1
|
Magnuson JT, Sy ND, Tanabe P, Ji C, Gan J, Schlenk D. Dopaminergic and anti-estrogenic responses in juvenile steelhead (Oncorhynchus mykiss) exposed to bifenthrin. Comp Biochem Physiol C Toxicol Pharmacol 2024; 285:109995. [PMID: 39111515 DOI: 10.1016/j.cbpc.2024.109995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 08/11/2024]
Abstract
The frequency of detection and concentrations of bifenthrin, a pyrethroid insecticide, in the waterways inhabited by the endangered species, steelhead trout (Oncorhynchus mykiss), has become a significant concern for regulatory agencies. Endocrine disruption has been observed with estrogenic and anti-estrogenic responses in fish species at different life stages. Since several studies have indicated alterations in dopaminergic signaling associated with endocrine responses, juvenile steelhead were exposed to environmentally relevant concentrations of 60 or 120 ng/L bifenthrin for two weeks. Fish brains were assessed for dopamine levels and the expression of genes involved in dopaminergic and estrogenic processes, such as catechol-o-methyltransferase (comt) and monoamine oxidase (mao). Vitellogenin (vtg) and estrogenic receptors (ERα1, ERβ1, and ERβ2) were also evaluated in livers of the animals. Dopamine concentrations were significantly higher in fish brains following bifenthrin exposure. Consistent with a reduction in dopamine clearance, there was a significant decrease in the mRNA expression of comt with increased bifenthrin concentration. Hepatic expression of ERα1 and ERβ2 mRNA was significantly decreased with increased bifenthrin concentration. These data support the possible mechanism of bifenthrin altering the dopaminergic pathway at low ng/L concentrations, in juvenile steelhead, which could interfere with endocrine feedback loops. These findings support the need for and importance of identifying species and life stage differences in pesticide modes of action to reduce uncertainties in risk assessments.
Collapse
Affiliation(s)
- Jason T Magnuson
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA; Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA.
| | - Nathan D Sy
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA
| | - Philip Tanabe
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA; National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Charleston, SC, USA
| | - Chenyang Ji
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
2
|
Li L, Ho PWL, Liu H, Pang SYY, Chang EES, Choi ZYK, Malki Y, Kung MHW, Ramsden DB, Ho SL. Transcriptional Regulation of the Synaptic Vesicle Protein Synaptogyrin-3 (SYNGR3) Gene: The Effects of NURR1 on Its Expression. Int J Mol Sci 2022; 23:ijms23073646. [PMID: 35409005 PMCID: PMC8998927 DOI: 10.3390/ijms23073646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
Synaptogyrin-3 (SYNGR3) is a synaptic vesicular membrane protein. Amongst four homologues (SYNGR1 to 4), SYNGR1 and 3 are especially abundant in the brain. SYNGR3 interacts with the dopamine transporter (DAT) to facilitate dopamine (DA) uptake and synaptic DA turnover in dopaminergic transmission. Perturbed SYNGR3 expression is observed in Parkinson’s disease (PD). The regulatory elements which affect SYNGR3 expression are unknown. Nuclear-receptor-related-1 protein (NURR1) can regulate dopaminergic neuronal differentiation and maintenance via binding to NGFI-B response elements (NBRE). We explored whether NURR1 can regulate SYNGR3 expression using an in silico analysis of the 5′-flanking region of the human SYNGR3 gene, reporter gene activity and an electrophoretic mobility shift assay (EMSA) of potential cis-acting sites. In silico analysis of two genomic DNA segments (1870 bp 5′-flanking region and 1870 + 159 bp of first exon) revealed one X Core Promoter Element 1 (XCPE1), two SP1, and three potential non-canonical NBRE response elements (ncNBRE) but no CAAT or TATA box. The longer segment exhibited gene promoter activity in luciferase reporter assays. Site-directed mutagenesis of XCPE1 decreased promoter activity in human neuroblastoma SH-SY5Y (↓43.2%) and human embryonic kidney HEK293 cells (↓39.7%). EMSA demonstrated NURR1 binding to these three ncNBRE. Site-directed mutagenesis of these ncNBRE reduced promoter activity by 11–17% in SH-SY5Y (neuronal) but not in HEK293 (non-neuronal) cells. C-DIM12 (Nurr1 activator) increased SYNGR3 protein expression in SH-SY5Y cells and its promoter activity using a real-time luciferase assay. As perturbed vesicular function is a feature of major neurodegenerative diseases, inducing SYNGR3 expression by NURR1 activators may be a potential therapeutic target to attenuate synaptic dysfunction in PD.
Collapse
Affiliation(s)
- Lingfei Li
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
| | - Philip Wing-Lok Ho
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
| | - Huifang Liu
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
| | - Shirley Yin-Yu Pang
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
| | - Eunice Eun-Seo Chang
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
| | - Zoe Yuen-Kiu Choi
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
| | - Yasine Malki
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
| | - Michelle Hiu-Wai Kung
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
| | - David Boyer Ramsden
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK
- Correspondence: (D.B.R.); (S.-L.H.)
| | - Shu-Leong Ho
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong SAR, China; (L.L.); (P.W.-L.H.); (H.L.); (S.Y.-Y.P.); (E.E.-S.C.); (Z.Y.-K.C.); (Y.M.); (M.H.-W.K.)
- Correspondence: (D.B.R.); (S.-L.H.)
| |
Collapse
|
3
|
Tolba MF, Omar HA, Hersi F, Nunes ACF, Noreddin AM. The impact of Catechol-O-methyl transferase knockdown on the cell proliferation of hormone-responsive cancers. Mol Cell Endocrinol 2019; 488:79-88. [PMID: 30904591 DOI: 10.1016/j.mce.2019.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 02/24/2019] [Accepted: 03/17/2019] [Indexed: 02/07/2023]
Abstract
Estrogen (E2) plays a central role in the development and progression of hormone-responsive cancers. Estrogen metabolites exhibit either stimulatory or inhibitory roles on breast and prostate cells. The catechol metabolite 4-hydroxyestradiol (4-OHE2) enhances cell proliferation, while 2-methoxyestradiol (2 ME) possesses anticancer activity. The major metabolizing enzyme responsible for detoxifying the deleterious metabolite 4-OHE2 and forming the anticancer metabolite 2 ME is Catechol-O-Methyl Transferase (COMT). The current work investigated the relationship between the expression level of COMT and the cell proliferation of hormone-responsive cancers. The results showed that COMT silencing enhanced the cell proliferation of ER-α positive cancer cells MCF-7 and PC-3 but not the cells that lack ER-α expression as MDA-MB231 and DU-145. The data generated from our study provides a better understanding of the effect of COMT on critical signaling pathways involved in the development and progression of breast cancer (BC) and prostate cancer (PC) including ER-α, p21cip1, p27kip1, NF-κB (P65) and CYP19A1. These findings suggest that COMT enzyme plays a tumor suppressor role in hormone receptor-positive tumors which opens the door for future studies to validate COMT expression as a novel biomarker for the prediction of cancer aggressiveness and treatment efficacy.
Collapse
Affiliation(s)
- Mai F Tolba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Chapman University School of Pharmacy, Irvine, CA 92618, USA; School of Medicine, University of California, Irvine, CA, USA.
| | - Hany A Omar
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511 Egypt; Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Fatima Hersi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ane C F Nunes
- Division of Nephrology and Hypertension, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Ayman M Noreddin
- Chapman University School of Pharmacy, Irvine, CA 92618, USA; School of Medicine, University of California, Irvine, CA, USA; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
4
|
Ho PWL, Leung CT, Liu H, Pang SYY, Lam CSC, Xian J, Li L, Kung MHW, Ramsden DB, Ho SL. Age-dependent accumulation of oligomeric SNCA/α-synuclein from impaired degradation in mutant LRRK2 knockin mouse model of Parkinson disease: role for therapeutic activation of chaperone-mediated autophagy (CMA). Autophagy 2019; 16:347-370. [PMID: 30983487 PMCID: PMC6984454 DOI: 10.1080/15548627.2019.1603545] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Parkinson disease (PD) is an age-related neurodegenerative disorder associated with misfolded SNCA/α-synuclein accumulation in brain. Impaired catabolism of SNCA potentiates formation of its toxic oligomers. LRRK2 (leucine-rich repeat kinase-2) mutations predispose to familial and sporadic PD. Mutant LRRK2 perturbs chaperone-mediated-autophagy (CMA) to degrade SNCA. We showed greater age-dependent accumulation of oligomeric SNCA in striatum and cortex of aged LRRK2R1441G knockin (KI) mice, compared to age-matched wildtype (WT) by 53% and 31%, respectively. Lysosomal clustering and accumulation of CMA-specific LAMP2A and HSPA8/HSC70 proteins were observed in aged mutant striatum along with increased GAPDH (CMA substrate) by immunohistochemistry of dorsal striatum and flow cytometry of ventral midbrain cells. Using our new reporter protein clearance assay, mutant mouse embryonic fibroblasts (MEFs) expressing either SNCA or CMA recognition ‘KFERQ’-like motif conjugated with photoactivated-PAmCherry showed slower cellular clearance compared to WT by 28% and 34%, respectively. However, such difference was not observed after the ‘KFERQ’-motif was mutated. LRRK2 mutant MEFs exhibited lower lysosomal degradation than WT indicating lysosomal dysfunction. LAMP2A-knockdown reduced total lysosomal activity and clearance of ‘KFERQ’-substrate in WT but not in mutant MEFs, indicating impaired CMA in the latter. A CMA-specific activator, AR7, induced neuronal LAMP2A transcription and lysosomal activity in MEFs. AR7 also attenuated the progressive accumulation of both intracellular and extracellular SNCA oligomers in prolonged cultures of mutant cortical neurons (DIV21), indicating that oligomer accumulation can be suppressed by CMA activation. Activation of autophagic pathways to reduce aged-related accumulation of pathogenic SNCA oligomers is a viable disease-modifying therapeutic strategy for PD. Abbreviations: 3-MA: 3-methyladenine; AR7: 7-chloro-3-(4-methylphenyl)-2H-1,4-benzoxazine; CMA: chaperone-mediated autophagy; CQ: chloroquine; CSF: cerebrospinal fluid; DDM: n-dodecyl β-D-maltoside; DIV: days in vitro; ELISA: enzyme-linked immunosorbent assay; FACS: fluorescence-activated cell sorting; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GWAS: genome-wide association studies; HSPA8/HSC70: heat shock protein 8; KFERQ: CMA recognition pentapeptide; KI: knockin; LAMP1: lysosomal-associated membrane protein 1; LAMP2A: lysosomal-associated membrane protein 2A; LDH: lactate dehydrogenase; LRRK2: leucine-rich repeat kinase 2; MEF: mouse embryonic fibroblast; NDUFS4: NADH:ubiquinone oxidoreductase core subunit S4; NE: novel epitope; PD: Parkinson disease; RARA/RARα: retinoic acid receptor, alpha; SNCA: synuclein, alpha; TUBB3/TUJ1: tubulin, beta 3 class III; WT: wild-type
Collapse
Affiliation(s)
- Philip Wing-Lok Ho
- Division of Neurology, Department of Medicine, University of Hong Kong, Queen Mary Hospital , Hong Kong S.A.R., China
| | - Chi-Ting Leung
- Division of Neurology, Department of Medicine, University of Hong Kong, Queen Mary Hospital , Hong Kong S.A.R., China
| | - Huifang Liu
- Division of Neurology, Department of Medicine, University of Hong Kong, Queen Mary Hospital , Hong Kong S.A.R., China
| | - Shirley Yin-Yu Pang
- Division of Neurology, Department of Medicine, University of Hong Kong, Queen Mary Hospital , Hong Kong S.A.R., China
| | - Colin Siu-Chi Lam
- Division of Neurology, Department of Medicine, University of Hong Kong, Queen Mary Hospital , Hong Kong S.A.R., China
| | - Jiawen Xian
- Division of Neurology, Department of Medicine, University of Hong Kong, Queen Mary Hospital , Hong Kong S.A.R., China
| | - Lingfei Li
- Division of Neurology, Department of Medicine, University of Hong Kong, Queen Mary Hospital , Hong Kong S.A.R., China
| | - Michelle Hiu-Wai Kung
- Division of Neurology, Department of Medicine, University of Hong Kong, Queen Mary Hospital , Hong Kong S.A.R., China
| | - David Boyer Ramsden
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Shu-Leong Ho
- Division of Neurology, Department of Medicine, University of Hong Kong, Queen Mary Hospital , Hong Kong S.A.R., China
| |
Collapse
|
5
|
Wu Q, Odwin-Dacosta S, Cao S, Yager JD, Tang WY. Estrogen down regulates COMT transcription via promoter DNA methylation in human breast cancer cells. Toxicol Appl Pharmacol 2019; 367:12-22. [DOI: 10.1016/j.taap.2019.01.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/03/2019] [Accepted: 01/21/2019] [Indexed: 12/13/2022]
|
6
|
β-asarone and levodopa coadministration increases striatal levels of dopamine and levodopa and improves behavioral competence in Parkinson's rat by enhancing dopa decarboxylase activity. Biomed Pharmacother 2017; 94:666-678. [DOI: 10.1016/j.biopha.2017.07.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/19/2022] Open
|
7
|
Ghisari M, Long M, Røge DM, Olsen J, Bonefeld-Jørgensen EC. Polymorphism in xenobiotic and estrogen metabolizing genes, exposure to perfluorinated compounds and subsequent breast cancer risk: A nested case-control study in the Danish National Birth Cohort. ENVIRONMENTAL RESEARCH 2017; 154:325-333. [PMID: 28157646 DOI: 10.1016/j.envres.2017.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/29/2016] [Accepted: 01/14/2017] [Indexed: 05/05/2023]
Abstract
UNLABELLED In the present case-cohort study based on prospective data from Danish women, we aimed to estimate the main effect of polymorphisms in genes known to be involved in the steroid hormone metabolic pathway and xenobiotic metabolism on the risk of developing breast cancer. We also studied a possible effect measure modification between genotypes and levels of serum perfluoroalkylated substances (PFASs) on the risk to breast cancer. We have previously reported a weak association between serum PFASs levels and the risk of breast cancer for this study population of Danish pregnant nulliparous women as well as in a smaller case-control study of Greenlandic women. The study population consisted of 178 breast cancer cases and 233 controls (tabnulliparous and frequency matched on age) nested within the Danish National Birth Cohort (DNBC), which was established in 1996-2002. Blood samples were drawn at the time of enrollment (6-14 week of gestation). Serum levels of 10 perfluorocarboxylated acids (PFCAs), 5 perfluorosulfonated acids (PFSAs) and 1 sulfonamide (perflurooctane-sulfonamide, PFOSA) were measured. Genotyping was conducted for CYP1A1 (Ile462Val; rs1048943), CYP1B1 (Leu432Val; rs1056836), COMT (Val158Met; rs4680), CYP17A1 (A1→ A2; rs743572); CYP19A1 (C→T; rs10046) by the TaqMan allelic discrimination method. In overall, no significant associations were found between the investigated polymorphisms and the risk of breast cancer in this study among Danish women. The previously found association between PFOSA and risk of breast cancer did vary between different genotypes, with significantly increased risk confined to homozygous carriers of the following alleles: COMT (Met), CYP17 (A1) and CYP19 (C). CONCLUSION Our results indicate that polymorphisms in COMT, CYP17 and CYP19 which are involved in estrogen biosynthesis and metabolism can modulate the potential effects of PFOSA exposure on the development of breast cancer.
Collapse
Affiliation(s)
- Mandana Ghisari
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark
| | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark
| | - Durita Mohr Røge
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark
| | - Jørn Olsen
- Section for Epidemiology, Department of Public Health, Aarhus University, Denmark
| | - Eva C Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark.
| |
Collapse
|
8
|
Cheng H, Li W, Gan C, Zhang B, Jia Q, Wang K. The COMT (rs165599) gene polymorphism contributes to chemotherapy-induced cognitive impairment in breast cancer patients. Am J Transl Res 2016; 8:5087-5097. [PMID: 27904710 PMCID: PMC5126352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/04/2016] [Indexed: 06/06/2023]
Abstract
The present study aimed to investigate the effect of genetic polymorphisms of catechol-O-methyl transferase (COMT), apolipoprotein E (APOE), and brain derived neurotrophic factor (BDNF) on the modulation of the chemotherapy-induced cognitive impairment (CICI) in breast cancer patients. Eighty triple negative breast cancer (TNBC) and 165 non-triple negative breast cancer (NTNBC) patients were selected, and subjected to a number of neuropsychological tests, including memory questionnaires, before and after chemotherapy. Six single-nucleotide polymorphisms (SNPs), including COMT (rs165599, rs4680, rs737865), APOE (rs429358, rs7412), and BDNF (rs6265), were evaluated. The scores of breast cancer patients after chemotherapy were poorer in comparison to those before chemotherapy (t = -5.317, z = -3.372, respectively, P < 0.01), and the scores of TNBC patients were poorer than those of NTNBC patients were after chemotherapy (t = -5.997, z = -5.284, respectively, P < 0.01). Patients with the COMT (rs165599) genotype had a significantly lower chance of developing cognitive decline than the patients with the G/G genotype, and this was linear with the retrospective memory (RM) questionnaires (β = -1.441, CI (95%) = -2.781~-0.101). However, there was no significant difference between the memory scores of APOE (rs429358, rs7412) and BDNF (rs6265) carriers before or after chemotherapy. This study suggests that CICI in TNBC patients was more prominent than that in NTNBC patients after chemotherapy, and the COMT (rs165599) polymorphism was linear to the retrospective memory (RM) questionnaires, and may be a potential genetic marker for increased vulnerability to CICI in TNBC patients.
Collapse
Affiliation(s)
- Huaidong Cheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei 230601, Anhui, China
| | - Wen Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei 230601, Anhui, China
| | - Chen Gan
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei 230601, Anhui, China
| | - Bo Zhang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei 230601, Anhui, China
| | - Qianqian Jia
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical UniversityHefei 230601, Anhui, China
| | - Kai Wang
- Collaborative Innovation Centre of Neuropsychiatric Disorders and Mental Health, Neuropsychological Laboratory, Department of Neurology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230022, Anhui, China
| |
Collapse
|
9
|
Zhao H, Xiang L, Li J, Yang Z, Fang J, Zhao C, Xu S, Cai Z. Investigation on fragmentation pathways of bisphenols by using electrospray ionization Orbitrap mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1901-1913. [PMID: 27392165 DOI: 10.1002/rcm.7666] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/05/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Bisphenols, such as bisphenol A (BPA) and bisphenol S (BPS), are widely used in industrial products, although they have been demonstrated to be environmental contaminants with toxicity. However, few studies on the mass spectrometric fragmentation pathway of these compounds have been reported using high-resolution mass spectrometry (HRMS). METHODS The MS/MS fragmentations of nine bisphenols, together with several corresponding isotope-labeled compounds, were studied by Orbitrap MS using electrospray ionization (ESI) in negative ion mode and higher energy collisional-dissociation (HCD). The [M - H](-) ions of the compounds formed by ESI were selected as the precursor ions for MS/MS. The accurate m/z values for product ions were acquired to deduce the elemental compositions and fragmentation pathways. RESULTS The elemental compositions of the ions were calculated from the accurate mass data. Common MS/MS product ions and characteristic neutral losses were summarized. Six bisphenols formed the common product ion at m/z 93 (C6 H5 O). The [M - H](-) ions of five bisphenols were found to lose a phenol group (C6 H5 OH). Four bisphenols formed the [M - H - CH4 ](-) ion. The proposed fragmentation pathways of representative compounds of BPA and BPS were verified from the analysis of isotope-labeled compounds. CONCLUSIONS The MS/MS fragmentation pathways of nine bisphenols were, for the first time, systematically investigated with HRMS. The obtained data could be valuable for the identification of a variety of bisphenols in environmental and biological samples.
Collapse
Affiliation(s)
- Hongzhi Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, P.R. China
| | - Li Xiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, P.R. China
| | - Jiufeng Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, P.R. China
| | - Zhiyi Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, P.R. China
| | - Jing Fang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, P.R. China
| | - Chao Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, P.R. China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, P.R. China
| |
Collapse
|
10
|
Sapir-Koren R, Livshits G. Rheumatoid arthritis onset in postmenopausal women: Does the ACPA seropositive subset result from genetic effects, estrogen deficiency, skewed profile of CD4(+) T-cells, and their interactions? Mol Cell Endocrinol 2016; 431:145-63. [PMID: 27178986 DOI: 10.1016/j.mce.2016.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 05/04/2016] [Accepted: 05/09/2016] [Indexed: 12/28/2022]
Abstract
Rheumatoid arthritis (RA) incidence displays a differentiated age-dependent female-to-male ratio in which women outnumber men. Evidence that the peak incidence of RA in women coincides with menopause age, suggests a potential estrogenic role to disease etiology. Estrogens exert physiologically both stimulatory and inhibitory effects on the immune system. Epidemiologic and animal model studies with estrogen deprivation or supplementation suggested estrogens as to play, mainly, a protective role in RA immunopathology. In this review, we propose that some yet unidentified disturbances associated with estrogen circulating levels, differentiated by the menopausal status, play a major role in women's RA susceptibility. We focus on the interaction between estrogen deprivation and genetic risk alleles for anti-citrullinated protein antibodies (ACPA) seropositive RA, as a major driving force for increased immune reactivity and RA susceptibility, in postmenopausal women. This opens up new fields for research concerning the association among different irregular estrogenic conditions, the cytokine milieu, and age/menopausal status bias in RA.
Collapse
Affiliation(s)
- Rony Sapir-Koren
- Human Population Biology Research Group, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gregory Livshits
- Human Population Biology Research Group, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Lilian and Marcel Pollak Chair of Biological Anthropology, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
11
|
Xu EG, Ho PWL, Tse Z, Ho SL, Leung KMY. Revealing ecological risks of priority endocrine disrupting chemicals in four marine protected areas in Hong Kong through an integrative approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 215:103-112. [PMID: 27179329 DOI: 10.1016/j.envpol.2016.04.090] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 06/05/2023]
Abstract
Marine Protected Areas (MPAs) in Hong Kong are situated in close proximity to urbanized areas, and inevitably influenced by wastewater discharges and antifouling biocides leached from vessels. Hence, marine organisms inhabiting these MPAs are probably at risk. Here an integrative approach was employed to comprehensively assess ecological risks of eight priority endocrine disrupting chemicals (EDCs) in four MPAs of Hong Kong. We quantified their concentrations in environmental and biota samples collected in different seasons during 2013-2014, while mussels (Septifer virgatus) and semi-permeable membrane devices were deployed to determine the extent of accumulation of the EDCs. Extracts from the environmental samples were subjected to the yeast estrogen screen and a novel human cell-based catechol-O-methyltransferase ELISA to evaluate their estrogenic activities. The results indicated ecological risks of EDCs in the Cape d'Aguilar Marine Reserve. This integrated approach can effectively evaluate ecological risks of EDCs through linking their concentrations to biological effects.
Collapse
Affiliation(s)
- Elvis Genbo Xu
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Philip Wing-Lok Ho
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zero Tse
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shu-Leong Ho
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kenneth Mei Yee Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
12
|
Chen X, Xu S, Tan T, Lee ST, Cheng SH, Lee FWF, Xu SJL, Ho KC. Toxicity and estrogenic endocrine disrupting activity of phthalates and their mixtures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:3156-68. [PMID: 24637910 PMCID: PMC3987027 DOI: 10.3390/ijerph110303156] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 11/16/2022]
Abstract
Phthalates, widely used in flexible plastics and consumer products, have become ubiquitous contaminants worldwide. This study evaluated the acute toxicity and estrogenic endocrine disrupting activity of butyl benzyl phthalate (BBP), di(n-butyl) phthalate (DBP), bis(2-ethylhexyl) phthalate (DEHP), diisodecyl phthalate (DIDP), diisononyl phthalate (DINP), di-n-octyl phthalate (DNOP) and their mixtures. Using a 72 h zebrafish embryo toxicity test, the LC50 values of BBP, DBP and a mixture of the six phthalates were found to be 0.72, 0.63 and 0.50 ppm, respectively. The other four phthalates did not cause more than 50% exposed embryo mortality even at their highest soluble concentrations. The typical toxicity symptoms caused by phthalates were death, tail curvature, necrosis, cardio edema and no touch response. Using an estrogen-responsive ChgH-EGFP transgenic medaka (Oryzias melastigma) eleutheroembryos based 24 h test, BBP demonstrated estrogenic activity, DBP, DEHP, DINP and the mixture of the six phthalates exhibited enhanced-estrogenic activity and DIDP and DNOP showed no enhanced- or anti-estrogenic activity. These findings highlighted the developmental toxicity of BBP and DBP, and the estrogenic endocrine disrupting activity of BBP, DBP, DEHP and DINP on intact organisms, indicating that the widespread use of these phthalates may cause potential health risks to human beings.
Collapse
Affiliation(s)
- Xueping Chen
- Vitargent (International) Biotechnology Limited, Unit 516, 5/F. Biotech Centre 2, No. 11 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong.
| | - Shisan Xu
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| | - Tianfeng Tan
- Vitargent (International) Biotechnology Limited, Unit 516, 5/F. Biotech Centre 2, No. 11 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong.
| | - Sin Ting Lee
- Vitargent (International) Biotechnology Limited, Unit 516, 5/F. Biotech Centre 2, No. 11 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong.
| | - Shuk Han Cheng
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| | - Fred Wang Fat Lee
- School of Science and Technology, Open University of Hong Kong, 30 Good Shepherd Street, Homantin, Kowloon, Hong Kong.
| | - Steven Jing Liang Xu
- School of Science and Technology, Open University of Hong Kong, 30 Good Shepherd Street, Homantin, Kowloon, Hong Kong.
| | - Kin Chung Ho
- School of Science and Technology, Open University of Hong Kong, 30 Good Shepherd Street, Homantin, Kowloon, Hong Kong.
| |
Collapse
|