genetic structure, landscape genetics, demographic history, and molecular mechanisms of adaptation to folivory and high altitudes in this primate genus. We further discuss future directions in this research field, in particular how genomic information can contribute to the conservation of snub-nosed monkeys.
Collapse
Affiliation(s)
- Weimin Kuang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650500, China (Y.L.); (X.Y.)
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- Department of Primate Cognition, Georg-August-University of Göttingen, 37077 Göttingen, Germany
- Leibniz-Science Campus Primate Cognition, 37077 Göttingen, Germany
| | - Yuan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650500, China (Y.L.); (X.Y.)
| | - Xueqin Yao
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650500, China (Y.L.); (X.Y.)
| | - Christian Roos
- Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650500, China (Y.L.); (X.Y.)
| |
Collapse
|
2
|
Liu H, Luo J, Hou W, Pan X, Cai Y, Li J. An Effective Microsatellite Marker Panel for Noninvasive Samples in Tibetan Macaques (Macaca thibetana). INT J PRIMATOL 2022. [DOI: 10.1007/s10764-022-00348-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Oklander LI, Caputo M, Fernández GP, Jerusalinsky L, de Oliveira SF, Bonatto SL, Corach D. Gone With the Water: The Loss of Genetic Variability in Black and Gold Howler Monkeys (Alouatta caraya) Due to Dam Construction. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.768652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Black and gold howler monkeys (Alouatta caraya) inhabit several eco-regions in South America with the highest population densities in riverine forests. Dam construction for electricity production represents a severe human alteration of ecosystems with consequences for primate conservation. To evaluate the possible loss of genetic diversity in A. caraya, we analysed and compared the genetic structure of the species across 22 study sites in Argentina (14), Paraguay (1), and Brazil (7). Four of these study sites (referred to as flooded) were sampled before dam-linked flooding which most likely caused a drastic decline or functional extinction of these populations. The genetic variability of 256 individuals was evaluated using 10 autosomal microsatellites (STRs) and 112 individuals by sequencing a fragment of 507 bp of mtDNA. DNA was extracted from tissue, blood, and faecal samples. Significantly higher values of genetic variability were observed for the flooded populations both in mtDNA and STRs. Population genetic structure showed a K = 1, 2, or 5 depending on the method, separating Argentinian and Paraguayan sites from Brazilian sites and, in the case of K = 5, two clusters were mostly represented by flooded populations. Isolation-by-distance analyses showed that geographic distances influence gene flow. Analytical methods, such as Pairwise Fst’s and Nei’s and regression model of Harpending and Ward, were concordant in detecting significant genetic structuring between flooded and remaining sites examined. Although some sites have very low sample sizes, these samples are of great importance since these sampling sites are currently flooded. Our results show that the study sites where dams were built had the greatest genetic diversity. As A. caraya is currently severely threatened by yellow fever outbreaks, the remaining populations may be more vulnerable to disease outbreaks due to impoverished genetic variability. Accordingly, it is essential to implement management actions to conserve the remaining populations. Our results underline the importance for Environmental Impact Assessments (EIA) to include data on the genetic structure of species in the affected sites prior to their alteration or destruction. These genetic data are also remarkably important for determining where to relocate specific individuals to help avoid biodiversity loss.
Collapse
|
4
|
Trede F, Kil N, Stranks J, Connell AJ, Fischer J, Ostner J, Schülke O, Zinner D, Roos C. A refined panel of 42 microsatellite loci to universally genotype catarrhine primates. Ecol Evol 2021; 11:498-505. [PMID: 33437445 PMCID: PMC7790618 DOI: 10.1002/ece3.7069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 11/30/2022] Open
Abstract
Microsatellite genotyping is an important genetic method for a number of research questions in biology. Given that the traditional fragment length analysis using polyacrylamide gel or capillary electrophoresis has several drawbacks, microsatellite genotyping-by-sequencing (GBS) has arisen as a promising alternative. Although GBS mitigates many of the problems of fragment length analysis, issues with allelic dropout and null alleles often remain due to mismatches in primer binding sites and unnecessarily long PCR products. This is also true for GBS in catarrhine primates where cross-species amplification of loci (often human derived) is common.We therefore redesigned primers for 45 microsatellite loci based on 17 available catarrhine reference genomes. Next, we tested them in singleplex and different multiplex settings in a panel of species representing all major lineages of Catarrhini and further validated them in wild Guinea baboons (Papio papio) using fecal samples.The final panel of 42 microsatellite loci can efficiently be amplified with primers distributed into three amplification pools.With our microsatellite panel, we provide a tool to universally genotype catarrhine primates via GBS from different sample sources in a cost- and time-efficient way, with higher resolution, and comparability among laboratories and species.
Collapse
Affiliation(s)
- Franziska Trede
- Cognitive Ethology LaboratoryGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
- Primate Genetics LaboratoryGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
| | - Niels Kil
- Primate Genetics LaboratoryGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
- Department of Behavioral EcologyUniversity of GöttingenGöttingenGermany
- Leibniz ScienceCampus Primate CognitionGöttingenGermany
- Research Group Primate Social EvolutionGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
| | - James Stranks
- Primate Genetics LaboratoryGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
- Department of Behavioral EcologyUniversity of GöttingenGöttingenGermany
- Leibniz ScienceCampus Primate CognitionGöttingenGermany
- Research Group Primate Social EvolutionGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
| | - Andrew Jesse Connell
- Department of MicrobiologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Julia Fischer
- Cognitive Ethology LaboratoryGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
- Leibniz ScienceCampus Primate CognitionGöttingenGermany
- Department of Primate CognitionGeorg‐August‐UniversityGöttingenGermany
| | - Julia Ostner
- Department of Behavioral EcologyUniversity of GöttingenGöttingenGermany
- Leibniz ScienceCampus Primate CognitionGöttingenGermany
- Research Group Primate Social EvolutionGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
| | - Oliver Schülke
- Department of Behavioral EcologyUniversity of GöttingenGöttingenGermany
- Leibniz ScienceCampus Primate CognitionGöttingenGermany
- Research Group Primate Social EvolutionGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
| | - Dietmar Zinner
- Cognitive Ethology LaboratoryGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
- Leibniz ScienceCampus Primate CognitionGöttingenGermany
- Department of Primate CognitionGeorg‐August‐UniversityGöttingenGermany
| | - Christian Roos
- Primate Genetics LaboratoryGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
- Gene Bank of PrimatesGerman Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
| |
Collapse
|
5
|
Kuang W, Hu J, Wu H, Fen X, Dai Q, Fu Q, Xiao W, Frantz L, Roos C, Nadler T, Irwin DM, Zhou L, Yang X, Yu L. Genetic Diversity, Inbreeding Level, and Genetic Load in Endangered Snub-Nosed Monkeys ( Rhinopithecus). Front Genet 2020; 11:615926. [PMID: 33384722 PMCID: PMC7770136 DOI: 10.3389/fgene.2020.615926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022] Open
Abstract
The snub-nosed monkey genus (Rhinopithecus) comprises five closely related species (R. avunculus, R. bieti, R. brelichi, R. roxellana, and R. strykeri). All are among the world's rarest and most endangered primates. However, the genomic impact associated with their population decline remains unknown. We analyzed population genomic data of all five snub-nosed monkey species to assess their genetic diversity, inbreeding level, and genetic load. For R. roxellana, R. bieti, and R. strykeri, population size is positively correlated with genetic diversity and negatively correlated with levels of inbreeding. Other species, however, which possess small population sizes, such as R. brelichi and R. avunculus, show high levels of genetic diversity and low levels of genomic inbreeding. Similarly, in the three populations of R. roxellana, the Shennongjia population, which possesses the lowest population size, displays a higher level of genetic diversity and lower level of genomic inbreeding. These findings suggest that although R. brelichi and R. avunculus and the Shennongjia population might be at risk, it possess significant genetic diversity and could thus help strengthen their long-term survival potential. Intriguingly, R. roxellana with large population size possess high genetic diversity and low level of genetic load, but they show the highest recent inbreeding level compared with the other snub-nosed monkeys. This suggests that, despite its large population size, R. roxellana has likely been experiencing recent inbreeding, which has not yet affected its mutational load and fitness. Analyses of homozygous-derived deleterious mutations identified in all snub-nosed monkey species indicate that these mutations are affecting immune, especially in smaller population sizes, indicating that the long-term consequences of inbreeding may be resulting in an overall reduction of immune capability in the snub-nosed monkeys, which could provide a dramatic effect on their long-term survival prospects. Altogether, our study provides valuable information concerning the genomic impact of population decline of the snub-nosed monkeys. We revealed multiple counterintuitive and unexpected patterns of genetic diversity in small and large population, which will be essential for conservation management of these endangered species.
Collapse
Affiliation(s)
- Weimin Kuang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Jingyang Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Xiaotian Fen
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- Beijing College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- Beijing College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- Beijing College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wen Xiao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, China
| | - Laurent Frantz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- The Palaeogenomics and Bio-Archaeology Research Network, Department of Archaeology, University of Oxford, Oxford, United Kingdom
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | | | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Linchun Zhou
- Lushui Management and Conservation Branch of Gaoligong Mountain National Nature Reserve, Nujiang, China
| | - Xu Yang
- Lushui Forestry and Grassland Council, Nujiang, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
6
|
Xie P, Zhao G, Niu J, Wang J, Zhou Q, Guo Y, Ma X. Comprehensive analysis of population genetics of Phoxinus phoxinus ujmonensis in the Irtysh River: Abiotic and biotic factors. Ecol Evol 2019; 9:7997-8012. [PMID: 31380067 PMCID: PMC6662318 DOI: 10.1002/ece3.5320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/25/2022] Open
Abstract
As a widely distributed species along the Irtysh River, Phoxinus phoxinus ujmonensis (Kaschtschenko, 1899) was used as a model to investigate genetic diversity and population structure as well as the influence of environmental factors on population genetics. In this study, we specifically developed 12 polymorphic microsatellite loci. The analysis of microsatellite and mtDNA markers revealed a high and a moderate genetic diversity across seven populations, respectively. Moderate differentiation was also detected among several populations, indicating the impact of habitat fragmentation and divergence. The absence of isolation by distance implied an extensive gene flow, while the presence of isolation by adaptation implied that these populations might be in the process of adapting to divergent habitats. Correlation analysis showed that abiotic factors like dissolved oxygen, pH, total dissolved solids, and conductivity in water as well as biotic factors like plankton diversity and fish species diversity had impact on genetic diversity and divergence in P. phoxinus ujmonensis populations. The results of this study will provide an insight into the effect of environmental factors on genetic diversity and contribute to the study of population genetics of sympatric species.
Collapse
Affiliation(s)
- Peng Xie
- College of FisheriesHuazhong Agricultural UniversityWuhanChina
| | - Guang Zhao
- College of FisheriesHuazhong Agricultural UniversityWuhanChina
| | - Jian‐Gong Niu
- Fisheries Research Institute of Xinjiang Uygur Autonomous RegionUrumqiChina
| | - Jun Wang
- Institute of International Rivers and Eco‐securityYunnan UniversityKunmingChina
| | - Qiong Zhou
- College of FisheriesHuazhong Agricultural UniversityWuhanChina
| | - Yan Guo
- Fisheries Research Institute of Xinjiang Uygur Autonomous RegionUrumqiChina
| | - Xu‐Fa Ma
- College of FisheriesHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
7
|
Wang W, Zheng Y, Zhao J, Yao M. Low genetic diversity in a critically endangered primate: shallow evolutionary history or recent population bottleneck? BMC Evol Biol 2019; 19:134. [PMID: 31242851 PMCID: PMC6595580 DOI: 10.1186/s12862-019-1451-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/31/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Current patterns of population genetic variation may have been shaped by long-term evolutionary history and contemporary demographic processes. Understanding the underlying mechanisms that yield those patterns is crucial for informed conservation of endangered species. The critically endangered white-headed langur, Trachypithecus leucocephalus, is endemic to a narrow range in southwest China. This species shows very low genetic diversity in its 2 main relict populations, Fusui and Chongzuo. Whether this has been caused by a short evolutionary history or recent population declines is unknown. Therefore, we investigated the contributions of historical and recent population demographic changes to population genetic diversity by using 15 nuclear microsatellite markers and mitochondrial DNA (mtDNA) control region sequences. RESULTS Using genetic data from 214 individuals we found a total of 9 mtDNA haplotypes in the Fusui population but only 1 haplotype in the Chongzuo population, and we found an overall low genetic diversity (haplotype and nucleotide diversities: h = 0.486 ± 0.036; π = 0.0028 ± 0.0003). The demographic history inferred from mtDNA and microsatellite markers revealed no evidence for historical population size fluctuations or recent population bottlenecks. Simulations of possible population divergence histories inferred by DIYABC analysis supported a recent divergence of the Chongzuo population from the Fusui population and no population bottlenecks. CONCLUSIONS Despite severe population declines caused by anthropogenic activities in the last century, the low genetic diversity of the extant white-headed langur populations is most likely primarily due to the species' shallow evolutionary history and to a recent, local population founder event.
Collapse
Affiliation(s)
- Weiran Wang
- School of Life Sciences, Peking University, Beijing, 100871, China.,Institute of Ecology, Peking University, Beijing, 100871, China.,Beijing National Day School, Beijing, 100871, China
| | - Yitao Zheng
- School of Life Sciences, Peking University, Beijing, 100871, China.,Institute of Ecology, Peking University, Beijing, 100871, China
| | - Jindong Zhao
- School of Life Sciences, Peking University, Beijing, 100871, China.,Institute of Ecology, Peking University, Beijing, 100871, China
| | - Meng Yao
- School of Life Sciences, Peking University, Beijing, 100871, China. .,Institute of Ecology, Peking University, Beijing, 100871, China.
| |
Collapse
|
8
|
Guo Y, Zhou J, Xie J, Garber PA, Bruford M, Ren B, Li D, Zhou J. Altitudinal ranging of the Guizhou golden monkey (Rhinopithecus brelichi): Patterns of habitat selection and habitat use. Glob Ecol Conserv 2018. [DOI: 10.1016/j.gecco.2018.e00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Khanal L, Chalise MK, He K, Acharya BK, Kawamoto Y, Jiang X. Mitochondrial DNA analyses and ecological niche modeling reveal post-LGM expansion of the Assam macaque (Macaca assamensis) in the foothills of Nepal Himalaya. Am J Primatol 2018. [PMID: 29536562 DOI: 10.1002/ajp.22748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Genetic diversity of a species is influenced by multiple factors, including the Quaternary glacial-interglacial cycles and geophysical barriers. Such factors are not yet well documented for fauna from the southern border of the Himalayan region. This study used mitochondrial DNA (mtDNA) sequences and ecological niche modeling (ENM) to explore how the late Pleistocene climatic fluctuations and complex geography of the Himalayan region have shaped genetic diversity, population genetic structure, and demographic history of the Nepalese population of Assam macaques (Macaca assamensis) in the Himalayan foothills. A total of 277 fecal samples were collected from 39 wild troops over almost the entire distribution of the species in Nepal. The mtDNA fragment encompassing the complete control region (1121 bp) was recovered from 208 samples, thus defining 54 haplotypes. Results showed low nucleotide diversity (0.0075 ± SD 0.0001) but high haplotype diversity (0.965 ± SD 0.004). The mtDNA sequences revealed a shallow population genetic structure with a moderate but statistically significant effect of isolation by distance. Demographic history analyses using mtDNA sequences suggested a post-pleistocene population expansion. Paleodistribution reconstruction projected that the potential habitat of the Assam macaque was confined to the lower elevations of central Nepal during the Last Glacial Maximum. With the onset of the Holocene climatic optimum, the glacial refugia population experienced eastward range expansion to higher elevations. We conclude that the low genetic diversity and shallow population genetic structure of the Assam macaque population in the Nepal Himalaya region are the consequence of recent demographic and spatial expansion.
Collapse
Affiliation(s)
- Laxman Khanal
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, P.R. China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, P.R. China.,Central Department of Zoology, Tribhuvan University, Kathmandu, Nepal
| | - Mukesh K Chalise
- Central Department of Zoology, Tribhuvan University, Kathmandu, Nepal
| | - Kai He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, P.R. China
| | - Bipin K Acharya
- Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, P.R. China
| | - Yoshi Kawamoto
- Department of Evolution and Phylogeny, Primate Research Institute, Kyoto University, Kyoto, Japan
| | - Xuelong Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, P.R. China.,State Key Laboratory for Conservation and Utilization of Bio-Resources, Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, P.R. China
| |
Collapse
|
10
|
da Silva JM, Feldheim KA, Measey GJ, Doucette-Riise S, Daniels RJ, Chauke LF, Tolley KA. Genetic diversity and differentiation of the Western Leopard Toad (Sclerophrys pantherina) based on mitochondrial and microsatellite markers. AFR J HERPETOL 2017. [DOI: 10.1080/21564574.2017.1294115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jessica M. da Silva
- Kirstenbosch Research Centre, South African National Biodiversity Institute, Private Bag X7, Claremont, Cape Town, South Africa
- Department of Botany & Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
| | - Kevin A. Feldheim
- Pritzker Laboratory for Molecular Systematics and Evolution, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA
| | - G. John Measey
- Kirstenbosch Research Centre, South African National Biodiversity Institute, Private Bag X7, Claremont, Cape Town, South Africa
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Natural Sciences Building, Matieland, Stellenbosch, South Africa
| | - Stephen Doucette-Riise
- Kirstenbosch Research Centre, South African National Biodiversity Institute, Private Bag X7, Claremont, Cape Town, South Africa
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 770, Cape Town, South Africa
| | - Ryan J. Daniels
- Kirstenbosch Research Centre, South African National Biodiversity Institute, Private Bag X7, Claremont, Cape Town, South Africa
| | - Lucas F. Chauke
- Kirstenbosch Research Centre, South African National Biodiversity Institute, Private Bag X7, Claremont, Cape Town, South Africa
| | - Krystal A. Tolley
- Kirstenbosch Research Centre, South African National Biodiversity Institute, Private Bag X7, Claremont, Cape Town, South Africa
- Department of Botany & Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
| |
Collapse
|
11
|
Hong Y, Duo H, Hong J, Yang J, Liu S, Yu L, Yi T. Resequencing and comparison of whole mitochondrial genome to gain insight into the evolutionary status of the Shennongjia golden snub-nosed monkey (SNJ R. roxellana). Ecol Evol 2017. [PMID: 28649355 PMCID: PMC5478077 DOI: 10.1002/ece3.3011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shennongjia Rhinopithecus roxellana (SNJ R. roxellana) is the smallest geographical population of R. roxellana. The phylogenetic relationships among its genera and species and the biogeographic processes leading to their current distribution are largely unclear. To address these issues, we resequenced and obtained a new, complete mitochondrial genome of SNJ R. roxellana by next‐generation sequencing and standard Sanger sequencing. We analyzed the gene composition, constructed a phylogenetic tree, inferred the divergence ages based on complete mitochondrial genome sequences, and analyzed the genetic divergence of 13 functional mtDNA genes. The phylogenetic tree and divergence ages showed that R. avunculus (the Tonkin snub‐nosed monkey) was the first to diverge from the Rhinopithecus genus ca. 2.47 million years ago (Ma). Rhinopithecus bieti and Rhinopithecus strykeri formed sister groups, and the second divergence from the Rhinopithecus genus occurred ca. 1.90 Ma. R. roxellana and R. brelichi diverged from the Rhinopithecus genus third, ca. 1.57 Ma. SNJ R. roxellana was the last to diverge within R. roxellana species in 0.08 Ma, and the most recent common ancestor of R. roxellana is 0.10 Ma. The analyses on gene composition showed SNJ R. roxellana was the newest geographic population of R. roxellana. The work will help to develop a more accurate protection policy for SNJ R. roxellana and facilitate further research on selection and adaptation of R. roxellana.
Collapse
Affiliation(s)
- Yanyun Hong
- College of Plant Protection of Hunan Agricultural University Changsha China.,Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Plant Pests Changsha China
| | - Hairui Duo
- Nature Reserve College of Beijing Forestry University, Beijing Beijing China
| | - Juyun Hong
- Orient Science & Technology College of Hunan Agricultural University Changsha China
| | - Jinyuan Yang
- Hubei Province Key Laboratory of Conservation Biology of Shennongjia Golden Monkey Muyu China
| | - Shiming Liu
- College of Plant Protection of Hunan Agricultural University Changsha China
| | - Lianghui Yu
- Hubei Province Key Laboratory of Conservation Biology of Shennongjia Golden Monkey Muyu China
| | - Tuyong Yi
- College of Plant Protection of Hunan Agricultural University Changsha China.,Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Plant Pests Changsha China
| |
Collapse
|
12
|
Wang W, Qiao Y, Li S, Pan W, Yao M. Low genetic diversity and strong population structure shaped by anthropogenic habitat fragmentation in a critically endangered primate, Trachypithecus leucocephalus. Heredity (Edinb) 2017; 118:542-553. [PMID: 28198816 DOI: 10.1038/hdy.2017.2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 01/06/2017] [Accepted: 01/07/2017] [Indexed: 01/07/2023] Open
Abstract
Habitat fragmentation may strongly impact population genetic structure and reduce the genetic diversity and viability of small and isolated populations. The white-headed langur (Trachypithecus leucocephalus) is a critically endangered primate species living in a highly fragmented and human-modified habitat in southern China. We examined the population genetic structure and genetic diversity of the species and investigated the environmental and anthropogenic factors that may have shaped its population structure. We used 214 unique multi-locus genotypes from 41 social groups across the main distribution area of T. leucocephalus, and found strong genetic structure and significant genetic differentiation among local populations. Our landscape genetic analyses using a causal modelling framework suggest that a large habitat gap and geographical distance represent the primary landscape elements shaping genetic structure, yet high levels of genetic differentiation also exist between patches separated by a small habitat gap or road. This is the first comprehensive study that has evaluated the population genetic structure and diversity of T. leucocephalus using nuclear markers. Our results indicate strong negative impacts of anthropogenic land modifications and habitat fragmentation on primate genetic connectivity between forest patches. Our analyses suggest that two management units of the species could be defined, and indicate that habitat continuity should be enforced and restored to reduce genetic isolation and enhance population viability.
Collapse
Affiliation(s)
- W Wang
- School of Life Sciences, Peking University, Beijing, China.,Beijing National Day School, Beijing, China
| | - Y Qiao
- School of Life Sciences, Peking University, Beijing, China
| | - S Li
- School of Life Sciences, Peking University, Beijing, China
| | - W Pan
- School of Life Sciences, Peking University, Beijing, China
| | - M Yao
- School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
13
|
Ang A, Srivathsan A, Meier R, Luu TB, Le QK, Covert H. No evidence for mitochondrial genetic variability in the largest population of critically endangered Tonkin snub-nosed monkeys in Vietnam. Primates 2016; 57:449-53. [PMID: 27619669 DOI: 10.1007/s10329-016-0571-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/26/2016] [Indexed: 12/23/2022]
Abstract
The Tonkin snub-nosed monkey (Rhinopithecus avunculus) with a global population of <250 is listed as critically endangered. It is endemic to northeastern Vietnam and was feared extinct until its rediscovery in 1989. The largest single population of R. avunculus consists of 125-130 individuals in an area of forest called Khau Ca in Ha Giang Province. We used non-invasively collected fecal samples to establish the amount of genetic diversity in this population based on mitochondrial information. We amplified and sequenced a 467- to 650-bp section of the hypervariable region I (HVI) of the mitochondrial D-loop for 201 samples and reconstructed the full mitochondrial genomes for five samples based on metagenomic data. All 201 HVI sequences were identical and no variability was found in the five mitochondrial genomes. Our results highlight the immediate need for a comprehensive assessment of the genetic diversity of all populations of R. avunculus based on mitochondrial and nuclear markers. The latter need to be developed for this species.
Collapse
Affiliation(s)
- Andie Ang
- Department of Anthropology, University of Colorado Boulder, 1350 Pleasant Street, Boulder, 80309, CO, USA.
| | - Amrita Srivathsan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Rudolf Meier
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Tuong Bach Luu
- , 3 Lane 4 Dang Van Ngu Street, Dong Da District, Hanoi, Vietnam
| | - Quyet Khac Le
- , 8 Bis Lane 784 Bach Dang Road, Ha Ba Trung District, Hanoi, 113619, Vietnam
| | - Herbert Covert
- Department of Anthropology, University of Colorado Boulder, 1350 Pleasant Street, Boulder, 80309, CO, USA
- Southern Institute of Ecology, Vietnam Academy of Science and Technology, 1 Mac Dinh Chi, District 1, Ben Nghe, Ho Chi Minh City, Vietnam
| |
Collapse
|
14
|
Srivathsan A, Ang A, Vogler AP, Meier R. Fecal metagenomics for the simultaneous assessment of diet, parasites, and population genetics of an understudied primate. Front Zool 2016; 13:17. [PMID: 27103937 PMCID: PMC4839110 DOI: 10.1186/s12983-016-0150-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/14/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Rapid habitat loss and degradation are responsible for population decline in a growing number of species. Understanding the natural history of these species is important for designing conservation strategies, such as habitat enhancements or ex-situ conservation. The acquisition of observational data may be difficult for rare and declining species, but metagenomics and metabarcoding can provide novel kinds of information. Here we use these methods for analysing fecal samples from an endangered population of a colobine primate, the banded leaf monkey (Presbytis femoralis). RESULTS We conducted metagenomics via shotgun sequencing on six fecal samples obtained from a remnant population of P. femoralis in a species-rich rainforest patch in Singapore. Shotgun sequencing and identification against a plant barcode reference database reveals a broad dietary profile consisting of at least 53 plant species from 33 families. The diet includes exotic plant species and is broadly consistent with > 2 years of observational data. Metagenomics identified 15 of the 24 plant genera for which there is observational data, but also revealed at least 36 additional species. DNA traces for the diet species were recovered and identifiable in the feces despite long digestion times and a large number of potential food plants within the rainforest habitat (>700 species). We also demonstrate that metagenomics provides greater taxonomic resolution of food plant species by utilizing multiple genetic markers as compared to single-marker metabarcoding. In addition, full mitochondrial genomes of P. femoralis individuals were reconstructed from fecal metagenomic shotgun reads, showing very low levels of genetic diversity in the focal population, and the presence of gut parasites could also be confirmed. Metagenomics thus allows for the simultaneous assessment of diet, population genetics and gut parasites based on fecal samples. CONCLUSIONS Our study demonstrates that metagenomic shotgun sequencing of fecal samples can be successfully used to rapidly obtain natural history data for understudied species with a complex diet. We predict that metagenomics will become a routinely used tool in conservation biology once the cost per sample reduces to ~100 USD within the next few years.
Collapse
Affiliation(s)
- Amrita Srivathsan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543 Singapore ; Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY UK ; Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Andie Ang
- Department of Anthropology, University of Colorado Boulder, Boulder, CO 80302 USA
| | - Alfried P Vogler
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY UK ; Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Rudolf Meier
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543 Singapore ; Lee Kong Chian Natural History Museum, 2 Conservatory Drive, Singapore, 117377 Singapore
| |
Collapse
|
15
|
Liu Z, Liu G, Roos C, Wang Z, Xiang Z, Zhu P, Wang B, Ren B, Shi F, Pan H, Li M. Implications of genetics and current protected areas for conservation of 5 endangered primates in China. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2015; 29:1508-1517. [PMID: 26372167 DOI: 10.1111/cobi.12581] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 06/29/2015] [Indexed: 06/05/2023]
Abstract
Most of China's 24-28 primate species are threatened with extinction. Habitat reduction and fragmentation are perhaps the greatest threats. We used published data from a conservation genetics study of 5 endangered primates in China (Rhinopithecus roxellana, R. bieti, R. brelichi, Trachypithecus francoisi, and T. leucocephalus); distribution data on these species; and the distribution, area, and location of protected areas to inform conservation strategies for these primates. All 5 species were separated into subpopulations with unique genetic components. Gene flow appeared to be strongly impeded by agricultural land, meadows used for grazing, highways, and humans dwellings. Most species declined severely or diverged concurrently as human population and crop land cover increased. Nature reserves were not evenly distributed across subpopulations with unique genetic backgrounds. Certain small subpopulations were severely fragmented and had higher extinction risk than others. Primate mobility is limited and their genetic structure is strong and susceptible to substantial loss of diversity due to local extinction. Thus, to maximize preservation of genetic diversity in all these primate species, our results suggest protection is required for all sub-populations. Key priorities for their conservation include maintaining R. roxellana in Shennongjia national reserve, subpopulations S4 and S5 of R. bieti and of R. brelichi in Fanjingshan national reserve, subpopulation CGX of T. francoisi in central Guangxi Province, and all 3 T. leucocephalus sub-populations in central Guangxi Province.
Collapse
Affiliation(s)
- Zhijin Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing, 100101, China
| | - Guangjian Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Christian Roos
- Primate Genetics Laboratory, Leibniz Institute for Primate Research, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
- Gene Bank of Primates, Leibniz Institute for Primate Research, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| | - Ziming Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - ZuoFu Xiang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Pingfen Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Boshi Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Baoping Ren
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing, 100101, China
| | - Fanglei Shi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing, 100101, China
| | - Huijuan Pan
- College of Nature Conservation, Beijing Forestry University, Haidian, Beijing, 100083, China
| | - Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing, 100101, China
| |
Collapse
|
16
|
Korstian JM, Hale AM, Williams DA. Genetic diversity, historic population size, and population structure in 2 North American tree bats. J Mammal 2015. [DOI: 10.1093/jmammal/gyv101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
17
|
Harrison E, Trexler JC, Collins TM, Vazquez-Domínguez E, Razo-Mendivil U, Matamoros WA, Barrientos C. Genetic evidence for multiple sources of the non-native fish Cichlasoma urophthalmus (Günther; Mayan Cichlids) in southern Florida. PLoS One 2014; 9:e104173. [PMID: 25184569 PMCID: PMC4153574 DOI: 10.1371/journal.pone.0104173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/09/2014] [Indexed: 02/03/2023] Open
Abstract
The number and diversity of source populations may influence the genetic diversity of newly introduced populations and affect the likelihood of their establishment and spread. We used the cytochrome b mitochondrial gene and nuclear microsatellite loci to identify the sources of a successful invader in southern Florida, USA, Cichlasoma urophthalmus (Mayan cichlid). Our cytochrome b data supported an introduction from Guatemala, while our microsatellite data suggested movement of Mayan Cichlids from the upper Yucatán Peninsula to Guatemala and introductions from Guatemala and Belize to Florida. The mismatch between mitochondrial and nuclear genomes suggests admixture of a female lineage from Guatemala, where all individuals were fixed for the mitochondrial haplotype found in the introduced population, and a more diverse but also relatively small number of individuals from Belize. The Florida cytochrome b haplotype appears to be absent from Belize (0 out of 136 fish screened from Belize had this haplotype). Genetic structure within the Florida population was minimal, indicating a panmictic population, while Mexican and Central American samples displayed more genetic subdivision. Individuals from the Upper Yucatán Peninsula and the Petén region of Guatemala were more genetically similar to each other than to fish from nearby sites and movement of Mayan Cichlids between these regions occurred thousands of generations ago, suggestive of pre-Columbian human transportation of Mayan Cichlids through this region. Mayan Cichlids present a rare example of cytonuclear disequilibrium and reduced genetic diversity in the introduced population that persists more than 30 years (at least 7-8 generations) after introduction. We suggest that hybridization occurred in ornamental fish farms in Florida and may contribute their establishment in the novel habitat. Hybridization prior to release may contribute to other successful invasions.
Collapse
Affiliation(s)
- Elizabeth Harrison
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
| | - Joel C. Trexler
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
| | - Timothy M. Collins
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
| | - Ella Vazquez-Domínguez
- Departamento de Ecología de la Biodiversidad, Universidad Nacional Autónoma de México, México DF, México
| | | | - Wilfredo A. Matamoros
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Christian Barrientos
- Department of Fisheries and Aquatic Science, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|