1
|
Ahmed K, Choi HN, Yim JE. The Impact of Taurine on Obesity-Induced Diabetes Mellitus: Mechanisms Underlying Its Effect. Endocrinol Metab (Seoul) 2023; 38:482-492. [PMID: 37846056 PMCID: PMC10613769 DOI: 10.3803/enm.2023.1776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/07/2023] [Accepted: 08/28/2023] [Indexed: 10/18/2023] Open
Abstract
This review explores the potential benefits of taurine in ameliorating the metabolic disorders of obesity and type 2 diabetes (T2D), highlighting the factors that bridge these associations. Relevant articles and studies were reviewed to conduct a comprehensive analysis of the relationship between obesity and the development of T2D and the effect of taurine on those conditions. The loss of normal β-cell function and development of T2D are associated with obesity-derived insulin resistance. The occurrence of diabetes has been linked to the low bioavailability of taurine, which plays critical roles in normal β-cell function, anti-oxidation, and anti-inflammation. The relationships among obesity, insulin resistance, β-cell dysfunction, and T2D are complex and intertwined. Taurine may play a role in ameliorating these metabolic disorders through different pathways, but further research is needed to fully understand its effects and potential as a therapeutic intervention.
Collapse
Affiliation(s)
- Kainat Ahmed
- Interdisciplinary Program in Senior Human Ecology, Changwon National University, Changwon, Korea
| | - Ha-Neul Choi
- Department of Food and Nutrition, Changwon National University, Changwon, Korea
| | - Jung-Eun Yim
- Interdisciplinary Program in Senior Human Ecology, Changwon National University, Changwon, Korea
- Department of Food and Nutrition, Changwon National University, Changwon, Korea
| |
Collapse
|
2
|
Cetin AK, Buyukdere Y, Gulec A, Akyol A. Taurine supplementation reduces adiposity and hepatic lipid metabolic activity in adult offspring following maternal cafeteria diet. Nutr Res 2023; 117:15-29. [PMID: 37423013 DOI: 10.1016/j.nutres.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
Maternal taurine supplementation has been shown to exert protective effects following a maternal obesogenic diet on offspring growth and metabolism. However, the long-term effects of maternal cafeteria diet on adiposity, metabolic profile, and hepatic gene expression patterns following supplementation of taurine in adult offspring remains unclear. In this study, we hypothesized that exposure to maternal taurine supplementation would modulate the effects of maternal cafeteria diet by reducing adiposity and hepatic gene expression patterns involved in lipid metabolism in adult offspring. Female Wistar rats were fed a control diet, control diet supplemented with 1.5% taurine in drinking water, cafeteria diet (CAF) or CAF supplemented with taurine (CAFT) from weaning. After 8 weeks, all animals were mated and maintained on the same diets during pregnancy and lactation. After weaning, all offspring were fed with control chow diet until the age of 20 weeks. Despite similar body weights, CAFT offspring had significantly lower fat deposition and body fat when compared with CAF offspring. Microarray analysis revealed that genes (Akr1c3, Cyp7a1, Hsd17b6, Cd36, Acsm3, and Aldh1b1) related to steroid hormone biosynthesis, cholesterol metabolism, peroxisome proliferator-activated receptor signaling pathway, butanoate metabolism, and fatty acid degradation were down-regulated in CAFT offspring. The current study shows that exposure to maternal cafeteria diet promoted adiposity and taurine supplementation reduced lipid deposition and in both male and female offspring and led to alterations in hepatic gene expression patterns, reducing the detrimental effects of maternal cafeteria diet.
Collapse
Affiliation(s)
- Arzu Kabasakal Cetin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | - Yucel Buyukdere
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | - Atila Gulec
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | - Asli Akyol
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Sihhiye, Ankara, Turkey.
| |
Collapse
|
3
|
Guo Q, Zhang L, Yin Y, Gong S, Yang Y, Chen S, Han M, Duan Y. Taurine Attenuates Oxidized Fish Oil-Induced Oxidative Stress and Lipid Metabolism Disorder in Mice. Antioxidants (Basel) 2022; 11:antiox11071391. [PMID: 35883883 PMCID: PMC9311513 DOI: 10.3390/antiox11071391] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to determine the effect of dietary taurine on lipid metabolism and liver injury in mice fed a diet high in oxidized fish oil. The ICR mice (six weeks old) were randomly assigned to six groups and fed different diets for 10 weeks: control (CON), normal plus 15% fresh fish oil diet (FFO), normal plus 15% oxidized fish oil diet (OFO), or OFO plus 0.6% (TAU1), 0.9% (TAU2) or 1.2% (TAU3) taurine. Compared to the CON group, OFO mice showed increased liver index, aspartate aminotransferase (AST) and malondialdehyde (MDA) levels in serum (p < 0.05). In addition, OFO mice had increased cholesterol (CHOL)/high-density lipoprotein cholesterol (HDL-C) and decreased HDL-C/low-density lipoprotein cholesterol (LDL-C) and n-6/n-3 polyunsaturated fatty acid (PUFA) ratio in serum (p < 0.05) compared with CON mice. Notably, dietary taurine ameliorated the liver index and AST and MDA levels in serum and liver in a more dose-dependent manner than OFO mice. In addition, compared to OFO mice, decreased levels of CHOL and ratio of CHOL/HDL-C and n-6 PUFA/n-3 PUFA in serum were found in TAU3-fed mice. Supplementation with TAU2 and TAU3 increased the relative mRNA expression levels of peroxisome proliferator-activated receptor α, adipose triglyceride lipase, lipoprotein lipase, hormone-sensitive lipase and carnitine palmitoyl transferase 1 in liver compared with the OFO group (p < 0.05). Moreover, impaired autophagy flux was detected in mice fed with the OFO diet, and this was prevented by taurine. These findings suggested that dietary taurine might provide a potential therapeutic choice against oxidative stress and lipid metabolism disorder.
Collapse
Affiliation(s)
- Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.G.); (L.Z.); (Y.Y.); (S.G.); (Y.Y.); (S.C.); (M.H.)
| | - Lingyu Zhang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.G.); (L.Z.); (Y.Y.); (S.G.); (Y.Y.); (S.C.); (M.H.)
- National Engineering Laboratory for Rice and By-Product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yunju Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.G.); (L.Z.); (Y.Y.); (S.G.); (Y.Y.); (S.C.); (M.H.)
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Saiming Gong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.G.); (L.Z.); (Y.Y.); (S.G.); (Y.Y.); (S.C.); (M.H.)
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yuhuan Yang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.G.); (L.Z.); (Y.Y.); (S.G.); (Y.Y.); (S.C.); (M.H.)
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Sisi Chen
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.G.); (L.Z.); (Y.Y.); (S.G.); (Y.Y.); (S.C.); (M.H.)
- College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Mengmeng Han
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.G.); (L.Z.); (Y.Y.); (S.G.); (Y.Y.); (S.C.); (M.H.)
- College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.G.); (L.Z.); (Y.Y.); (S.G.); (Y.Y.); (S.C.); (M.H.)
- Correspondence: ; Tel.: +86-0731-84619767
| |
Collapse
|
4
|
Corken A, Thakali KM. Maternal Obesity Programming of Perivascular Adipose Tissue and Associated Immune Cells: An Understudied Area With Few Answers and Many Questions. Front Physiol 2022; 12:798987. [PMID: 35126181 PMCID: PMC8815821 DOI: 10.3389/fphys.2021.798987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
At present, the worldwide prevalence of obesity has become alarmingly high with estimates foreshadowing a continued escalation in the future. Furthermore, there is growing evidence attributing an individual’s predisposition for developing obesity to maternal health during gestation. Currently, 60% of pregnancies in the US are to either overweight or obese mothers which in turn contributes to the persistent rise in obesity rates. While obesity itself is problematic, it conveys an increased risk for several diseases such as diabetes, inflammatory disorders, cancer and cardiovascular disease (CVD). Additionally, as we are learning more about the mechanisms underlying CVD, much attention has been brought to the role of perivascular adipose tissue (PVAT) in maintaining cardiovascular health. PVAT regulates vascular tone and for a significant number of individuals, obesity elicits PVAT disruption and dysregulation of vascular function. Obesity elicits changes in adipocyte and leukocyte populations within PVAT leading to an inflammatory state which promotes vasoconstriction thereby aiding the onset/progression of CVD. Our current understanding of obesity, PVAT and CVD has only been examined at the individual level without consideration for a maternal programming effect. It is unknown if maternal obesity affects the propensity for PVAT remodeling in the offspring, thereby enhancing the obesity/CVD link, and what role PVAT leukocytes play in this process. This perspective will focus on the maternal contribution of the interplay between obesity, PVAT disruption and CVD and will highlight the leukocyte/PVAT interaction as a novel target to stem the tide of the current obesity epidemic and its secondary health consequences.
Collapse
Affiliation(s)
- Adam Corken
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Keshari M. Thakali
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- *Correspondence: Keshari M. Thakali,
| |
Collapse
|
5
|
Kp AD, Martin A. Recent insights into the molecular regulators and mechanisms of taurine to modulate lipid metabolism: a review. Crit Rev Food Sci Nutr 2022; 63:6005-6017. [PMID: 35040723 DOI: 10.1080/10408398.2022.2026873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lipid metabolism disorders such as hypertriglyceridemia and hypercholesterolemia are risk factors for cardiovascular diseases and atherosclerosis that are grave public health issues. Taurine, a sulfur-containing non-essential amino acid exerts a wide range of physiological effects that regulate lipid metabolic disorders. Although the effects of taurine on lipid-lowering have been reported in animals and humans, mechanisms elucidating the lipid-lowering action of taurine remain unclear. A series of molecular regulators associated with lipid metabolism have been identified in the past few decades. These include nuclear receptors, transcription factors, and enzymes that undergo important changes during taurine treatment. In this review, we focus on the role of taurine in lipid metabolism and discuss taurine-related interventions in combating lipid disorders.
Collapse
Affiliation(s)
- Arya Devi Kp
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR - Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| | - Asha Martin
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR - Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
6
|
La Rosa F, Guiducci L, Guzzardi MA, Cacciato Insilla A, Burchielli S, Brunetto MR, Bonino F, Campani D, Iozzo P. Maternal High-Fat Feeding Affects the Liver and Thymus Metabolic Axis in the Offspring and Some Effects Are Attenuated by Maternal Diet Normalization in a Minipig Model. Metabolites 2021; 11:800. [PMID: 34940559 PMCID: PMC8703533 DOI: 10.3390/metabo11120800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
Maternal high-fat diet (HFD) affects metabolic and immune development. We aimed to characterize the effects of maternal HFD, and the subsequent diet-normalization of the mothers during a second pregnancy, on the liver and thymus metabolism in their offspring, in minipigs. Offspring born to high-fat (HFD) and normal diet (ND) fed mothers were studied at week 1 and months 1, 6, 12 of life. Liver and thymus glucose uptake (GU) was measured with positron emission tomography during hyperinsulinemic-isoglycemia. Histological analyses were performed to quantify liver steatosis, inflammation, and hepatic hematopoietic niches (HHN), and thymocyte size and density in a subset. The protocol was repeated after maternal-diet-normalization in the HFD group. At one week, HFDoff were characterized by hyperglycemia, hyperinsulinemia, severe insulin resistance (IR), and high liver and thymus GU, associating with thymocyte size and density, with elevated weight-gain, liver IR, and steatosis in the first 6 months of life. Maternal diet normalization reversed thymus and liver hypermetabolism, and increased HHN at one week. It also normalized systemic insulin-sensitivity and liver fat content at all ages. Instead, weight-gain excess, hyperglycemia, and hepatic IR were still observed at 1 month, i.e., end-lactation. We conclude that intra-uterine HFD exposure leads to time-changing metabolic and immune-correlated abnormalities. Maternal diet-normalization reversed most of the effects in the offspring.
Collapse
Affiliation(s)
- Federica La Rosa
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (F.L.R.); (L.G.); (M.A.G.)
| | - Letizia Guiducci
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (F.L.R.); (L.G.); (M.A.G.)
| | - Maria Angela Guzzardi
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (F.L.R.); (L.G.); (M.A.G.)
| | - Andrea Cacciato Insilla
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, Division of Pathology, Pisa University Hospital, 56124 Pisa, Italy; (A.C.I.); (D.C.)
| | | | - Maurizia Rossana Brunetto
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy;
- Hepatology Unit, Department of Medical Specialties, Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, Pisa University Hospital, 56124 Pisa, Italy
- Institute of Biostructure and Bioimaging (IBB), National Research Council (CNR), 80145 Napoli, Italy;
| | - Ferruccio Bonino
- Institute of Biostructure and Bioimaging (IBB), National Research Council (CNR), 80145 Napoli, Italy;
| | - Daniela Campani
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, Division of Pathology, Pisa University Hospital, 56124 Pisa, Italy; (A.C.I.); (D.C.)
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (F.L.R.); (L.G.); (M.A.G.)
| |
Collapse
|
7
|
Li Y, Pollock CA, Saad S. Aberrant DNA Methylation Mediates the Transgenerational Risk of Metabolic and Chronic Disease Due to Maternal Obesity and Overnutrition. Genes (Basel) 2021; 12:genes12111653. [PMID: 34828259 PMCID: PMC8624316 DOI: 10.3390/genes12111653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/02/2021] [Accepted: 10/17/2021] [Indexed: 12/13/2022] Open
Abstract
Maternal obesity is a rapidly evolving universal epidemic leading to acute and long-term medical and obstetric health issues, including increased maternal risks of gestational diabetes, hypertension and pre-eclampsia, and the future risks for offspring's predisposition to metabolic diseases. Epigenetic modification, in particular DNA methylation, represents a mechanism whereby environmental effects impact on the phenotypic expression of human disease. Maternal obesity or overnutrition contributes to the alterations in DNA methylation during early life which, through fetal programming, can predispose the offspring to many metabolic and chronic diseases, such as non-alcoholic fatty liver disease, obesity, diabetes, and chronic kidney disease. This review aims to summarize findings from human and animal studies, which support the role of maternal obesity in fetal programing and the potential benefit of altering DNA methylation to limit maternal obesity related disease in the offspring.
Collapse
Affiliation(s)
- Yan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China;
| | - Carol A. Pollock
- Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2065, Australia;
| | - Sonia Saad
- Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2065, Australia;
- Correspondence:
| |
Collapse
|
8
|
Kabasakal Çetin A, Alkan Tuğ T, Güleç A, Akyol A. Effects of maternal taurine supplementation on maternal dietary intake, plasma metabolites and fetal growth and development in cafeteria diet fed rats. PeerJ 2021; 9:e11547. [PMID: 34141487 PMCID: PMC8180190 DOI: 10.7717/peerj.11547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/11/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Maternal obesity may disrupt the developmental process of the fetus during gestation in rats. Recent evidence suggests that taurine can exert protective role against detrimental influence of obesogenic diets. This study aimed to examine the effect of maternal cafeteria diet and/or taurine supplementation on maternal dietary intake, plasma metabolites, fetal growth and development. METHODS Female Wistar rats were fed a control diet (CON), CON supplemented with 1.5% taurine in drinking water (CONT), cafeteria diet (CAF) or CAF supplemented with taurine (CAFT) from weaning. After 8 weeks all animals were mated and maintained on the same diets during pregnancy and lactation. RESULTS Dietary intakes were significantly different between the groups. Both CAF and CAFT fed dams consumed less water in comparison to CON and CONT dams. Taurine supplementation only increased plasma taurine concentrations in CONT group. Maternal plasma adiponectin concentrations increased in CAF and CAFT fed dams compared to CON and CONT fed dams and there was no effect of taurine. Hyperleptinemia was observed in CAF fed dams but not in CAFT fed dams. Malondialdehyde was significantly increased only in CAF fed dams. Litter size, sex ratio and birth weight were similar between the groups. There was an increase in neonatal mortality in CONT group. DISCUSSION This study showed that maternal taurine supplementation exerted modest protective effects on cafeteria diet induced maternal obesity. The increased neonatal mortality in CONT neonates indicates possible detrimental effects of taurine supplementation in the setting of normal pregnancy. Therefore, future studies should investigate the optimal dose of taurine supplementation and long term potential effects on the offspring.
Collapse
Affiliation(s)
- Arzu Kabasakal Çetin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye
| | - Tuǧba Alkan Tuğ
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye
| | - Atila Güleç
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye
| | - Aslı Akyol
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
9
|
Ren F, Liu X, Liu X, Cao Y, Liu L, Li X, Wu Y, Du S, Tian G, Hu J. In vitro and in vivo study on prevention of myocardial ischemic injury by taurine. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:984. [PMID: 34277784 PMCID: PMC8267305 DOI: 10.21037/atm-21-2481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/15/2021] [Indexed: 11/10/2022]
Abstract
Background Myocardial ischemia (MI) often causes angina, arrhythmia, and cardiac insufficiency, sometimes resulting in death. Ischemia-induced myocardial tissue damage is attributed to the hypoxic damage of myocardial cells producing apoptosis and decreased proliferation. Taurine has been shown to improve MI, but its mechanism is largely unknown. Methods In this study, the relationship between taurine and severity of MI in vivo was evaluated by quantifying myocardial infarct areas and metabolic indicators of myocardial damage and measuring taurine levels in cardiac muscle and plasma by high performance liquid chromatography (HPLC). To elucidate how taurine might suppress ischemic injury, we established an in vitro ischemia model with isolated primary rat cardiomyocytes cultured without serum or glucose and under hypoxia. We evaluated the indicators of MI and damage, including lactic dehydrogenase (LDH), creatine kinase (CK), and cardiac troponin I (cTnI). We also examined the levels of taurine transporter (TauT), cysteine dioxygenase (CDO), and cysteine sulfinate decarboxylase (CSD) proteins involved in transport and synthesis of taurine in the myocardium and those of 2 apoptosis-associated proteins, namely, Bcl-2 associated X protein (BAX) and B-cell lymphoma-2 (Bcl-2). Results Exposure of myocardial cells to ischemia led to the decrease of taurine content, the suppression of cell proliferation, and led to calcium ion overload and apoptosis. Pretreatment with taurine alleviated the ischemic damage, with concomitant elevation of intracellular taurine concentrations. Molecular mechanism analysis showed that pretreatment with taurine upregulated the TauT, CDO, and CSD, 2 rate-limiting enzymes involved in taurine synthesis. These effects facilitated both taurine transport into cells and taurine synthesis, leading to taurine accumulation. In addition, apoptosis inhibition by taurine appeared to be mediated by upregulated Bcl-2 and downregulated BAX, as well as inhibition of calcium overload by suppression of calcium binding protein. Conclusions We demonstrated that TauT is critical for the attenuation of myocardial ischemic damage by taurine, facilitating taurine absorption and synthesis. These findings provided new insights and a theoretical foundation for future studies examining taurine as a potential treatment for MI.
Collapse
Affiliation(s)
- Fengyun Ren
- Department of Anatomy, School of Basic Medicine, Jiamusi University, Jiamusi, China.,School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, China
| | - Xing Liu
- Department of Anatomy, School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaoxue Liu
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, China
| | - Yanli Cao
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, China
| | - Lantao Liu
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, China
| | - Xingjiang Li
- Department of Anatomy, School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, China
| | - Yingjun Wu
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, China
| | - Shudi Du
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, China
| | - Guozhong Tian
- Department of Anatomy, School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Jing Hu
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
10
|
Gao X, Zhang Y, Mu JQ, Chen KX, Zhang HF, Bi KS. A Metabonomics Study of Guan-Xin-Shu-Tong Capsule against Diet-Induced Hyperlipidemia in Rats. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Mensegue MF, Burgueño AL, Tellechea ML. Perinatal taurine exerts a hypotensive effect in male spontaneously hypertensive rats and down-regulates endothelial oxide nitric synthase in the aortic arch. Clin Exp Pharmacol Physiol 2020; 47:780-789. [PMID: 31958174 DOI: 10.1111/1440-1681.13260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 12/25/2022]
Abstract
Essential hypertension is considered to be a result of the interaction between genetic and environmental factors, including perinatal factors. Different advantageous perinatal factors proved to have beneficial long-lasting effects against an abnormal genetic background. Taurine is a ubiquitous sulphur-containing amino acid present in foods such as seafood. The antihypertensive effects of taurine have been reported in experimental studies and in human hypertension. We aimed to investigate the effects of perinatal treatment with taurine in spontaneously hypertensive rats (SHR), a known model of genetic hypertension. Female SHR were administered with taurine (3 g/L) during gestation and lactation (SHR-TAU). Untreated SHR and Wistar-Kyoto rats (WKY) were used as controls. Long-lasting effects in offspring were investigated. Addition of taurine to the mother's drinking water reduced blood pressure in adult offspring. No differences were observed in cardiac hypertrophy. Findings on morphometric evaluations suggest that perinatal treatment with taurine would be partially effective in improving structural alterations of the aorta. Modifications in gene expression of Bcl-2 family members and upregulation of endothelial nitric oxide synthase in the aorta of 22-week-old male offspring were found. No differences were observed on relative telomere length in different cardiovascular tissues between SHR and SHR-TAU. Altogether results suggest that taurine programming, albeit sex specific, is associated with gene expression changes which ultimately may lead to improvement of aortic remodelling and enhanced endothelial function because of augmented nitric oxide (NO) production.
Collapse
Affiliation(s)
- Melisa F Mensegue
- Institute of Medical Research A. Lanari, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Department of Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Adriana L Burgueño
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pontificia Universidad Católica Argentina, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariana L Tellechea
- Institute of Medical Research A. Lanari, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Department of Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
12
|
Khedr NF, Ebeid AM, Khalil RM. New insights into weight management by orlistat in comparison with cinnamon as a natural lipase inhibitor. Endocrine 2020; 67:109-116. [PMID: 31721089 DOI: 10.1007/s12020-019-02127-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/30/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND OBJECTIVES Orlistat which is taken by obese patients may present some therapeutic assistance through its inhibition of lipase activity. Otherwise, a natural lipase inhibitor as cinnamon is widely used traditional medicine to decrease cholesterol and body weight. The current study aimed to investigate the weight management of orlistat in comparison with cinnamon through different obesity related targets. METHODS Subjects were divided into: Group 1: subjects received cinnamon capsules for 60 days. Group 2: subjects were received orlistat twice daily for 30 days, then once daily for another 30 days. Blood samples were collected at baseline and after 2 months. RESULTS Both orlistat and cinnamon groups showed a significant reduction in BMI, lipid profile, and lipase activity compared with baseline. Orlistat group showed significant elevation (p < 0.001) in glucagon, insulin-degrading enzyme (IDE) and dopamine level concomitant with the decrease of serum glutamate compared with baseline level of the same group and cinnamon group. However, cinnamon reduced serum insulin level and insulin resistance (IR) compared with baseline level of the same group and orlistat group. CONCLUSIONS Orlistat can be used in weight management not only for its pancreatic lipase inhibition but also, due to its indirect appetite reduction effect through elevated glucagon, IDE and dopamine levels and its inhibitory effect on glutamate neurotransmitter, whereas, cinnamon improves BMI and glycaemic targets.
Collapse
Affiliation(s)
- Naglaa F Khedr
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Abla M Ebeid
- Clinical Pharmacy Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasaa, Egypt
| | - Rania M Khalil
- Biochemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasaa, Egypt
| |
Collapse
|
13
|
Long-term effects of a maternal high-fat: high-fructose diet on offspring growth and metabolism and impact of maternal taurine supplementation. J Dev Orig Health Dis 2019; 11:419-426. [PMID: 31735181 DOI: 10.1017/s2040174419000709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Maternal obesity is associated with obesity and metabolic disorders in offspring. However, there remains a paucity of data on strategies to reverse the effects of maternal obesity on maternal and offspring health. With maternal undernutrition, taurine supplementation improves outcomes in offspring mediated in part via improved glucose-insulin homeostasis. The efficacy of taurine supplementation in the setting of maternal obesity on health and well-being of offspring is unknown. We examined the effects of taurine supplementation on outcomes related to growth and metabolism in offspring in a rat model of maternal obesity. DESIGN Wistar rats were randomised to: 1) control diet during pregnancy and lactation (CON); 2) CON with 1.5% taurine in drinking water (CT); 3) maternal obesogenic diet (MO); or 4) MO with taurine (MOT). Offspring were weaned onto the control diet for the remainder of the study. RESULTS At day 150, offspring body weights and adipose tissue weights were increased in MO groups compared to CON. Adipose tissue weights were reduced in MOT versus MO males but not females. Plasma fasting leptin and insulin were increased in MO offspring groups but were not altered by maternal taurine supplementation. Plasma homocysteine concentrations were reduced in all maternal taurine-supplemented offspring groups. There were significant interactions across maternal diet, taurine supplementation and sex for response to an oral glucose tolerance test , a high-fat dietary preference test and pubertal onset in offspring. CONCLUSIONS These results demonstrate that maternal taurine supplementation can partially ameliorate adverse developmental programming effects in offspring in a sex-specific manner.
Collapse
|
14
|
Larsen LH, Sandø-Pedersen S, Ørstrup LKH, Grunnet N, Quistorff B, Mortensen OH. Gestational Protein Restriction in Wistar Rats; Effect of Taurine Supplementation on Properties of Newborn Skeletal Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:413-433. [PMID: 28849472 DOI: 10.1007/978-94-024-1079-2_34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Taurine ameliorates changes occurring in newborn skeletal muscle as a result of gestational protein restriction in C57BL/6 mice, but taurine supplementation effects may be exaggerated in C57BL/6 mice due to their inherent excessive taurinuria.We examined if maternal taurine supplementation could ameliorate changes in gene expression levels, properties of mitochondria, myogenesis, and nutrient transport and sensing, in male newborn skeletal muscle caused by a maternal low protein (LP) diet in Wistar rats.LP diet resulted in an 11% non-significant decrease in birth weight, which was not rescued by taurine supplementation (LP-Tau). LP-Tau offspring had significantly lower birth weight compared to controls. Gene expression profiling revealed 895 significantly changed genes, mainly an LP-induced down-regulation of genes involved in protein translation. Taurine fully or partially rescued 32% of these changes, but with no distinct pattern as to which genes were rescued.Skeletal muscle taurine content in LP-Tau offspring was increased, but no changes in mRNA levels of the taurine synthesis pathway were observed. Taurine transporter mRNA levels, but not protein levels, were increased by LP diet.Nutrient sensing signaling pathways were largely unaffected in LP or LP-Tau groups, although taurine supplementation caused a decrease in total Akt and AMPK protein levels. PAT4 amino acid transporter mRNA was increased by LP, and normalized by taurine supplementation.In conclusion, gestational protein restriction in rats decreased genes involved in protein translation in newborn skeletal muscle and led to changes in nutrient transporters. Taurine partly rescued these changes, hence underscoring the importance of taurine in development.
Collapse
Affiliation(s)
- Lea Hüche Larsen
- Department of Biomedical Sciences, Cellular and Metabolic Research Section, University of Copenhagen, København, Denmark
| | - Sofie Sandø-Pedersen
- Department of Biomedical Sciences, Cellular and Metabolic Research Section, University of Copenhagen, København, Denmark
| | - Laura Kofoed Hvidsten Ørstrup
- Department of Biomedical Sciences, Cellular and Metabolic Research Section, University of Copenhagen, København, Denmark
| | - Niels Grunnet
- Department of Biomedical Sciences, Cellular and Metabolic Research Section, University of Copenhagen, København, Denmark
| | - Bjørn Quistorff
- Department of Biomedical Sciences, Cellular and Metabolic Research Section, University of Copenhagen, København, Denmark
| | - Ole Hartvig Mortensen
- Department of Biomedical Sciences, Cellular and Metabolic Research Section, University of Copenhagen, København, Denmark.
| |
Collapse
|
15
|
Ribeiro RA, Bonfleur ML, Batista TM, Borck PC, Carneiro EM. Regulation of glucose and lipid metabolism by the pancreatic and extra-pancreatic actions of taurine. Amino Acids 2018; 50:1511-1524. [PMID: 30206707 DOI: 10.1007/s00726-018-2650-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022]
Abstract
The beneficial actions of L-taurine (Tau) against glucose intolerance, obesity, type 2 diabetes (T2D), and non-alcoholic fat liver disease (NAFLD) have been linked to its antioxidant and anti-inflammatory effects, which ameliorate tissue insulin sensitivity. Importantly, there are several lines of evidence that indicate a direct action of Tau on the endocrine pancreas to regulate the secretion and paracrine actions of insulin, glucagon, and somatostatin. Furthermore, Tau can also ameliorate glucose metabolism through the enhancement of insulin signaling. However, some of the benefits of Tau upon intermediary metabolism may manifest via considerable antagonism of the action of insulin. Therefore, this review discusses the mechanisms of action by which Tau may regulate endocrine pancreatic morphofunction, and glucose and lipid homeostasis.
Collapse
Affiliation(s)
- Rosane A Ribeiro
- NUPEM, Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé, Avenida São José do Barreto, 764, Macaé, RJ, CEP: 27965-045, Brazil.
| | - Maria L Bonfleur
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, PR, Brazil
| | - Thiago M Batista
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Patricia C Borck
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Everardo M Carneiro
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
16
|
Lembede BW, Joubert J, Nkomozepi P, Erlwanger KH, Chivandi E. Insulinotropic Effect of S-Allyl Cysteine in Rat Pups. Prev Nutr Food Sci 2018; 23:15-21. [PMID: 29662843 PMCID: PMC5894781 DOI: 10.3746/pnf.2018.23.1.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/08/2018] [Indexed: 12/18/2022] Open
Abstract
S-Allyl cysteine (SAC) is found in garlic and has been reported to exert antidiabetic and antiobesity properties in drug-induced adult experimental models of metabolic dysfunction, but its potential beneficial effects in high-fructose diet neonatal rat models have not been determined. This study investigated the potential prophylactic effects of SAC in high-fructose diet fed suckling rat pups modelling human neonates fed a high-fructose diet. Four-day-old male (n=32) and female (n=32) Wistar rat pups, were randomly assigned to and administered the following treatment regimens daily for 15 days: group I, distilled water; group II, 20% fructose solution (FS); group III, SAC; group IV, SAC+FS. The pups' blood glucose, triglyceride, cholesterol, plasma leptin and insulin concentration, liver lipid content, and liver histology were determined at termination. In female rat pups, orally administered SAC prevented FS-induced hypoinsulinemia but significantly increased (P≤0.05) liver lipid content. Oral administration of SAC significantly increased (P≤0.05) plasma insulin concentration and homeostasis model assessment for insulin resistance in the male pups. The potential sexually dimorphic effects of SAC (insulinotropic effects in male pups and protection of female pups against fructose-induced hypoinsulinemia) suggest that SAC could be potentially exploited as an antidiabetic and insulinotropic agent. Caution should, however, be exercised in the use of SAC during suckling as it could result in excessive liver lipid accumulation and insulin resistance.
Collapse
Affiliation(s)
- Busisani W Lembede
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Jeanette Joubert
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Pilani Nkomozepi
- Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2092, South Africa
| | - Kennedy H Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Eliton Chivandi
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| |
Collapse
|
17
|
Menichini D, Longo M, Facchinetti F. Maternal interventions to improve offspring outcomes in rodent models of diet-induced obesity: a review. J Matern Fetal Neonatal Med 2018; 32:2943-2949. [PMID: 29562760 DOI: 10.1080/14767058.2018.1450857] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Maternal obesity is an adverse factor that affects the intrauterine environment during critical periods of fetal developmental causing adverse lifelong effects on offspring health. Several different interventions have been performed in animal models of obesity to ameliorate maternal conditions and consequently reduce the adverse effects on offspring. Our aim was to critically review studies involving murine models of obesity induced by high fat diet (HFD), assessing maternal outcomes during pregnancy and the related offspring conditions. We carried out a computerized literature search of PubMed and Medline. We identified eight studies that fulfilled the inclusion criteria and have performed interventions in pregnancy with natural, synthetized compounds, and lifestyle modifications. Metabolic profile and lipid metabolism were improved by inositols, resveratrol, germinated brown rice (GBR), and exercise in the mother. The offspring whose mother received resveratrol, adiponectin, GBR, and exercise, showed an improvement in leptin, triglycerides, adiponectin levels, and a decrease in insulin resistance. These experimental studies demonstrate that several interventions in pregnant rodents improve the metabolic profile of both the mother and the offspring. Clinical research could now explore the efficacy and safety of such interventions, interrupting the vicious circle that an obese mother generates a child prone to develop metabolic (and cardiovascular) disease in adult life.
Collapse
Affiliation(s)
- Daniela Menichini
- a Department of Diagnostics, Clinical and Public Health Medicine , University of Modena and Reggio Emilia , Modena , Italy.,b Department of Obstetrics and Gynaecology , University of Texas Health Science Center , Houston , USA
| | - Monica Longo
- b Department of Obstetrics and Gynaecology , University of Texas Health Science Center , Houston , USA
| | - Fabio Facchinetti
- c Unit of Obstetrics and Gynecology, Department of Medical and Surgical Sciences for Children and Adults , University of Modena and Reggio Emilia , Modena , Italy
| |
Collapse
|
18
|
Abstract
Any effective strategy to tackle the global obesity and rising noncommunicable disease epidemic requires an in-depth understanding of the mechanisms that underlie these conditions that manifest as a consequence of complex gene-environment interactions. In this context, it is now well established that alterations in the early life environment, including suboptimal nutrition, can result in an increased risk for a range of metabolic, cardiovascular, and behavioral disorders in later life, a process preferentially termed developmental programming. To date, most of the mechanistic knowledge around the processes underpinning development programming has been derived from preclinical research performed mostly, but not exclusively, in laboratory mouse and rat strains. This review will cover the utility of small animal models in developmental programming, the limitations of such models, and potential future directions that are required to fully maximize information derived from preclinical models in order to effectively translate to clinical use.
Collapse
Affiliation(s)
- Clare M Reynolds
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
19
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with obesity, insulin resistance, type 2 diabetes and cardiovascular disease and can be considered the hepatic manifestation of the metabolic syndrome. NAFLD represents a spectrum of disease, from the relatively benign simple steatosis to the more serious non-alcoholic steatohepatitis, which can progress to liver cirrhosis, hepatocellular carcinoma and end-stage liver failure, necessitating liver transplantation. Although the increasing prevalence of NAFLD in developed countries has substantial implications for public health, many of the precise mechanisms accounting for the development and progression of NAFLD are unclear. The environment in early life is an important determinant of cardiovascular disease risk in later life and studies suggest this also extends to NAFLD. Here we review data from animal models and human studies which suggest that fetal and early life exposure to maternal under- and overnutrition, excess glucocorticoids and environmental pollutants may confer an increased susceptibility to NAFLD development and progression in offspring and that such effects may be sex-specific. We also consider studies aimed at identifying potential dietary and pharmacological interventions aimed at reducing this risk. We suggest that further human epidemiological studies are needed to ensure that data from animal models are relevant to human health.
Collapse
|
20
|
Reynolds CM, Segovia SA, Vickers MH. Experimental Models of Maternal Obesity and Neuroendocrine Programming of Metabolic Disorders in Offspring. Front Endocrinol (Lausanne) 2017; 8:245. [PMID: 28993758 PMCID: PMC5622157 DOI: 10.3389/fendo.2017.00245] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/06/2017] [Indexed: 12/17/2022] Open
Abstract
Evidence from epidemiological, clinical, and experimental studies have clearly shown that disease risk in later life is increased following a poor early life environment, a process preferentially termed developmental programming. In particular, this work clearly highlights the importance of the nutritional environment during early development with alterations in maternal nutrition, including both under- and overnutrition, increasing the risk for a range of cardiometabolic and neurobehavioral disorders in adult offspring characterized by both adipokine resistance and obesity. Although the mechanistic basis for such developmental programming is not yet fully defined, a common feature derived from experimental animal models is that of alterations in the wiring of the neuroendocrine pathways that control energy balance and appetite regulation during early stages of developmental plasticity. The adipokine leptin has also received significant attention with clear experimental evidence that normal regulation of leptin levels during the early life period is critical for the normal development of tissues and related signaling pathways that are involved in metabolic and cardiovascular homeostasis. There is also increasing evidence that alterations in the epigenome and other underlying mechanisms including an altered gut-brain axis may contribute to lasting cardiometabolic dysfunction in offspring. Ongoing studies that further define the mechanisms between these associations will allow for identification of early risk markers and implementation of strategies around interventions that will have obvious beneficial implications in breaking a programmed transgenerational cycle of metabolic disorders.
Collapse
Affiliation(s)
| | | | - Mark H. Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
- *Correspondence: Mark H. Vickers,
| |
Collapse
|
21
|
Alwahsh SM, Gebhardt R. Dietary fructose as a risk factor for non-alcoholic fatty liver disease (NAFLD). Arch Toxicol 2016; 91:1545-1563. [PMID: 27995280 DOI: 10.1007/s00204-016-1892-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/08/2016] [Indexed: 12/16/2022]
Abstract
Glucose is a major energy source for the entire body, while fructose metabolism occurs mainly in the liver. Fructose consumption has increased over the last decade globally and is suspected to contribute to the increased incidence of non-alcoholic fatty liver disease (NAFLD). NAFLD is a manifestation of metabolic syndrome affecting about one-third of the population worldwide and has progressive pathological potential for liver cirrhosis and cancer through non-alcoholic steatohepatitis (NASH). Here we have reviewed the possible contribution of fructose to the pathophysiology of NAFLD. We critically summarize the current findings about several regulators, and their potential mechanisms, that have been studied in humans and animal models in response to fructose exposure. A novel hypothesis on fructose-dependent perturbation of liver regeneration and metabolism is advanced. Fructose intake could affect inflammatory and metabolic processes, liver function, gut microbiota, and portal endotoxin influx. The role of the brain in controlling fructose ingestion and the subsequent development of NAFLD is highlighted. Although the importance for fructose (over)consumption for NAFLD in humans is still debated and comprehensive intervention studies are invited, understanding of how fructose intake can favor these pathological processes is crucial for the development of appropriate noninvasive diagnostic and therapeutic approaches to detect and treat these metabolic effects. Still, lifestyle modification, to lessen the consumption of fructose-containing products, and physical exercise are major measures against NAFLD. Finally, promising drugs against fructose-induced insulin resistance and hepatic dysfunction that are emerging from studies in rodents are reviewed, but need further validation in human patients.
Collapse
Affiliation(s)
- Salamah Mohammad Alwahsh
- Faculty of Medicine, Institute of Biochemistry, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany. .,MCR Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Dr, EH16 4UU Edinburgh, UK.
| | - Rolf Gebhardt
- Faculty of Medicine, Institute of Biochemistry, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany.
| |
Collapse
|
22
|
Wankhade UD, Thakali KM, Shankar K. Persistent influence of maternal obesity on offspring health: Mechanisms from animal models and clinical studies. Mol Cell Endocrinol 2016; 435:7-19. [PMID: 27392497 DOI: 10.1016/j.mce.2016.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 02/07/2023]
Abstract
The consequences of excessive maternal weight and adiposity at conception for the offspring are now well recognized. Maternal obesity increases the risk of overweight and obesity even in children born with appropriate-for-gestational age (AGA) birth weights. Studies in animal models have employed both caloric excess and manipulation of macronutrients (especially high-fat) to mimic hypercaloric intake present in obesity. Findings from these studies show transmission of susceptibility to obesity, metabolic dysfunction, alterations in glucose homeostasis, hepatic steatosis, skeletal muscle metabolism and neuroendocrine changes in the offspring. This review summarizes the essential literature in this area in both experimental and clinical domains and focuses on the translatable aspects of these experimental studies. Moreover this review highlights emerging mechanisms broadly explaining maternal obesity-associated developmental programming. The roles of early developmental alterations and placental adaptations are also reviewed. Increasing evidence also points to changes in the epigenome and other emerging mechanisms such as alterations in the microbiome that may contribute to persistent changes in the offspring. Finally, we examine potential interventions that have been employed in clinical cohorts.
Collapse
Affiliation(s)
- Umesh D Wankhade
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Keshari M Thakali
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Kartik Shankar
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
23
|
Taurine ameliorated thyroid function in rats co-administered with chlorpyrifos and lead. Vet Res Commun 2016; 40:123-129. [DOI: 10.1007/s11259-016-9662-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 08/16/2016] [Indexed: 11/25/2022]
|
24
|
Clayton ZE, Vickers MH, Bernal A, Yap C, Sloboda DM. Early Life Exposure to Fructose Alters Maternal, Fetal and Neonatal Hepatic Gene Expression and Leads to Sex-Dependent Changes in Lipid Metabolism in Rat Offspring. PLoS One 2015; 10:e0141962. [PMID: 26562417 PMCID: PMC4643022 DOI: 10.1371/journal.pone.0141962] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 10/15/2015] [Indexed: 02/06/2023] Open
Abstract
Aim Fructose consumption is associated with altered hepatic function and metabolic compromise and not surprisingly has become a focus for perinatal studies. We have previously shown that maternal fructose intake results in sex specific changes in fetal, placental and neonatal outcomes. In this follow-up study we investigated effects on maternal, fetal and neonatal hepatic fatty acid metabolism and immune modulation. Methods Pregnant rats were randomised to either control (CON) or high-fructose (FR) diets. Fructose was given in solution and comprised 20% of total caloric intake. Blood and liver samples were collected at embryonic day 21 (E21) and postnatal day (P)10. Maternal liver samples were also collected at E21 and P10. Liver triglyceride and glycogen content was measured with standard assays. Hepatic gene expression was measured with qPCR. Results Maternal fructose intake during pregnancy resulted in maternal hepatic ER stress, hepatocellular injury and increased levels of genes that favour lipogenesis. These changes were associated with a reduction in the NLRP3 inflammasome. Fetuses of mothers fed a high fructose diet displayed increased hepatic fructose transporter and reduced fructokinase mRNA levels and by 10 days of postnatal age, also have hepatic ER stress, and elevated IL1β mRNA levels. At P10, FR neonates demonstrated increased hepatic triglyceride content and particularly in males, associated changes in the expression of genes regulating beta oxidation and the NLRP3 inflammasome. Further, prenatal fructose results in sex-dependant changes in levels of key clock genes. Conclusions Maternal fructose intake results in age and sex-specific alterations in maternal fetal and neonatal free fatty acid metabolism, which may be associated in disruptions in core clock gene machinery. How these changes are associated with hepatic inflammatory processes is still unclear, although suppression of the hepatic inflammasome, as least in mothers and male neonates may point to impaired immune sensing.
Collapse
Affiliation(s)
- Zoe E. Clayton
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Aukland, New Zealand
| | - Mark H. Vickers
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Aukland, New Zealand
| | - Angelica Bernal
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Aukland, New Zealand
| | - Cassandra Yap
- Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Aukland, New Zealand
| | - Deborah M. Sloboda
- Departments of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Department of Obstetrics and Gynaecology, McMaster University, Hamilton, Canada
- Department of Pediatrics, McMaster University, Hamilton, Canada
- * E-mail:
| |
Collapse
|
25
|
Pre-gestational overweight in guinea pig sows induces fetal vascular dysfunction and increased rate of large and small fetuses. J Dev Orig Health Dis 2015; 7:237-243. [PMID: 26490762 DOI: 10.1017/s2040174415007266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In humans, obesity before and during pregnancy is associated with both fetal macrosomia and growth restriction, and long-term cardiovascular risk in the offspring. We aimed to determine whether overweighted pregnant guinea pig sows results in an increased fetal weight at term and the effects on the vascular reactivity in fetal systemic and umbilical arteries. Pregnant guinea pigs were classified as control (n=4) or high weight (HWS, n=5) according to their pre-mating weight, and their fetuses extracted at 0.9 gestation (~60 days). Segments of fetal femoral and umbilical arteries were mounted in a wire myograph, where the contractile response to KCl (5-125 mM), and the relaxation to nitric oxide synthase-dependent agents (insulin, 10-10-10-7 and acetylcholine, 10-10-10-5) and nitric oxide [sodium nitroprusside (SNP), 10-10-10-5] were determined. Fetuses from HWS (HWSF) were grouped according to their body weight as low (85 g) fetal weight, based on the confidence interval (76.5-84.9 g) of the control group. No HWSF were observed in the normal range. Umbilical arteries from HWSF showed a lower response to KCl and insulin compared with controls, but a comparable response with SNP. Conversely, femoral arteries from HWSF showed an increased response to KCl and acetylcholine, along with a decreased sensitivity to SNP. These data show that overweight sows have altered fetal growth along gestation. Further, large and small fetuses from obese guinea pig sows showed altered vascular reactivity at umbilical and systemic vessels, which potentially associates with long-term cardiovascular risk.
Collapse
|
26
|
Neri C, Edlow AG. Effects of Maternal Obesity on Fetal Programming: Molecular Approaches. Cold Spring Harb Perspect Med 2015; 6:a026591. [PMID: 26337113 DOI: 10.1101/cshperspect.a026591] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Maternal obesity has become a worldwide epidemic. Obesity and a high-fat diet have been shown to have deleterious effects on fetal programming, predisposing offspring to adverse cardiometabolic and neurodevelopmental outcomes. Although large epidemiological studies have shown an association between maternal obesity and adverse outcomes for offspring, the underlying mechanisms remain unclear. Molecular approaches have played a key role in elucidating the mechanistic underpinnings of fetal malprogramming in the setting of maternal obesity. These approaches include, among others, characterization of epigenetic modifications, microRNA expression, the gut microbiome, the transcriptome, and evaluation of specific mRNA expression via quantitative reverse transcription polmerase chain reaction (RT-qPCR) in fetuses and offspring of obese females. This work will review the data from animal models and human fluids/cells regarding the effects of maternal obesity on fetal and offspring neurodevelopment and cardiometabolic outcomes, with a particular focus on molecular approaches.
Collapse
Affiliation(s)
- Caterina Neri
- Department of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome 00100, Italy
| | - Andrea G Edlow
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Tufts Medical Center, Boston, Massachusetts 02111 Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| |
Collapse
|
27
|
Rizzo GS, Sen S. Maternal obesity and immune dysregulation in mother and infant: A review of the evidence. Paediatr Respir Rev 2015; 16:251-7. [PMID: 25454382 DOI: 10.1016/j.prrv.2014.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/17/2014] [Indexed: 01/06/2023]
Abstract
Obesity is a worldwide public health epidemic. Increasing numbers of reproductive-age women enter pregnancy overweight or obese and there is now convincing data that this adverse in utero environment impacts both fetal and lifelong development. Epidemiologic evidence has shown a simultaneous increase in obesity and asthma rates in developed countries and maternal obesity is a risk factor for infant asthma and wheeze. Here we review the state of research linking maternal obesity and immunomodulation in both mother and infant, with specific attention to the relationship between maternal obesity and offspring asthma. We will also propose several different mechanisms by which maternal obesity may predispose offspring to this chronic condition and briefly summarize interventions that have been trialed to limit this association.
Collapse
Affiliation(s)
- Giulia S Rizzo
- Tufts University School of Medicine, 145 Harrison Ave, Boston, MA 02111, USA.
| | - Sarbattama Sen
- Brigham and Women's Hospital, Department of Pediatric Newborn Medicine, 75 Francis St, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Segovia SA, Vickers MH, Zhang XD, Gray C, Reynolds CM. Maternal supplementation with conjugated linoleic acid in the setting of diet-induced obesity normalises the inflammatory phenotype in mothers and reverses metabolic dysfunction and impaired insulin sensitivity in offspring. J Nutr Biochem 2015; 26:1448-57. [PMID: 26318151 DOI: 10.1016/j.jnutbio.2015.07.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 06/25/2015] [Accepted: 07/18/2015] [Indexed: 12/12/2022]
Abstract
Maternal consumption of a high-fat diet significantly impacts the fetal environment and predisposes offspring to obesity and metabolic dysfunction during adulthood. We examined the effects of a high-fat diet during pregnancy and lactation on metabolic and inflammatory profiles and whether maternal supplementation with the anti-inflammatory lipid conjugated linoleic acid (CLA) could have beneficial effects on mothers and offspring. Sprague-Dawley rats were fed a control (CD; 10% kcal from fat), CLA (CLA; 10% kcal from fat, 1% total fat as CLA), high-fat (HF; 45% kcal from fat) or high fat with CLA (HFCLA; 45% kcal from fat, 1% total fat as CLA) diet ad libitum 10days prior to and throughout gestation and lactation. Dams and offspring were culled at either late gestation (fetal day 20, F20) or early postweaning (postnatal day 24, P24). CLA, HF and HFCLA dams were heavier than CD throughout gestation. Plasma concentrations of proinflammatory cytokines interleukin-1β and tumour necrosis factor-α were elevated in HF dams, with restoration in HFCLA dams. Male and female fetuses from HF dams were smaller at F20 but displayed catch-up growth and impaired insulin sensitivity at P24, which was reversed in HFCLA offspring. HFCLA dams at P24 were protected from impaired insulin sensitivity as compared to HF dams. Maternal CLA supplementation normalised inflammation associated with consumption of a high-fat diet and reversed associated programming of metabolic dysfunction in offspring. This demonstrates that there are critical windows of developmental plasticity in which the effects of an adverse early-life environment can be reversed by maternal dietary interventions.
Collapse
Affiliation(s)
- Stephanie A Segovia
- Liggins Institute and Gravida, National Centre for Growth and Development, University of Auckland, Auckland 1023, New Zealand
| | - Mark H Vickers
- Liggins Institute and Gravida, National Centre for Growth and Development, University of Auckland, Auckland 1023, New Zealand
| | - Xiaoyuan D Zhang
- Liggins Institute and Gravida, National Centre for Growth and Development, University of Auckland, Auckland 1023, New Zealand
| | - Clint Gray
- Liggins Institute and Gravida, National Centre for Growth and Development, University of Auckland, Auckland 1023, New Zealand
| | - Clare M Reynolds
- Liggins Institute and Gravida, National Centre for Growth and Development, University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
29
|
Taurine supplementation preserves hypothalamic leptin action in normal and protein-restricted mice fed on a high-fat diet. Amino Acids 2015; 47:2419-35. [PMID: 26133737 DOI: 10.1007/s00726-015-2035-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 06/17/2015] [Indexed: 12/19/2022]
|
30
|
Reynolds CM, Vickers MH, Harrison CJ, Segovia SA, Gray C. Maternal high fat and/or salt consumption induces sex-specific inflammatory and nutrient transport in the rat placenta. Physiol Rep 2015; 3:3/5/e12399. [PMID: 25991721 PMCID: PMC4463828 DOI: 10.14814/phy2.12399] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Maternal high fat and salt consumption are associated with developmental programming of disease in adult offspring. Inadequacies in placental nutrient transport may explain these ‘programmed effects’. Diet-induced inflammation may have detrimental effects on placental function leading to alteration of key nutrient transporters. We examined the effects of maternal high fat and/or salt diets on markers of placental nutrient transport and inflammation. Sprague–Dawley rats were assigned to (1) control (CD; 1% Salt 10% kcal from fat); (2) high salt (SD; 4% salt, 10% kcal from fat); (3) high fat (HF; 1% Salt 45% kcal from fat) or (4) high fat high salt (HFSD; 4% salt, 45% kcal from fat) 21 days prior to and throughout gestation. At embryonic day 18, dams were killed by isoflurane anesthesia followed by decapitation; placenta/fetuses were weighed, sexed, and collected for molecular analysis. Maternal SD, HF, and HFSD consumption decreased weight of placenta derived from male offspring; however, weight of placenta derived from female offspring was only reduced with maternal HF diet. This was associated with increased expression of LPL, SNAT2, GLUT1, and GLUT4 in placenta derived from male offspring suggesting increased fetal exposure to free fatty acids and glucose. Maternal SD, HF, and HFSD diet consumption increased expression of proinflammatory mediators IL-1β, TNFα, and CD68 in male placenta. Our results suggest that a proinflammatory placental profile results in detrimental alterations in nutrient transport which may contribute to the developmental origins of cardio-metabolic disturbances in offspring throughout life.
Collapse
Affiliation(s)
- Clare M Reynolds
- Liggins Institute and Gravida, National Centre for Growth and Development University of Auckland, Auckland, New Zealand
| | - Mark H Vickers
- Liggins Institute and Gravida, National Centre for Growth and Development University of Auckland, Auckland, New Zealand
| | - Claudia J Harrison
- Liggins Institute and Gravida, National Centre for Growth and Development University of Auckland, Auckland, New Zealand
| | - Stephanie A Segovia
- Liggins Institute and Gravida, National Centre for Growth and Development University of Auckland, Auckland, New Zealand
| | - Clint Gray
- Liggins Institute and Gravida, National Centre for Growth and Development University of Auckland, Auckland, New Zealand
| |
Collapse
|
31
|
Developmental Programming of Nonalcoholic Fatty Liver Disease: The Effect of Early Life Nutrition on Susceptibility and Disease Severity in Later Life. BIOMED RESEARCH INTERNATIONAL 2015; 2015:437107. [PMID: 26090409 PMCID: PMC4450221 DOI: 10.1155/2015/437107] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/15/2015] [Indexed: 12/20/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is fast becoming the most common liver disease globally and parallels rising obesity rates. The developmental origins of health and disease hypothesis have linked alterations in the early life environment to an increased risk of metabolic disorders in later life. Altered early life nutrition, in addition to increasing risk for the development of obesity, type 2 diabetes, and cardiovascular disease in offspring, is now associated with an increased risk for the development of NAFLD. This review summarizes emerging research on the developmental programming of NAFLD by both maternal obesity and undernutrition with a particular focus on the possible mechanisms underlying the development of hepatic dysfunction and potential strategies for intervention.
Collapse
|
32
|
Early-life exposure to high-fat diet may predispose rats to gender-specific hepatic fat accumulation by programming Pepck expression. J Nutr Biochem 2015; 26:433-40. [DOI: 10.1016/j.jnutbio.2014.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 09/28/2014] [Accepted: 10/16/2014] [Indexed: 12/25/2022]
|
33
|
Wang D, Chen S, Liu M, Liu C. Maternal obesity disrupts circadian rhythms of clock and metabolic genes in the offspring heart and liver. Chronobiol Int 2015; 32:615-26. [PMID: 25928088 DOI: 10.3109/07420528.2015.1025958] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Early life nutritional adversity is tightly associated with the development of long-term metabolic disorders. Particularly, maternal obesity and high-fat diets cause high risk of obesity in the offspring. Those offspring are also prone to develop hyperinsulinemia, hepatic steatosis and cardiovascular diseases. However, the precise underlying mechanisms leading to these metabolic dysregulation in the offspring remain unclear. On the other hand, disruptions of diurnal circadian rhythms are known to impair metabolic homeostasis in various tissues including the heart and liver. Therefore, we investigated that whether maternal obesity perturbs the circadian expression rhythms of clock, metabolic and inflammatory genes in offspring heart and liver by using RT-qPCR and Western blotting analysis. Offspring from lean and obese dams were examined on postnatal day 17 and 35, when pups were nursed by their mothers or took food independently. On P17, genes examined in the heart either showed anti-phase oscillations (Cpt1b, Pparα, Per2) or had greater oscillation amplitudes (Bmal1, Tnf-α, Il-6). Such phase abnormalities of these genes were improved on P35, while defects in amplitudes still existed. In the liver of 17-day-old pups exposed to maternal obesity, the oscillation amplitudes of most rhythmic genes examined (except Bmal1) were strongly suppressed. On P35, the oscillations of circadian and inflammatory genes became more robust in the liver, while metabolic genes were still kept non-rhythmic. Maternal obesity also had a profound influence in the protein expression levels of examined genes in offspring heart and liver. Our observations indicate that the circadian clock undergoes nutritional programing, which may contribute to the alternations in energy metabolism associated with the development of metabolic disorders in early life and adulthood.
Collapse
Affiliation(s)
- Danfeng Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University , Nanjing , China and
| | | | | | | |
Collapse
|
34
|
Li M, Reynolds C, Sloboda D, Gray C, Vickers M. Maternal taurine supplementation attenuates maternal fructose-induced metabolic and inflammatory dysregulation and partially reverses adverse metabolic programming in offspring. J Nutr Biochem 2015; 26:267-76. [DOI: 10.1016/j.jnutbio.2014.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/09/2014] [Accepted: 10/30/2014] [Indexed: 01/06/2023]
|
35
|
A maternal high fat diet programmes endothelial function and cardiovascular status in adult male offspring independent of body weight, which is reversed by maternal conjugated linoleic acid (CLA) supplementation. PLoS One 2015; 10:e0115994. [PMID: 25695432 PMCID: PMC4335063 DOI: 10.1371/journal.pone.0115994] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/03/2014] [Indexed: 12/17/2022] Open
Abstract
Maternal high fat intake during pregnancy and lactation can result in obesity and adverse cardio-metabolic status in offspring independent of postnatal diet. While it is clear that maternal high fat intake can cause hypertension in adult offspring, there is little evidence regarding the role of dietary interventions in terms of reversing these adverse effects. Conjugated linoleic acid (CLA) is an omega 6 fatty acid with beneficial effects in obesity and metabolic status. However, the impact of CLA supplementation in the context of pregnancy disorders and high fat diet-induced developmental programming of offspring cardio-metabolic dysfunction has not been investigated. We have utilised a model of maternal overnutrition to examine the effects of CLA supplementation on programmed endothelial dysfunction during adulthood. Female Sprague-Dawley rats were fed either a purified control diet (CON) or purified control diet supplemented with 1% CLA (of total fat), a purified high fat (HF) diet (45%kcal from fat) and a purified HF diet supplemented with 1% CLA (of total fat) (HFCLA). All dams were fed ad libitum throughout pregnancy and lactation. Offspring were fed a standard chow diet from weaning (day 21) until the end of the study (day 150). Systolic blood pressure (SBP) was measured at day 85 and 130 by tail cuff plethysmography. At day 150, offspring mesenteric vessels were mounted on a pressure myograph and vascular responses to agonist-induced constriction and endothelium-dependent vasodilators were investigated. SBP was increased at day 85 and 130 in HF and HFCLA adult male offspring compared to CON and CLA groups with no effect of CLA supplementation. An overall effect of a maternal HF diet was observed in adult male vessels with a reduced vasoconstrictor response to phenylephrine and blunted vasodilatory response to acetylcholine (ACh). Furthermore, HF and HFCLA offspring displayed a reduction in nitric oxide pathway function and an increased compensatory EDHF function when compared to CON and CLA groups. These data suggest that a maternal HF diet causes a developmental programming of endothelial dysfunction and hypertension in male offspring which can be partially improved by maternal CLA supplementation, independent of offspring body weight.
Collapse
|
36
|
Jasoni CL, Sanders TR, Kim DW. Do all roads lead to Rome? The role of neuro-immune interactions before birth in the programming of offspring obesity. Front Neurosci 2015; 8:455. [PMID: 25691854 PMCID: PMC4315034 DOI: 10.3389/fnins.2014.00455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/23/2014] [Indexed: 12/20/2022] Open
Abstract
The functions of the nervous system can be powerfully modulated by the immune system. Although traditionally considered to be quite separate, neuro-immune interactions are increasingly recognized as critical for both normal and pathological nervous system function in the adult. However, a growing body of information supports a critical role for neuro-immune interactions before birth, particularly in the prenatal programming of later-life neurobehavioral disease risk. This review will focus on maternal obesity, as it represents an environment of pathological immune system function during pregnancy that elevates offspring neurobehavioral disease risk. We will first delineate the normal role of the immune system during pregnancy, including the role of the placenta as both a barrier and relayer of inflammatory information between the maternal and fetal environments. This will be followed by the current exciting findings of how immuno-modulatory molecules may elevate offspring risk of neurobehavioral disease by altering brain development and, consequently, later life function. Finally, by drawing parallels with pregnancy complications other than obesity, we will suggest that aberrant immune activation, irrespective of its origin, may lead to neuro-immune interactions that otherwise would not exist in the developing brain. These interactions could conceivably derail normal brain development and/or later life function, and thereby elevate risk for obesity and other neurobehavioral disorders later in the offspring's life.
Collapse
Affiliation(s)
- Christine L Jasoni
- Department of Anatomy, Centre for Neuroendocrinology, Gravida: National Centre for Growth and Development, University of Otago Dunedin, New Zealand
| | - Tessa R Sanders
- Department of Anatomy, Centre for Neuroendocrinology, Gravida: National Centre for Growth and Development, University of Otago Dunedin, New Zealand
| | - Dong Won Kim
- Department of Anatomy, Centre for Neuroendocrinology, Gravida: National Centre for Growth and Development, University of Otago Dunedin, New Zealand
| |
Collapse
|
37
|
Gohir W, Ratcliffe EM, Sloboda DM. Of the bugs that shape us: maternal obesity, the gut microbiome, and long-term disease risk. Pediatr Res 2015; 77:196-204. [PMID: 25314580 DOI: 10.1038/pr.2014.169] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/15/2014] [Indexed: 01/06/2023]
Abstract
Chronic disease risk is inextricably linked to our early-life environment, where maternal, fetal, and childhood factors predict disease risk later in life. Currently, maternal obesity is a key predictor of childhood obesity and metabolic complications in adulthood. Although the mechanisms are unclear, new and emerging evidence points to our microbiome, where the bacterial composition of the gut modulates the weight gain and altered metabolism that drives obesity. Over the course of pregnancy, maternal bacterial load increases, and gut bacterial diversity changes and is influenced by pre-pregnancy- and pregnancy-related obesity. Alterations in the bacterial composition of the mother have been shown to affect the development and function of the gastrointestinal tract of her offspring. How these microbial shifts influence the maternal-fetal-infant relationship is a topic of hot debate. This paper will review the evidence linking nutrition, maternal obesity, the maternal gut microbiome, and fetal gut development, bringing together clinical observations in humans and experimental data from targeted animal models.
Collapse
Affiliation(s)
- Wajiha Gohir
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | | | - Deborah M Sloboda
- 1] Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada [2] Department of Pediatrics, McMaster University, Hamilton, Canada [3] Department of Obstetrics and Gynecology, McMaster University, Hamilton, Canada
| |
Collapse
|
38
|
Zhou C, Li G, Li Y, Gong L, Huang Y, Shi Z, Du S, Li Y, Wang M, Yin J, Sun C. A high-throughput metabolomic approach to explore the regulatory effect of mangiferin on metabolic network disturbances of hyperlipidemia rats. MOLECULAR BIOSYSTEMS 2015; 11:418-33. [DOI: 10.1039/c4mb00421c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This paper was designed to study metabolomic characters of the high-fat diet (HFD)-induced hyperlipidemia and the intervention effects of Mangiferin (MG).
Collapse
|
39
|
de Fátima Leão V, Raimundo JM, Ferreira LLDM, Santos-Silva JC, Vettorazzi JF, Bonfleur ML, Carneiro EM, Ribeiro RA. Effects of Paternal Hypothalamic Obesity and Taurine Supplementation on Adiposity and Vascular Reactivity in Rat Offspring. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:749-63. [DOI: 10.1007/978-3-319-15126-7_60] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
The importance of early life in childhood obesity and related diseases: a report from the 2014 Gravida Strategic Summit. J Dev Orig Health Dis 2014; 5:398-407. [PMID: 25308169 PMCID: PMC4255318 DOI: 10.1017/s2040174414000488] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Obesity and its related non-communicable diseases (NCDs), such as type 2 diabetes, heart disease and cancer, impose huge burdens on society, particularly the healthcare system. Until recently, public health and policy were primarily focused on secondary prevention and treatment of NCDs. However, epidemiological and experimental evidence indicates that early-life exposures influence the risk of childhood obesity and related diseases later in life, and has now focused attention on the health of both mother and child. During pregnancy and the early neonatal period, individuals respond to their environment by establishing anatomical, physiological and biochemical trajectories that shape their future health. This period of developmental plasticity provides an early window of opportunity to mitigate the environmental insults that may increase an individual’s sensitivity to, or risk of, developing obesity or related diseases later in life. Although much investigation has already occurred in the area of Developmental Origins of Health and Disease research, the science itself is still in its infancy. It remains for researchers to tackle the important outstanding questions and translate their knowledge into workable solutions for the public good. The challenge, however, is to decide which areas to focus on. With these opportunities and challenges in mind, the 2014 Gravida Summit convened to examine how its early-life research program can determine which areas of research into mechanisms, biomarkers and interventions could contribute to the international research strategy to fight childhood obesity and its related diseases.
Collapse
|
41
|
Maternal obesity, inflammation, and developmental programming. BIOMED RESEARCH INTERNATIONAL 2014; 2014:418975. [PMID: 24967364 PMCID: PMC4055365 DOI: 10.1155/2014/418975] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/30/2014] [Indexed: 12/11/2022]
Abstract
The prevalence of obesity, especially in women of child-bearing age, is a global health concern. In addition to increasing the immediate risk of gestational complications, there is accumulating evidence that maternal obesity also has long-term consequences for the offspring. The concept of developmental programming describes the process in which an environmental stimulus, including altered nutrition, during critical periods of development can program alterations in organogenesis, tissue development, and metabolism, predisposing offspring to obesity and metabolic and cardiovascular disorders in later life. Although the mechanisms underpinning programming of metabolic disorders remain poorly defined, it has become increasingly clear that low-grade inflammation is associated with obesity and its comorbidities. This review will discuss maternal metainflammation as a mediator of programming in insulin sensitive tissues in offspring. Use of nutritional anti-inflammatories in pregnancy including omega 3 fatty acids, resveratrol, curcumin, and taurine may provide beneficial intervention strategies to ameliorate maternal obesity-induced programming.
Collapse
|
42
|
Sloboda DM, Li M, Patel R, Clayton ZE, Yap C, Vickers MH. Early life exposure to fructose and offspring phenotype: implications for long term metabolic homeostasis. J Obes 2014; 2014:203474. [PMID: 24864200 PMCID: PMC4017842 DOI: 10.1155/2014/203474] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 03/03/2014] [Indexed: 11/17/2022] Open
Abstract
The consumption of artificially sweetened processed foods, particularly high in fructose or high fructose corn syrup, has increased significantly in the past few decades. As such, interest into the long term outcomes of consuming high levels of fructose has increased significantly, particularly when the exposure is early in life. Epidemiological and experimental evidence has linked fructose consumption to the metabolic syndrome and associated comorbidities-implicating fructose as a potential factor in the obesity epidemic. Yet, despite the widespread consumption of fructose-containing foods and beverages and the rising incidence of maternal obesity, little attention has been paid to the possible adverse effects of maternal fructose consumption on the developing fetus and long term effects on offspring. In this paper we review studies investigating the effects of fructose intake on metabolic outcomes in both mother and offspring using human and experimental studies.
Collapse
Affiliation(s)
- Deborah M. Sloboda
- The Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, HSC 4H30A, Hamilton, ON, Canada L8S 4K1
| | - Minglan Li
- The Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand
| | - Rachna Patel
- The Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand
| | - Zoe E. Clayton
- The Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand
| | - Cassandra Yap
- The Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand
| | - Mark H. Vickers
- The Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
43
|
Froger N, Moutsimilli L, Cadetti L, Jammoul F, Wang QP, Fan Y, Gaucher D, Rosolen SG, Neveux N, Cynober L, Sahel JA, Picaud S. Taurine: the comeback of a neutraceutical in the prevention of retinal degenerations. Prog Retin Eye Res 2014; 41:44-63. [PMID: 24721186 DOI: 10.1016/j.preteyeres.2014.03.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 12/21/2022]
Abstract
Taurine is the most abundant amino acid in the retina. In the 1970s, it was thought to be involved in retinal diseases with photoreceptor degeneration, because cats on a taurine-free diet presented photoreceptor loss. However, with the exception of its introduction into baby milk and parenteral nutrition, taurine has not yet been incorporated into any commercial treatment with the aim of slowing photoreceptor degeneration. Our recent discovery that taurine depletion is involved in the retinal toxicity of the antiepileptic drug vigabatrin has returned taurine to the limelight in the field of neuroprotection. However, although the retinal toxicity of vigabatrin principally involves a deleterious effect on photoreceptors, retinal ganglion cells (RGCs) are also affected. These findings led us to investigate the possible role of taurine depletion in retinal diseases with RGC degeneration, such as glaucoma and diabetic retinopathy. The major antioxidant properties of taurine may influence disease processes. In addition, the efficacy of taurine is dependent on its uptake into retinal cells, microvascular endothelial cells and the retinal pigment epithelium. Disturbances of retinal vascular perfusion in these retinal diseases may therefore affect the retinal uptake of taurine, resulting in local depletion. The low plasma taurine concentrations observed in diabetic patients may further enhance such local decreases in taurine concentration. We here review the evidence for a role of taurine in retinal ganglion cell survival and studies suggesting that this compound may be involved in the pathophysiology of glaucoma or diabetic retinopathy. Along with other antioxidant molecules, taurine should therefore be seriously reconsidered as a potential treatment for such retinal diseases.
Collapse
Affiliation(s)
- Nicolas Froger
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France.
| | - Larissa Moutsimilli
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France
| | - Lucia Cadetti
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France
| | - Firas Jammoul
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France
| | - Qing-Ping Wang
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France
| | - Yichao Fan
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France
| | - David Gaucher
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France; Nouvel hôpital civil, hôpitaux universitaires de Strasbourg and Laboratoire de Bactériologie (EA-7290), Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, France
| | - Serge G Rosolen
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France
| | - Nathalie Neveux
- Department of Nutrition, Faculty of Pharmacy, Paris Descartes University, Paris, France; Clinical Chemistry, Hôtel-Dieu-Cochin Hospitals, AP-HP, Paris, France
| | - Luc Cynober
- Department of Nutrition, Faculty of Pharmacy, Paris Descartes University, Paris, France; Clinical Chemistry, Hôtel-Dieu-Cochin Hospitals, AP-HP, Paris, France
| | - José-Alain Sahel
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France; Institute of Ophthalmology, University College of London, UK; Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; French Academy of Sciences, Paris, France
| | - Serge Picaud
- INSERM, U968, Institut de la Vision, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie (Paris-6), UMR S 968, Institut de la Vision, Paris, France; CNRS, UMR 7210, Institut de la Vision, Paris, France; Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.
| |
Collapse
|