1
|
Shen Z, Xiang M, Chen C, Ding F, Wang Y, Shang C, Xin L, Zhang Y, Cui X. Glutamate excitotoxicity: Potential therapeutic target for ischemic stroke. Biomed Pharmacother 2022; 151:113125. [PMID: 35609367 DOI: 10.1016/j.biopha.2022.113125] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamate-mediated excitotoxicity is an important mechanism leading to post ischemic stroke damage. After acute stroke, the sudden reduction in cerebral blood flow is most initially followed by ion transport protein dysfunction and disruption of ion homeostasis, which in turn leads to impaired glutamate release, reuptake, and excessive N-methyl-D-aspartate receptor (NMDAR) activation, promoting neuronal death. Despite extensive evidence from preclinical studies suggesting that excessive NMDAR stimulation during ischemic stroke is a central step in post-stroke damage, NMDAR blockers have failed to translate into clinical stroke treatment. Current treatment options for stroke are very limited, and there is therefore a great need to develop new targets for neuroprotective therapeutic agents in ischemic stroke to extend the therapeutic time window. In this review, we highlight recent findings on glutamate release, reuptake mechanisms, NMDAR and its downstream cellular signaling pathways in post-ischemic stroke damage, and review the pathological changes in each link to help develop viable new therapeutic targets. We then also summarize potential neuroprotective drugs and therapeutic approaches for these new targets in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zihuan Shen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chen Chen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Fan Ding
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Yuling Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Chang Shang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Laiyun Xin
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Zhang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiangning Cui
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
2
|
Termini CM, Pang A, Fang T, Roos M, Chang VY, Zhang Y, Setiawan NJ, Signaevskaia L, Li M, Kim MM, Tabibi O, Lin PK, Sasine JP, Chatterjee A, Murali R, Himburg HA, Chute JP. Neuropilin 1 regulates bone marrow vascular regeneration and hematopoietic reconstitution. Nat Commun 2021; 12:6990. [PMID: 34848712 PMCID: PMC8635308 DOI: 10.1038/s41467-021-27263-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/07/2021] [Indexed: 12/27/2022] Open
Abstract
Ionizing radiation and chemotherapy deplete hematopoietic stem cells and damage the vascular niche wherein hematopoietic stem cells reside. Hematopoietic stem cell regeneration requires signaling from an intact bone marrow (BM) vascular niche, but the mechanisms that control BM vascular niche regeneration are poorly understood. We report that BM vascular endothelial cells secrete semaphorin 3 A (SEMA3A) in response to myeloablation and SEMA3A induces p53 - mediated apoptosis in BM endothelial cells via signaling through its receptor, Neuropilin 1 (NRP1), and activation of cyclin dependent kinase 5. Endothelial cell - specific deletion of Nrp1 or Sema3a or administration of anti-NRP1 antibody suppresses BM endothelial cell apoptosis, accelerates BM vascular regeneration and concordantly drives hematopoietic reconstitution in irradiated mice. In response to NRP1 inhibition, BM endothelial cells increase expression and secretion of the Wnt signal amplifying protein, R spondin 2. Systemic administration of anti - R spondin 2 blocks HSC regeneration and hematopoietic reconstitution which otherwise occurrs in response to NRP1 inhibition. SEMA3A - NRP1 signaling promotes BM vascular regression following myelosuppression and therapeutic blockade of SEMA3A - NRP1 signaling in BM endothelial cells accelerates vascular and hematopoietic regeneration in vivo.
Collapse
Affiliation(s)
- Christina M Termini
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
- Division of Hematology & Cellular Therapy, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Department of Orthopedic Surgery, UCLA, Los Angeles, CA, USA
| | - Amara Pang
- Division of Hematology & Cellular Therapy, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Tiancheng Fang
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USA
| | - Martina Roos
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
- Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Vivian Y Chang
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Pediatric Hematology/Oncology, UCLA, Los Angeles, CA, USA
| | - Yurun Zhang
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Nicollette J Setiawan
- Division of Hematology & Cellular Therapy, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Lia Signaevskaia
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Michelle Li
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Mindy M Kim
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Orel Tabibi
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Paulina K Lin
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Joshua P Sasine
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, CA, USA
- Division of Hematology & Cellular Therapy, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Avradip Chatterjee
- Department of Biomedical Sciences, Research Division of Immunology, Los Angeles, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Research Division of Immunology, Los Angeles, USA
| | - Heather A Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John P Chute
- Division of Hematology & Cellular Therapy, Cedars Sinai Medical Center, Los Angeles, CA, USA.
- Regenerative Medicine Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA.
- Samuel Oschin Cancer Center, Cedars Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Engin A, Engin AB. N-Methyl-D-Aspartate Receptor Signaling-Protein Kinases Crosstalk in Cerebral Ischemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:259-283. [PMID: 33539019 DOI: 10.1007/978-3-030-49844-3_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Although stroke is very often the cause of death worldwide, the burden of ischemic and hemorrhagic stroke varies between regions and over time regarding differences in prognosis, prevalence of risk factors, and treatment strategies. Excitotoxicity, oxidative stress, dysfunction of the blood-brain barrier, neuroinflammation, and lysosomal membrane permeabilization, sequentially lead to the progressive death of neurons. In this process, protein kinases-related checkpoints tightly regulate N-methyl-D-aspartate (NMDA) receptor signaling pathways. One of the major hallmarks of cerebral ischemia is excitotoxicity, characterized by overactivation of glutamate receptors leading to intracellular Ca2+ overload and ultimately neuronal death. Thus, reduced expression of postsynaptic density-95 protein and increased protein S-nitrosylation in neurons is responsible for neuronal vulnerability in cerebral ischemia. In this chapter death-associated protein kinases, cyclin-dependent kinase 5, endoplasmic reticulum stress-induced protein kinases, hyperhomocysteinemia-related NMDA receptor overactivation, ephrin-B-dependent amplification of NMDA-evoked neuronal excitotoxicity and lysosomocentric hypothesis have been discussed.Consequently, ample evidences have demonstrated that enhancing extrasynaptic NMDA receptor activity triggers cell death after stroke. In this context, considering the dual roles of NMDA receptors in both promoting neuronal survival and mediating neuronal damage, selective augmentation of NR2A-containing NMDA receptor activation in the presence of NR2B antagonist may constitute a promising therapy for stroke.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
4
|
Posada-Duque RA, Cardona-Gómez GP. CDK5 Targeting as a Therapy for Recovering Neurovascular Unit Integrity in Alzheimer's Disease. J Alzheimers Dis 2020; 82:S141-S161. [PMID: 33016916 DOI: 10.3233/jad-200730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The neurovascular unit (NVU) is responsible for synchronizing the energetic demand, vasodynamic changes, and neurochemical and electrical function of the brain through a closed and interdependent interaction of cell components conforming to brain tissue. In this review, we will focus on cyclin-dependent kinase 5 (CDK5) as a molecular pivot, which plays a crucial role in the healthy function of neurons, astrocytes, and the endothelium and is implicated in the cross-talk of cellular adhesion signaling, ion transmission, and cytoskeletal remodeling, thus allowing the individual and interconnected homeostasis of cerebral parenchyma. Then, we discuss how CDK5 overactivation affects the integrity of the NVU in Alzheimer's disease (AD) and cognitive impairment; we emphasize how CDK5 is involved in the excitotoxicity spreading of glutamate and Ca2+ imbalance under acute and chronic injury. Additionally, we present pharmacological and gene therapy strategies for producing partial depletion of CDK5 activity on neurons, astrocytes, or endothelium to recover neuroplasticity and neurotransmission, suggesting that the NVU should be the targeted tissue unit in protective strategies. Finally, we conclude that CDK5 could be effective due to its intervention on astrocytes by its end feet on the endothelium and neurons, acting as an intermediary cell between systemic and central communication in the brain. This review provides integrated guidance regarding the pathogenesis of and potential repair strategies for AD.
Collapse
Affiliation(s)
- Rafael Andrés Posada-Duque
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, SIU, University of Antioquia, Medellín, Colombia.,Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia, Medellín, Colombia
| | - Gloria Patricia Cardona-Gómez
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, SIU, University of Antioquia, Medellín, Colombia
| |
Collapse
|
5
|
Bosutti A, Kalaja O, Zanconati F, Dapas B, Grassi G, Passamonti S, Scaggiante B. A rapid and specific method to simultaneously quantify eukaryotic elongation factor 1A1 and A2 protein levels in cancer cells. J Pharm Biomed Anal 2019; 176:112814. [PMID: 31450069 DOI: 10.1016/j.jpba.2019.112814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The two isoforms of the eukaryotic Elongation Factor 1A (eEF1A1 and eEF1A2), sustain the progression/aggressiveness of cancer cells. Thus, they are considered promising therapeutic targets and prognostic markers. It follows that their precise quantification is of utmost relevance in research and development. The simultaneous quantification of A1 and A2 proteins in the cells helps the comprehension of cancer biology mechanisms and response to drug treatments. However, the high homology at the amino-acidic level (92%) can cause antibodies cross-reaction. Moreover, the commonly employed western blotting just gives semi-quantitative data and does not allow the detection of both protein targets within the same cell. Thus, we developed an in cell western (ICW) technique to bypass the above limitations. METHODS Firstly, relevant antibodies cross-reaction was excluded by immunohistochemistry on normal pancreatic tissue; then eEF1A1-A2 protein levels were quantitated by ICW in prostate and colorectal cancer cell lines in 96 well plates under different conditions, which include: 1) drug treatment, 2) siRNA silencing, 3) cell seeding density. RESULTS We show that: 1) eEF1A1-A2 levels vary depending on the cell type following drug treatment, 2) ICW can accurately detect eEF1A1-A2 protein levels following siRNA silencing, 3) cell seeding density influences eEF1A1-A2 levels, depending on cell type. CONCLUSIONS ICW is a valuable tool to specifically determine the intracellular level of eEF1A1-A2 proteins thus contributing to better define their role as potential therapeutic targets and prognostic markers in human tumors as well as for drug effects screening.
Collapse
Affiliation(s)
- Alessandra Bosutti
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy
| | - Odeta Kalaja
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, Trieste, Italy
| | - Barbara Dapas
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy
| | - Sabina Passamonti
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy.
| |
Collapse
|
6
|
Becerra-Calixto A, Posada-Duque R, Cardona-Gómez GP. Recovery of Neurovascular Unit Integrity by CDK5-KD Astrocyte Transplantation in a Global Cerebral Ischemia Model. Mol Neurobiol 2018; 55:8563-8585. [PMID: 29564811 DOI: 10.1007/s12035-018-0992-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/06/2018] [Indexed: 12/16/2022]
Abstract
Astrocytes play metabolic and structural support roles and contribute to the integrity of the blood-brain barrier (BBB), linking communication between neurons and the endothelium. Cyclin-dependent kinase 5 (CDK5) likely exerts a dual effect on the endothelium and astrocytes due to its involvement in migration and angiogenesis; the overactivation of CDK5 is associated with dysfunction in glutamate recapture and hypoxia. Recently, we proposed that CDK5-targeted astrocytes facilitate the recovery of neurological and motor function in transplanted ischemic rats. In the current study, we treated cerebral ischemic rats and endothelial cells exposed to glutamate toxicity with CDK5 knock-down (CDK5-KD) astrocytes to determine the role of CDK5 in neurovascular integrity. We found that the effects of CDK5-KD were sustained for 4 months, preventing neuronal and astrocyte loss, facilitating the recovery of the BBB via the production of BDNF by endogenous astrocytes (GFP-) surrounding vessels in the motor cortex and the corpus callosum of global ischemic rats, and improving neurological performance. These findings were supported by the in vitro findings of increased transendothelial resistance, p120-ctn+ adhesion and reduced intercellular gaps induced by a CDK5 inhibitor (roscovitine) in bEnd.3 cells in a glutamate-toxicity model. Additionally, CDK5-KD astrocytes in co-culture protected the endothelial cell viability, increased BDNF release from astrocytes, increased BDNF immunoreactivity in neighboring astrocytes and endothelial cells and enhanced cell adhesion in a glutamate-toxicity model. Altogether, these findings suggest that a CDK5 reduction in astrocytes protects the endothelium, which promotes BDNF release, endothelial adhesion, and the recovery of neurovascular unit integrity and brain function in ischemic rats.
Collapse
Affiliation(s)
- Andrea Becerra-Calixto
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, SIU, University of Antioquia, Calle 70, No. 52-21, Medellin, Colombia
| | - Rafael Posada-Duque
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, SIU, University of Antioquia, Calle 70, No. 52-21, Medellin, Colombia.,Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin, Colombia
| | - Gloria Patricia Cardona-Gómez
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, SIU, University of Antioquia, Calle 70, No. 52-21, Medellin, Colombia. .,Universidad de Antioquia, Sede de Investigación Universitaria (SIU), Calle 62 # 52 - 59; Torre 1, Piso 4, Laboratorio 412, Medellín, Colombia.
| |
Collapse
|
7
|
Regulation of inside-out β1-integrin activation by CDCP1. Oncogene 2018; 37:2817-2836. [PMID: 29511352 DOI: 10.1038/s41388-018-0142-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 12/21/2022]
Abstract
Tumor metastasis depends on the dynamic regulation of cell adhesion through β1-integrin. The Cub-Domain Containing Protein-1, CDCP1, is a transmembrane glycoprotein which regulates cell adhesion. Overexpression and loss of CDCP1 have been observed in the same cancer types to promote metastatic progression. Here, we demonstrate reduced CDCP1 expression in high-grade, primary prostate cancers, circulating tumor cells and tumor metastases of patients with castrate-resistant prostate cancer. CDCP1 is expressed in epithelial and not mesenchymal cells, and its cell surface and mRNA expression declines upon stimulation with TGFβ1 and epithelial-to-mesenchymal transition. Silencing of CDCP1 in DU145 and PC3 cells resulted in 3.4-fold higher proliferation of non-adherent cells and 4.4-fold greater anchorage independent growth. CDCP1-silenced tumors grew in 100% of mice, compared to 30% growth of CDCP1-expressing tumors. After CDCP1 silencing, cell adhesion and migration diminished 2.1-fold, caused by loss of inside-out activation of β1-integrin. We determined that the loss of CDCP1 reduces CDK5 kinase activity due to the phosphorylation of its regulatory subunit, CDK5R1/p35, by c-SRC on Y234. This generates a binding site for the C2 domain of PKCδ, which in turn phosphorylates CDK5 on T77. The resulting dissociation of the CDK5R1/CDK5 complex abolishes the activity of CDK5. Mutations of CDK5-T77 and CDK5R1-Y234 phosphorylation sites re-establish the CDK5/CDKR1 complex and the inside-out activity of β1-integrin. Altogether, we discovered a new mechanism of regulation of CDK5 through loss of CDCP1, which dynamically regulates β1-integrin in non-adherent cells and which may promote vascular dissemination in patients with advanced prostate cancer.
Collapse
|
8
|
Kiełbus M, Czapiński J, Odrzywolski A, Stasiak G, Szymańska K, Kałafut J, Kos M, Giannopoulos K, Stepulak A, Rivero-Müller A. Optogenetics in cancer drug discovery. Expert Opin Drug Discov 2018; 13:459-472. [DOI: 10.1080/17460441.2018.1437138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Adrian Odrzywolski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Grażyna Stasiak
- Department of Experimental Haematooncology, Medical University of Lublin, Lublin, Poland
| | - Kamila Szymańska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Michał Kos
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Giannopoulos
- Department of Experimental Haematooncology, Medical University of Lublin, Lublin, Poland
- Department of Hematology, St. John’s Cancer Center, Lublin, Poland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
9
|
Sandu RE, Balseanu AT, Bogdan C, Slevin M, Petcu E, Popa-Wagner A. Stem cell therapies in preclinical models of stroke. Is the aged brain microenvironment refractory to cell therapy? Exp Gerontol 2017; 94:73-77. [PMID: 28093317 DOI: 10.1016/j.exger.2017.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 01/01/2023]
Abstract
Stroke is a devastating disease demanding vigorous search for new therapies. Initial enthusiasm to stimulate restorative processes in the ischemic brain by means of cell-based therapies has meanwhile converted into a more balanced view recognizing impediments that may be related to unfavorable age-associated environments. Recent results using a variety of drug, cell therapy or combination thereof suggest that, (i) treatment with Granulocyte-Colony Stimulating Factor (G-CSF) in aged rats has primarily a beneficial effect on functional outcome most likely via supportive cellular processes such as neurogenesis; (ii) the combination therapy, G-CSF with mesenchymal cells (G-CSF+BM-MSC or G-CSF+BM-MNC) did not further improve behavioral indices, neurogenesis or infarct volume as compared to G-CSF alone in aged animals; (iii) better results with regard to integration of transplanted cells in the aged rat environment have been obtained using iPS of human origin; (iv) mesenchymal cells may be used as drug carriers for the aged post-stroke brains. CONCLUSION While the middle aged brain does not seem to impair drug and cell therapies, in a real clinical practice involving older post-stroke patients, successful regenerative therapies would have to be carried out for a much longer time.
Collapse
Affiliation(s)
- Raluca Elena Sandu
- University of Medicine and Pharmacy of Craiova, Chair of Biochemistry, Neurobiology of Aging Group, Romania
| | - Adrian Tudor Balseanu
- University of Medicine and Pharmacy of Craiova, Chair of Biochemistry, Neurobiology of Aging Group, Romania
| | - Catalin Bogdan
- University of Medicine and Pharmacy of Craiova, Chair of Biochemistry, Neurobiology of Aging Group, Romania
| | - Mark Slevin
- Department of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Eugen Petcu
- Griffith University School of Medicine, Gold Coast Campus, QLD 4222, Australia
| | - Aurel Popa-Wagner
- Department of Psychiatry, University Hospital Rostock, Germany; University of Medicine and Pharmacy of Craiova, Chair of Biochemistry, Neurobiology of Aging Group, Romania.
| |
Collapse
|
10
|
Ji YB, Zhuang PP, Ji Z, Wu YM, Gu Y, Gao XY, Pan SY, Hu YF. TFP5 peptide, derived from CDK5-activating cofactor p35, provides neuroprotection in early-stage of adult ischemic stroke. Sci Rep 2017; 7:40013. [PMID: 28045138 PMCID: PMC5206714 DOI: 10.1038/srep40013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/30/2016] [Indexed: 11/10/2022] Open
Abstract
Cyclin-dependent kinase 5 (CDK5) is a multifaceted protein shown to play important roles in the central nervous system. Abundant evidence indicates that CDK5 hyperactivities associated with neuronal apoptosis and death following ischemic stroke. CDK5 activity increases when its cofactor p35 cleaves into p25 during ischemia. Theoretically, inhibition of CDK5/p25 activity or reduction of p25 would be neuroprotective. TFP5, a modified 24-aa peptide (Lys254-Ala277) derived from p35, was found to effectively inhibit CDK5 hyperactivity and improve the outcomes of Alzheimer's disease and Parkinson's disease in vivo. Here, we showed that intraperitoneal injection of TFP5 significantly decreased the size of ischemia in early-stage of adult ischemic stroke rats. Relative to controls, rats treated with TFP5 displayed reduced excitotoxicity, neuroinflammation, apoptosis, astrocytes damage, and blood-brain barrier disruption. Our findings suggested that TFP5 might serve as a potential therapeutic candidate for acute adult ischemic stroke.
Collapse
Affiliation(s)
- Ya-Bin Ji
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pei-Pei Zhuang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhong Ji
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong-Ming Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Gu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Ya Gao
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Su-Yue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ya-Fang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Liu J, Du J, Yang Y, Wang Y. Phosphorylation of TRPV1 by cyclin-dependent kinase 5 promotes TRPV1 surface localization, leading to inflammatory thermal hyperalgesia. Exp Neurol 2015; 273:253-62. [DOI: 10.1016/j.expneurol.2015.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/02/2015] [Accepted: 09/10/2015] [Indexed: 12/14/2022]
|
12
|
Slevin M, Matou S, Zeinolabediny Y, Corpas R, Weston R, Liu D, Boras E, Di Napoli M, Petcu E, Sarroca S, Popa-Wagner A, Love S, Font MA, Potempa LA, Al-Baradie R, Sanfeliu C, Revilla S, Badimon L, Krupinski J. Monomeric C-reactive protein--a key molecule driving development of Alzheimer's disease associated with brain ischaemia? Sci Rep 2015; 5:13281. [PMID: 26335098 PMCID: PMC4558604 DOI: 10.1038/srep13281] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/04/2015] [Indexed: 01/02/2023] Open
Abstract
Alzheimer’s disease (AD) increases dramatically in patients with ischaemic stroke. Monomeric C-reactive protein (mCRP) appears in the ECM of ischaemic tissue after stroke, associating with microvasculature, neurons and AD-plaques, Aβ, also, being able to dissociate native-CRP into inflammatory, mCRP in vivo. Here, mCRP injected into the hippocampal region of mice was retained within the retrosplenial tract of the dorsal 3rd ventrical and surrounding major vessels. Mice developed behavioural/cognitive deficits within 1 month, concomitant with mCRP staining within abnormal looking neurons expressing p-tau and in beta-amyloid 1-42-plaque positive regions. mCRP co-localised with CD105 in microvessels suggesting angiogenesis. Phospho-arrays/Western blotting identified signalling activation in endothelial cells and neurons through p-IRS-1, p-Tau and p-ERK1/2-which was blocked following pre-incubation with mCRP-antibody. mCRP increased vascular monolayer permeability and gap junctions, increased NCAM expression and produced haemorrhagic angiogenesis in mouse matrigel implants. mCRP induced tau244–372 aggregation and assembly in vitro. IHC study of human AD/stroke patients revealed co-localization of mCRP with Aβ plaques, tau-like fibrils and IRS-1/P-Tau positive neurons and high mCRP-levels spreading from infarcted core regions matched reduced expression of Aβ/Tau. mCRP may be responsible for promoting dementia after ischaemia and mCRP clearance could inform therapeutic avenues to reduce the risk of future dementia.
Collapse
Affiliation(s)
- M Slevin
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.,University of Medicine and Pharmacy, Targu Mures, Romania.,Department of Pathology/Medicine, Griffith University, Brisbane, Australia
| | - S Matou
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Y Zeinolabediny
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - R Corpas
- Instituto De Investigaciones Biomedicas De Barcelona, CSIC, Barcelona, Spain
| | - R Weston
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - D Liu
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - E Boras
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - M Di Napoli
- Neurological Service, San Camillo de' Lellis General Hospital, Rieti, Italy
| | - E Petcu
- Department of Pathology/Medicine, Griffith University, Brisbane, Australia
| | - S Sarroca
- Instituto De Investigaciones Biomedicas De Barcelona, CSIC, Barcelona, Spain
| | - A Popa-Wagner
- Clinic of Neurology, Medical University Greifswald, Germany
| | - S Love
- Department of Neuropathology, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, BS16 1LE, UK
| | - M A Font
- CSIC-ICCC, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | | | - R Al-Baradie
- College of Applied Medical Science, Al Majmaah University, Majmaah City, Kingdom of Saudi Arabia P.O Box 66
| | - C Sanfeliu
- Instituto De Investigaciones Biomedicas De Barcelona, CSIC, Barcelona, Spain
| | - S Revilla
- Instituto De Investigaciones Biomedicas De Barcelona, CSIC, Barcelona, Spain
| | - L Badimon
- CSIC-ICCC, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - J Krupinski
- Hospital Universitari Mútua de Terrassa, Department of Neurology, Terrassa (Barcelona), Spain
| |
Collapse
|
13
|
Bara JJ, Turner S, Roberts S, Griffiths G, Benson R, Trivedi JM, Wright KT. High content and high throughput screening to assess the angiogenic and neurogenic actions of mesenchymal stem cells in vitro. Exp Cell Res 2015; 333:93-104. [DOI: 10.1016/j.yexcr.2014.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/16/2014] [Accepted: 12/30/2014] [Indexed: 01/01/2023]
|
14
|
Bosutti A, Degens H. The impact of resveratrol and hydrogen peroxide on muscle cell plasticity shows a dose-dependent interaction. Sci Rep 2015; 5:8093. [PMID: 25627702 PMCID: PMC4308712 DOI: 10.1038/srep08093] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/02/2015] [Indexed: 01/08/2023] Open
Abstract
While reactive oxygen species (ROS) play a role in muscle repair, excessive amounts of ROS for extended periods may lead to oxidative stress. Antioxidants, as resveratrol (RS), may reduce oxidative stress, restore mitochondrial function and promote myogenesis and hypertrophy. However, RS dose-effectiveness for muscle plasticity is unclear. Therefore, we investigated RS dose-response on C2C12 myoblast and myotube plasticity 1. in the presence and 2. absence of different degrees of oxidative stress. Low RS concentration (10 μM) stimulated myoblast cell cycle arrest, migration and sprouting, which were inhibited by higher doses (40–60 μM). RS did not increase oxidative capacity. In contrast, RS induced mitochondria loss, reduced cell viability and ROS production, and activated stress response pathways [Hsp70 and pSer36-p66(ShcA) proteins]. However, the deleterious effects of H2O2 (1000 µM) on cell migration were alleviated after preconditioning with 10 µM-RS. This dose also enhanced cell motility mediated by 100 µM-H2O2, while higher RS-doses augmented the H2O2-induced impaired myoblast regeneration and mitochondrial dehydrogenase activity. In conclusion, low resveratrol doses promoted in vitro muscle regeneration and attenuated the impact of ROS, while high doses augmented the reduced plasticity and metabolism induced by oxidative stress. Thus, the effects of resveratrol depend on its dose and degree of oxidative stress.
Collapse
Affiliation(s)
- Alessandra Bosutti
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - Hans Degens
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
15
|
Posada-Duque RA, Barreto GE, Cardona-Gomez GP. Protection after stroke: cellular effectors of neurovascular unit integrity. Front Cell Neurosci 2014; 8:231. [PMID: 25177270 PMCID: PMC4132372 DOI: 10.3389/fncel.2014.00231] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/24/2014] [Indexed: 12/16/2022] Open
Abstract
Neurological disorders are prevalent worldwide. Cerebrovascular diseases (CVDs), which account for 55% of all neurological diseases, are the leading cause of permanent disability, cognitive and motor disorders and dementia. Stroke affects the function and structure of blood-brain barrier, the loss of cerebral blood flow regulation, oxidative stress, inflammation and the loss of neural connections. Currently, no gold standard treatments are available outside the acute therapeutic window to improve outcome in stroke patients. Some promising candidate targets have been identified for the improvement of long-term recovery after stroke, such as Rho GTPases, cell adhesion proteins, kinases, and phosphatases. Previous studies by our lab indicated that Rho GTPases (Rac and RhoA) are involved in both tissue damage and survival, as these proteins are essential for the morphology and movement of neurons, astrocytes and endothelial cells, thus playing a critical role in the balance between cell survival and death. Treatment with a pharmacological inhibitor of RhoA/ROCK blocks the activation of the neurodegeneration cascade. In addition, Rac and synaptic adhesion proteins (p120 catenin and N-catenin) play critical roles in protection against cerebral infarction and in recovery by supporting the neurovascular unit and cytoskeletal remodeling activity to maintain the integrity of the brain parenchyma. Interestingly, neuroprotective agents, such as atorvastatin, and CDK5 silencing after cerebral ischemia and in a glutamate-induced excitotoxicity model may act on the same cellular effectors to recover neurovascular unit integrity. Therefore, future efforts must focus on individually targeting the structural and functional roles of each effector of neurovascular unit and the interactions in neural and non-neural cells in the post-ischemic brain and address how to promote the recovery or prevent the loss of homeostasis in the short, medium and long term.
Collapse
Affiliation(s)
- Rafael Andres Posada-Duque
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Faculty of Medicine, Sede de Investigación Universitaria (SIU), University of Antioquia UdeA Medellín, Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá D.C., Colombia
| | - Gloria Patricia Cardona-Gomez
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Faculty of Medicine, Sede de Investigación Universitaria (SIU), University of Antioquia UdeA Medellín, Colombia
| |
Collapse
|