1
|
Westaway JAF, Diez Benavente E, Auburn S, Kucharski M, Aranciaga N, Nayak S, William T, Rajahram GS, Piera KA, Braima K, Tan AF, Alaza DA, Barber BE, Drakeley C, Amato R, Sutanto E, Trimarsanto H, Jelip J, Anstey NM, Bozdech Z, Field M, Grigg MJ. Genomic epidemiology of Plasmodium knowlesi reveals putative genetic drivers of adaptation in Malaysia. PLoS Negl Trop Dis 2025; 19:e0012885. [PMID: 40072967 PMCID: PMC11932472 DOI: 10.1371/journal.pntd.0012885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 03/24/2025] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
Sabah, Malaysia, has amongst the highest burden of human Plasmodium knowlesi infection in the world, associated with increasing encroachment on the parasite's macaque host habitat. However, the genomic make-up of P. knowlesi in Sabah was previously poorly understood. To inform on local patterns of transmission and putative adaptive drivers, we conduct population-level genetic analyses of P. knowlesi human infections using 52 new whole genomes from Sabah, Malaysia, in combination with publicly available data. We identify the emergence of distinct geographical subpopulations within the macaque-associated clusters using identity-by-descent-based connectivity analysis. Secondly, we report on introgression events between the clusters, which may be linked to differentiation of the subpopulations, and that overlap genes critical for survival in human and mosquito hosts. Using village-level locations from P. knowlesi infections, we also identify associations between several introgressed regions and both intact forest perimeter-area ratio and mosquito vector habitat suitability. Our findings provide further evidence of the complex role of changing ecosystems and sympatric macaque hosts in Malaysia driving distinct genetic changes seen in P. knowlesi populations. Future expanded analyses of evolving P. knowlesi genetics and environmental drivers of transmission will be important to guide public health surveillance and control strategies.
Collapse
Affiliation(s)
- Jacob A. F. Westaway
- Global and Tropical Health, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, Queensland, Australia
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sarah Auburn
- Global and Tropical Health, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | | | | | - Sourav Nayak
- Nanyang Technological University, SingaporeSingapore
| | - Timothy William
- Infectious Disease Society Kota Kinabalu, Kota Kinabalu, Sabah, Malaysia
| | - Giri S. Rajahram
- Infectious Disease Society Kota Kinabalu, Kota Kinabalu, Sabah, Malaysia
- Queen Elizabeth II Hospital-Clinical Research Centre, Ministry of Health, Kota Kinabalu, Sabah, Malaysia
| | - Kim A. Piera
- Global and Tropical Health, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Kamil Braima
- Global and Tropical Health, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Angelica F. Tan
- Global and Tropical Health, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Danshy A. Alaza
- Infectious Disease Society Kota Kinabalu, Kota Kinabalu, Sabah, Malaysia
| | - Bridget E. Barber
- Global and Tropical Health, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Chris Drakeley
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | | | - Hidayat Trimarsanto
- Global and Tropical Health, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Jakarta, Indonesia
| | - Jenarun Jelip
- Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Nicholas M. Anstey
- Global and Tropical Health, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | | | - Matthew Field
- Global and Tropical Health, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, Queensland, Australia
- College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, Queensland, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Matthew J. Grigg
- Global and Tropical Health, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
2
|
Munjal A, Kannan D, Singh S. A C2 domain containing plasma membrane protein of Plasmodium falciparum merozoites mediates calcium-dependent binding and invasion to host erythrocytes. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:139-149. [PMID: 35995671 DOI: 10.1016/j.jmii.2022.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/03/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Invasion of red blood cells by Plasmodium falciparum merozoites is governed by multiple receptor-ligand interactions which are critical for bridging the two cells together. The critical function of these ligands for invasion and their direct exposure to the host immune system makes them lucrative vaccine candidates. This necessitates the discovery of new adhesins with less redundancy that mediates the binding of merozoite to the red cell, and furthermore invasion into it. Here we have identified a novel membrane associated antigen (PfC2DMA) that is conserved throughout the Plasmodium species and has a membrane targeting C2 domain at its extreme N-terminal region. METHODS Recombinant C2dom was expressed heterologously in bacteria and purified to homogeneity. Mice antisera against C2dom was raised and used to check the expression and intraparasitic localization of the protein. RBC and Ca2+ ion binding activity of C2dom was also checked. RESULTS C2dom exhibited specific binding to Ca2+ ions and not to Mg2+ ions. PfC2DMA localized to the surface of merozoite and recombinant C2dom bound to the surface of human RBCs. RBC receptor modification by treatment with different enzymes showed that binding of C2dom to RBC surface is neuraminidase sensitive. Mice antisera raised against C2dom of Pf C2DMA showed invasion inhibitory effects. CONCLUSION Our findings suggest that C2dom of PfC2DMA binds to surface of red cell in a Ca2+-dependent manner, advocating a plausible role in invasion and can serve as a potential novel blood stage vaccine candidate.
Collapse
Affiliation(s)
- Akshay Munjal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Deepika Kannan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India; The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
3
|
Kim MJ, Chu KB, Kang HJ, Yoon KW, Lee DH, Lee SH, Moon EK, Quan FS. Influenza virus-like particle vaccine containing both apical membrane antigen 1 and microneme-associated antigen proteins of Plasmodium berghei confers protection in mice. BMC Immunol 2022; 23:21. [PMID: 35468726 PMCID: PMC9040335 DOI: 10.1186/s12865-022-00494-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background Apical membrane antigen 1 (AMA1) and microneme-associated antigen (MIC) of Plasmodium parasites are important factors involved in host cell invasion. Methods In this study, influenza VLP vaccines containing both codon-optimized AMA1 and MIC were generated and the vaccine efficacy was evaluated in mice. Results VLPs vaccine immunization elicited higher levels of parasite-specific IgG and IgG2a antibody responses in sera. CD4+ and CD8+ T cells and germinal center B cells in blood, inguinal lymph nodes (ILN) and spleen were found to be significantly increased. Importantly, VLPs vaccination significantly reduced the levels of pro-inflammatory cytokines IFN-γ and TNF-α, decreased parasitemia in blood, resulting in lower body weight loss and longer survival time compared to control. Conclusion These results indicated that VLPs containing P. berghei AMA1 and MIC could be a candidate for malaria blood-stage vaccine design. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-022-00494-4.
Collapse
Affiliation(s)
- Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Dong-Hun Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Su-Hwa Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, 02447, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, 02447, Republic of Korea. .,Department of Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
4
|
Molecular dynamics simulations and biochemical characterization of Pf14-3-3 and PfCDPK1 interaction towards its role in growth of human malaria parasite. Biochem J 2020; 477:2153-2177. [PMID: 32484216 DOI: 10.1042/bcj20200145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022]
Abstract
Scaffold proteins play pivotal role as modulators of cellular processes by operating as multipurpose conformation clamps. 14-3-3 proteins are gold-standard scaffold modules that recognize phosphoSer/Thr (pS/pT) containing conserved motifs, and confer conformational changes leading to modulation of functional parameters of their target proteins. Modulation in functional activity of kinases has been attributed to their interaction with 14-3-3 proteins. Herein, we have annotated and characterized PF3D7_0818200 as 14-3-3 isoform I in Plasmodium falciparum 3D7, and its interaction with one of the key kinases of the parasite, Calcium-Dependent Protein Kinase 1 (CDPK1) by performing various analytical biochemistry and biophysical assays. Molecular dynamics simulation studies indicated that CDPK1 polypeptide sequence (61KLGpS64) behaves as canonical Mode I-type (RXXpS/pT) consensus 14-3-3 binding motif, mediating the interaction. The 14-3-3I/CDPK1 interaction was validated in vitro with ELISA and SPR, which confirmed that the interaction is phosphorylation dependent, with binding affinity constant of 670 ± 3.6 nM. The interaction of 14-3-3I with CDPK1 was validated with well characterized optimal 14-3-3 recognition motifs: Mode I-type ARSHpSYPA and Mode II-type RLYHpSLPA, by simulation studies and ITC. This interaction was found to marginally enhance CDPK1 functional activity. Furthermore, interaction antagonizing peptidomimetics showed growth inhibitory impact on the parasite indicating crucial physiological role of 14-3-3/CDPK1 interaction. Overall, this study characterizes 14-3-3I as a scaffold protein in the malaria parasite and unveils CDPK1 as its previously unidentified target. This sets a precedent for the rational design of 14-3-3 based PPI inhibitors by utilizing 14-3-3 recognition motif peptides, as a potential antimalarial strategy.
Collapse
|
5
|
Rout S, Mahapatra RK. Plasmodium falciparum: Multidrug resistance. Chem Biol Drug Des 2019; 93:737-759. [DOI: 10.1111/cbdd.13484] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/05/2019] [Accepted: 01/09/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Subhashree Rout
- School of BiotechnologyKIIT University Bhubaneswar Odisha India
| | | |
Collapse
|
6
|
Phosphorylated and Nonphosphorylated PfMAP2 Are Localized in the Nucleus, Dependent on the Stage of Plasmodium falciparum Asexual Maturation. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1645097. [PMID: 27525262 PMCID: PMC4976173 DOI: 10.1155/2016/1645097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/16/2016] [Indexed: 11/30/2022]
Abstract
Plasmodium falciparum mitogen-activated protein (MAP) kinases, a family of enzymes central to signal transduction processes including inflammatory responses, are a promising target for antimalarial drug development. Our study shows for the first time that the P. falciparum specific MAP kinase 2 (PfMAP2) is colocalized in the nucleus of all of the asexual erythrocytic stages of P. falciparum and is particularly elevated in its phosphorylated form. It was also discovered that PfMAP2 is expressed in its highest quantity during the early trophozoite (ring form) stage and significantly reduced in the mature trophozoite and schizont stages. Although the phosphorylated form of the kinase is always more prevalent, its ratio relative to the nonphosphorylated form remained constant irrespective of the parasites' developmental stage. We have also shown that the TSH motif specifically renders PfMAP2 genetically divergent from the other plasmodial MAP kinase activation sites using Neighbour Joining analysis. Furthermore, TSH motif-specific designed antibody is crucial in determining the location of the expression of the PfMAP2 protein. However, by using immunoelectron microscopy, PPfMAP2 were detected ubiquitously in the parasitized erythrocytes. In summary, PfMAP2 may play a far more important role than previously thought and is a worthy candidate for research as an antimalarial.
Collapse
|
7
|
Anand G, Reddy KS, Pandey AK, Mian SY, Singh H, Mittal SA, Amlabu E, Bassat Q, Mayor A, Chauhan VS, Gaur D. A novel Plasmodium falciparum rhoptry associated adhesin mediates erythrocyte invasion through the sialic-acid dependent pathway. Sci Rep 2016; 6:29185. [PMID: 27383149 PMCID: PMC4935899 DOI: 10.1038/srep29185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/10/2016] [Indexed: 01/21/2023] Open
Abstract
Erythrocyte invasion by Plasmodium falciparum merozoites is central to blood-stage infection and malaria pathogenesis. This intricate process is coordinated by multiple parasite adhesins that bind erythrocyte receptors and mediate invasion through several alternate pathways. P. falciparum expresses 2700 genes during the blood-stages, of which the identity and function of many remains unknown. Here, we have identified and characterized a novel P. falciparum rhoptry associated adhesin (PfRA) that mediates erythrocyte invasion through the sialic-acid dependent pathway. PfRA appears to play a significant functional role as it is conserved across different Plasmodium species. It is localized in the rhoptries and further translocated to the merozoite surface. Both native and recombinant PfRA specifically bound erythrocytes in a sialic-acid dependent, chymotrypsin and trypsin resistant manner, which was abrogated by PfRA antibodies confirming a role in erythrocyte invasion. PfRA antibodies inhibited erythrocyte invasion and in combination with antibodies against other parasite ligands produced an additive inhibitory effect, thus validating its important role in erythrocyte invasion. We have thus identified a novel P. falciparum adhesin that binds with a sialic acid containing erythrocyte receptor. Our observations substantiate the strategy to block P. falciparum erythrocyte invasion by simultaneously targeting multiple conserved merozoite antigens involved in alternate invasion pathways.
Collapse
Affiliation(s)
- Gaurav Anand
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - K Sony Reddy
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Alok Kumar Pandey
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Syed Yusuf Mian
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Hina Singh
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Shivani Arora Mittal
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Emmanuel Amlabu
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Quique Bassat
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saude de Manhiça (CISM), Maputo, Mozambique
| | - Alfredo Mayor
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saude de Manhiça (CISM), Maputo, Mozambique
| | - Virander Singh Chauhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
8
|
Han JH, Lee SK, Wang B, Muh F, Nyunt MH, Na S, Ha KS, Hong SH, Park WS, Sattabongkot J, Tsuboi T, Han ET. Identification of a reticulocyte-specific binding domain of Plasmodium vivax reticulocyte-binding protein 1 that is homologous to the PfRh4 erythrocyte-binding domain. Sci Rep 2016; 6:26993. [PMID: 27244695 PMCID: PMC4886630 DOI: 10.1038/srep26993] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/03/2016] [Indexed: 12/17/2022] Open
Abstract
The Plasmodium vivax reticulocyte-binding protein (RBP) family was identified based on the annotation of adhesive ligands in the P. vivax genome. Reticulocyte-specific interactions with the PvRBPs (PvRBP1 and PvRBP2) were previously reported. Plasmodium falciparum reticulocyte-binding protein homologue 4 (PfRh4, a homologue of PvRBP1) was observed to possess erythrocyte-binding activity via complement receptor 1 on the erythrocyte surface. However, the reticulocyte-binding mechanisms of P. vivax are unclear because of the large molecular mass of PvRBP1 (>326 kDa) and the difficulty associated with in vitro cultivation. In the present study, 34 kDa of PvRBP1a (PlasmoDB ID: PVX_098585) and 32 kDa of PvRBP1b (PVX_098582) were selected from a 30 kDa fragment of PfRh4 for reticulocyte-specific binding activity analysis. Both PvRBP1a and PvRBP1b were found to be localized at the microneme in the mature schizont-stage parasites. Naturally acquired immune responses against PvRBP1a-34 and PvRBP1b-32 were observed lower than PvDBP-RII. The reticulocyte-specific binding activities of PvRBP1a-34 and PvRBP1b-32 were significantly higher than normocyte binding activity and were significantly reduced by chymotrypsin treatment. PvRBP1a and 1b, bind to reticulocytes and that this suggests that these ligands may have an important role in P. vivax merozoite invasion.
Collapse
Affiliation(s)
- Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Seong-Kyun Lee
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Bo Wang
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea.,Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Fauzi Muh
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Myat Htut Nyunt
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea.,Department of Medical Research, Yangon, Myanmar
| | - Sunghun Na
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| |
Collapse
|