1
|
Tieu HV, Karuna S, Huang Y, Sobieszczyk ME, Zheng H, Tomaras GD, Montefiori DC, Shen M, DeRosa S, Cohen K, Isaacs MB, Regenold S, Heptinstall J, Seaton KE, Sawant S, Furch B, Pensiero M, Corey L, Bar KJ. Safety and immunogenicity of a recombinant oligomeric gp145 subtype C Env protein (gp145 C.6980) HIV vaccine candidate in healthy, HIV-1-uninfected adult participants in the US. Vaccine 2023; 41:6309-6317. [PMID: 37679276 PMCID: PMC11446254 DOI: 10.1016/j.vaccine.2023.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/21/2023] [Accepted: 07/23/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND An approach to a preventive HIV vaccine is induction of effective broadly neutralizing antibodies (bnAbs) and effector binding antibodies (bAbs). Preclinical studies suggest that trimeric envelope (Env) proteins may elicit nAbs, which led to the development of the recombinant gp145 subtype C Env protein (gp145 C.6980) immunogen. HVTN 122 was a Phase 1 trial that evaluated the safety, tolerability, and immunogenicity of gp145 C.6980 in adults. METHODS Healthy, HIV-1 seronegative adults received three intramuscular injections of gp145 C.6980 with aluminum hydroxide (alum) at months 0, 2, and 6 at either 300 mcg (high dose, n = 25) or 100 mcg (low dose, n = 15), or placebo/saline (placebo, n = 5). Participants were followed for 12 months. RESULTS Forty-five participants were enrolled. High and low doses of the study protein were well-tolerated, with mild or moderate reactogenicity commonly reported. Only one adverse event (mild injection site pruritis) in one participant (low dose) was considered product-related; there were no dose-limiting toxicities. High and low dose recipients demonstrated robust bAb responses to vaccine-matched consensus gp140 Env and subtype-matched gp120 Env proteins two weeks post-last vaccination (response rates >90 %), while no responses were detected to a heterologous subtype-matched V1V2 antigen. No significant differences were seen between high and low dose groups. Participants in both experimental arms demonstrated nAb response rates of 76.5 % to a tier 1 virus (MW9635.26), but no responses to tier 2 isolates. Env-specific CD4 + T-cell responses were elicited in 36.4 % of vaccine recipients, without significant differences between groups; no participants demonstrated CD8 + T-cell responses. CONCLUSIONS Three doses of novel subtype C gp145 Env protein with alum were safe and well-tolerated. Participants demonstrated bAb, Env-specific CD4 + T-cell, and tier 1 nAb responses, but the regimen failed to induce tier 2 or heterologous nAb responses. CLINICAL TRIALS REGISTRATION NCT03382418.
Collapse
MESH Headings
- Humans
- Adult
- Male
- Female
- AIDS Vaccines/immunology
- AIDS Vaccines/adverse effects
- AIDS Vaccines/administration & dosage
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- env Gene Products, Human Immunodeficiency Virus/immunology
- env Gene Products, Human Immunodeficiency Virus/genetics
- HIV Antibodies/blood
- HIV Antibodies/immunology
- HIV Infections/prevention & control
- HIV Infections/immunology
- Young Adult
- Middle Aged
- HIV-1/immunology
- United States
- Injections, Intramuscular
- Healthy Volunteers
- Immunogenicity, Vaccine
- Adolescent
- Adjuvants, Immunologic/administration & dosage
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/administration & dosage
Collapse
Affiliation(s)
- Hong-Van Tieu
- Laboratory of Infectious Disease Prevention, Lindsley F. Kimball Research Institute, New York Blood Center, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, USA
| | - Shelly Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Magdalena E Sobieszczyk
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, USA
| | - Hua Zheng
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Georgia D Tomaras
- Department of Global Health, University of Washington, Seattle, WA, USA
| | | | - Mingchao Shen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stephen DeRosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kristen Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Margaret Brewinski Isaacs
- Division of Refugee Health, Administration for Children and Families, Department of Health and Human Services, USA
| | - Stephanie Regenold
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | | | | | | | - Brianna Furch
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael Pensiero
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Katharine J Bar
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
|
3
|
Karlsson I, Borggren M, Jensen SS, Heyndrickx L, Stewart-Jones G, Scarlatti G, Fomsgaard A, on behalf of the NGIN Consortium. Immunization with Clinical HIV-1 Env Proteins Induces Broad Antibody Dependent Cellular Cytotoxicity-Mediating Antibodies in a Rabbit Vaccination Model. AIDS Res Hum Retroviruses 2018; 34:206-217. [PMID: 28982260 DOI: 10.1089/aid.2017.0140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The induction of both neutralizing antibodies and non-neutralizing antibodies with effector functions, for example, antibody-dependent cellular cytotoxicity (ADCC), is desired in the search for effective vaccines against HIV-1. In the pursuit of novel immunogens capable of inducing an efficient antibody response, rabbits were immunized with selected antigens using different prime-boost strategies. We immunized 35 different groups of rabbits with Env antigens from clinical HIV-1 subtypes A and B, including immunization with DNA alone, protein alone, and DNA prime with protein boost. The rabbit sera were screened for ADCC activity using a GranToxiLux-based assay with human peripheral blood mononuclear cells as effector cells and CEM.NKRCCR5 cells coated with HIV-1 envelope as target cells. The groups with the highest ADCC activity were further characterized for cross-reactivity between HIV-1 subtypes. The immunogen inducing the most potent and broadest ADCC response was a trimeric gp140. The ADCC activity was highest against the HIV-1 subtype corresponding to the immunogen. The ADCC activity did not necessarily reflect neutralizing activity in the pseudovirus-TZMbl assay, but there was an overall correlation between the two antiviral activities. We present a rabbit vaccination model and an assay suitable for screening HIV-1 vaccine candidates for the induction of ADCC-mediating antibodies in addition to neutralizing antibodies. The antigens and/or immunization strategies capable of inducing antibodies with ADCC activity did not necessarily induce neutralizing activity and vice versa. Nevertheless, we identified vaccine candidates that were able to concurrently induce both types of responses and that had ADCC activity that was cross-reactive between different subtypes. When searching for an effective vaccine candidate, it is important to evaluate the antibody response using a model and an assay measuring the desired function.
Collapse
Affiliation(s)
- Ingrid Karlsson
- Department of Virology and Special Microbial Diagnostic, Statens Serum Institut, Copenhagen, Denmark
| | - Marie Borggren
- Department of Virology and Special Microbial Diagnostic, Statens Serum Institut, Copenhagen, Denmark
| | - Sanne Skov Jensen
- Department of Virology and Special Microbial Diagnostic, Statens Serum Institut, Copenhagen, Denmark
- Infectious Disease Research Unit, Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Leo Heyndrickx
- Biomedical Department, Virology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Guillaume Stewart-Jones
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Anders Fomsgaard
- Department of Virology and Special Microbial Diagnostic, Statens Serum Institut, Copenhagen, Denmark
- Infectious Disease Research Unit, Clinical Institute, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
4
|
Borggren M, Nielsen J, Bragstad K, Karlsson I, Krog JS, Williams JA, Fomsgaard A. Vector optimization and needle-free intradermal application of a broadly protective polyvalent influenza A DNA vaccine for pigs and humans. Hum Vaccin Immunother 2016; 11:1983-90. [PMID: 25746201 DOI: 10.1080/21645515.2015.1011987] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The threat posed by the 2009 pandemic H1N1 virus emphasized the need for new influenza A virus vaccines inducing a broad cross-protective immune response for use in both humans and pigs. An effective and broad influenza vaccine for pigs would greatly benefit the pork industry and contribute to public health by diminishing the risk of emerging highly pathogenic reassortants. Current inactivated protein vaccines against swine influenza produce only short-lived immunity and have no efficacy against heterologous strains. DNA vaccines are a potential alternative with advantages such as the induction of cellular and humoral immunity, inherent safety and rapid production time. We have previously developed a DNA vaccine encoding selected influenza proteins of pandemic origin and demonstrated broad protective immune responses in ferrets and pigs. In this study, we evaluated our DNA vaccine expressed by next-generation vectors. These new vectors can improve gene expression, but they are also efficiently produced on large scales and comply with regulatory guidelines by avoiding antibiotic resistance genes. In addition, a new needle-free delivery of the vaccine, convenient for mass vaccinations, was compared with intradermal needle injection followed by electroporation. We report that when our DNA vaccine is expressed by the new vectors and delivered to the skin with the needle-free device in the rabbit model, it can elicit an antibody response with the same titers as a conventional vector with intradermal electroporation. The needle-free delivery is already in use for traditional protein vaccines in pigs but should be considered as a practical alternative for the mass administration of broadly protective influenza DNA vaccines.
Collapse
Key Words
- BSA, bovine serum albumin
- DK, Denmark
- DNA vaccine
- DNA, DeoxyriboNucleic Acid
- ELISA, Enzyme Linked Immunosorbent Assay
- EP, electroporation
- FCS, fetal calf serum
- HA, hemagglutinin
- HAI, hemagglutination inhibition assay
- HAU, hemagglutination units
- HI, hemagglutination inhibition
- IDAL®, IntraDermal Application of Liquids®
- IgG, immunoglobulin G
- M, matrix protein
- MDCK cells, Madin-Darby Canine Kidney epithelial cells
- NA, neuraminidase
- NP, nucleoprotein
- NTC8385-VA1
- NTC9385R
- NZW, New Zealand White
- PBS, phosphate buffered saline
- RDE, receptor destroying enzyme
- SEM, standard error mean
- TMB, tetramethylbenzidine
- US, the United States
- WHO, world health organization
- bp, base pair
- i.d., intra-dermal
- influenza
- needle-free
- polyvalent
- tPA, tissue plasminogen activator
Collapse
Affiliation(s)
- Marie Borggren
- a Virus Research and Development Laboratory ; Department of Microbiological Diagnostic and Virology; Statens Serum Institut ; Copenhagen , Denmark
| | | | | | | | | | | | | |
Collapse
|
5
|
Borggren M, Jensen SS, Heyndrickx L, Palm AA, Gerstoft J, Kronborg G, Hønge BL, Jespersen S, da Silva ZJ, Karlsson I, Fomsgaard A. Neutralizing Antibody Response and Antibody-Dependent Cellular Cytotoxicity in HIV-1-Infected Individuals from Guinea-Bissau and Denmark. AIDS Res Hum Retroviruses 2016; 32:434-42. [PMID: 26621287 DOI: 10.1089/aid.2015.0118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The development of therapeutic and prophylactic HIV vaccines for African countries is urgently needed, but the question of what immunogens to use needs to be answered. One approach is to include HIV envelope immunogens derived from HIV-positive individuals from a geographically concentrated epidemic with more limited viral genetic diversity for a region-based vaccine. To address if there is a basis for a regional selected antibody vaccine, we have screened two regionally separate cohorts from Guinea-Bissau and Denmark for neutralizing antibody activity and antibody-dependent cellular cytotoxicity (ADCC) against local and nonlocal circulating HIV-1 strains. The neutralizing activity did not demonstrate higher potential against local circulating strains according to geography and subtype determination, but the plasma from Danish individuals demonstrated significantly higher inhibitory activity than that from Guinea-Bissau individuals against both local and nonlocal virus strains. Interestingly, an opposite pattern was observed with ADCC activity, where Guinea-Bissau individual plasma demonstrated higher activity than Danish plasma and was specifically against the local circulating subtype. Thus, on basis of samples from these two cohorts, no local-specific neutralizing activity was detected, but a local ADCC response was identified in the Guinea-Bissau samples, suggesting potential use of regional immunogens for an ADCC-inducing vaccine.
Collapse
Affiliation(s)
- Marie Borggren
- Virus Research and Development Laboratory, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Sanne Skov Jensen
- Virus Research and Development Laboratory, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Leo Heyndrickx
- Biomedical Department, Virology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Angelica A. Palm
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jan Gerstoft
- Department of Infectious Diseases and Rheumatology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Gitte Kronborg
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Bo Langhoff Hønge
- Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Sanne Jespersen
- Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau
| | | | - Ingrid Karlsson
- Virus Research and Development Laboratory, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Anders Fomsgaard
- Virus Research and Development Laboratory, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
- Infectious Disease Research Unit, Clinical Institute, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
6
|
Pinheiro A, Neves F, Lemos de Matos A, Abrantes J, van der Loo W, Mage R, Esteves PJ. An overview of the lagomorph immune system and its genetic diversity. Immunogenetics 2016; 68:83-107. [PMID: 26399242 DOI: 10.1007/s00251-015-0868-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/31/2015] [Indexed: 01/11/2023]
Abstract
Our knowledge of the lagomorph immune system remains largely based upon studies of the European rabbit (Oryctolagus cuniculus), a major model for studies of immunology. Two important and devastating viral diseases, rabbit hemorrhagic disease and myxomatosis, are affecting European rabbit populations. In this context, we discuss the genetic diversity of the European rabbit immune system and extend to available information about other lagomorphs. Regarding innate immunity, we review the most recent advances in identifying interleukins, chemokines and chemokine receptors, Toll-like receptors, antiviral proteins (RIG-I and Trim5), and the genes encoding fucosyltransferases that are utilized by rabbit hemorrhagic disease virus as a portal for invading host respiratory and gut epithelial cells. Evolutionary studies showed that several genes of innate immunity are evolving by strong natural selection. Studies of the leporid CCR5 gene revealed a very dramatic change unique in mammals at the second extracellular loop of CCR5 resulting from a gene conversion event with the paralogous CCR2. For the adaptive immune system, we review genetic diversity at the loci encoding antibody variable and constant regions, the major histocompatibility complex (RLA) and T cells. Studies of IGHV and IGKC genes expressed in leporids are two of the few examples of trans-species polymorphism observed outside of the major histocompatibility complex. In addition, we review some endogenous viruses of lagomorph genomes, the importance of the European rabbit as a model for human disease studies, and the anticipated role of next-generation sequencing in extending knowledge of lagomorph immune systems and their evolution.
Collapse
Affiliation(s)
- Ana Pinheiro
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
- SaBio-IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071, Ciudad Real, Spain
| | - Fabiana Neves
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
- UMIB/UP-Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Lemos de Matos
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Joana Abrantes
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
| | - Wessel van der Loo
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
| | - Rose Mage
- NIAID, NIH, Bethesda, MD, 20892, USA
| | - Pedro José Esteves
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.
- CITS-Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal.
| |
Collapse
|
7
|
Uchtenhagen H, Schiffner T, Bowles E, Heyndrickx L, LaBranche C, Applequist SE, Jansson M, De Silva T, Back JW, Achour A, Scarlatti G, Fomsgaard A, Montefiori D, Stewart-Jones G, Spetz AL. Boosting of HIV-1 neutralizing antibody responses by a distally related retroviral envelope protein. THE JOURNAL OF IMMUNOLOGY 2014; 192:5802-12. [PMID: 24829409 DOI: 10.4049/jimmunol.1301898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Our knowledge of the binding sites for neutralizing Abs (NAb) that recognize a broad range of HIV-1 strains (bNAb) has substantially increased in recent years. However, gaps remain in our understanding of how to focus B cell responses to vulnerable conserved sites within the HIV-1 envelope glycoprotein (Env). In this article, we report an immunization strategy composed of a trivalent HIV-1 (clade B envs) DNA prime, followed by a SIVmac239 gp140 Env protein boost that aimed to focus the immune response to structurally conserved parts of the HIV-1 and simian immunodeficiency virus (SIV) Envs. Heterologous NAb titers, primarily to tier 1 HIV-1 isolates, elicited during the trivalent HIV-1 env prime, were significantly increased by the SIVmac239 gp140 protein boost in rabbits. Epitope mapping of Ab-binding reactivity revealed preferential recognition of the C1, C2, V2, V3, and V5 regions. These results provide a proof of concept that a distally related retroviral SIV Env protein boost can increase pre-existing NAb responses against HIV-1.
Collapse
Affiliation(s)
- Hannes Uchtenhagen
- Science for Life Laboratory, Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, S-14186 Stockholm, Sweden
| | - Torben Schiffner
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Emma Bowles
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Leo Heyndrickx
- Virology Unit, Biomedical Department, Institute of Tropical Medicine, 2000 Antwerpen, Belgium
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Steven E Applequist
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, S-14186 Stockholm, Sweden
| | - Marianne Jansson
- Department of Laboratory Medicine, Lund University, S-22362 Lund, Sweden
| | - Thushan De Silva
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | | | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, S-14186 Stockholm, Sweden
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplant and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Anders Fomsgaard
- Department of Virology, Statens Serum Institut, DK-2300 Copenhagen, Denmark; and Institute of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Guillaume Stewart-Jones
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Anna-Lena Spetz
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, S-14186 Stockholm, Sweden;
| |
Collapse
|