1
|
Csiha S, Hernyák M, Molnár Á, Lőrincz H, Katkó M, Paragh G, Bodor M, Harangi M, Sztanek F, Berta E. Alpha-Lipoic Acid Treatment Reduces the Levels of Advanced End Glycation Products in Type 2 Diabetes Patients with Neuropathy. Biomedicines 2025; 13:438. [PMID: 40002851 PMCID: PMC11852413 DOI: 10.3390/biomedicines13020438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Type 2 diabetes mellitus (T2DM) and its macro- and microvascular complications are major health concerns with multiple factors, like advanced end glycation products (AGEs), in the background. AGEs induce long-lasting functional modification of the proteins and collagen in the vascular wall and nerve tissue. We investigated the effect of alpha-lipoic acid (ALA) treatment on AGEs, soluble AGE receptor (sRAGE), the AGE/sRAGE ratio, and the parameters of endothelial dysfunction and their correlations. Methods: In our 6-month intervention study, 54 T2DM patients with neuropathy treated according to the actual therapeutic guidelines with unchanged oral antidiabetic drugs were included and treated by daily oral administration of 600 mg ALA. A total of 24 gender and age-matched T2DM patients without neuropathy served as controls. Results: In our work, we first demonstrated the attenuating effect of alpha lipoic acid therapy on AGEs in humans (11.89 (9.44-12.88) to 10.95 (9.81-12.82) AU/μg (p = 0.017)). sRAGE levels or the AGEs/sRAGE ratio were not affected by ALA treatment or by the presence of neuropathy. We found a correlation between the changes of AGEs and the improvement of current perception threshold and progranulin levels, and an inverse correlation with the change of asymmetric dimethylarginine. Conclusions: According to our results, ALA decreases AGEs, which may contribute to the clinically well-known beneficial effect in diabetic neuropathy and improvement of endothelial function.
Collapse
Affiliation(s)
- Sára Csiha
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Clinical Basics, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Marcell Hernyák
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Ágnes Molnár
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Hajnalka Lőrincz
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Mónika Katkó
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - György Paragh
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Miklós Bodor
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Clinical Basics, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
| | - Mariann Harangi
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Ferenc Sztanek
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Eszter Berta
- Department of Clinical Basics, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
- Division of Metabolism, Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
2
|
Singh S, Bruder A, Costa RM, Alves JV, Bharathi S, Goetzman ES, Bruder‐Nascimento T. Vascular Contractility Relies on Integrity of Progranulin Pathway: Insights Into Mitochondrial Function. J Am Heart Assoc 2025; 14:e037640. [PMID: 39895524 PMCID: PMC12074767 DOI: 10.1161/jaha.124.037640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/19/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND The complex interplay between vascular contractility and mitochondrial function is central to cardiovascular disease. The progranulin gene (GRN) encodes glycoprotein PGRN (progranulin), a ubiquitous molecule with known anti-inflammatory property. However, the role of PGRN in cardiovascular disease remains undefined. In this study, we sought to dissect the significance of PGRN in the regulation vascular contractility and investigate the interface between PGRN and mitochondrial quality. METHODS AND RESULTS We used aortae from male and female C57BL6/J wild-type (PGRN+/+) and B6(Cg)-Grntm1.1Aidi/J (PGRN-/-) mice. Our results showed suppression of contractile activity in PGRN-/-, followed by reduced α-smooth muscle actin expression. Mechanistically, PGRN deficiency suppressed mitochondrial respiration, induced mitochondrial fission, and disturbed autophagy process and redox signaling, while restoration of PGRN levels in aortae from PGRN-/- mice via lentivirus delivery ameliorated contractility and boosted mitochondria activity. In addition, in vivo treatment with mitochondrial fission inhibitor restored mitochondrial quality and vascular contractility, while vascular smooth muscle cells overexpressing PGRN displayed higher lysosome biogenesis, accelerated mitophagy flux, and mitochondrial respiration accompanied by vascular hypercontractility. Finally, angiotensin II failed to induce vascular contractility in PGRN-/-, suggesting a key role of PGRN to maintain the vascular tone. CONCLUSIONS Our findings suggest that PGRN preserves the vascular contractility via regulating mitophagy flux, mitochondrial activity and dynamics, and redox signaling. Therefore, loss of PGRN function appears as a pivotal risk factor in cardiovascular disease.
Collapse
Affiliation(s)
- Shubhnita Singh
- Department of Pediatrics at UPMC Children’s Hospital of PittsburghUniversity of PittsburghPittsburghPA
- Children’s Hospital of Philadelphia (CHOP)Department of Genetics at the University of Pennsylvania School of MedicinePhiladelphiaPA
- Department of Human Genetics, School of Public HealthUniversity of PittsburghPA
| | - Ariane Bruder
- Department of Pediatrics at UPMC Children’s Hospital of PittsburghUniversity of PittsburghPittsburghPA
- Department of Physiology & Cell Biology, School of MedicineUniversity of South AlabamaMobileAL
| | - Rafael M. Costa
- Department of Pediatrics at UPMC Children’s Hospital of PittsburghUniversity of PittsburghPittsburghPA
- Department of Physiology & Cell Biology, School of MedicineUniversity of South AlabamaMobileAL
| | - Juliano V. Alves
- Department of Pediatrics at UPMC Children’s Hospital of PittsburghUniversity of PittsburghPittsburghPA
| | - Sivakama Bharathi
- Department of Pediatrics at UPMC Children’s Hospital of PittsburghUniversity of PittsburghPittsburghPA
| | - Eric S. Goetzman
- Department of Pediatrics at UPMC Children’s Hospital of PittsburghUniversity of PittsburghPittsburghPA
- Department of Human Genetics, School of Public HealthUniversity of PittsburghPA
- Genetic and Genomic Medicine Division at UPMC Children’s Hospital of PittsburghUniversity of PittsburghPittsburghPA
| | - Thiago Bruder‐Nascimento
- Department of Pediatrics at UPMC Children’s Hospital of PittsburghUniversity of PittsburghPittsburghPA
- Department of Physiology & Cell Biology, School of MedicineUniversity of South AlabamaMobileAL
| |
Collapse
|
3
|
Yan Y, Wang L, Zhong N, Wen D, Liu L. Multifaced roles of adipokines in endothelial cell function. Front Endocrinol (Lausanne) 2024; 15:1490143. [PMID: 39558976 PMCID: PMC11570283 DOI: 10.3389/fendo.2024.1490143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Obesity significantly contributes to the progression of cardiovascular diseases (CVDs) and elevates the risk of cardiovascular mortality. Atherosclerosis, the primary pathogenic process underlying CVDs, initiates with vascular endothelial dysfunction, serving as the cornerstone of vascular lesions. Adipokines, bioactive molecules secreted by adipose tissue that regulate metabolic and endocrine functions, play a pivotal role in modulating endothelial function during atherosclerosis. This review comprehensively examines the distinct roles of various adipokines in regulating endothelial function in atherosclerosis. We categorize these adipokines into two main groups: protective adipokines, including adiponectin, FGF21, CTRP9, PGRN, Omentin, and Vaspin, and detrimental adipokines such as leptin, Chemerin, Resistin, FABP4, among others. Targeting specific adipokines holds promise for novel clinical interventions in the management of atherosclerosis-related CVDs, thereby providing a theoretical foundation for cardiovascular disease treatment strategies.
Collapse
Affiliation(s)
- Yu Yan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lihui Wang
- Department of Radiology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Ni Zhong
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Donghua Wen
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Longhua Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
4
|
Sebestyén V, Ratku B, Ujvárosy D, Lőrincz H, Tari D, Végh L, Majai G, Somodi S, Páll D, Szűcs G, Harangi M, Szabó Z. Progranulin, sICAM-1, and sVCAM-1 May Predict an Increased Risk for Ventricular Arrhythmias in Patients with Systemic Sclerosis. Int J Mol Sci 2024; 25:7380. [PMID: 39000486 PMCID: PMC11242860 DOI: 10.3390/ijms25137380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
In systemic sclerosis (SSc), fibrosis of the myocardium along with ongoing autoimmune inflammation can alter the electric function of the cardiac myocytes, which may increase the risk for ventricular arrhythmias and sudden cardiac death. We analyzed the electrocardiographic (ECG) variables describing ventricular repolarization such as QT interval, QT dispersion (QTd), T wave peak-to-end interval (Tpe), and arrhythmogeneity index (AIX) of 26 patients with SSc and 36 healthy controls. Furthermore, echocardiographic and laboratory parameters were examined, with a focus on inflammatory proteins like C-reactive ptotein (CRP), soluble intracellular adhesion molecule-1 (sICAM-1), soluble vascular adhesion molecule-1 (sVCAM-1), and progranulin (PGRN). The CRP, sICAM-1, and sVCAM-1 levels were positively correlated with the length of the QT interval. Although the serum PGRN levels were not increased in the SSc group compared to the controls, in SSc patients, the PGRN levels were positively correlated with the QT interval and the AIX. According to our results, we conclude that there may be a potential association between autoimmune inflammation and the risk for ventricular arrhythmias in patients with SSc. We emphasize that the measurement of laboratory parameters of inflammatory activity including CRP, PGRN, sVCAM-1, and sICAM-1 could be helpful in the prediction of sudden cardiac death in patients with SSc.
Collapse
Affiliation(s)
- Veronika Sebestyén
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (V.S.); (B.R.); (D.U.); (L.V.); (S.S.)
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Balázs Ratku
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (V.S.); (B.R.); (D.U.); (L.V.); (S.S.)
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary; (D.P.); (M.H.)
| | - Dóra Ujvárosy
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (V.S.); (B.R.); (D.U.); (L.V.); (S.S.)
| | - Hajnalka Lőrincz
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Dóra Tari
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.T.); (G.S.)
| | - Lilla Végh
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (V.S.); (B.R.); (D.U.); (L.V.); (S.S.)
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Gyöngyike Majai
- Division of Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Sándor Somodi
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (V.S.); (B.R.); (D.U.); (L.V.); (S.S.)
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary; (D.P.); (M.H.)
| | - Dénes Páll
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary; (D.P.); (M.H.)
| | - Gabriella Szűcs
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.T.); (G.S.)
| | - Mariann Harangi
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary; (D.P.); (M.H.)
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Zoltán Szabó
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (V.S.); (B.R.); (D.U.); (L.V.); (S.S.)
| |
Collapse
|
5
|
Ruperti F, Becher I, Stokkermans A, Wang L, Marschlich N, Potel C, Maus E, Stein F, Drotleff B, Schippers KJ, Nickel M, Prevedel R, Musser JM, Savitski MM, Arendt D. Molecular profiling of sponge deflation reveals an ancient relaxant-inflammatory response. Curr Biol 2024; 34:361-375.e9. [PMID: 38181793 DOI: 10.1016/j.cub.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/03/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024]
Abstract
A hallmark of animals is the coordination of whole-body movement. Neurons and muscles are central to this, yet coordinated movements also exist in sponges that lack these cell types. Sponges are sessile animals with a complex canal system for filter-feeding. They undergo whole-body movements resembling "contractions" that lead to canal closure and water expulsion. Here, we combine live 3D optical coherence microscopy, pharmacology, and functional proteomics to elucidate the sequence and detail of shape changes, the tissues and molecular physiology involved, and the control of these movements. Morphometric analysis and targeted perturbation suggest that the movement is driven by the relaxation of actomyosin stress fibers in epithelial canal cells, which leads to whole-body deflation via collapse of the incurrent and expansion of the excurrent canal system. Thermal proteome profiling and quantitative phosphoproteomics confirm the control of cellular relaxation by an Akt/NO/PKG/PKA pathway. Agitation-induced deflation leads to differential phosphorylation of proteins forming epithelial cell junctions, implying their mechanosensitive role. Unexpectedly, untargeted metabolomics detect a concomitant decrease in antioxidant molecules during deflation, reflecting an increase in reactive oxygen species. Together with the secretion of proteinases, cytokines, and granulin, this indicates an inflammation-like state of the deflating sponge reminiscent of vascular endothelial cells experiencing oscillatory shear stress. These results suggest the conservation of an ancient relaxant-inflammatory response of perturbed fluid-carrying systems in animals and offer a possible mechanism for whole-body coordination through diffusible paracrine signals and mechanotransduction.
Collapse
Affiliation(s)
- Fabian Ruperti
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Collaboration for joint Ph.D. degree between EMBL and Heidelberg University, Faculty of Biosciences 69117 Heidelberg, Germany
| | - Isabelle Becher
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | - Ling Wang
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Nick Marschlich
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Clement Potel
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Emanuel Maus
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Bernhard Drotleff
- Metabolomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Klaske J Schippers
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Michael Nickel
- Bionic consulting Dr. Michael Nickel, 71686 Remseck am Neckar, Germany
| | - Robert Prevedel
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jacob M Musser
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
6
|
Poniatowski ŁA, Woźnica M, Wojdasiewicz P, Mela-Kalicka A, Romanowska-Próchnicka K, Purrahman D, Żurek G, Krawczyk M, Nameh Goshay Fard N, Furtak-Niczyporuk M, Jaroszyński J, Mahmoudian-Sani MR, Joniec-Maciejak I. The Role of Progranulin (PGRN) in the Pathogenesis of Glioblastoma Multiforme. Cells 2024; 13:124. [PMID: 38247816 PMCID: PMC10814625 DOI: 10.3390/cells13020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Glioblastoma multiforme (GBM) represents the most common and aggressive malignant form of brain tumour in adults and is characterized by an extremely poor prognosis with dismal survival rates. Currently, expanding concepts concerning the pathophysiology of GBM are inextricably linked with neuroinflammatory phenomena. On account of this fact, the identification of novel pathomechanisms targeting neuroinflammation seems to be crucial in terms of yielding successful individual therapeutic strategies. In recent years, the pleiotropic growth factor progranulin (PGRN) has attracted significant attention in the neuroscience and oncological community regarding its neuroimmunomodulatory and oncogenic functions. This review of the literature summarizes and updates contemporary knowledge about PGRN, its associated receptors and signalling pathway involvement in GBM pathogenesis, indicating possible cellular and molecular mechanisms with potential diagnostic, prognostic and therapeutic targets in order to yield successful individual therapeutic strategies. After a review of the literature, we found that there are possible PGRN-targeted therapeutic approaches for implementation in GBM treatment algorithms both in preclinical and future clinical studies. Furthermore, PGRN-targeted therapies exerted their highest efficacy in combination with other established chemotherapeutic agents, such as temozolomide. The results of the analysis suggested that the possible implementation of routine determinations of PGRN and its associated receptors in tumour tissue and biofluids could serve as a diagnostic and prognostic biomarker of GBM. Furthermore, promising preclinical applications of PGRN-related findings should be investigated in clinical studies in order to create new diagnostic and therapeutic algorithms for GBM treatment.
Collapse
Affiliation(s)
- Łukasz A. Poniatowski
- Department of Neurosurgery, Dietrich-Bonhoeffer-Klinikum, Salvador-Allende-Straße 30, 17036 Neubrandenburg, Germany
| | - Michał Woźnica
- Department of Spine Surgery, 7th Navy Hospital, Polanki 117, 80-305 Gdańsk, Poland;
| | - Piotr Wojdasiewicz
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland (K.R.-P.)
| | - Aneta Mela-Kalicka
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Katarzyna Romanowska-Próchnicka
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland (K.R.-P.)
- Department of Systemic Connective Tissue Diseases, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland
| | - Daryush Purrahman
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; (D.P.)
| | - Grzegorz Żurek
- Department of Biostructure, Wrocław University of Health and Sport Sciences, I. J. Paderewskiego 35, 51-612 Wrocław, Poland;
| | - Maciej Krawczyk
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| | - Najmeh Nameh Goshay Fard
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; (D.P.)
| | - Marzena Furtak-Niczyporuk
- Department of Public Health, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Janusz Jaroszyński
- Department of Administrative Proceedings, Faculty of Law and Administration, Maria Curie-Skłodowska University of Lublin, Marii Curie-Skłodowskiej 5, 20-031 Lublin, Poland
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; (D.P.)
| | - Ilona Joniec-Maciejak
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| |
Collapse
|
7
|
Singh S, Bruder-Nascimento A, Costa RM, Alves JV, Bharathi S, Goetzman ES, Bruder-Nascimento T. Adjusted vascular contractility relies on integrity of progranulin pathway: Insights into mitochondrial function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564485. [PMID: 37961631 PMCID: PMC10634918 DOI: 10.1101/2023.10.27.564485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Objective Cardiovascular disease (CVD) is a global health crisis and a leading cause of mortality. The intricate interplay between vascular contractility and mitochondrial function is central to CVD pathogenesis. The progranulin gene (GRN) encodes glycoprotein progranulin (PGRN), a ubiquitous molecule with known anti-inflammatory property. However, the role of PGRN in CVD remains enigmatic. In this study, we sought to dissect the significance of PGRN in the regulation vascular contractility and investigate the interface between PGRN and mitochondrial quality. Method Our investigation utilized aortae from male and female C57BL6/J wild-type (PGRN+/+) and B6(Cg)-Grntm1.1Aidi/J (PGRN-/-) mice, encompassing wire myograph assays to assess vascular contractility and primary aortic vascular smooth muscle cells (VSMCs) for mechanistic insights. Results Our results showed suppression of contractile activity in PGRN-/- VSMCs and aorta, followed by reduced α-smooth muscle actin expression. Mechanistically, PGRN deficiency impaired mitochondrial oxygen consumption rate (OCR), complex I activity, mitochondrial turnover, and mitochondrial redox signaling, while restoration of PGRN levels in aortae from PGRN-/- mice via lentivirus delivery ameliorated contractility and boosted OCR. In addition, VSMC overexpressing PGRN displayed higher mitochondrial respiration and complex I activity accompanied by cellular hypercontractility. Furthermore, increased PGRN triggered lysosome biogenesis by regulating transcription factor EB and accelerated mitophagy flux in VSMC, while treatment with spermidine, an autophagy inducer, improved mitochondrial phenotype and enhanced vascular contractility. Finally, angiotensin II failed to induce vascular contractility in PGRN-/- suggesting a key role of PGRN to maintain the vascular tone. Conclusion Our findings suggest that PGRN preserves the vascular contractility via regulating mitophagy flux, mitochondrial complex I activity, and redox signaling. Therefore, loss of PGRN function appears as a pivotal risk factor in CVD development.
Collapse
Affiliation(s)
- Shubhnita Singh
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Ariane Bruder-Nascimento
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rafael M Costa
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Juliano V Alves
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Sivakama Bharathi
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric S Goetzman
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, USA
- Genetic and Genomic Medicine Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thiago Bruder-Nascimento
- Department of Pediatrics at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM) at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Endocrinology Division at UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Purrahman D, Shojaeian A, Poniatowski ŁA, Piechowski-Jóźwiak B, Mahmoudian-Sani MR. The Role of Progranulin (PGRN) in the Pathogenesis of Ischemic Stroke. Cell Mol Neurobiol 2023; 43:3435-3447. [PMID: 37561339 PMCID: PMC11410000 DOI: 10.1007/s10571-023-01396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Stroke is a life-threatening medical condition and is a leading cause of disability. Cerebral ischemia is characterized by a distinct inflammatory response starting with the production of various cytokines and other inflammation-related agents. Progranulin (PGRN), a multifunctional protein, is critical in diverse physiological reactions, such as cell proliferation, inflammation, wound healing, and nervous system development. A mature PGRN is anti-inflammatory, while granulin, its derivative, conversely induces pro-inflammatory cytokine expression. PGRN is significantly involved in the brain tissue and its damage, for example, improving mood and cognitive disorders caused by cerebral ischemia. It may also have protective effects against nerve and spinal cord injuries by inhibiting neuroinflammatory response and apoptosis or it may be related to the proliferation, accumulation, differentiation, and activation of microglia. PGRN is a neurotrophic factor in the central nervous system. It may increase post-stroke neurogenesis of the subventricular zone (SVZ), which is particularly important in improving long-term brain function following cerebral ischemia. The neurogenesis enhanced via PGRN in the ischemic brain SVZ may be attributed to the induction of PI3K/AKT and MAPK/ERK signaling routes. PGRN can also promote the proliferation of neural stem/progenitor cells through PI3K/AKT signaling pathway. PGRN increases hippocampal neurogenesis, reducing anxiety and impaired spatial learning post-cerebral ischemia. PGRN alleviates cerebral ischemia/reperfusion injury by reducing endoplasmic reticulum stress and suppressing the NF-κB signaling pathway. PGRN can be introduced as a potent neuroprotective agent capable of improving post-ischemia neuronal actions, mainly by reducing and elevating the inflammatory and anti-inflammatory cytokines. Expression, storage, cleavage, and function of progranulin (PGRN) in the pathogenesis of ischemic stroke.
Collapse
Affiliation(s)
- Daryush Purrahman
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Łukasz A Poniatowski
- Department of Neurosurgery, Dietrich-Bonhoeffer-Klinikum, Salvador-Allende-Straße 30, 17036, Neubrandenburg, Germany
| | - Bartłomiej Piechowski-Jóźwiak
- Neurological Institute, Cleveland Clinic Abu Dhabi, 59 Hamouda Bin Ali Al Dhaheri Street, Jazeerat Al Maryah, PO Box 112412, Abu Dhabi, United Arab Emirates
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
9
|
Bruder‐Nascimento A, Awata WMC, Alves JV, Singh S, Costa RM, Bruder‐Nascimento T. Progranulin Maintains Blood Pressure and Vascular Tone Dependent on EphrinA2 and Sortilin1 Receptors and Endothelial Nitric Oxide Synthase Activation. J Am Heart Assoc 2023; 12:e030353. [PMID: 37581395 PMCID: PMC10492929 DOI: 10.1161/jaha.123.030353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/06/2023] [Indexed: 08/16/2023]
Abstract
Background The mechanisms determining vascular tone are still not completely understood, even though it is a significant factor in blood pressure management. Many circulating proteins have a significant impact on controlling vascular tone. Progranulin displays anti-inflammatory effects and has been extensively studied in neurodegenerative illnesses. We investigated whether progranulin sustains the vascular tone that helps regulate blood pressure. Methods and Results We used male and female C57BL6/J wild type (progranulin+/+) and B6(Cg)-Grntm1.1Aidi/J (progranulin-/-) to understand the impact of progranulin on vascular contractility and blood pressure. We found that progranulin-/- mice display elevated blood pressure followed by hypercontractility to noradrenaline in mesenteric arteries, which is restored by supplementing the mice with recombinant progranulin. In ex vivo experiments, recombinant progranulin attenuated the vascular contractility to noradrenaline in male and female progranulin+/+ arteries, which was blunted by blocking EphrinA2 or Sortilin1. To understand the mechanisms whereby progranulin evokes anticontractile effects, we inhibited endothelial factors. N(gamma)-nitro-L-arginine methyl ester (nitric oxide synthase inhibitor) prevented the progranulin effects, whereas indomethacin (cyclooxygenase inhibitor) affected only the contractility in arteries incubated with vehicle, indicating that progranulin increases nitric oxide and decreases contractile prostanoids. Finally, recombinant progranulin induced endothelial nitric oxide synthase phosphorylation and nitric oxide production in isolated mesenteric endothelial cells. Conclusions Circulating progranulin regulates vascular tone and blood pressure via EphrinA2 and Sortilin1 receptors and endothelial nitric oxide synthase activation. Collectively, our data suggest that deficiency in progranulin is a cardiovascular risk factor and that progranulin might be a new therapeutic avenue to treat high blood pressure.
Collapse
Affiliation(s)
- Ariane Bruder‐Nascimento
- Department of PediatricsUniversity of PittsburghPittsburghPAUSA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM)PittsburghPAUSA
| | - Wanessa M. C. Awata
- Department of PediatricsUniversity of PittsburghPittsburghPAUSA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM)PittsburghPAUSA
| | - Juliano V. Alves
- Department of PediatricsUniversity of PittsburghPittsburghPAUSA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM)PittsburghPAUSA
| | - Shubhnita Singh
- Department of PediatricsUniversity of PittsburghPittsburghPAUSA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM)PittsburghPAUSA
| | - Rafael M. Costa
- Department of PediatricsUniversity of PittsburghPittsburghPAUSA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM)PittsburghPAUSA
| | - Thiago Bruder‐Nascimento
- Department of PediatricsUniversity of PittsburghPittsburghPAUSA
- Center for Pediatrics Research in Obesity and Metabolism (CPROM)PittsburghPAUSA
- Endocrinology Division at UPMC Children’s Hospital of PittsburghPittsburghPAUSA
- Vascular Medicine Institute (VMI), University of PittsburghPittsburghPAUSA
| |
Collapse
|
10
|
Ruperti F, Becher I, Stokkermans A, Wang L, Marschlich N, Potel C, Maus E, Stein F, Drotleff B, Schippers K, Nickel M, Prevedel R, Musser JM, Savitski MM, Arendt D. Molecular profiling of sponge deflation reveals an ancient relaxant-inflammatory response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551666. [PMID: 37577507 PMCID: PMC10418225 DOI: 10.1101/2023.08.02.551666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
A hallmark of animals is the coordination of whole-body movement. Neurons and muscles are central to this, yet coordinated movements also exist in sponges that lack these cell types. Sponges are sessile animals with a complex canal system for filter-feeding. They undergo whole-body movements resembling "contractions" that lead to canal closure and water expulsion. Here, we combine 3D optical coherence microscopy, pharmacology, and functional proteomics to elucidate anatomy, molecular physiology, and control of these movements. We find them driven by the relaxation of actomyosin stress fibers in epithelial canal cells, which leads to whole-body deflation via collapse of the incurrent and expansion of the excurrent system, controlled by an Akt/NO/PKG/A pathway. A concomitant increase in reactive oxygen species and secretion of proteinases and cytokines indicate an inflammation-like state reminiscent of vascular endothelial cells experiencing oscillatory shear stress. This suggests an ancient relaxant-inflammatory response of perturbed fluid-carrying systems in animals.
Collapse
Affiliation(s)
- Fabian Ruperti
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Collaboration for joint Ph.D. degree between EMBL and Heidelberg University, Faculty of Biosciences 69117 Heidelberg, Germany
| | - Isabelle Becher
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | - Ling Wang
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Nick Marschlich
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Clement Potel
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Emanuel Maus
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Bernhard Drotleff
- Metabolomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Klaske Schippers
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Michael Nickel
- Bionic Consulting Dr. Michael Nickel, 71686 Remseck am Neckar, Germany
| | - Robert Prevedel
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jacob M Musser
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Saeedi-Boroujeni A, Purrahman D, Shojaeian A, Poniatowski ŁA, Rafiee F, Mahmoudian-Sani MR. Progranulin (PGRN) as a regulator of inflammation and a critical factor in the immunopathogenesis of cardiovascular diseases. J Inflamm (Lond) 2023; 20:1. [PMID: 36658641 PMCID: PMC9851114 DOI: 10.1186/s12950-023-00327-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Immune dysregulation has been identified as a critical cause of the most common types of cardiovascular diseases (CVDs). Notably, the innate and adaptive immune responses under physiological conditions are typically regulated with high sensitivity to avoid the exacerbation of inflammation, but any dysregulation can probably be associated with CVDs. In this respect, progranulin (PGRN) serves as one of the main components of the regulation of inflammatory processes, which significantly contributes to the immunopathogenesis of such disorders. PGRN has been introduced among the secreted growth factors as one related to wound healing, inflammation, and human embryonic development, as well as a wide variety of autoimmune diseases. The relationship between the serum PGRN and TNF-α ratio with the spontaneous bacterial peritonitis constitute one of the independent predictors of these conditions. The full-length PGRN can thus effectively reduce the calcification of valve interstitial cells, and the granulin precursor (GRN), among the degradation products of PGRN, can be beneficial. Moreover, it was observed that, PGRN protects the heart against ischemia-reperfusion injury. Above all, PGRN also provides protection in the initial phase following myocardial ischemia-reperfusion injury. The protective impact of PGRN on this may be associated with the early activation of the PI3K/Akt signaling pathway. PGRN also acts as a protective factor in hyperhomocysteinemia, probably by down-regulating the wingless-related integration site Wnt/β-catenin signaling pathway. Many studies have further demonstrated that SARS-CoV-2 (COVID-19) has dramatically increased the risks of CVDs due to inflammation, so PGRN has drawn much more attention among scholars. Lysosomes play a pivotal role in the inflammation process, and PGRN is one of the key regulators in their functioning, which contributes to the immunomodulatory mechanism in the pathogenesis of CVDs. Therefore, investigation of PGRN actions can help find new prospects in the treatment of CVDs. This review aims to summarize the role of PGRN in the immunopathogenesis of CVD, with an emphasis on its treatment.
Collapse
Affiliation(s)
- Ali Saeedi-Boroujeni
- Department of Microbiology, School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Daryush Purrahman
- grid.411230.50000 0000 9296 6873Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Shojaeian
- grid.411950.80000 0004 0611 9280Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Łukasz A. Poniatowski
- grid.491786.50000 0001 0211 9062Department of Neurosurgery, Dietrich-Bonhoeffer-Klinikum, Neubrandenburg, Germany
| | - Fatemeh Rafiee
- grid.469309.10000 0004 0612 8427Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Science, Zanjan, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- grid.411230.50000 0000 9296 6873Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran ,grid.411230.50000 0000 9296 6873Clinical Research Development Unit, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
12
|
Liu L, Shi Z, Ji X, Zhang W, Luan J, Zahr T, Qiang L. Adipokines, adiposity, and atherosclerosis. Cell Mol Life Sci 2022; 79:272. [PMID: 35503385 PMCID: PMC11073100 DOI: 10.1007/s00018-022-04286-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/11/2022] [Accepted: 04/03/2022] [Indexed: 12/12/2022]
Abstract
Characterized by a surplus of whole-body adiposity, obesity is strongly associated with the prognosis of atherosclerosis, a hallmark of coronary artery disease (CAD) and the major contributor to cardiovascular disease (CVD) mortality. Adipose tissue serves a primary role as a lipid-storage organ, secreting cytokines known as adipokines that affect whole-body metabolism, inflammation, and endocrine functions. Emerging evidence suggests that adipokines can play important roles in atherosclerosis development, progression, as well as regression. Here, we review the versatile functions of various adipokines in atherosclerosis and divide these respective functions into three major groups: protective, deteriorative, and undefined. The protective adipokines represented here are adiponectin, fibroblast growth factor 21 (FGF-21), C1q tumor necrosis factor-related protein 9 (CTRP9), and progranulin, while the deteriorative adipokines listed include leptin, chemerin, resistin, Interleukin- 6 (IL-6), and more, with additional adipokines that have unclear roles denoted as undefined adipokines. Comprehensively categorizing adipokines in the context of atherosclerosis can help elucidate the various pathways involved and potentially pave novel therapeutic approaches to treat CVDs.
Collapse
Affiliation(s)
- Longhua Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, People's Republic of China.
| | - Zunhan Shi
- School of Kinesiology, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Xiaohui Ji
- School of Kinesiology, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Wenqian Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Jinwen Luan
- School of Kinesiology, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Tarik Zahr
- Department of Pharmacology, Columbia University, New York, NY, USA
| | - Li Qiang
- Department of Pathology and Cellular Biology and Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA.
| |
Collapse
|
13
|
Kim JW, Roh E, Choi KM, Yoo HJ, Hwang HJ, Baik SH. GPR40 Agonism Modulates Inflammatory Reactions in Vascular Endothelial Cells. Diabetes Metab J 2022; 46:506-511. [PMID: 35067013 PMCID: PMC9171169 DOI: 10.4093/dmj.2021.0092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/04/2022] Open
Abstract
Endothelial dysfunction is strongly linked with inflammatory responses, which can impact cardiovascular disease. Recently, G protein-coupled receptor 40 (GPR40) has been investigated as a modulator of metabolic stress; however, the function of GPR40 in vascular endothelial cells has not been reported. We analyzed whether treatment of GPR40-specific agonists modulated the inflammatory responses in human umbilical vein endothelial cells (HUVECs). Treatment with LY2922470, a GPR40 agonist, significantly reduced lipopolysaccharide (LPS)-mediated nuclear factor-kappa B (NF-κB) phosphorylation and movement into the nucleus from the cytosol. However, treatment with another GPR40 agonist, TAK875, did not inhibit LPS-induced NF-κB activation. LPS treatment induced expression of adhesion molecules vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) and attachment of THP-1 cells to HUVECs, which were all decreased by LY2922470 but not TAK875. Our results showed that ligand-dependent agonism of GPR40 is a promising therapeutic target for overcoming inflammatory reactions in the endothelium.
Collapse
Affiliation(s)
- Joo Won Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Eun Roh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Hye Jin Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Hwan-Jin Hwang
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Sei Hyun Baik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Alyahya AM. The role of progranulin in ischemic heart disease and its related risk factors. Eur J Pharm Sci 2022; 175:106215. [DOI: 10.1016/j.ejps.2022.106215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/23/2022] [Accepted: 05/20/2022] [Indexed: 11/15/2022]
|
15
|
Determination of Serum Progranulin in Patients with Untreated Familial Hypercholesterolemia. Biomedicines 2022; 10:biomedicines10040771. [PMID: 35453521 PMCID: PMC9032136 DOI: 10.3390/biomedicines10040771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Familial hypercholesterolemia (FH) is an autosomal dominant trait characterized by elevated LDL-C concentrations and is associated with an increased risk of premature atherosclerosis. Progranulin (PGRN) is a multifunctional protein that is known to have various anti-atherogenic effects. To date, the use of serum PGRN in patients with FH has not been studied. Methods: In total, 81 untreated patients with heterozygous FH (HeFH) and 32 healthy control subjects were included in this study. Serum PGRN, sICAM-1, sVCAM-1, oxLDL and TNFα concentrations were determined by ELISA. Lipoprotein subfractions were detected by Lipoprint. We diagnosed FH using the Dutch Lipid Clinic Network criteria. Results: We could not find a significant difference between the PGRN concentrations of the HeFH patients and controls (37.66 ± 9.75 vs. 38.43 ± 7.74 ng/mL, ns.). We found significant positive correlations between triglyceride, TNFα, sVCAM-1, the ratio of small HDL subfraction and PGRN, while significant negative correlations were found between the ratio of large HDL subfraction and PGRN both in the whole study population and in FH patients. PGRN was predicted by sVCAM-1, logTNFα and the ratio of small HDL subfraction. Conclusions: The strong correlations between HDL subfractions, inflammatory markers and PGRN suggest that PGRN may exert its anti-atherogenic effect in HeFH through the alteration of HDL composition and the amelioration of inflammation rather than through decreasing oxidative stress.
Collapse
|
16
|
Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives. Life Sci 2021; 284:119921. [PMID: 34481866 DOI: 10.1016/j.lfs.2021.119921] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Ferulic acid, a kind of phenolic substance widely existing in plants, is an important active component of many traditional Chinese medicines. So far, it has been proved that ferulic acid has a variety of biological activities, especially in oxidative stress, inflammation, vascular endothelial injury, fibrosis, apoptosis and platelet aggregation. Many studies have shown that ferulic acid can inhibit PI3K/AKT pathway, the production of ROS and the activity of aldose reductase. The anti-inflammatory effect of ferulic acid is mainly related to the levels of PPAR γ, CAM and NF-κ B and p38 MAPK signaling pathways. Ferulic acid not only protects vascular endothelium by ERK1/2 and NO/ET-1 signal, but also plays an anti-fibrosis role by TGF-β/Smad and MMPs/TIMPs system. Moreover, ferulic acid has ant-apoptotic and anti-platelet effects. In addition to the pharmacological effects of ferulic acid, its pharmacokinetics and derivatives were also discussed in this paper. This review provides the latest summary of the latest research on ferulic acid.
Collapse
|
17
|
Yu M, Sun L, Ba P, Li L, Chen J, Sun Q. Progranulin promotes osteogenic differentiation of periodontal membrane stem cells in both inflammatory and non-inflammatory conditions. J Int Med Res 2021; 49:3000605211032508. [PMID: 34344217 PMCID: PMC8358516 DOI: 10.1177/03000605211032508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective The growth factor progranulin (PGRN) is widely expressed and plays important
roles in anti-inflammatory signaling and bone regeneration. However, the
anti-inflammatory and pro-osteogenic roles of PGRN in periodontitis are
seldom studied. We used an in vitro model to investigate
whether PGRN can promote osteogenic differentiation of periodontal ligament
stem cells (PDLSCs). Methods PDLSCs were treated with PGRN (0 to 100 ng/mL) and the optimal concentrations
required to induce proliferation and osteogenesis were identified. PDLSCs
were cultured with 10 ng/mL tumor necrosis factor (TNF)-α, 25 ng/mL PGRN, or
10 ng/mL TNF-α + 25 ng/ml PGRN; untreated PDLSCs were used as controls. The
effects of PGRN on PDLSC proliferation and osteogenic differentiation were
assessed. Results PGRN (5, 25, and 50 ng/mL) promoted PDLSC proliferation and osteogenic
differentiation, with the 25-ng/mL dose showing the largest effect.
Furthermore, 25 ng/mL PGRN reversed inhibition of osteogenic differentiation
by TNF-α. Conclusion PGRN promotes PDLSC proliferation, osteogenic differentiation, and
mineralization in both inflammatory and non-inflammatory conditions. The
25-ng/mL PRGN dose was the most suitable for inducing proliferation and
osteogenesis. Further studies using animal models will be required to obtain
pre-clinical evidence to support using PGRN as a treatment for
periodontitis.
Collapse
Affiliation(s)
- Miao Yu
- Weifang People's Hospital, Department of Stomatology, Weifang, Shandong, China
| | - Long Sun
- Department of Stomatology, Tengzhou Central People's Hospital, Tengzhou, Shandong, China
| | - Pengfei Ba
- Department of Periodontology, Weihai Stomatological Hospital, Weihai, Shandong, China
| | - Linxia Li
- Department of Stomatology, 562122Affiliated Hospital of Jining Medical University, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Jing Chen
- Department of Stomatology, Zoucheng People's Hospital, Zoucheng, Shandong, China
| | - Qinfeng Sun
- Department of Periodontology, 12589Shandong University, School of Stomatology, Shandong University, Jinan, Shandong, China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China
| |
Collapse
|
18
|
Metabolic Syndrome: the Influence of Adipokines on the L-Arginine-NO Synthase-Nitric Oxide Signaling Pathway. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metabolic syndrome includes the following symptoms: obesity, hyperlipidemia, hypertension, insulin resistance, and cardiovascular disease. The purpose of this review is to elucidate the role of adipokines in the regulation of the L-arginine-NO-synthas-NO signaling pathway in the pathogenesis of metabolic syndrome. The main questions raised in the review are: how adipokine secretion changes, how the level of their receptors is regulated, and which signaling pathways are involved in the transmission of adipokine signals when coupled to the L-arginine-NO-synthase-NO signaling cascade. Adipokines are peptide hormones that transmit a signal from adipose tissue to targets in the brain, blood vessels, liver, pancreas, muscles, and other tissues. Some adipokines have anti-inflammatory and insulin-sensitive effects: adiponectin, omentin, adipolin, chemerin, progranulin. Others have the negative inflammatory effect in the development ofmetabolic syndrome: visfatin, vaspin, apelin. Adipokines primarily regulate the expression and activity of endothelial NO-synthase. They either activate an enzyme involving 5-AMP protein kinase or Akt kinase, increasing its activity and synthesis of NO in the tissues of healthy patients: adiponectin, adipolin, omentin, or inhibit the activity of eNOS, which leads to a decrease in NO-synthase and suppression of mRNA bioavailability: vaspin, visfatin, apelin in metabolic syndrome, and a decrease in its activity leads to dissociation and endothelial dysfunction. It should be noted that the bioavailability of NO formed by NO-synthase is affected at many levels, including: the expression ofNO-synthase mRNA and its protein; the concentration of L-arginine; the level of cofactors of the reaction; and to detect the maximum activity of endothelial NO-synthase, dimerization of the enzyme is required, posttranslational modifications are important, in particular, phosphorylation of endothelial NO-synthase by serine 1177 with the participation of 5-AMP protein kinase, Akt kinase and other kinases. It should be noted that the participation of adiponectin, omentin, and kemerin in the regulation of the L-arginine-NO-synthase-NO cascade in metabolic syndrom opens up certain opportunities for the development of new approaches for the correction of disorders observed in this disease. The review analyzes the results of research searching in PubMed databases, starting from 2001 and up to 2020 using keywords and adipokine names, more than half of the references of the last 5 years.
Collapse
|
19
|
Fu W, Hettinghouse A, Liu CJ. In Vitro Physical and Functional Interaction Assays to Examine the Binding of Progranulin Derivative Atsttrin to TNFR2 and Its Anti-TNFα Activity. Methods Mol Biol 2021; 2248:109-119. [PMID: 33185871 DOI: 10.1007/978-1-0716-1130-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
TNFα/TNFR signaling plays a critical role in the pathogenesis of various inflammatory and autoimmune diseases, and anti-TNFα therapies have been accepted as the effective approaches for treating several autoimmune diseases. Progranulin (PGRN), a multi-faced growth factor-like molecule, directly binds to TNFR1 and TNFR2, particularly to the latter with higher affinity than TNFα. PGRN derivative Atsttrin is composed of three TNFR-binding domain of PGRN and exhibits even better therapeutic effects than PGRN in several inflammatory disease models, including collagen-induced arthritis. Herein we describe the detailed methodology of using (1) ELISA-based solid phase protein-protein interaction assay to demonstrate the direct binding of Atsttrin to TNFR2 and its inhibition of TNFα/TNFR2 interaction; and (2) tartrate-resistant acid phosphatase (TRAP) staining of in vitro osteoclastogenesis to reveal the cell-based anti-TNFα activity of Atsttrin. Using the protocol described here, the investigators should be able to reproducibly detect the physical inhibition of TNFα binding to TNFR and the functional inhibition of TNFα activity by Atsttrin and various kinds of TNF inhibitors.
Collapse
Affiliation(s)
- Wenyu Fu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, USA
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, USA.
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
20
|
Monitoring Atsttrin-Mediated Inhibition of TNFα/NF-κβ Activation Through In Vivo Bioluminescence Imaging. Methods Mol Biol 2021. [PMID: 33185877 DOI: 10.1007/978-1-0716-1130-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The NF-κβ transcription factor is a molecular mediator crucial to many biological functions and a central regulator of inflammatory and immune responses. NF-κβ is activated by multiple immunologically relevant stimuli, including members of the tumor necrosis factor (TNF) superfamily, and targeting TNF/NFκβ activity is a therapeutic objective in many inflammatory and autoimmune conditions. Here, we describe the generation of a transgenic reporter mouse model, expressing the human tumor necrosis factor α (TNF-α) transgene (TNF-tg) and carrying the luciferase gene under control of the NFκB-responsive element (NF-κB-Luc). Bioluminescence imaging shows that overexpression of TNF-α effectively activates NF-κB luciferase in vivo. To evaluate this system as a screen for potential therapeutics targeting the TNF/NFκβ signaling pathway, we treated double mutant mice with PGRN-derived Atsttrin, an engineered molecule comprising the minimal progranulin (PGRN):TNFR binding fragments previously demonstrated as therapeutic in multiple models of TNF/NFκβ-driven disease. Administration of Atsttrin could effectively inhibit luciferase activity in TNF-tg:NF-κB-Luc double mutant mice and demonstrates that this transgenic model can be used to non-invasively monitor the in vivo efficacy of modulators of TNF-activated NF-κB signaling pathway.
Collapse
|
21
|
Campbell CA, Fursova O, Cheng X, Snella E, McCune A, Li L, Solchenberger B, Schmid B, Sahoo D, Morton M, Traver D, Espín-Palazón R. A zebrafish model of granulin deficiency reveals essential roles in myeloid cell differentiation. Blood Adv 2021; 5:796-811. [PMID: 33560393 PMCID: PMC7876888 DOI: 10.1182/bloodadvances.2020003096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/01/2020] [Indexed: 12/22/2022] Open
Abstract
Granulin is a pleiotropic protein involved in inflammation, wound healing, neurodegenerative disease, and tumorigenesis. These roles in human health have prompted research efforts to use granulin to treat rheumatoid arthritis and frontotemporal dementia and to enhance wound healing. But how granulin contributes to each of these diverse biological functions remains largely unknown. Here, we have uncovered a new role for granulin during myeloid cell differentiation. We have taken advantage of the tissue-specific segregation of the zebrafish granulin paralogues to assess the functional role of granulin in hematopoiesis without perturbing other tissues. By using our zebrafish model of granulin deficiency, we revealed that during normal and emergency myelopoiesis, myeloid progenitors are unable to terminally differentiate into neutrophils and macrophages in the absence of granulin a (grna), failing to express the myeloid-specific genes cebpa, rgs2, lyz, mpx, mpeg1, mfap4, and apoeb. Functionally, macrophages fail to recruit to the wound, resulting in abnormal healing. Our CUT&RUN experiments identify Pu.1, which together with Irf8, positively regulates grna expression. In vivo imaging and RNA sequencing experiments show that grna inhibits the expression of gata1, leading to the repression of the erythroid program. Importantly, we demonstrated functional conservation between the mammalian granulin and the zebrafish ortholog grna. Our findings uncover a previously unrecognized role for granulin during myeloid cell differentiation, which opens a new field of study that can potentially have an impact on different aspects of human health and expand the therapeutic options for treating myeloid disorders such as neutropenia or myeloid leukemia.
Collapse
Affiliation(s)
- Clyde A Campbell
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Oksana Fursova
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Xiaoyi Cheng
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Elizabeth Snella
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Abbigail McCune
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Liangdao Li
- Section of Cell and Developmental Biology, University of California at San Diego, San Diego, CA
| | | | - Bettina Schmid
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Debashis Sahoo
- Department of Computer Science and Engineering, University of California at San Diego, San Diego, CA; and
| | - Mark Morton
- College of Veterinary Medicine, Iowa State University, Ames, IA
| | - David Traver
- Section of Cell and Developmental Biology, University of California at San Diego, San Diego, CA
| | - Raquel Espín-Palazón
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
- Section of Cell and Developmental Biology, University of California at San Diego, San Diego, CA
| |
Collapse
|
22
|
Doykov I, Hällqvist J, Gilmour KC, Grandjean L, Mills K, Heywood WE. 'The long tail of Covid-19' - The detection of a prolonged inflammatory response after a SARS-CoV-2 infection in asymptomatic and mildly affected patients. F1000Res 2021; 9:1349. [PMID: 33391730 PMCID: PMC7745182 DOI: 10.12688/f1000research.27287.2] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
'Long Covid', or medical complications associated with post SARS-CoV-2 infection, is a significant post-viral complication that is being more and more commonly reported in patients. Therefore, there is an increasing need to understand the disease mechanisms, identify drug targets and inflammatory processes associated with a SARS-CoV-2 infection. To address this need, we created a targeted mass spectrometry based multiplexed panel of 96 immune response associated proteins. We applied the multiplex assay to a cohort of serum samples from asymptomatic and moderately affected patients. All patients had tested positive for a SARS-CoV-2 infection by PCR and were determined to be subsequently positive for antibodies. Even 40-60 days post-viral infection, we observed a significant remaining inflammatory response in all patients. Proteins that were still affected were associated with the anti-inflammatory response and mitochondrial stress. This indicates that biochemical and inflammatory pathways within the body can remain perturbed long after SARS-CoV-2 infections have subsided even in asymptomatic and moderately affected patients.
Collapse
Affiliation(s)
- Ivan Doykov
- Translational Mass Spectrometry Research Group, University College London Institute of Child Health, London, UK
| | - Jenny Hällqvist
- Translational Mass Spectrometry Research Group, University College London Institute of Child Health, London, UK,Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| | - Kimberly C. Gilmour
- Great Ormond Street Children's Hospital NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK
| | - Louis Grandjean
- Great Ormond Street Children's Hospital NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK
| | - Kevin Mills
- Translational Mass Spectrometry Research Group, University College London Institute of Child Health, London, UK
| | - Wendy E. Heywood
- Translational Mass Spectrometry Research Group, University College London Institute of Child Health, London, UK,
| |
Collapse
|
23
|
Doykov I, Hällqvist J, Gilmour KC, Grandjean L, Mills K, Heywood WE. 'The long tail of Covid-19' - The detection of a prolonged inflammatory response after a SARS-CoV-2 infection in asymptomatic and mildly affected patients. F1000Res 2021; 9:1349. [PMID: 33391730 PMCID: PMC7745182 DOI: 10.12688/f1000research.27287.1] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 12/14/2022] Open
Abstract
'Long Covid', or medical complications associated with post SARS-CoV-2 infection, is a significant post-viral complication that is being more and more commonly reported in patients. Therefore, there is an increasing need to understand the disease mechanisms, identify drug targets and inflammatory processes associated with a SARS-CoV-2 infection. To address this need, we created a targeted mass spectrometry based multiplexed panel of 96 immune response associated proteins. We applied the multiplex assay to a cohort of serum samples from asymptomatic and moderately affected patients. All patients had tested positive for a SARS-CoV-2 infection by PCR and were determined to be subsequently positive for antibodies. Even 40-60 days post-viral infection, we observed a significant remaining inflammatory response in all patients. Proteins that were still affected were associated with the anti-inflammatory response and mitochondrial stress. This indicates that biochemical and inflammatory pathways within the body can remain perturbed long after SARS-CoV-2 infections have subsided even in asymptomatic and moderately affected patients.
Collapse
Affiliation(s)
- Ivan Doykov
- Translational Mass Spectrometry Research Group, University College London Institute of Child Health, London, UK
| | - Jenny Hällqvist
- Translational Mass Spectrometry Research Group, University College London Institute of Child Health, London, UK,Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| | - Kimberly C. Gilmour
- Great Ormond Street Children's Hospital NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK
| | - Louis Grandjean
- Great Ormond Street Children's Hospital NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK
| | - Kevin Mills
- Translational Mass Spectrometry Research Group, University College London Institute of Child Health, London, UK
| | - Wendy E. Heywood
- Translational Mass Spectrometry Research Group, University College London Institute of Child Health, London, UK,
| |
Collapse
|
24
|
Xu B, Chen X, Ding Y, Chen C, Liu T, Zhang H. Abnormal angiogenesis of placenta in progranulin‑deficient mice. Mol Med Rep 2020; 22:3482-3492. [PMID: 32945448 PMCID: PMC7453605 DOI: 10.3892/mmr.2020.11438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/16/2020] [Indexed: 12/23/2022] Open
Abstract
Progranulin (PGRN) is a secreted growth factor involved in pleiotropic functions, particularly angiogenesis. A distinctly different placental expression of PGRN has been reported between normal pregnancies and pregnancies with complications, such as pre‑eclampsia or fetal growth restriction. However, the role of PGRN in placental vascular development remains to be elucidated. In the present study, PGRN‑knockout mice (PGRN‑/‑) were used to investigate the role of PGRN in the development of placental blood vessels and placental formation. Placental weights and pup body weights were significantly lower in the PGRN‑/‑ mice compared with the wild‑type mice. Reduced labyrinthine layer areas and aberrant vascularization were also observed via hematoxylin and eosin staining of PGRN‑/‑ mice at embryonic day 14.5 (E14.5) and E17.5. In addition, the morphological data obtained via immunohistochemistry, immunofluorescence staining and western blotting demonstrated decreased expression levels of the blood vessel markers α‑smooth muscle actin and CD31 in PGRN‑/‑ placentas. Furthermore, vasodilator endothelial nitric oxide synthase was reduced in the PGRN‑/‑ placenta. These results indicated that PGRN serves an essential role in the normal angiogenesis of the placental labyrinth in mice.
Collapse
Affiliation(s)
- Bairuo Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xingyou Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yubin Ding
- College of Public Health and Health Management, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chang Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Taihang Liu
- College of Public Health and Health Management, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hua Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
25
|
Guan Z, Chen Z, Fu S, Dai L, Shen Y. Progranulin Administration Attenuates β-Amyloid Deposition in the Hippocampus of 5xFAD Mice Through Modulating BACE1 Expression and Microglial Phagocytosis. Front Cell Neurosci 2020; 14:260. [PMID: 32973454 PMCID: PMC7461932 DOI: 10.3389/fncel.2020.00260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/27/2020] [Indexed: 01/08/2023] Open
Abstract
Loss of function mutations in the progranulin (PGRN) gene is a risk factor for Alzheimer’s disease (AD). Previous works reported that the deficiency of PGRN accelerates β-amyloid (Aβ) accumulation in AD transgenic mouse brains while overexpression of PGRN could restrain disease progression. However, mechanisms of PGRN in protecting against Aβ deposition remains unclear. Here, using the 5xFAD AD mouse model, we show that intrahippocampal injection of PGRN protein leads to a reduction of Aβ plaques, downregulation of beta-secretase 1 (BACE1), and enhanced microglia Aβ phagocytosis in the mouse hippocampus. Furthermore, PGRN treatment inhibited BACE1 expression in N2a cells and primary culture neurons and improved the phagocytic capacity of microglia isolated from 5xFAD mouse brains. Collectively, our results provide further evidence that enhancing progranulin could be a promising option for AD therapy.
Collapse
Affiliation(s)
- Zhangxin Guan
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zuolong Chen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Shumei Fu
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Linbin Dai
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
26
|
Adipokines and Adipose Tissue-Related Metabolites, Nuts and Cardiovascular Disease. Metabolites 2020; 10:metabo10010032. [PMID: 31940832 PMCID: PMC7022531 DOI: 10.3390/metabo10010032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue is a complex structure responsible for fat storage and releasing polypeptides (adipokines) and metabolites, with systemic actions including body weight balance, appetite regulation, glucose homeostasis, and blood pressure control. Signals sent from different tissues are generated and integrated in adipose tissue; thus, there is a close connection between this endocrine organ and different organs and systems such as the gut and the cardiovascular system. It is known that functional foods, especially different nuts, may be related to a net of molecular mechanisms contributing to cardiometabolic health. Despite being energy-dense foods, nut consumption has been associated with no weight gain, weight loss, and lower risk of becoming overweight or obese. Several studies have reported beneficial effects after nut consumption on glucose control, appetite suppression, metabolites related to adipose tissue and gut microbiota, and on adipokines due to their fatty acid profile, vegetable proteins, l-arginine, dietary fibers, vitamins, minerals, and phytosterols. The aim of this review is to briefly describe possible mechanisms implicated in weight homeostasis related to different nuts, as well as studies that have evaluated the effects of nut consumption on adipokines and metabolites related to adipose tissue and gut microbiota in animal models, healthy individuals, and primary and secondary cardiovascular prevention.
Collapse
|
27
|
Stubert J, Szewczyk M, Spitschak A, Knoll S, Richter DU, Pützer BM. Adenoviral mediated expression of anti-inflammatory progranulin by placental explants modulates endothelial cell activation by decrease of ICAM-1 expression. Placenta 2019; 90:109-117. [PMID: 32056541 DOI: 10.1016/j.placenta.2019.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Functional disorders of the villous trophoblast may result in preeclampsia through the release of endothelial activating substances. Progranulin is an anti-inflammatory, pro-angiogenic cytokine with TNF-α antagonizing activity. The trophoblastic expression of progranulin is increased during preeclampsia. The aim of the study was to investigate the impact of placental progranulin synthesis on endothelial cell activation. METHODS Placental progranulin expression was modified by transduction of an adenoviral vector. Primary isolated human umbilical venous endothelial cells (HUVECs) were incubated with conditioned medium of first trimester placental explants. Functional studies on HUVECs included assays for proliferation, viability, cytotoxicity and analyzes of Intercellular adhesion molecule-1 (ICAM-1) and E-selectin expression. RESULTS Placental progranulin expression was more than 10-fold higher by using an adenoviral-mediated overexpression system (Ad.PGRN) compared to control vector (Ad.CTRL) and untreated controls. Incubation of HUVECs with conditioned placental medium revealed a dose-dependent increase of cytotoxicity, reduced cell proliferation and viability and resulted in an increase of ICAM-1 and E-selectin expression. Overexpression of progranulin (Ad.PGRN) antagonized the ICAM-1 expression induced by conditioned medium. However progranulin did not influence the effects on cell proliferation, viability, cytotoxicity and E-selectin expression in HUVECs. DISCUSSION Regulation of gene expression in human placental explants is possible by usage of an adenoviral vector system. The increase of endothelial ICAM-1 expression following the incubation with placental conditioned medium was partly reversed by overexpression of placental progranulin. It is suggested that up-regulation of the placental progranulin expression is an endogenous anti-inflammatory mechanism that partially antagonizes the endothelial cell activation during preeclampsia.
Collapse
Affiliation(s)
- Johannes Stubert
- Department of Obstetrics and Gynecology, Rostock University Medical Center, Suedring 81, 18059, Rostock, Germany.
| | - Marlen Szewczyk
- Department of Obstetrics and Gynecology, Rostock University Medical Center, Suedring 81, 18059, Rostock, Germany
| | - Alf Spitschak
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany
| | - Susanne Knoll
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany
| | - Dagmar-Ulrike Richter
- Department of Obstetrics and Gynecology, Rostock University Medical Center, Suedring 81, 18059, Rostock, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany; Department of Life, Light & Matter, University of Rostock, Albert-Einstein-Str. 25, 18059, Rostock, Germany
| |
Collapse
|
28
|
Jin SW, Pham HT, Choi JH, Lee GH, Han EH, Cho YH, Chung YC, Kim YH, Jeong HG. Impressic Acid, a Lupane-Type Triterpenoid from Acanthopanax koreanum, Attenuates TNF-α-Induced Endothelial Dysfunction via Activation of eNOS/NO Pathway. Int J Mol Sci 2019; 20:ijms20225772. [PMID: 31744135 PMCID: PMC6888592 DOI: 10.3390/ijms20225772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is one of the most reported diseases worldwide, and extensive research and trials are focused on the discovery and utilizing for novel therapeutics. Nitric oxide (NO) is produced mainly by endothelial nitric oxide synthase (eNOS) and it plays a key role in regulating vascular function including systemic blood pressure and vascular inflammation in vascular endothelium. In this study hypothesized that Impressic acid (IPA), a component isolated from Acanthopanax koreanum, acts as an enhancer of eNOS activity and NO production. IPA treatment induced eNOS phosphorylation and NO production, which was correlated with eNOS phosphorylation via the activation of JNK1/2, p38 MAPK, AMPK, and CaMKII. In addition, the induction of eNOS phosphorylation by IPA was attenuated by pharmacological inhibitor of MAPKs, AMPK, and CaMKII. Finally, IPA treatment prevented the adhesion of TNF-α-induced monocytes to endothelial cells and suppressed the TNF-α-stimulated ICAM-1 expression via activation of NF-κB, while treatment with L-NAME, the NOS inhibitor, reversed the inhibitory effect of IPA on TNF-α-induced ICAM-1 expression via activation of NF-κB. Taken together, these findings show that IPA protects against TNF-α-induced vascular endothelium dysfunction through attenuation of the NF-κB pathway by activating eNOS/NO pathway in endothelial cells.
Collapse
Affiliation(s)
- Sun Woo Jin
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (H.T.P.); (J.H.C.); (G.H.L.); (Y.H.K.)
| | - Hoa Thi Pham
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (H.T.P.); (J.H.C.); (G.H.L.); (Y.H.K.)
| | - Jae Ho Choi
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (H.T.P.); (J.H.C.); (G.H.L.); (Y.H.K.)
| | - Gi Ho Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (H.T.P.); (J.H.C.); (G.H.L.); (Y.H.K.)
| | - Eun Hee Han
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Korea;
| | - Young Ho Cho
- Department of Pharmaceutics & Biotechnology, College of Medical Engineering, Konyang University, Daejeon 35365, Korea;
| | - Young Chul Chung
- Department of Food Science, International University of Korea, Jinju, 52833, Korea;
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (H.T.P.); (J.H.C.); (G.H.L.); (Y.H.K.)
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (S.W.J.); (H.T.P.); (J.H.C.); (G.H.L.); (Y.H.K.)
- Correspondence: ; Tel.: +82-42-821-5936
| |
Collapse
|
29
|
Alyahya AM, Al-Masri A, Hersi A, El Eter E, Husain S, Lateef R, Mawlana OH. The Effects of Progranulin in a Rat Model of Acute Myocardial Ischemia/Reperfusion are Mediated by Activation of the P13K/Akt Signaling Pathway. Med Sci Monit Basic Res 2019; 25:229-237. [PMID: 31695019 PMCID: PMC6859783 DOI: 10.12659/msmbr.916258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Progranulin is an adipokine, encoded by the progranulin (GRN) gene. Progranulin is expressed in atherosclerosis, but its effects in cardiac ischemia and reperfusion injury are unknown. Therefore, this study aimed to investigate the effects of progranulin in a rat model of acute myocardial ischemia/reperfusion (MI/R) injury in vivo. Material/Methods The model of acute MI/R injury was established in male Wistar rats by ligation of the left anterior descending (LAD) coronary artery for 30 minutes and reperfusion for 60 minutes. Before modeling, one group was treated with progranulin (0.03 μg/kg), and one group was treated with the P13K/Akt inhibitor, LY294002 (3 mg/kg). Left ventricular function (LV) was monitored, including the LV systolic pressure (LVSP), LV end-diastolic pressure (LVEDP), and changes in LV pressure. At the end of the study, blood and myocardial tissue were examined. Cardiac biochemical markers, histopathology, gene expression, and apoptosis were analyzed. Results Progranulin improved cardiac function following acute MI/R injury and significantly improved recovery of cardiac contractility and LVSP. Progranulin significantly reduced myocyte apoptosis, inflammation, and tissue edema, and was highly expressed in cardiac tissue following MI/R injury. The cardioprotective effect of progranulin was reduced by blocking the P13K/Akt signaling pathway. Conclusions In the rat model of acute MI/R injury, progranulin had a protective effect on cardiac function and morphology, associated with activation of the P13K/Akt signaling pathway. The mechanisms of the anti-apoptotic, anti-inflammatory, and inotropic effects of progranulin in the setting of acute MI/R injury require further in vivo studies.
Collapse
Affiliation(s)
- Asma Mohammed Alyahya
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Cardiovascular Research Group, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abeer Al-Masri
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Cardiovascular Research Group, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad Hersi
- Cardiovascular Research Group, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Department of Cardiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Eman El Eter
- Cardiovascular Research Group, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Department of Physiology, College of Medicine, Alexandria University, Alexandria, Egypt
| | - Sufia Husain
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Rahmatunnesa Lateef
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Cardiovascular Research Group, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ola H Mawlana
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Brock J, Schmid A, Karrasch T, Pfefferle P, Schlegel J, Busse I, Hauenschild A, Schmidt B, Koukou M, Arapogianni E, Schultz A, Thomalla M, Akinci S, Kruse J, Padberg W, Schäffler A, Albrecht J. Progranulin serum levels and gene expression in subcutaneous vs visceral adipose tissue of severely obese patients undergoing bariatric surgery. Clin Endocrinol (Oxf) 2019; 91:400-410. [PMID: 31102282 DOI: 10.1111/cen.14040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/18/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Progranulin represents an adipokine putatively mediating insulin resistance and inflammation. Data in humans are sparse, and the source of circulating progranulin in obesity is unknown. OBJECTIVES Serum progranulin concentrations and subcutaneous (sc) as well as visceral (vis) adipose tissue (AT) progranulin expression were quantified in a large cohort of patients with obesity undergoing bariatric surgery (BS) (n = 153) or a low-calorie diet (LCD) (n = 121). COHORTS AND METHODS Paired serum and AT mRNA samples were obtained from patients with severe obesity undergoing BS (ROBS cohort; Research in Obesity and Bariatric Surgery). Serum progranulin was measured by ELISA in both cohorts, and AT mRNA expression was analysed by quantitative real-time PCR in bariatric patients. RESULTS There was no gender-specific effect in serum progranulin or AT progranulin expression. Importantly, circulating progranulin was independent from adipose tissue gene expression in paired samples. sc AT progranulin expression was higher than in vis AT (P = 0.027), and there was a positive correlation between sc AT and vis AT gene expression (P < 0.001; r = +0.34). Serum progranulin strongly and rapidly increased after BS within 3 days and remained elevated up to 12 months. Serum progranulin was strongly correlated with serum CTRP-3 levels. CONCLUSIONS The present study provides detailed progranulin gene expression data in sc and vis AT in a large, prospective and observational cohort of patients with severe obesity. Serum progranulin concentrations are not predicted by sc or vis AT progranulin gene expression. Thus, AT seems not to be the main source of circulating progranulin levels in obesity.
Collapse
Affiliation(s)
- Judith Brock
- Department of Internal Medicine III, Justus Liebig University of Giessen, Giessen, Germany
| | - Andreas Schmid
- Department of Internal Medicine III, Justus Liebig University of Giessen, Giessen, Germany
| | - Thomas Karrasch
- Department of Internal Medicine III, Justus Liebig University of Giessen, Giessen, Germany
| | - Petra Pfefferle
- Comprehensive Biobank Marburg (CBBMR), Philipps University of Marburg, Marburg, Germany
| | - Jutta Schlegel
- Department of Internal Medicine III, Justus Liebig University of Giessen, Giessen, Germany
| | - Inga Busse
- Department of Internal Medicine III, Justus Liebig University of Giessen, Giessen, Germany
| | - Annette Hauenschild
- Department of Internal Medicine III, Justus Liebig University of Giessen, Giessen, Germany
| | - Barbara Schmidt
- Department of Visceral, Thoracic and Transplant Surgery, Justus Liebig University of Giessen, Giessen, Germany
| | - Maria Koukou
- Department of Internal Medicine III, Justus Liebig University of Giessen, Giessen, Germany
| | - Efthymia Arapogianni
- Department of Internal Medicine III, Justus Liebig University of Giessen, Giessen, Germany
| | - Andreas Schultz
- Department of Internal Medicine III, Justus Liebig University of Giessen, Giessen, Germany
| | - Miriam Thomalla
- Department of Internal Medicine III, Justus Liebig University of Giessen, Giessen, Germany
| | - Secil Akinci
- Department of Psychosomatic Medicine and Psychotherapy, Justus Liebig University of Giessen, Giessen, Germany
| | - Johannes Kruse
- Department of Psychosomatic Medicine and Psychotherapy, Justus Liebig University of Giessen, Giessen, Germany
| | - Winfried Padberg
- Department of Visceral, Thoracic and Transplant Surgery, Justus Liebig University of Giessen, Giessen, Germany
| | - Andreas Schäffler
- Department of Internal Medicine III, Justus Liebig University of Giessen, Giessen, Germany
| | - Jens Albrecht
- Department of Visceral, Thoracic and Transplant Surgery, Justus Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
31
|
Wang Z, He Q, Zhang X, Ma Y, Fan F, Dong Y, Xu W, Yin Y, He Y. Innate Anti-microbial and Anti-chemotaxis Properties of Progranulin in an Acute Otitis Media Mouse Model. Front Immunol 2018; 9:2952. [PMID: 30619312 PMCID: PMC6302024 DOI: 10.3389/fimmu.2018.02952] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022] Open
Abstract
Acute otitis media (AOM) is one of the most common infectious diseases primarily caused by Streptococcus pneumoniae (S.pn) among children. Progranulin (PGRN) is a multifunctional growth factor widely expressed in various tissues and cells. Studies have confirmed that PGRN is involved in the development of a variety of inflammatory diseases. We found that the expression of PGRN increased significantly in the middle ear of wild mice with AOM. However, its physiological functions in AOM still remain unknown. To examine the role of PGRN during AOM, we established an acute otitis media model in both C57BL/6 wild mice and PGRN-deficient (PGRN−/−) mice via transbullar injection with S.pn clinical strain serotype 19F. Interestingly, we observed dual results: on one hand, macrophage recruitment notably increased in PGRN−/− mice compared with WT mice; on the other hand, the overall bacterial clearance was surprisingly dampened in PGRN−/− mice. The enhanced recruitment of macrophages was associated with increased production of chemokine (C-C motif) ligand 2 (CCL2), while the decreased bacterial clearance was associated with impaired endocytosis capacity of macrophages. The scavenging ability of bacteria in PGRN−/− mice was recovered with administration of recombinant PGRN. These results suggested a novel dual role of PGRN in affecting the activities of macrophages.
Collapse
Affiliation(s)
- Zimeng Wang
- Key Laboratory of Diagnostic Medicine, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China.,Department of Laboratory Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Qian He
- Key Laboratory of Diagnostic Medicine, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xinxin Zhang
- Key Laboratory of Diagnostic Medicine, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yurong Ma
- Key Laboratory of Diagnostic Medicine, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Fangmei Fan
- Key Laboratory of Diagnostic Medicine, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yilin Dong
- Key Laboratory of Diagnostic Medicine, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenchun Xu
- Key Laboratory of Diagnostic Medicine, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yujuan He
- Key Laboratory of Diagnostic Medicine, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
Shu Q, Fan H, Li S, Zhou D, Ma W, Zhao X, Yan J, Wu G. Retracted
: Protective effects of Progranulin against focal cerebral ischemia‐reperfusion injury in rats by suppressing endoplasmic reticulum stress and NF‐κB activation in reactive astrocytes. J Cell Biochem 2018; 119:6584-6597. [DOI: 10.1002/jcb.26790] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Qing Shu
- Department of PharmacyThe Ninth Hospital of Xi'anXi'anChina
| | - Hua Fan
- The First Affiliated Hospital of Henan University of Science and TechnologyLuoyangChina
| | - Shi‐Jun Li
- Department of PharmacyWuhan Union HospitalWuhanChina
| | - Dan Zhou
- Department of PharmacyThe Ninth Hospital of Xi'anXi'anChina
| | - Wei Ma
- Department of PharmacyThe Ninth Hospital of Xi'anXi'anChina
| | - Xiao‐Yan Zhao
- Department of PharmacyThe Ninth Hospital of Xi'anXi'anChina
| | - Jun‐Qiang Yan
- The First Affiliated Hospital of Henan University of Science and TechnologyLuoyangChina
| | - Gang Wu
- The Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
33
|
Shao M, Ren Z, Zhang R. MYBL2 protects against H9c2 injury induced by hypoxia via AKT and NF‑κB pathways. Mol Med Rep 2018; 17:4832-4838. [PMID: 29328450 DOI: 10.3892/mmr.2018.8387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 05/25/2017] [Indexed: 11/06/2022] Open
Abstract
Cardiovascular diseases have become one of the major public health problems in many countries. The downregulation of MYBL2 was found in H9c2 and native cardiomyocytes cells after hypoxia treatment. The present study aimed to investigate the effects of MYB proto‑oncogene like 2 (MYBL2) on H9c2 injury induced by hypoxia. Reverse transcription‑quantitative polymerase chain reaction and western blot were performed on H9c2 cells to determine the mRNA and protein levels of MYBL2, respectively. Small interfering RNA (siRNA) was employed to downregulate MYBL2 expression in H9c2 cells to investigate changes in cell proliferation and apoptosis. Cell proliferation was assessed by a Cell Counting kit‑8 assay and the percentage of apoptotic cells was determined using an Annexin V‑fluorescein isothiocyanate/propidium iodide apoptosis detection kit. The nuclear factor‑κB (NF‑κB) and AKT signaling pathways in H9c2 cells were investigated by western blot analysis. The results demonstrated that the overexpression of MYBL2 promoted cell proliferation and suppressed apoptosis. Furthermore, overexpression of MYBL2 suppressed the expression of phosphorylated (p)‑AKT, p‑NF‑κB inhibitor α, p‑p65 and B‑cell CLL/lymphoma 3 (Bcl‑3). The results indicated that MYBL2 may improve cell viability and inhibit H9c2 apoptosis via the inhibition of AKT and NF‑κB pathways. Therefore, MYBL2 may be a potential therapeutic target for the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Mingfeng Shao
- Department of Cardiology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Zexiang Ren
- Department of Internal Medicine, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Rongjun Zhang
- Department of Cardiology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
34
|
Wei JL, Liu CJ. Establishment of a Modified Collagen-Induced Arthritis Mouse Model to Investigate the Anti-inflammatory Activity of Progranulin in Inflammatory Arthritis. Methods Mol Biol 2018; 1806:305-313. [PMID: 29956284 DOI: 10.1007/978-1-4939-8559-3_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Progranulin (PGRN) was found to play an anti-inflammatory and protective role in both inflammatory and degenerative arthritis (Tang et al., Science 332:478-484, 2011; Zhao et al., Ann Rheum Dis 74:2244-2253, 2015). We recently published a visualized protocol to demonstrate a surgically-induced mouse model for examining the protective role of PGRN in degenerative osteoarthritis (Zhao et al., J Vis Exp:e50924, 2014). Herein we describe a modified collagen-induced arthritis (CIA) mouse model to investigate the anti-inflammatory activity of PGRN in inflammatory arthritis. CIA model is the most commonly used autoimmune model of inflammatory arthritis which shares both immunological and pathological features with human rheumatoid arthritis. Autoimmune inflammatory arthritis is induced by immunization with an emulsion of complete Freund's adjuvant and chicken type II collagen (CII) using a modified procedure in PGRN deficient mice and control littermates. Using the protocol described here, the investigator should be able to reproducibly induce a high incidence of CIA in PGRN deficient mice and also learn how to critically evaluate the severity and incidence of this disease model.
Collapse
Affiliation(s)
- Jian-Lu Wei
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, USA.
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
35
|
Jiang F, Wang H, Bao S, Zhou H, Zhang Y, Yan Y, Lai Y, Teng W, Shan Z. Thyrotropin Regulates eNOS Expression in the Endothelium by PGRN Through Akt Pathway. Front Endocrinol (Lausanne) 2018; 9:353. [PMID: 30026730 PMCID: PMC6042313 DOI: 10.3389/fendo.2018.00353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/11/2018] [Indexed: 12/11/2022] Open
Abstract
To investigate the expression of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) in the aorta of subclinical hypothyroidism (SCH) rat model. The mechanisms underlying thyrotropin (TSH) affecting eNOS and PGRN expression in human umbilical vein endothelial cells (HUVECs) cultured in vitro were investigated. In the current study, SCH rat models were established by the administration of L-T4 injection after thyroidectomy in Wistar rats, as opposed to that in the normal and clinical hypothyroidism (CH) groups. The concentrations of NO (pmol/μL) in the SCH and CH groups were significantly lower than that in the normal group (40.8 ± 7.6 and 32.9 ± 10.8 vs. 51.2 ± 12.1, P < 0.05). However, the expression level of eNOS is increased significantly (P < 0.05) in both SCH and CH groups; a similar result was observed for the PGRN protein. In cultured HUVECs, TSH can also up-regulate the expression of eNOS; however, it is accompanied by a reduced concentration of NO and increased level of superoxide anion, thereby indicating uncoupled eNOS. As eNOS is increased, we found that Akt in HUVECs were upregulated by TSH, as well as PGRN expression. While inhibiting the expression of PGRN in HUVECs using siRNA, the expression of eNOS, as well as Akt were also inhibited. In conclusion, SCH can induce vascular endothelial dysfunction in rats, and PGRN participated in the process of TSH-induced expression of Akt/eNOS in the endothelium.
Collapse
Affiliation(s)
- Fengwei Jiang
- Department of Endocrinology and Metabolism, Institute of Endocrinology of the First Affiliated Hospital China Medical University, Shenyang, China
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Haoyu Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology of the First Affiliated Hospital China Medical University, Shenyang, China
| | - Suqing Bao
- Department of Endocrinology and Metabolism, Institute of Endocrinology of the First Affiliated Hospital China Medical University, Shenyang, China
| | - Haicheng Zhou
- Department of Endocrinology and Metabolism, Institute of Endocrinology of the First Affiliated Hospital China Medical University, Shenyang, China
| | - Yuanyuan Zhang
- Department of Endocrinology and Metabolism, Institute of Endocrinology of the First Affiliated Hospital China Medical University, Shenyang, China
| | - Yumeng Yan
- Department of Endocrinology and Metabolism, Institute of Endocrinology of the First Affiliated Hospital China Medical University, Shenyang, China
| | - Yaxin Lai
- Department of Endocrinology and Metabolism, Institute of Endocrinology of the First Affiliated Hospital China Medical University, Shenyang, China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology of the First Affiliated Hospital China Medical University, Shenyang, China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology of the First Affiliated Hospital China Medical University, Shenyang, China
- *Correspondence: Zhongyan Shan
| |
Collapse
|
36
|
Abella V, Pino J, Scotece M, Conde J, Lago F, Gonzalez-Gay MA, Mera A, Gómez R, Mobasheri A, Gualillo O. Progranulin as a biomarker and potential therapeutic agent. Drug Discov Today 2017. [DOI: 10.1016/j.drudis.2017.06.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Glycolipids from spinach suppress LPS-induced vascular inflammation through eNOS and NK-κB signaling. Biomed Pharmacother 2017; 91:111-120. [DOI: 10.1016/j.biopha.2017.04.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/07/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022] Open
|
38
|
Kazama K, Hoshino K, Kodama T, Okada M, Yamawaki H. Adipocytokine, progranulin, augments acetylcholine-induced nitric oxide-mediated relaxation through the increases of cGMP production in rat isolated mesenteric artery. Acta Physiol (Oxf) 2017; 219:781-789. [PMID: 27332749 DOI: 10.1111/apha.12739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/18/2016] [Accepted: 06/17/2016] [Indexed: 01/28/2023]
Abstract
AIM Progranulin (PGRN) is a novel adipocytokine with anti-inflammatory effects in vascular cells. The aim of this study was to clarify the effects of PGRN on reactivity of isolated blood vessel. METHODS Isometric contraction of rat isolated superior mesenteric artery was measured. RESULTS Pre-treatment with PGRN (10-100 ng mL-1 , 30 min) had no effect on noradrenaline- or 5-hydroxytriptamine-induced contraction. On the other hand, pre-treatment with PGRN (100 ng mL-1 ) augmented acetylcholine (ACh; 30 nm)-induced endothelium-dependent relaxation. Pre-treatment with PGRN (100 ng mL-1 ) augmented ACh (10 μm)-induced nitric oxide (NO)-mediated relaxation in the presence of indomethacin (10 μm), a cyclooxygenase inhibitor, and tetraethyl ammonium (10 mm), a non-selective potassium channel blocker. In contrast, pre-treatment with PGRN (100 ng mL-1 ) had no effect on ACh-induced endothelium-derived hyperpolarizing factor-mediated relaxation. Pre-treatment with PGRN (100 ng mL-1 ) had no effect on ACh (10 μm, 1 min)-induced endothelial NO synthase phosphorylation (at Ser1177) as determined by Western blotting. Pre-treatment with PGRN (100 ng mL-1 ) augmented an NO donor, sodium nitroprusside (SNP; 30 nm-1 μm)- but not a membrane-permeable cGMP analogue, 8-bromo-cGMP-induced relaxation. In the presence of 3-isobutyl-1-methylxanthine (100 μm), a phosphodiesterase inhibitor, pre-treatment with PGRN (100 ng mL-1 ) increased SNP (30 nm, 5 min)-induced cGMP production as determined by enzyme immunoassay. CONCLUSION We for the first time demonstrate that PGRN augments ACh-induced NO-mediated relaxation through the increases of cGMP production in smooth muscle. These results indicate PGRN as a possible pharmacotherapeutic target against cardiovascular diseases including obesity-related hypertension.
Collapse
Affiliation(s)
- K. Kazama
- Laboratory of Veterinary Pharmacology; School of Veterinary Medicine; Kitasato University; Towada Aomori Japan
| | - K. Hoshino
- Laboratory of Veterinary Pharmacology; School of Veterinary Medicine; Kitasato University; Towada Aomori Japan
| | - T. Kodama
- Laboratory of Veterinary Pharmacology; School of Veterinary Medicine; Kitasato University; Towada Aomori Japan
| | - M. Okada
- Laboratory of Veterinary Pharmacology; School of Veterinary Medicine; Kitasato University; Towada Aomori Japan
| | - H. Yamawaki
- Laboratory of Veterinary Pharmacology; School of Veterinary Medicine; Kitasato University; Towada Aomori Japan
| |
Collapse
|
39
|
Daxer J, Herttrich T, Zhao YY, Vogel M, Hiemisch A, Scheuermann K, Körner A, Kratzsch J, Kiess W, Quante M. Nocturnal levels of chemerin and progranulin in adolescents: influence of sex, body mass index, glucose metabolism and sleep. J Pediatr Endocrinol Metab 2017; 30:57-61. [PMID: 27941174 DOI: 10.1515/jpem-2016-0378] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/09/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Adipokines have been implicated in obesity, insulin resistance and sleep regulation. However, the role of chemerin and progranulin, two recently described adipokines, in the context of sleep remains unclear. The aim of this study was to compare nocturnal serum chemerin and progranulin levels between overweight/obese and normal-weight adolescents and to assess variations by sex, across different sleep stages and in relation to glucose metabolism. METHODS The study sample included 34 overweight/obese and 32 normal-weight adolescents from secondary schools and the Leipzig Research Center for Civilization Diseases (LIFE) Child study cohort. We obtained longitudinal serum adipokine levels during in-laboratory polysomnography followed by an oral glucose tolerance test. RESULTS Overweight/obese adolescents had significantly higher mean nocturnal serum chemerin area under the curve (AUC) levels (348.2±133.3 vs. 241.7±67.7 vs. ng/mL×h, p<0.001) compared to normal-weight controls. In detail, higher chemerin AUC levels in obese/overweight subjects were exclusively due to increased levels in females. No overall difference for serum progranulin AUC was found between the groups. However, when assessing sex-specific levels, serum progranulin AUC levels were ~30% higher in overweight/obese males compared to overweight/obese females. Of note, nocturnal serum chemerin and progranulin AUC did not exhibit a correlation with markers of glucose metabolism or sleep stages. CONCLUSIONS Collectively, we report a sexual dimorphism in nocturnal progranulin and chemerin levels, which may help explain underlying differences in energy balance and body composition between males and females in the context of obesity.
Collapse
|
40
|
Sawicka M, Janowska J, Chudek J. Potential beneficial effect of some adipokines positively correlated with the adipose tissue content on the cardiovascular system. Int J Cardiol 2016; 222:581-589. [PMID: 27513655 DOI: 10.1016/j.ijcard.2016.07.054] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/12/2016] [Accepted: 07/04/2016] [Indexed: 01/30/2023]
Abstract
Obesity is a risk factor of cardiovascular diseases. However, in the case of heart failure, obese and overweight patients have a more favourable prognosis compared to patients who have a normal body weight. This phenomenon is referred to as the "obesity paradox," and it is explained by, among others, a positive effect of adipokines produced by adipose tissue, particularly by the tissue located in the direct vicinity of the heart and blood vessels. The favourable effect on the cardiovascular system is mostly associated with adiponectin and omentin, but the levels of these substances are reduced in obese patients. Among the adipokines which levels are positively correlated with the adipose tissue content, favourable activity is demonstrated by apelin, progranulin, chemerin, TNF-α (tumour necrosis factor-)α, CTRP-3 (C1q/tumour necrosis factor (TNF) related protein), leptin, visfatin and vaspin. This activity is associated with the promotion of regeneration processes in the damaged myocardium, formation of new blood vessels, reduction of the afterload, improvement of metabolic processes in cardiomyocytes and myocardial contractile function, inhibition of apoptosis and fibrosis of the myocardium, as well as anti-inflammatory and anti-atheromatous effects. The potential use of these properties in the treatment of heart failure and ischaemic heart disease, as well as in pulmonary hypertension, arterial hypertension and the limitation of the loss of cardiomyocytes during cardioplegia-requiring cardiosurgical procedures, is studied. The most advanced studies focus on analogues of apelin and progranulin.
Collapse
Affiliation(s)
- Magdalena Sawicka
- Department of Cardiology, Congenital Heart Diseases and Electrotherapy, Silesian Center for Heart Diseases, 9 Maria Skłodowska- Curie Street, 41-800 Zabrze, Poland; Department of Pathophysiology, Faculty of Medicine, Medical University of Silesia, 18 Medyków Street, 40-027 Katowice, Poland.
| | - Joanna Janowska
- Department of Pathophysiology, Faculty of Medicine, Medical University of Silesia, 18 Medyków Street, 40-027 Katowice, Poland
| | - Jerzy Chudek
- Department of Pathophysiology, Faculty of Medicine, Medical University of Silesia, 18 Medyków Street, 40-027 Katowice, Poland
| |
Collapse
|
41
|
Wei J, Hettinghouse A, Liu C. The role of progranulin in arthritis. Ann N Y Acad Sci 2016; 1383:5-20. [PMID: 27505256 DOI: 10.1111/nyas.13191] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022]
Abstract
Progranulin (PGRN) is a growth factor with a unique beads-on-a-string structure that is involved in multiple pathophysiological processes, including anti-inflammation, tissue repair, wound healing, neurodegenerative diseases, and tumorigenesis. This review presents up-to-date information concerning recent studies on the role of PGRN in inflammatory arthritis and osteoarthritis, with a special focus on the involvement of the interactions and interplay between PGRN and tumor necrosis factor receptor (TNFR) family members in regulating such musculoskeletal diseases. In addition, this paper highlights the applications of atsttrin, an engineered protein comprising three TNFR-binding fragments of PGRN, as a promising intervention in treating arthritis.
Collapse
Affiliation(s)
- Jianlu Wei
- Department of Orthopaedic Surgery, New York University Medical Center, New York, New York.,Department of Orthopaedic Surgery, Medical School of Shandong University, Jinan, Shandong, China
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, New York
| | - Chuanju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, New York.,Department of Cell Biology, New York University School of Medicine, New York, New York
| |
Collapse
|
42
|
Stubert J, Kleber T, Bolz M, Külz T, Dieterich M, Richter DU, Reimer T. Acute-phase proteins in prediction of preeclampsia in patients with abnormal midtrimester uterine Doppler velocimetry. Arch Gynecol Obstet 2016; 294:1151-1160. [DOI: 10.1007/s00404-016-4138-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/10/2016] [Indexed: 11/24/2022]
|
43
|
Salusin-β induces foam cell formation and monocyte adhesion in human vascular smooth muscle cells via miR155/NOX2/NFκB pathway. Sci Rep 2016; 6:23596. [PMID: 27004848 PMCID: PMC4804242 DOI: 10.1038/srep23596] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/09/2016] [Indexed: 01/07/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are indispensible components in foam cell formation. Salusin-β is a stimulator in the progression of atherosclerosis. Here, we showed that salusin-β increased foam cell formation evidenced by accumulation of lipid droplets and intracellular cholesterol content, and promoted monocyte adhesion in human VSMCs. Salusin-β increased the expressions and activity of acyl coenzyme A:cholesterol acyltransferase-1 (ACAT-1) and vascular cell adhesion molecule-1 (VCAM-1) in VSMCs. Silencing of ACAT-1 abolished the salusin-β-induced lipid accumulation, and silencing of VCAM-1 prevented the salusin-β-induced monocyte adhesion in VSMCs. Salusin-β caused p65-NFκB nuclear translocation and increased p65 occupancy at the ACAT-1 and VCAM-1 promoter. Inhibition of NFκB with Bay 11-7082 prevented the salusin-β-induced ACAT-1 and VCAM-1 upregulation, foam cell formation and monocyte adhesion in VSMCs. Scavenging ROS, inhibiting NADPH oxidase or knockdown of NOX2 abolished the effects of salusin-β on ACAT-1 and VCAM-1 expressions, p65-NFκB nuclear translocation, lipid accumulation and monocyte adhesion in VSMCs. Salusin-β increased miR155 expression, and knockdown of miR155 prevented the effects of salusin-β on ACAT-1 and VCAM-1 expressions, p65-NFκB nuclear translocation, lipid accumulation, monocyte adhesion and ROS production in VSMCs. These results indicate that salusin-β induces foam formation and monocyte adhesion via miR155/NOX2/NFκB-mediated ACAT-1 and VCAM-1 expressions in VSMCs.
Collapse
|
44
|
The novel adipokine progranulin counteracts IL-1 and TLR4-driven inflammatory response in human and murine chondrocytes via TNFR1. Sci Rep 2016; 6:20356. [PMID: 26853108 PMCID: PMC4745010 DOI: 10.1038/srep20356] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/30/2015] [Indexed: 12/20/2022] Open
Abstract
Progranulin (PGRN) is a recently identified adipokine that is supposed to have anti-inflammatory actions. The proinflammatory cytokine interleukin-1β (IL1β) stimulates several mediators of cartilage degradation. Toll like receptor-4 (TLR4) can bind to various damage-associated molecular patterns, leading to inflammatory condition. So far, no data exist of PGRN effects in inflammatory conditions induced by IL1β or lipopolysaccharide (LPS). Here, we investigated the anti-inflammatory potential of PGRN in IL1β- or LPS-induced inflammatory responses of chondrocytes. Human osteoarthritic chondrocytes and ATDC-5 cells were treated with PGRN in presence or not of IL1β or LPS. First, we showed that recombinant PGRN had no effects on cell viability. We present evidence that PGRN expression was increased during the differentiation of ATDC-5 cell line. Moreover, PGRN mRNA and protein expression is increased in cartilage, synovial and infrapatellar fat pad tissue samples from OA patients. PGRN mRNA levels are upregulated under TNFα and IL1β stimulation. Our data showed that PGRN is able to significantly counteract the IL1β-induced expression of NOS2, COX2, MMP13 and VCAM-1. LPS-induced expression of NOS2 is also decreased by PGRN. These effects are mediated, at least in part, through TNFR1. Taken together, our results suggest that PGRN has a clear anti-inflammatory function.
Collapse
|
45
|
Xie S, Lu L, Liu L, Bi G, Zheng L. Progranulin and short-term outcome in patients with acute ischaemic stroke. Eur J Neurol 2016; 23:648-55. [PMID: 26728399 DOI: 10.1111/ene.12920] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 10/01/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Stroke is a leading cause of death and severe disability worldwide. Serum biomarkers play a critical role in the assessment of the severity and prognosis in stroke patients. METHODS In this prospective cohort study, the measurement of serum progranulin (PGRN) was conducted in 316 participants, including 216 patients with an identified diagnosis of acute ischaemic stroke and 100 normal control subjects. The primary end-point was defined as all-cause mortality for a short-term follow-up of 6 months. Adverse functional outcome (modified Rankin Scale score ≥3) was considered as the secondary end-point. RESULTS The median value of serum PGRN for patients with acute ischaemic stroke was 64.2 ng/ml (interquartile range 54.6-73.7), which was significantly higher than the control group [59.7 (54.4-64.4) ng/ml; P < 0.001]. Multivariable linear regression suggested that PGRN levels were significantly correlated with body mass index, alcohol consumption, fasting blood glucose, total cholesterol, National Institutes of Health Stroke Scale (NIHSS) score and high-density lipoprotein cholesterol. Serum PGRN concentrations were independently associated with increased risks of all-cause mortality and adverse functional outcome after adjustment for clinical variables. In Cox proportional hazards models, PGRN levels were associated with the risk of mortality (hazard ratio 1.090, 95% confidence interval 1.033-1.150, P = 0.002). The net reclassification improvement of the model with added PGRN was 0.1902 (P = 0.0234) after adjustment for the variables in the Cox regression model for predicting all-cause mortality, and the integrated discrimination improvement was 0.1052 (P < 0.001). CONCLUSIONS Serum PGRN levels independently predicted all-cause mortality and adverse functional outcome in the short term in stroke patients. The discriminative power was improved by PGRN on the basis of NIHSS score.
Collapse
Affiliation(s)
- S Xie
- Department of Clinical Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - L Lu
- Department of Clinical Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - L Liu
- Department of Clinical Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - G Bi
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - L Zheng
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
46
|
Zhao YP, Liu B, Tian QY, Wei JL, Richbourgh B, Liu CJ. Progranulin protects against osteoarthritis through interacting with TNF-α and β-Catenin signalling. Ann Rheum Dis 2015; 74:2244-2253. [PMID: 25169730 PMCID: PMC4408266 DOI: 10.1136/annrheumdis-2014-205779] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/02/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Progranulin (PGRN) was previously isolated as an osteoarthritis (OA)-associated growth factor. Additionally, PGRN was found to play a therapeutic role in inflammatory arthritis mice models through antagonising tumour necrosis factor α (TNF-α). This study was aimed at investigating the role of PGRN in degradation of cartilage and progression of OA. METHODS Progression of OA was analysed in both spontaneous and surgically induced OA models in wild type and PGRN-deficient mice. Cartilage degradation and OA were evaluated using Safranin O staining, immunohistochemistry and ELISA. Additionally, mRNA expression of degenerative factors and catabolic markers known to be involved in cartilage degeneration in OA were analysed. Furthermore, the anabolic effects and underlying mechanisms of PGRN were investigated by in vitro experiments with primary chondrocytes. RESULTS Here, we found that deficiency of PGRN led to spontaneous OA-like phenotype in 'aged' mice. Additionally, PGRN-deficient mice exhibited exaggerated breakdown of cartilage structure and OA progression, while local delivery of recombinant PGRN protein attenuated degradation of cartilage matrix and protected against OA development in surgically induced OA models. Furthermore, PGRN activated extracellular signal-regulated kinases (ERK) 1/2 signalling and elevated the levels of anabolic biomarkers in human chondrocyte, and the protective function of PGRN was mediated mainly through TNF receptor 2. Additionally, PGRN suppressed inflammatory action of TNF-α and inhibited the activation of β-Catenin signalling in cartilage and chondrocytes. CONCLUSIONS Collectively, this study provides new insight into the pathogenesis of OA, and also presents PGRN as a potential target for the treatment of joint degenerative diseases, including OA.
Collapse
Affiliation(s)
- Yun-peng Zhao
- Department of Orthopaedic Surgery, Hospital for Joint Diseases, New York University, New York, New York, USA
- Department of Orthopaedic Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Ben Liu
- Department of Orthopaedic Surgery, Hospital for Joint Diseases, New York University, New York, New York, USA
- Department of Orthopaedic Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Qing-yun Tian
- Department of Orthopaedic Surgery, Hospital for Joint Diseases, New York University, New York, New York, USA
| | - Jian-lu Wei
- Department of Orthopaedic Surgery, Hospital for Joint Diseases, New York University, New York, New York, USA
| | - Brendon Richbourgh
- Department of Orthopaedic Surgery, Hospital for Joint Diseases, New York University, New York, New York, USA
| | - Chuan-ju Liu
- Department of Orthopaedic Surgery, Hospital for Joint Diseases, New York University, New York, New York, USA
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
47
|
Galimberti D, Bonsi R, Fenoglio C, Serpente M, Cioffi SMG, Fumagalli G, Arighi A, Ghezzi L, Arcaro M, Mercurio M, Rotondo E, Scarpini E. Inflammatory molecules in Frontotemporal Dementia: cerebrospinal fluid signature of progranulin mutation carriers. Brain Behav Immun 2015; 49:182-7. [PMID: 26021560 DOI: 10.1016/j.bbi.2015.05.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/30/2015] [Accepted: 05/19/2015] [Indexed: 12/12/2022] Open
Abstract
Mutations in progranulin gene (GRN) are one of the major causes of autosomal dominant Frontotemporal Lobar Degeneration (FTLD). Progranulin displays anti-inflammatory properties and is likely a ligand of Tumor Necrosis Factor (TNF) receptor 2, expressed on microglia. A few cytokines and chemokines are altered in cerebrospinal fluid (CSF) from patients with sporadic FTLD, whereas no information is available in familial cases. We evaluated, through BioPlex, levels of 27 inflammatory molecules, including cytokines, chemokines, and related receptors, in CSF and matched serum, from FTLD patients carrying GRN mutations as compared with sporadic FTLD with no GRN mutations and controls. Mean±SD Monocyte Chemoattractant Protein-1 (MCP-1) levels were significantly increased in CSF from sporadic FTLD patients as compared with controls (334.27±151.5 versus 159.7±49pg/ml; P⩽0.05). In GRN mutation carriers versus controls, CSF levels of MCP-1 were unchanged, whereas Interferon-γ-inducible protein-10 (IP-10) levels were increased (809.17±240.0 versus 436.61±202.5pg/ml; P=0.012). In the same group, TNFα and Interleukin (IL)-15 levels were decreased (3.18±1.41 versus 35.68±30.5pg/ml; P=0.013 and 9.34±5.54 versus 19.15±10.03pg/ml; P=0.023, respectively). Conversely, Regulated upon Activation, Normal T-cell Expressed, and Secreted (RANTES) levels were decreased in patients, with or without mutations, as compared with controls (4.63±3.30 and 2.58±20 versus 87.57±70pg/ml, respectively; P<0.05). Moreover, IP-10, IL-15 and RANTES CSF levels were not influenced by age, whereas MCP-1 levels increased with age (ρ=0.48; P=0.007). In conclusion, inflammatory de-regulation was observed in both sporadic FTLD and GRN carriers compared to controls, with a specific inflammatory profile for the latter group.
Collapse
Affiliation(s)
- D Galimberti
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy.
| | - R Bonsi
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - C Fenoglio
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - M Serpente
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - S M G Cioffi
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - G Fumagalli
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - A Arighi
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - L Ghezzi
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - M Arcaro
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - M Mercurio
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - E Rotondo
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - E Scarpini
- Department of Pathophysiology and Transplantation, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| |
Collapse
|
48
|
New discovery rarely runs smooth: an update on progranulin/TNFR interactions. Protein Cell 2015; 6:792-803. [PMID: 26408020 PMCID: PMC4624682 DOI: 10.1007/s13238-015-0213-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 08/24/2015] [Indexed: 12/13/2022] Open
Abstract
Progranulin (PGRN) is a growth factor implicated in various pathophysiological processes, including wound healing, inflammation, tumorigenesis, and neurodegeneration. It was previously reported that PGRN binds to tumor necrosis factor receptors (TNFR) and has therapeutic effects in inflammatory arthritis (Tang et. al, in Science 332:478-484, 2011); however, Chen et al. reported their inability to demonstrate the PGRN-TNFR interactions under their own conditions (Chen et. al, in J Neurosci 33:9202-9213, 2013). A letter-to-editor was then published by the original group in response to the Chen et al. paper that discussed the reasons for the latter's inability to recapitulate the interactions. In addition, the group published follow-up studies that further reinforced and dissected the interactions of PGRN-TNFR. Recently, the dispute about the legitimacy of PGRN-TNFR interactions appears to be finally settled with independent confirmations of these interactions in various conditions by numerous laboratories. This review presents a chronological update on the story of PGRN-TNFR interactions, highlighting the independent confirmations of these interactions in various diseases and conditions.
Collapse
|
49
|
Yamanouchi S, Adachi Y, Shimo T, Umezawa K, Okigaki M, Tsuji S, Li M, Takaya J, Kuge T, Ikehara S, Kaneko K. A nuclear factor-κB inhibitor, dehydroxymethylepoxyquinomicin, ameliorates GVHD in allogeneic bone marrow transplantation. Immunobiology 2015; 220:1059-1066. [PMID: 26004346 DOI: 10.1016/j.imbio.2015.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 04/11/2015] [Accepted: 05/01/2015] [Indexed: 10/23/2022]
Abstract
GVHD is a crucial mortality factor in allogeneic bone marrow transplantation (ABMT). In this paper, we show that dehydroxymethylepoxyquinomicin (DHMEQ), a novel inhibitor of nuclear factor-κB, suppresses GVHD, resulting in an improved mortality rate in a mouse ABMT model. Bone marrow cells from C57BL/6 mice (B6 mice) were transplanted into lethally irradiated BALB/c mice. Two weeks later, spleen cells from B6 mice were transplanted into the irradiated BALB/c mice. From one week after the injection of spleen cells, when the mice started to show GVHD, the mice were also injected intraperitoneally daily with DHMEQ or vehicle only (DMSO) for 4 weeks. By 80 days after the ABMT, 6/14 of the vehicle-injected mice (43%) had died because of GVHD, whereas all DHMEQ-injected mice survived this observation period and developed milder GVHD than the vehicle-injected mice. When regulatory T cells were reduced by the injection of anti-folate receptor 4 (FR4) antibody, the effects of DHMEQ were reduced. These findings suggest that administration of DHMEQ could become a new strategy for preventing fatalities from GVHD.
Collapse
Affiliation(s)
- Sohsaku Yamanouchi
- Department of Pediatrics, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan
| | - Yasushi Adachi
- Division of Surgical Pathology, Toyooka Hospital, Toyooka City, Hyogo 668-8501, Japan; Department of Stem Cell Disorders, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan.
| | - Tomohiko Shimo
- Department of Pediatrics, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan
| | - Kazuo Umezawa
- Department of Molecular Target Medicine Screening, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Mitsuhiko Okigaki
- Department of Internal Medicine, Otokoyama Hospital, Yawata City, Kyoto 614-8366, Japan
| | - Shoji Tsuji
- Department of Pediatrics, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan
| | - Ming Li
- Department of Stem Cell Disorders, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan
| | - Junji Takaya
- Department of Pediatrics, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan
| | - Tomohiro Kuge
- Department of Clinical Laboratory, Toyooka Hospital, Tobera, Toyooka City, Hyogo 668-8501, Japan
| | - Susumu Ikehara
- Department of Stem Cell Disorders, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan
| | - Kazunari Kaneko
- Department of Pediatrics, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan
| |
Collapse
|
50
|
Noguchi T, Ebina K, Hirao M, Kawase R, Ohama T, Yamashita S, Morimoto T, Koizumi K, Kitaguchi K, Matsuoka H, Kaneshiro S, Yoshikawa H. Progranulin plays crucial roles in preserving bone mass by inhibiting TNF-α-induced osteoclastogenesis and promoting osteoblastic differentiation in mice. Biochem Biophys Res Commun 2015; 465:638-43. [PMID: 26297947 DOI: 10.1016/j.bbrc.2015.08.077] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 11/26/2022]
Abstract
A close correlation between atherosclerosis, inflammation, and osteoporosis has been recognized, although the precise mechanism remains unclear. The growth factor progranulin (PGRN) is expressed in various cells such as macrophages, leukocytes, and chondrocytes. PGRN plays critical roles in a variety of diseases, such as atherosclerosis and arthritis by inhibiting Tumor Necrosis Factor-α (TNF-α) signaling. The purpose of this study was to investigate the effect of PGRN on bone metabolism. Forty-eight-week old female homozygous PGRN knockout mice (PGRN-KO) (n = 8) demonstrated severe low bone mass in the distal femur compared to age- and sex-matched wild type C57BL/6J mice (WT) (n = 8) [BV/TV (%): 5.8 vs. 16.6; p < 0.001, trabecular number (1/mm): 1.6 vs. 3.8; p < 0.001]. In vitro, PGRN inhibited TNF-α-induced osteoclastogenesis from spleen cells of PGRN-KO mice. Moreover, PGRN significantly promoted ALP activity, osteoblast-related mRNA (ALP, osteocalcin) expression in a dose-dependent manner and up-regulated osteoblastic differentiation by down-regulating phosphorylation of ERK1/2 in mouse calvarial cells. In conclusion, PGRN may be a promising treatment target for both atherosclerosis and inflammation-related osteoporosis.
Collapse
Affiliation(s)
- Takaaki Noguchi
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kosuke Ebina
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Makoto Hirao
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryota Kawase
- Department of Cardiovascular Medicine, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tohru Ohama
- Department of Cardiovascular Medicine, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Dental Anesthesiology, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shizuya Yamashita
- Department of Cardiovascular Medicine, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Community Medicine, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tokimitsu Morimoto
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kota Koizumi
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuma Kitaguchi
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hozo Matsuoka
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shoichi Kaneshiro
- Department of Orthopaedic Surgery, Japan Community Health Care Organization, Osaka Hospital, 4-2-78 Fukushima Ward, Osaka 586-8521, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|