1
|
Cong M, Hu JJ, Yu Y, Li XL, Sun XT, Wang LT, Wu X, Zhu LJ, Yang XJ, He QR, Ding F, Shi HY. miRNA-21-5p is an important contributor to the promotion of injured peripheral nerve regeneration using hypoxia-pretreated bone marrow-derived neural crest cells. Neural Regen Res 2025; 20:277-290. [PMID: 38767492 PMCID: PMC11246143 DOI: 10.4103/1673-5374.390956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/06/2023] [Accepted: 09/26/2023] [Indexed: 05/22/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202501000-00035/figure1/v/2024-05-14T021156Z/r/image-tiff Our previous study found that rat bone marrow-derived neural crest cells (acting as Schwann cell progenitors) have the potential to promote long-distance nerve repair. Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication. Nevertheless, the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear. To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves, we collected conditioned culture medium from hypoxia-pretreated neural crest cells, and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation. The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells. We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells. Subsequently, to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons, we used a microfluidic axonal dissociation model of sensory neurons in vitro, and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons, which was greatly dependent on loaded miR-21-5p. Finally, we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb, as well as muscle tissue morphology of the hind limbs, were obviously restored. These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p. miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome. This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves, and also promotes the application of miR-21-5p in tissue engineering regeneration medicine.
Collapse
Affiliation(s)
- Meng Cong
- School of Medicine, Nantong University, Nantong, Jiangsu Province, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jing-Jing Hu
- School of Medicine, Nantong University, Nantong, Jiangsu Province, China
- Department of Physiology, Jiangsu Health Vocational College, Nanjing, Jiangsu Province, China
| | - Yan Yu
- School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Li Li
- School of Medicine, Nantong University, Nantong, Jiangsu Province, China
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Ting Sun
- School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Li-Ting Wang
- School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Xia Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ling-Jie Zhu
- School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Jia Yang
- School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Qian-Ru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Hai-Yan Shi
- School of Medicine, Nantong University, Nantong, Jiangsu Province, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Zhang A, Lu L, Yang F, Luo T, Yang S, Yang P, Li X, Deng X, Qiu Y, Chen L, Long K, Pan D, Jin L, Li M, Chen L. Effects of miR-29c on proliferation and adipogenic differentiation of porcine bone marrow mesenchymal stromal cells. Adipocyte 2024; 13:2365211. [PMID: 38858810 PMCID: PMC11174058 DOI: 10.1080/21623945.2024.2365211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
microRNAs (miRNAs), a subclass of noncoding short RNAs, direct cells fate decisions that are important for cell proliferation and cell lineage decisions. Adipogenic differentiation contributes greatly to the development of white adipose tissue, involving of highly organized regulation by miRNAs. In the present study, we screened and identified 78 differently expressed miRNAs of porcine BMSCs during adipogenic differentiation. Of which, the role of miR-29c in regulating the proliferation and adipogenic differentiation was proved and detailed. Specifically, over-expression miR-29c inhibits the proliferation and adipogenic differentiation of BMSCs, which were reversed upon miR-29c inhibitor. Interference of IGF1 inhibits the proliferation and adipogenic differentiation of BMSCs. Mechanistically, miR-29c regulates the proliferation and adipogenic differentiation of BMSCs by targeting IGF1 and further regulating the MAPK pathway and the PI3K-AKT-mTOR pathway, respectively. In conclusion, we highlight the important role of miR-29c in regulating proliferation and adipogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Anjing Zhang
- Department of Pig Production, Chongqing Academy of Animal Science, Chongqing, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lu Lu
- Department of Pig Production, Chongqing Academy of Animal Science, Chongqing, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Fuxing Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tingting Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shuqi Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Peidong Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xuemin Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaoli Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yang Qiu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Litong Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Dengke Pan
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Chen
- Department of Pig Production, Chongqing Academy of Animal Science, Chongqing, China
- Key Laboratory of Animal Resource Evaluation and Utilization (Pigs), Ministry of Agriculture and Rural Affairs, Chongqing, China
| |
Collapse
|
3
|
Hossein Geranmayeh M, Farokhi-Sisakht F, Sadigh-Eteghad S, Rahbarghazi R, Mahmoudi J, Farhoudi M. Simultaneous Pericytes and M2 Microglia Transplantation Improve Cognitive Function in Mice Model of mPFC Ischemia. Neuroscience 2023; 529:62-72. [PMID: 37591334 DOI: 10.1016/j.neuroscience.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023]
Abstract
Cerebral ischemia is one of the major problems threatening global health. Many of the cerebral ischemia survivors would suffer from the physical and cognitive disabilities for their whole lifetime. Cell based-therapies have been introduced as a therapeutic approach for alleviating ischemia-enforced limitations. Photothrombotic stroke model was applied on the left medial prefrontal cortex (mPFC) of adult male BALB/c mice. Then, pericytes isolated from brain microvessels of adult male BALB/c mice, microglia isolated from brain cortices of the neonatal male BALB/c mice, and M2 phenotype shifted microglia by IL-4 treatment were used for transplantation into the injured area after 24 h of ischemia induction. The behavioural outcomes evaluated by social interaction and Barnes tests and the levels of growth associated protein (GAP)-43 and inflammatory cytokine interleukin (IL)-1 protein were assessed by western blotting 7 days after cell transplantation. Animals in both of the microglia + pericytes and microglia M2 + pericytes transplanted groups showed better performance in social memory as well as enhanced spatial learning and memory compared to ischemic controls. Also, improved escape latency was only observed in microglia M2 + pericytes (p < 0.01) group compared to ischemic controls. GAP-43 showed significant protein expression in microglia + pericytes and microglia M2 + pericytes groups compared to the control group. Conversely, IL-1 levels diminished in all of the pericytes microglia + pericytes, and microglia M2 + pericytes groups compared to the ischemic controls. Current study highlights efficiency of M2 microglia and pericytes combinatory transplantation therapeutic role on relieving ischemic stroke outcomes.
Collapse
Affiliation(s)
- Mohammad Hossein Geranmayeh
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Zhou L, Wang J, Huang J, Song X, Wu Y, Chen X, Tan Y, Yang Q. The role of mesenchymal stem cell transplantation for ischemic stroke and recent research developments. Front Neurol 2022; 13:1000777. [PMID: 36468067 PMCID: PMC9708730 DOI: 10.3389/fneur.2022.1000777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/03/2022] [Indexed: 09/08/2023] Open
Abstract
Ischemic stroke is a common cerebrovascular disease that seriously affects human health. However, most patients do not practice self-care and cannot rely on the current clinical treatment for guaranteed functional recovery. Stem cell transplantation is an emerging treatment studied in various central nervous system diseases. More importantly, animal studies show that transplantation of mesenchymal stem cells (MSCs) can alleviate neurological deficits and bring hope to patients suffering from ischemic stroke. This paper reviews the biological characteristics of MSCs and discusses the mechanism and progression of MSC transplantation to provide new therapeutic directions for ischemic stroke.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Asgari Taei A, Khodabakhsh P, Nasoohi S, Farahmandfar M, Dargahi L. Paracrine Effects of Mesenchymal Stem Cells in Ischemic Stroke: Opportunities and Challenges. Mol Neurobiol 2022; 59:6281-6306. [PMID: 35922728 DOI: 10.1007/s12035-022-02967-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 07/17/2022] [Indexed: 10/16/2022]
Abstract
It is well acknowledged that neuroprotective effects of transplanted mesenchymal stem cells (MSCs) in ischemic stroke are attributed to their paracrine-mediated actions or bystander effects rather than to cell replacement in infarcted areas. This therapeutic plasticity is due to MSCs' ability to secrete a broad range of bioactive molecules including growth factors, trophic factors, cytokines, chemokines, and extracellular vesicles, overall known as the secretome. The secretome derivatives, such as conditioned medium (CM) or purified extracellular vesicles (EVs), exert remarkable advantages over MSC transplantation in stroke treating. Here, in this review, we used published information to provide an overview on the secretome composition of MSCs, underlying mechanisms of therapeutic effects of MSCs, and preclinical studies on MSC-derived products application in stroke. Furthermore, we discussed current advantages and challenges for successful bench-to-bedside translation.
Collapse
Affiliation(s)
- Afsaneh Asgari Taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pariya Khodabakhsh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Bone marrow-derived mesenchymal stem cells improve post-ischemia neurological function in rats via the PI3K/AKT/GSK-3β/CRMP-2 pathway. Mol Cell Biochem 2021; 476:2193-2201. [PMID: 33559827 DOI: 10.1007/s11010-021-04073-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/16/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) is a potential therapy for cerebral ischemia. However, the underlying protective mechanism remains undetermined. Here, we tested the hypothesis that transplantation of BMSCs via intravenous injection can alleviate neurological functional deficits through activating PI3K/AKT signaling pathway after cerebral ischemia in rats. METHODS A cerebral ischemic rat model was established by the 2 h middle cerebral artery occlusion (MCAO). Twenty-four hours later, BMSCs (1 × 106 in 1 ml PBS) from SD rats were injected into the tail vein. Neurological function was evaluated by modified neurological severity score (mNSS) and modified adhesive removal test before and on d1, d3, d7, d10 and d14 after MCAO. Protein expressions of AKT, GSK-3β, CRMP-2 and GAP-43 were detected by Western-bolt. NF-200 was detected by immunofluorescence. RESULTS BMSCs transplantation did not only significantly improve the mNSS score and the adhesive-removal somatosensory test after MCAO, but also increase the density of NF-200 and the expression of p-AKT, pGSK-3β and GAP-43, while decrease the expression of pCRMP-2. Meanwhile, these effects can be suppressed by LY294002, a specific inhibitor of PI3K/AKT. CONCLUSION These data suggest that transplantation of BMSCs could promote axon growth and neurological deficit recovery after MCAO, which was associated with activation of PI3K/AKT /GSK-3β/CRMP-2 signaling pathway.
Collapse
|
7
|
Tsai MJ, Liou DY, Chu YC, Chen Y, Huang MC, Huang WC, Cheng H, Tsai SK, Huang SS. Minocycline exhibits synergism with conditioned medium of bone marrow mesenchymal stem cells against ischemic stroke. J Tissue Eng Regen Med 2021; 15:279-292. [PMID: 33470523 DOI: 10.1002/term.3171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/29/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022]
Abstract
Several lines of evidence show that a conditioned medium of bone marrow mesenchymal stem cells (BM-MSCcm) improve functional recovery after ischemic stroke but do not reduce ischemic lesions. It is important to develop a treatment strategy that can exhibit a synergistic effect with BM-MSCcm against ischemic stroke. In this study, the effect of BM-MSCcm and/or minocycline was examined in culture and in a middle cerebral artery occlusion (MCAo) animal model. In neuron-glial cultures, BM-MSCcm and combined treatment, but not minocycline, effectively increased neuronal connection and oligodendroglial survival. In contrast, minocycline and combined treatment, but not BM-MSCcm, reduced toxin-induced free radical production in cultures. Either minocycline or BM-MSCcm, or in combination, conferred protective effects against oxygen glucose deprivation-induced cell damage. In an in vivo study, BM-MSCcm and minocycline were administered to rats 2 h after MCAo. Monotherapy with BM-MSCcm or minocycline after ischemic stroke resulted in 9.4% or 17.5% reduction in infarction volume, respectively, but there was no significant difference. Interestingly, there was a 33.9% significant reduction in infarction volume by combined treatment with BM-MSCcm and minocycline in an in vivo study. The combined therapy also significantly improved grasping power, which was not altered by monotherapy. Furthermore, combined therapy increased the expression of neuronal nuclei in the peri-infarct area and hippocampus, and concurrently decreased the expression of ED1 in rat brain and the peri-infarct zone. Our data suggest that minocycline exhibits a synergistic effect with BM-MSCcm against ischemic stroke not only to improve neurological functional outcome but also to reduce cerebral infarction.
Collapse
Affiliation(s)
- May-Jywan Tsai
- Department of Neurosurgery, Neural Regeneration Laboratory, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Dann-Ying Liou
- Department of Neurosurgery, Neural Regeneration Laboratory, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ya-Chun Chu
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi Chen
- Department of Neurosurgery, Neural Regeneration Laboratory, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Chao Huang
- Department of Neurosurgery, Neural Regeneration Laboratory, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wen-Cheng Huang
- Department of Neurosurgery, Neural Regeneration Laboratory, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan.,Center for Neural Regeneration, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Henrich Cheng
- Department of Neurosurgery, Neural Regeneration Laboratory, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Center for Neural Regeneration, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shen-Kou Tsai
- Department of Anesthesiology, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Shiang-Suo Huang
- Department of Pharmacology and Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
8
|
In Vitro Oxygen-Glucose Deprivation-Induced Stroke Models with Human Neuroblastoma Cell- and Induced Pluripotent Stem Cell-Derived Neurons. Stem Cells Int 2020; 2020:8841026. [PMID: 33178286 PMCID: PMC7647751 DOI: 10.1155/2020/8841026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022] Open
Abstract
Stroke is a devastating neurological disorder and one of the leading causes of mortality and disability. To understand the cellular and molecular mechanisms of stroke and to develop novel therapeutic approaches, two different in vitro human cell-based stroke models were established using oxygen-glucose deprivation (OGD) conditions. In addition, the effect of adipose stem cells (ASCs) on OGD-induced injury was studied. In the present study, SH-SY5Y human neuroblastoma cells and human induced pluripotent stem cells (hiPSCs) were differentiated into neurons, cultured under OGD conditions (1% O2) for 24 h, and subjected to a reperfusion period for 24 or 72 h. After OGD, ASCs were cocultured with neurons on inserts for 24 or 72 h to study the neuroprotective potential of ASCs. The effect of OGD and ASC coculture on the viability, apoptosis, and proliferation of and axonal damage to neuronal cells was studied. The results showed that OGD conditions induced cytotoxicity and apoptosis of SH-SY5Y- and hiPSC-derived neurons, although more severe damage was detected in SH-SY5Y-derived neurons than in hiPSC-derived neurons. Coculture with ASCs was protective for neurons, as the number of dead ASC-cocultured neurons was lower than that of control cells, and coculture increased the proliferation of both cell types. To conclude, we developed in vitro human cell-based stroke models in SH-SY5Y- and hiPSC-derived neurons. This was the first time hiPSCs were used to model stroke in vitro. Since OGD had different effects on the studied cell types, this study highlights the importance of using several cell types in in vitro studies to confirm the outcomes of the study. Here, ASCs exerted a neuroprotective effect by increasing the proliferation and decreasing the death of SH-SY5Y- and hiPSC-derived neurons after OGD.
Collapse
|
9
|
Lai Y, Lin P, Chen M, Zhang Y, Chen J, Zheng M, Liu J, Du H, Chen R, Pan X, Liu N, Chen H. Restoration of L-OPA1 alleviates acute ischemic stroke injury in rats via inhibiting neuronal apoptosis and preserving mitochondrial function. Redox Biol 2020; 34:101503. [PMID: 32199783 PMCID: PMC7327985 DOI: 10.1016/j.redox.2020.101503] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Ischemic stroke can induce changes in mitochondrial morphology and function. As a regulatory gene in mitochondria, optic atrophy 1 (OPA1) plays a pivotal role in the regulation of mitochondrial dynamics and other related functions. However, its roles in cerebral ischemia-related conditions are barely understood. METHODS Cultured rat primary cortical neurons were respectively transfected with OPA1-v1ΔS1-encoding and OPA1-v1-encoding lentivirus before exposure to 2-h oxygen-glucose deprivation (OGD) and subsequent reoxygenation (OGD/R). Adult male SD rats received an intracranial injection of AAV-OPA1-v1ΔS1 and were subjected to 90 min of transient middle cerebral artery occlusion (tMCAO) followed by reperfusion. OPA1 expression and function were detected by in vitro and in vivo assays. RESULTS OPA1 was excessively cleaved after cerebral ischemia/reperfusion injury, both in vitro and in vivo. Under OGD/R condition, compared with that of the LV-OPA1-v1-treated group, the expression of OPA1-v1ΔS1 efficiently restored L-OPA1 level and alleviated neuronal death and mitochondrial morphological damage. Meanwhile, the expression of OPA1-v1ΔS1 markedly improved cerebral ischemia/reperfusion-induced motor function damage, attenuated brain infarct volume, neuronal apoptosis, mitochondrial bioenergetics deficits, oxidative stress, and restored the morphology of mitochondrial cristae and mitochondrial length. It also preserved the mitochondrial integrity and reinforced the mtDNA content and expression of mitochondrial biogenesis factors in ischemic rats. INTERPRETATION Our results demonstrate that the stabilization of L-OPA1 protects ischemic brains by reducing neuronal apoptosis and preserving mitochondrial function, suggesting its significance as a promising therapeutic target for stroke prevention and treatment.
Collapse
Affiliation(s)
- Yongxing Lai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, 350001, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Peiqiang Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, 350001, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Manli Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, 350001, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Yixian Zhang
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, 350001, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Jianhao Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, 350001, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Mouwei Zheng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, 350001, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Ji Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, 350001, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Houwei Du
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, 350001, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Ronghua Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, 350001, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Xiaodong Pan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Nan Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, 350001, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China.
| | - Hongbin Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, 350001, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China.
| |
Collapse
|
10
|
Chen H, Lin W, Lin P, Zheng M, Lai Y, Chen M, Zhang Y, Chen J, Lin X, Lin L, Lan Q, Yuan Q, Chen R, Jiang X, Xiao Y, Liu N. IL-10 produces a dual effect on OGD-induced neuronal apoptosis of cultured cortical neurons via the NF-κB pathway. Aging (Albany NY) 2019; 11:10796-10813. [PMID: 31801113 PMCID: PMC6932931 DOI: 10.18632/aging.102411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022]
Abstract
As a classic immunoregulatory cytokine, interleukin-10 (IL-10) can provide in vivo and in vitro neuroprotection respectively during cerebral ischemia and after the oxygen-glucose deprivation (OGD)-induced injury. However, its role in cortical neuronal survival at different post-ischemic phases remains unclear. The current study found that IL-10 had distinct effects on the neuronal apoptosis at different OGD stages: at an early stage after OGD, IL-10 promoted the OGD-induced neuronal apoptosis in the cultured primary cortical neurons by activating p65 subunit, which up-regulated Bax expression and down-regulated Bcl-xL expression; at a late OGD stage, however, it attenuated the OGD-induced neuronal apoptosis by activating c-Rel, which up-regulated Bcl-xL expression and down-regulated Bax expression. The early-stage pro-apoptosis and late-stage anti-apoptosis were both partly abolished by PDTC, an NF-κB inhibitor, and promoted by PMA, an NF-κB activator. The optimal anti-apoptotic effect appeared when the cultured neurons were treated with IL-10 at 9-24 h after OGD. Taken together, our findings suggest that IL-10 exerts a dual effect on the survival of the cultured neurons by activating the NF-κB pathway at different stages after OGD injury and that PMA treatment at a late stage can facilitate the IL-10-conferred neuroprotection against OGD-induced neuronal injury.
Collapse
Affiliation(s)
- Hongbin Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Wei Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Peiqiang Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Mouwei Zheng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yongxing Lai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Manli Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yixian Zhang
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Jianhao Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xiaohui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Longzai Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Quan Lan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.,Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qilin Yuan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Ronghua Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xinhong Jiang
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yingchun Xiao
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Nan Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Cerebral Vascular Diseases of Fujian Province, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Yang X, Zhang H, Wu J, Yin L, Yan LJ, Zhang C. Humanin Attenuates NMDA-Induced Excitotoxicity by Inhibiting ROS-dependent JNK/p38 MAPK Pathway. Int J Mol Sci 2018; 19:2982. [PMID: 30274308 PMCID: PMC6213259 DOI: 10.3390/ijms19102982] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/19/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022] Open
Abstract
Humanin (HN) is a novel 24-amino acid peptide that protects neurons against N-methyl-d-aspartate (NMDA)-induced toxicity. However, the contribution of the different mitogen-activated protein kinases (MAPKs) signals to HN neuroprotection against NMDA neurotoxicity remains unclear. The present study was therefore aimed to investigate neuroprotective mechanisms of HN. We analyzed intracellular Ca2+ levels, reactive oxygen species (ROS) production, and the MAPKs signal transduction cascade using an in vitro NMDA-mediated excitotoxicity of cortical neurons model. Results showed that: (1) HN attenuated NMDA-induced neuronal insults by increasing cell viability, decreasing lactate dehydrogenase (LDH) release, and increasing cell survival; (2) HN reversed NMDA-induced increase in intracellular calcium; (3) pretreatment by HN or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM), an intracellular calcium chelator, decreased ROS generation after NMDA exposure; (4) administration of HN or N-Acetyl-l-cysteine (NAC), a ROS scavenger, inhibited NMDA-induced JNK and p38 MAPK activation. These results indicated that HN reduced intracellular elevation of Ca2+ levels, which, in turn, inhibited ROS generation and subsequent JNK and p38 MAPK activation that are involved in promoting cell survival in NMDA-induced excitotoxicity. Therefore, the present study suggests that inhibition of ROS-dependent JNK/p38 MAPK signaling pathway serves an effective strategy for HN neuroprotection against certain neurological diseases.
Collapse
Affiliation(s)
- Xiaorong Yang
- National Key Disciplines, Key Laboratory for Cellular Physiology of Ministry of Education, Department of Neurobiology, Shanxi Medical University, Taiyuan 030001, China.
| | - Hongmei Zhang
- Department of Environmental Health, Shanxi Medical University, Taiyuan 030001, China.
| | - Jinzi Wu
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Litian Yin
- National Key Disciplines, Key Laboratory for Cellular Physiology of Ministry of Education, Department of Neurobiology, Shanxi Medical University, Taiyuan 030001, China.
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Ce Zhang
- National Key Disciplines, Key Laboratory for Cellular Physiology of Ministry of Education, Department of Neurobiology, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
12
|
Zhang Q, Zhou J, Lei H, Zhu CY, Li FF, Zheng D, Liu SL. RBPJ polymorphisms associated with cerebral infarction diseases in Chinese Han population: A Clinical Trial/Experimental Study (CONSORT Compliant). Medicine (Baltimore) 2018; 97:e11420. [PMID: 30075508 PMCID: PMC6081149 DOI: 10.1097/md.0000000000011420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
TRIAL DESIGN Cerebral small vessel diseases (CSVDs) are a group of brain pathological processes involving cerebral small arteries, brain venules, and capillaries. The recombination signal-binding protein Jκ (RBPJ) is implicated in the pathogenesis of these diseases but its actual roles need confirmation. The aim of this work was to evaluate variations in RBPJ gene for their possible associations with the disease. METHODS The RBPJ gene was sequenced for 400 patients with cerebral infarction disease and 600 normal controls. The statistical analyses and Hardy-Weinberg equilibrium tests of the patients and control populations were conducted using the SPSS software (version 19.0) and Plink (version 1.9), Haploview software, and online software SNPSpD. RESULTS We characterized variants rs2871198, rs1397731, rs3822223, rs2077777, rs2270226, and rs2788861 within or near the RBPJ gene. The genetic heterozygosity of rs2871198, rs1397731, rs3822223, rs2077777, and rs2270226 was very high. Statistical analysis showed that the variants rs2270226 and rs2077777 in the gene were associated with the risk of cerebral infarction diseases in the Chinese Han population. CONCLUSIONS rs2270226 and rs2077777 in the RBPJ gene were associated with the risk of cerebral infarction diseases in the Chinese Han population.
Collapse
Affiliation(s)
- Qiong Zhang
- College of Wildlife Resources, Northeast Forestry University
- Department of Antibiotics, Heilongjiang Institute for Food and Drug Control
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin
| | - Jie Zhou
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang
| | - Hong Lei
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang
| | - Chun-Yu Zhu
- Department of Neurology, Daqing Oilfield General Hospital, Daqing, China
| | - Fei-Feng Li
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang
| | - Dong Zheng
- College of Wildlife Resources, Northeast Forestry University
| | - Shu-Lin Liu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
13
|
Mukai T, Tojo A, Nagamura-Inoue T. Umbilical Cord-Derived Mesenchymal Stromal Cells Contribute to Neuroprotection in Neonatal Cortical Neurons Damaged by Oxygen-Glucose Deprivation. Front Neurol 2018; 9:466. [PMID: 29963009 PMCID: PMC6013549 DOI: 10.3389/fneur.2018.00466] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/31/2018] [Indexed: 12/11/2022] Open
Abstract
Several studies have reported that human umbilical cord-derived mesenchymal stromal cells (UC-MSCs) restore neurological damage in vivo through their secretion of paracrine factors. We previously found that UC-MSCs attenuate brain injury by secreting neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and hepatocyte growth factor (HGF). However, how these factors contribute to neuroprotection remains unknown. In this study, we aimed to investigate to what extent UC-MSC-derived HGF and BDNF contribute to neuroprotection using a Transwell co-culture system of neonatal cortical neurons damaged by oxygen-glucose deprivation. The influence of HGF and BDNF were determined by investigating neurons in both the presence and absence of UC-MSCs as these cells consistently secrete both factors and can be blocked by neutralizing antibodies. In the co-culture, UC-MSCs significantly improved neuronal injury, as indicated by an increase in immature neuron number, neurite outgrowth, and cell proliferation. Co-culture of damaged neurons with UC-MSCs also exhibited a reduction in the number of neurons displaying signs of apoptosis/necrosis. The neuroprotective actions of UC-MSCs were partially reverted by neutralizing antibodies. Together, our findings reveal that UC-MSC-secreted HGF and BDNF have neuroprotective effects on damaged neurons. Further studies should address the existence of other potential neurotrophic paracrine factors.
Collapse
Affiliation(s)
- Takeo Mukai
- Division of Molecular of Therapy, Center for Advanced Medical Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Cell Processing and Transfusion, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Arinobu Tojo
- Division of Molecular of Therapy, Center for Advanced Medical Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Cell Processing and Transfusion, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Comparisons of the therapeutic effects of three different routes of bone marrow mesenchymal stem cell transplantation in cerebral ischemic rats. Brain Res 2017; 1680:143-154. [PMID: 29274877 DOI: 10.1016/j.brainres.2017.12.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 01/19/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are mainly administered via three routes: intra-arterial, intravenous and intracerebral. It has been reported that BMSC administration via each route ameliorates the functional deficits after cerebral ischemia. However, there have been no comparisons of the therapeutic benefits of BMSC administration through different delivery routes. In this study, we injected BMSCs into a rat model of transient middle cerebral artery occlusion (MCAO) through the intra-arterial, intravenous, or intracerebral route at day 7 after MCAO. Control animals received only the vehicle. Neurological function was assessed at post-ischemic days (PIDs) 1, 7, 14, 21, 28 and 35 using behavioral tests (modified Neurological Severity Score (mNSS) and the adhesive removal test). At PID 35, the rat brain tissues were processed for histochemical and immunohistochemical staining. Our results showed that BMSC transplantation via the intra-arterial, intravenous, and intracerebral routes induced greater improvement in neurological functions than the control treatments; furthermore, the intra-arterial route showed the greatest degree and speed of neurological functional recovery. Moreover, BMSCs treatment through each route enhanced reconstruction of axonal myelination in the area of the corpus callosum on the infarct side of the cerebral hemisphere, increased the expression of SYN and Ki-67, and decreased the expression of Nogo-A in the brain. These effects were more apparent in the intra-arterial group than in the intravenous and intracerebral groups. These data suggest that BMSCs transplantation, especially through intra-arterial delivery, can effectively improve neurological function intra-arterial. The underlying mechanism may include the promotion of synaptogenesis, endogenous cell proliferation, and axonal regeneration.
Collapse
|
15
|
Cui HJ, Liu S, Yang R, Fu GH, Lu Y. N-stearoyltyrosine protects primary cortical neurons against oxygen-glucose deprivation-induced apoptosis through inhibiting anandamide inactivation system. Neurosci Res 2017; 123:8-18. [PMID: 28499834 DOI: 10.1016/j.neures.2017.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 12/22/2022]
Abstract
N-stearoylthrosine (NST), a synthesized anandamide (AEA) analogue, plays a neuroprotective role in neurodegenerative diseases and cerebrovascular diseases. Several studies have demonstrated that the endocannabinoids systems (ECS) are involved in the neuroprotective effects against cerebral ischemic injury. Oxygen-glucose deprivation (OGD)-induced neuronal injury elevated the levels of endocannabinoids and activated ECS. This research was conducted to investigate the neuroprotective effect of NST against OGD-induced neuronal injury in cultured primary cortical neurons and the potential mechanism involved. Cortical neurons were treated with NST at indicate concentrations for 30min prior to injury and OGD injured neurons were incubated with normal conditions for 0-24h. The best neuroprotective effect of NST against OGD-induced injury occurred at 10μM. All data indicated that the neuroprotective effect of NST against OGD-induced injury resulted from blocking anandamide membrane transporter (AMT) (IC50=11.74nM) and inhibiting fatty acid amide hydrolase activity (FAAH) (IC50=16.54nM). Our findings demonstrated that NST has an important role in cerebral ischemic injury pathological progression through activating cannabinoid receptors by inhibiting AEA inactivation system. These data suggested a potential role for NST in the therapeutic consideration of cerebral ischemic injury. However, inhibition of AEA inactivation system may provide a neuroprotective effect during cerebral ischemic injury.
Collapse
Affiliation(s)
- Heng-Jing Cui
- Department of Pharmacy, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Sha Liu
- Department of Pharmacy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Rui Yang
- Department of Pharmacy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Guo-Hui Fu
- Department of Pathology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Yang Lu
- Department of Pharmacy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| |
Collapse
|
16
|
Baez-Jurado E, Vega GG, Aliev G, Tarasov VV, Esquinas P, Echeverria V, Barreto GE. Blockade of Neuroglobin Reduces Protection of Conditioned Medium from Human Mesenchymal Stem Cells in Human Astrocyte Model (T98G) Under a Scratch Assay. Mol Neurobiol 2017; 55:2285-2300. [PMID: 28332151 DOI: 10.1007/s12035-017-0481-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/03/2017] [Indexed: 12/25/2022]
Abstract
Previous studies have indicated that paracrine factors (conditioned medium) increase wound closure and reduce reactive oxygen species in a traumatic brain injury in vitro model. Although the beneficial effects of conditioned medium from human adipose tissue-derived mesenchymal stem cells (hMSCA-CM) have been previously suggested for various neurological diseases, their actions on astrocytic cells are not well understood. In this study, we have explored the effect of hMSCA-CM on human astrocyte model (T98G cells) subjected to scratch assay. Our results indicated that hMSCA-CM improved cell viability, reduced nuclear fragmentation, attenuated the production of reactive oxygen species, and preserved mitochondrial membrane potential and ultrastructural parameters. In addition, hMSCA-CM upregulated neuroglobin in T98G cells and the genetic silencing of this protein prevented the protective action of hMSCA-CM on damaged cells, suggesting that neuroglobin is mediating, at least in part, the protective effect of hMSCA-CM. Overall, this evidence suggests that the use of hMSCA-CM is a promising therapeutic strategy for the protection of astrocytic cells in central nervous system (CNS) pathologies.
Collapse
Affiliation(s)
- Eliana Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Gina Guio Vega
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
- GALLY International Biomedical Research Consulting LLC, San Antonio, TX, 78229, USA
- School of Health Science and Healthcare Administration, University of Atlanta, Johns Creek, GA, 30097, USA
| | - Vadim V Tarasov
- Institute of Pharmacy and Translational Medicine, Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya st., 119991, Moscow, Russia
| | - Paula Esquinas
- Facultad Medicina Veterinaria y Zootecnia, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Valentina Echeverria
- Facultad Ciencias de la Salud, Universidad San Sebastián, Lientur 1457, 4030000, Concepción, Chile
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
17
|
Zhu CY, Wang Y, Zeng QX, Qian Y, Li H, Yang ZX, Yang YM, Zhang Q, Li FF, Liu SL. Combined effects of age and polymorphisms in Notch3 in the pathogenesis of cerebral infarction disease. Metab Brain Dis 2016; 31:1157-64. [PMID: 27370894 DOI: 10.1007/s11011-016-9868-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022]
Abstract
Cerebral infarction disease is a severe hypoxic ischemic tissue necrosis in the brain, often leading to long-term functional disability and residual impairments. The Notch signaling pathway plays key roles in proliferation and survival of the stem/progenitor cells of the central and peripheral nervous systems. Notch3 is an important member of the pathway, but the relationships between the genetic abnormalities and cerebral infarction disease still remain unclear. The aim of this work was to evaluate variations in Notch3 gene for their possible associations with the cerebral infarction disease. We sequenced the Notch3 gene for 260 patients with cerebral infarction disease, 300 normal controls with old ages and 300 normal controls with younger ages, and identified the variations. The statistical analyses were conducted using Chi-Square Tests as implemented in SPSS (version 19.0). The Hardy-Weinberg equilibrium test of the population was carried out using the online software OEGE. Six variations, including rs1044116, rs1044009, rs1044006, rs10408676, rs1043996 and rs16980398 within or near the Notch3 gene, were found. The genetic heterozygosity of rs1044116, rs1044009, rs1044006, and rs1043996 was very high, whereas that of rs10408676 and rs16980398 was very low. Statistical analyses showed that rs1044009 and rs1044006 were associated with the risk of cerebral infarction disease in the Chinese Han agedness population. The SNPs rs1044009 and rs1044006 in the Notch3 gene were associated with the risk of cerebral infarction diseases in the Chinese Han agedness population.
Collapse
Affiliation(s)
- Chun-Yu Zhu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
- Department of Neurology, Daqing Oilfield General Hospital, Daqing, China
| | - Yue Wang
- Department of Occupational Health, College of Public Health, Harbin Medical University, Harbin, China
| | - Qing-Xuan Zeng
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Yu Qian
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Huan Li
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Zi-Xia Yang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Ya-Mei Yang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | - Qiong Zhang
- Department of Antibiotics, Heilongjiang province food and drug inspection testing Institute, Harbin, China
| | - Fei-Feng Li
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China.
| | - Shu-Lin Liu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China.
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Canada.
| |
Collapse
|
18
|
Wei S, Tong J, Xue Q, Liu Y, Xu X. Pathways Involved in Oxygen Glucose Deprivation Damage of Astrocytes. J Mol Neurosci 2016; 61:115-122. [DOI: 10.1007/s12031-016-0832-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/30/2016] [Indexed: 01/10/2023]
|
19
|
IL-10 Promotes Neurite Outgrowth and Synapse Formation in Cultured Cortical Neurons after the Oxygen-Glucose Deprivation via JAK1/STAT3 Pathway. Sci Rep 2016; 6:30459. [PMID: 27456198 PMCID: PMC4960594 DOI: 10.1038/srep30459] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 07/06/2016] [Indexed: 01/02/2023] Open
Abstract
As a classic immunoregulatory and anti-inflammatory cytokine, interleukin-10 (IL-10) provides neuroprotection in cerebral ischemia in vivo or oxygen-glucose deprivation (OGD)-induced injury in vitro. However, it remains blurred whether IL-10 promotes neurite outgrowth and synapse formation in cultured primary cortical neurons after OGD injury. In order to evaluate its effect on neuronal apoptosis, neurite outgrowth and synapse formation, we administered IL-10 or IL-10 neutralizing antibody (IL-10NA) to cultured rat primary cortical neurons after OGD injury. We found that IL-10 treatment activated the Janus kinase 1 (JAK1)/signal transducers and activators of transcription 3 (STAT3) signaling pathway. Moreover, IL-10 attenuated OGD-induced neuronal apoptosis by down-regulating the Bax expression and up-regulating the Bcl-2 expression, facilitated neurite outgrowth by increasing the expression of Netrin-1, and promoted synapse formation in cultured primary cortical neurons after OGD injury. These effects were partly abolished by JAK1 inhibitor GLPG0634. Contrarily, IL-10NA produced opposite effects on the cultured cortical neurons after OGD injury. Taken together, our findings suggest that IL-10 not only attenuates neuronal apoptosis, but also promotes neurite outgrowth and synapse formation via the JAK1/STAT3 signaling pathway in cultured primary cortical neurons after OGD injury.
Collapse
|
20
|
Gervois P, Wolfs E, Ratajczak J, Dillen Y, Vangansewinkel T, Hilkens P, Bronckaers A, Lambrichts I, Struys T. Stem Cell-Based Therapies for Ischemic Stroke: Preclinical Results and the Potential of Imaging-Assisted Evaluation of Donor Cell Fate and Mechanisms of Brain Regeneration. Med Res Rev 2016; 36:1080-1126. [DOI: 10.1002/med.21400] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/27/2016] [Accepted: 06/17/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Pascal Gervois
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| | - Esther Wolfs
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| | - Jessica Ratajczak
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| | - Yörg Dillen
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| | - Tim Vangansewinkel
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| | - Petra Hilkens
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| | - Annelies Bronckaers
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| | - Ivo Lambrichts
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| | - Tom Struys
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| |
Collapse
|
21
|
Chen MR, Dai P, Wang SF, Song SH, Wang HP, Zhao Y, Wang TH, Liu J. BDNF Overexpression Exhibited Bilateral Effect on Neural Behavior in SCT Mice Associated with AKT Signal Pathway. Neurochem Res 2016; 41:2585-2597. [PMID: 27278760 DOI: 10.1007/s11064-016-1970-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 01/31/2023]
Abstract
Spinal cord injury (SCI), a severe health problem in worldwide, was commonly associated with functional disability and reduced quality of life. As the expression of brain-derived neurotrophic factor (BDNF) was substantial event in injured spinal cord, we hypothesized whether BDNF-overexpression could be in favor of the recovery of both sensory function and hindlimb function after SCI. By using BDNF-overexpression transgene mice [CMV-BDNF 26 (CB26) mice] we assessed the role of BDNF on the recovery of neurological behavior in spinal cord transection (SCT) model. BMS score and tail-flick test was performed to evaluate locomotor function and sensory function, respectively. Immunohistochemistry was employed to detect the location and the expression of BDNF, NeuN, 5-HT, GAP-43, GFAP as well as CGRP, and the level of p-AKT and AKT were examined through western blot analysis. BDNF overexpressing resulted in significant locomotor functional recovery from 21 to 28 days after SCT, compared with wild type (WT)+SCT group. Meanwhile, the NeuN, 5-HT and GAP-43 positive cells were markedly increased in ventral horn in BDNF overexpression animals, compared with WT mice with SCT. Moreover, the crucial molecular signal, p-AKT/AKT has been largely up-regulated, which is consistent with the improvement of locomotor function. However, in this study, thermal hyperpathia encountered in sham (CB26) group and WT+SCT mice and further aggravated in CB26 mice after SCT. Also, following SCT, the significant augment of positive-GFAP astrocytes and CGRP fibers were found in WT+SCT mice, and further increase was seen in BDNF over-expression transgene mice. BDNF-overexpression may not only facilitate the recovery of locomotor function via AKT pathway, but also contributed simultaneously to thermal hyperalgesia after SCT.
Collapse
Affiliation(s)
- Mei-Rong Chen
- Animal Center, Kunming Medical University, Kunming, 650031, China
| | - Ping Dai
- Institute of Neuroscience, Molecular Clinic Institute, Kunming Medical University, Kunming, 650031, China
| | - Shu-Fen Wang
- Institute of Neuroscience, Molecular Clinic Institute, Kunming Medical University, Kunming, 650031, China
| | - Shu-Hua Song
- Key Laboratory of National Physical Health and Altitude Training Adaptation in Yunnan Normal University, Kunming, 650000, China
| | - Hang-Ping Wang
- Key Laboratory of National Physical Health and Altitude Training Adaptation in Yunnan Normal University, Kunming, 650000, China
| | - Ya Zhao
- Institute of Neuroscience, Molecular Clinic Institute, Kunming Medical University, Kunming, 650031, China
| | - Ting-Hua Wang
- Animal Center, Kunming Medical University, Kunming, 650031, China.
- Institute of Neuroscience, Molecular Clinic Institute, Kunming Medical University, Kunming, 650031, China.
| | - Jia Liu
- Animal Center, Kunming Medical University, Kunming, 650031, China.
| |
Collapse
|
22
|
Jiang XH, Lin KX, Zhang YX, Chen RH, Liu N. Correlating interleukin-10 promoter gene polymorphisms with human cerebral infarction onset. Neural Regen Res 2016; 10:1809-13. [PMID: 26807116 PMCID: PMC4705793 DOI: 10.4103/1673-5374.170308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Evidence suggests that interleukin-10 (IL-10) deficiency exacerbates inflammation and worsens the outcome of brain ischemia. In view of the critical role of the single nucleotide polymorphic sites -1082 (A/G) and -819 (C/T) in the promoter region of the IL-10 gene, we hypothesized that they are associated with cerebral infarction morbidity in the Chinese Han population. We genotyped these allelic gene polymorphisms by amplification refractory mutation system-polymerase chain reaction methods in 181 patients with cerebral infarction (cerebral infarction group) and 115 healthy subjects (control group). We identified significant differences in genotype distribution and allele frequency of the IL-10-1082 A/G allele between cerebral infarction and control groups (χ2 = 6.643, P = 0.010). The IL-10-1082 A allele frequency was significantly higher in the cerebral infarction group (92.3%) than in the control group (86.1%) (P = 0.015). Moreover, cerebral infarction risk of the AA genotype was 2-fold higher than with the AG genotype (OR = 2.031, 95%CI: 1.134–3.637). In addition, AA genotype together with hypertension was the independent risk factor of cerebral infarction (OR = 2.073, 95%CI: 1.278–3.364). No statistical difference in genotype distribution or allele frequency of IL-10-819 C/T was found between cerebral infarction and control groups (P > 0.05). These findings suggest that the IL-10-1082 A/G gene polymorphism is involved in cerebral infarction, and increased A allele frequency is closely associated with occurrence of cerebral infarction.
Collapse
Affiliation(s)
- Xin-Hong Jiang
- Department of Rehabilitation, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Ke-Xu Lin
- Department of Emergency, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yi-Xian Zhang
- Department of Rehabilitation, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Rong-Hua Chen
- Department of Neurology, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Nan Liu
- Department of Rehabilitation, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, China; Department of Neurology, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
23
|
Aertker BM, Bedi S, Cox CS. Strategies for CNS repair following TBI. Exp Neurol 2016; 275 Pt 3:411-426. [DOI: 10.1016/j.expneurol.2015.01.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/08/2015] [Accepted: 01/22/2015] [Indexed: 12/20/2022]
|
24
|
He GQ, Xu WM, Li JF, Li SS, Liu B, Tan XD, Li CQ. Huwe1 interacts with Gadd45b under oxygen-glucose deprivation and reperfusion injury in primary Rat cortical neuronal cells. Mol Brain 2015; 8:88. [PMID: 26698301 PMCID: PMC4690333 DOI: 10.1186/s13041-015-0178-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/08/2015] [Indexed: 01/31/2023] Open
Abstract
Background Growth arrest and DNA-damage inducible protein 45 beta (Gadd45b) is serving as a neuronal activity sensor. Brain ischemia induces the expression of Gadd45b, which stimulates recovery after stroke and may play a protective role in cerebral ischemia. However, little is known of the molecular mechanisms of how Gadd45b expression regulated and the down-stream targets in brain ischemia. Here, using an oxygen-glucose deprivation and reperfusion (OGD/R) model, we identified Huwe1/Mule/ARF-BP1, a HECT domain containing ubiquitin ligase, involved in the control of Gadd45b protein level. In this study, we also investigated the role of Huwe1-Gadd45b mediated pathway in BDNF methylation. Results We found that the depletion of Huwe1 by lentivirus shRNA mediated interference significantly increased the expression of Gadd45b and BDNF at 24 h after OGD. Moreover, treatment with Cycloheximide (CHX) inhibited endogenous expression of Gadd45b, and promoted expression of Gadd45b after co-treated with lentivirus shRNA-Huwe1. Inhibition of Gadd45b by lentivirus shRNA decreased the expression levels of brain derived neurotrophic factor (BDNF) and phosphorylated cAMP response element-binding protein (p-CREB) pathway, while inhibition of Huwe1 increased the expression levels of BDNF and p-CREB. Moreover, shRNA-Huwe1 treatment decreased the methylation level of the fifth CpG islands (123 bp apart from BDNF IXa), while shRNA-Gadd45b treatment increased the methylation level of the forth CpG islands (105 bp apart from BDNF IXa). Conclusions These findings suggested that Huwe1 involved in the regulation of Gadd45b expression under OGD/R, providing a novel route for neurons following cerebral ischemia-reperfusion injury. It also indicated that the methylation of BDNF IXa was affected by Gadd45b as well as Huwe1 in the OGD/R model. Electronic supplementary material The online version of this article (doi:10.1186/s13041-015-0178-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guo-qian He
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Wen-ming Xu
- Department of Obstetrics and Gynecology, Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hongkong Joint Laboratory for Reproductive Medicine (SCU-CUHK), Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jin-fang Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Shuai-shuai Li
- Department of Obstetrics and Gynecology, Joint Laboratory of Reproductive Medicine, Sichuan University-The Chinese University of Hongkong Joint Laboratory for Reproductive Medicine (SCU-CUHK), Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bin Liu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Jinan, 250000, China.
| | - Xiao-dan Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Chang-qing Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
25
|
Gu X, Li A, Liu S, Lin L, Xu S, Zhang P, Li S, Li X, Tian B, Zhu X, Wang X. MicroRNA124 Regulated Neurite Elongation by Targeting OSBP. Mol Neurobiol 2015; 53:6388-6396. [DOI: 10.1007/s12035-015-9540-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 11/09/2015] [Indexed: 01/30/2023]
|
26
|
Han Z, Ge X, Tan J, Chen F, Gao H, Lei P, Zhang J. Establishment of Lipofection Protocol for Efficient miR-21 Transfection into Cortical Neurons In Vitro. DNA Cell Biol 2015; 34:703-9. [PMID: 26485116 DOI: 10.1089/dna.2015.2800] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dysregulated microRNAs in neurons could cause many nervous system diseases. The therapeutic manipulation of these pathogenic microRNAs necessitates novel, efficient delivery systems to facilitate microRNA modulators targeting neurons with minimal off-target effects. The study aimed to establish a lipofection protocol to upregulate expression levels of miR-21 in neurons under different conditions, including different serum-free medium, transfection conditions, and reagent concentration, by evaluating the expression levels of miR-21 and neuron injury. The expression levels of miR-21 were higher in neurons transfected by Neurobasal-A than by DMEM. Expression levels of miR-21 were already the highest at the ratio RNAiMAX:miR-21 = 3:5, but the increase of RNAiMAX's concentration had not caused the further upregulation of expression level of miR-21. Neuron injury was condition dependent and dose dependent after transfection. Compared to S-Neurobasal groups, neurons have a smaller injury in N-Neurobasal groups, and compared to ratios RNAiMAX:miR-21 = 4:5, 5:5, neuron injury was smaller at ratios of RNAiMAX:miR-21 = 1:5, 2:5, 3:5. Without the pretreatment of starvation in vitro, the lipofection protocol was that RNAiMAX/miR-21 agomir complexes were diluted in Neurobasal-A at the ratio of RNAiMAX:miR-21 = 3:5.
Collapse
Affiliation(s)
- Zhaoli Han
- 1 Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin Medical University , Tianjin, China
| | - Xintong Ge
- 2 Department of Neurosurgery, Tianjin Neurological Institute General Hospital, Tianjin Medical University , Tianjin, China
| | - Jin Tan
- 1 Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin Medical University , Tianjin, China
| | - Fanglian Chen
- 2 Department of Neurosurgery, Tianjin Neurological Institute General Hospital, Tianjin Medical University , Tianjin, China
| | - Huabin Gao
- 2 Department of Neurosurgery, Tianjin Neurological Institute General Hospital, Tianjin Medical University , Tianjin, China
| | - Ping Lei
- 1 Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin Medical University , Tianjin, China
| | - Jianning Zhang
- 2 Department of Neurosurgery, Tianjin Neurological Institute General Hospital, Tianjin Medical University , Tianjin, China
| |
Collapse
|
27
|
Roubeix C, Godefroy D, Mias C, Sapienza A, Riancho L, Degardin J, Fradot V, Ivkovic I, Picaud S, Sennlaub F, Denoyer A, Rostene W, Sahel JA, Parsadaniantz SM, Brignole-Baudouin F, Baudouin C. Intraocular pressure reduction and neuroprotection conferred by bone marrow-derived mesenchymal stem cells in an animal model of glaucoma. Stem Cell Res Ther 2015; 6:177. [PMID: 26377305 PMCID: PMC4574127 DOI: 10.1186/s13287-015-0168-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 01/28/2015] [Accepted: 08/21/2015] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Glaucoma is a sight-threatening retinal neuropathy associated with elevated intraocular pressure (IOP) due to degeneration and fibrosis of the trabecular meshwork (TM). Glaucoma medications aim to reduce IOP without targeting the specific TM pathology, Bone-marrow mesenchymal stem cells (MSCs) are used today in various clinical studies. Here, we investigated the potential of MSCs therapy in an glaucoma-like ocular hypertension (OHT) model and decipher in vitro the effects of MSCs on primary human trabecular meshwork cells. METHODS Ocular hypertension model was performed by cauterization of 3 episcleral veins (EVC) of Long-Evans male rat eyes. MSCs were isolated from rat bone marrow, amplified in vitro and tagged with quantum dot nanocrystals. Animals were distributed as 1) MSCs group receiving 5.10(5)cells/6μl Minimum Essential Medium and 2) MEM group receiving 6μl MEM (n = 10 each). Injections were performed into the anterior chamber of 20 days-hypertensive eyes and IOP was monitored twice a week for 4 weeks. At the end of experiment, cell distribution in the anterior segment was examined in confocal microscopy on flat mounted corneas. Moreover, we tested in vitro effects of MSCs conditioned medium (MSC-CM) on primary human trabecular meshwork cells (hTM cells) using Akt activation, myosin phosphorylation and TGF-β2-dependent profibrotic phenotype in hTM cells. RESULTS We demonstrated a rapid and long-lasting in vivo effect of MSCs transplantation that significantly reduced IOP in hypertensive eyes induced by EVC. MSCs were located to the ciliary processes and the TM. Enumeration of RGCs on whole flat-mounted retina highlighted a protective effect of MSCs on RGCs death. In vitro, MSC-CM promotes: (i) hTM cells survival by activating the antiapoptotic pathway, Akt, (ii) hTM cells relaxation as analyzed by the decrease in myosin phosphorylation and (iii) inhibition of TGF-β2-dependent profibrotic phenotype acquisition in hTM cells. CONCLUSIONS MSCs injection in the ocular anterior chamber in a rat model of OHT provides neuroprotective effect in the glaucoma pathophysiology via TM protection. These results demonstrate that MSCs constitute promising tool for treating ocular hypertension and retinal cell degeneration.
Collapse
Affiliation(s)
- Christophe Roubeix
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
| | - David Godefroy
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
| | - Céline Mias
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR 1048, 31432 Toulouse cedex 4, France, Toulouse, France.
| | - Anaïs Sapienza
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
| | - Luisa Riancho
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
| | - Julie Degardin
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
| | - Valérie Fradot
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
| | - Ivana Ivkovic
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
| | - Serge Picaud
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
| | - Florian Sennlaub
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
| | - Alexandre Denoyer
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503, Paris, F-75012, France.
| | - William Rostene
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
| | - José Alain Sahel
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503, Paris, F-75012, France.
| | - Stéphane Melik Parsadaniantz
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
| | - Françoise Brignole-Baudouin
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503, Paris, F-75012, France.
- University Paris Descartes, Sorbonne Paris Cité, Paris, F-75006, France.
- Faculté de Pharmacie de Paris, University Paris Descartes, Sorbonne Paris Cité, Paris, F-75006, France.
| | - Christophe Baudouin
- INSERM, U968, Paris, F-75012, France.
- UPMC Université Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France.
- CNRS, UMR_7210, Paris, F-75012, France.
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503, Paris, F-75012, France.
- Department of Ophthalmology, Hôpital Ambroise Pare, AP HP, Boulogne, F-92100, France.
- University Versailles St Quentin en Yvelines, Montigny-Le-Bretonneux, F-78180, France.
| |
Collapse
|
28
|
Lin L, Chen H, Zhang Y, Lin W, Liu Y, Li T, Zeng Y, Chen J, Du H, Chen R, Tan Y, Liu N. IL-10 Protects Neurites in Oxygen-Glucose-Deprived Cortical Neurons through the PI3K/Akt Pathway. PLoS One 2015; 10:e0136959. [PMID: 26366999 PMCID: PMC4569574 DOI: 10.1371/journal.pone.0136959] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 08/10/2015] [Indexed: 12/15/2022] Open
Abstract
IL-10, as a cytokine, has an anti-inflammatory cascade following various injuries, but it remains blurred whether IL-10 protects neurites of cortical neurons after oxygen-glucose deprivation injury. Here, we reported that IL-10, in a concentration-dependent manner, reduced neuronal apoptosis and increased neuronal survival in oxygen-glucose-deprived primary cortical neurons, producing an optimal protective effect at 20ng/ml. After staining NF-H and GAP-43, we found that IL-10 significantly protected neurites in terms of axon length and dendrite number by confocal microscopy. Furthermore, it induced the phosphorylation of AKT, suppressed the activation of caspase-3, and up-regulated the protein expression of GAP-43. In contrast, LY294002, a specific inhibitor of PI3K/AKT, reduced the level of AKT phosphorylation and GAP-43 expression, increased active caspase-3 expression and thus significantly weakened IL-10-mediated protective effect in the OGD-induced injury model. IL-10NA, the IL-10 neutralizing antibody, reduced the level of p-PI3K phosphorylation and increased the expression of active caspase-3. These findings suggest that IL-10 provides neuroprotective effects by protecting neurites through PI3K/AKT signaling pathway in oxygen-glucose-deprived primary cortical neurons.
Collapse
Affiliation(s)
- Longzai Lin
- Department of Neurology, The Affiliated Union Hospital, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, Fujian, People’s Republic of China
| | - Hongbin Chen
- Department of Neurology, The Affiliated Union Hospital, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, Fujian, People’s Republic of China
| | - Yixian Zhang
- Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, Fujian, People’s Republic of China
- Department of Rehabilitation, The Affiliated Union Hospital, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Wei Lin
- Department of Neurology, The Affiliated Union Hospital, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, Fujian, People’s Republic of China
| | - Yong Liu
- Department of Neurology, The Affiliated Union Hospital, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, Fujian, People’s Republic of China
| | - Tin Li
- Department of Neurology, The Affiliated Union Hospital, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, Fujian, People’s Republic of China
| | - Yongping Zeng
- Department of Neurology, The Affiliated Union Hospital, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, Fujian, People’s Republic of China
| | - Jianhao Chen
- Department of Neurology, The Affiliated Union Hospital, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, Fujian, People’s Republic of China
| | - Houwei Du
- Department of Neurology, The Affiliated Union Hospital, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, Fujian, People’s Republic of China
| | - Ronghua Chen
- Department of Neurology, The Affiliated Union Hospital, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, Fujian, People’s Republic of China
| | - Yi Tan
- Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, Fujian, People’s Republic of China
| | - Nan Liu
- Department of Neurology, The Affiliated Union Hospital, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, Fujian, People’s Republic of China
- Department of Rehabilitation, The Affiliated Union Hospital, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- * E-mail:
| |
Collapse
|
29
|
Zhang YX, Yuan MZ, Cheng L, Lin LZ, Du HW, Chen RH, Liu N. Treadmill exercise enhances therapeutic potency of transplanted bone mesenchymal stem cells in cerebral ischemic rats via anti-apoptotic effects. BMC Neurosci 2015; 16:56. [PMID: 26342636 PMCID: PMC4560892 DOI: 10.1186/s12868-015-0196-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 08/25/2015] [Indexed: 12/23/2022] Open
Abstract
Background The transplantation of bone marrow stromal cells (MSCs) has proved to ameliorate ischemic brain injury in animals, but most transplanted MSCs undergo apoptosis in the ischemic penumbra, greatly compromising the therapeutic value of this treatment. Meanwhile, cell apoptosis can be inhibited by post-ischemia exercise which has been demonstrated to improve the expression of related anti-apoptotic proteins. The present study investigated whether treadmill exercise enhances the neuroprotective effects of transplanted MSCs in a rat experimental stroke model. Result Rats were subjected to 2-h middle cerebral artery occlusion (MCAO). Twenty-four hours after reperfusion, they were assigned randomly to receive no MSCs treatment and no exercise (control group), intravenous transplantation of MSCs and treadmill exercise (MSCs + Ex group), MSCs transplantation only (MSCs group) and treadmill exercise only (Ex group). Neurological assessment, TUNEL staining and western blot were performed. Compared with the MSCs group and Ex group, the MSCs + Ex group reported markedly improved neurological function, significantly decreased apoptotic cells, and increased expressions of survivin and bcl-2 (p < 0.05 or p < 0.01, respectively). Interestingly, the treadmill exercise significantly inhibited the apoptosis of transplanted MSCs. As a result, the number of engrafted MSCs in the MSCs + Ex group was significantly higher than that in the MSC group (p < 0.01). Conclusions Treadmill exercise enhances the therapeutic potency of MSCs by improving neurological function and possibly inhibiting the apoptosis of neuron cells and transplanted MSCs. These effects may involve an increased expression of survivin and bcl-2.
Collapse
Affiliation(s)
- Yi-Xian Zhang
- Department of Rehabilitation, Union Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China.
| | - Ming-Zhou Yuan
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People's Republic of China.
| | - Lin Cheng
- Department of Neurology, Union Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China.
| | - Long-Zai Lin
- Department of Neurology, Union Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China.
| | - Hou-Wei Du
- Department of Neurology, Union Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China.
| | - Rong-Hua Chen
- Department of Neurology, Union Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China.
| | - Nan Liu
- Department of Rehabilitation, Union Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China. .,Department of Neurology, Union Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China.
| |
Collapse
|
30
|
Meneghello G, Verheyen A, Van Ingen M, Kuijlaars J, Tuefferd M, Van Den Wyngaert I, Nuydens R. Evaluation of established human iPSC-derived neurons to model neurodegenerative diseases. Neuroscience 2015; 301:204-12. [DOI: 10.1016/j.neuroscience.2015.05.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/30/2015] [Accepted: 05/28/2015] [Indexed: 01/21/2023]
|
31
|
Zhang M, Liu D, Li S, Chang L, Zhang Y, Liu R, Sun F, Duan W, Du W, Wu Y, Zhao T, Xu C, Lu Y. Bone marrow mesenchymal stem cell transplantation retards the natural senescence of rat hearts. Stem Cells Transl Med 2015; 4:494-502. [PMID: 25855590 DOI: 10.5966/sctm.2014-0206] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/02/2015] [Indexed: 11/16/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) have been shown to offer a wide variety of cellular functions including the protective effects on damaged hearts. Here we investigated the antiaging properties of BMSCs and the underlying mechanism in a cellular model of cardiomyocyte senescence and a rat model of aging hearts. Neonatal rat ventricular cells (NRVCs) and BMSCs were cocultured in the same dish with a semipermeable membrane to separate the two populations. Monocultured NRVCs displayed the senescence-associated phenotypes, characterized by an increase in the number of β-galactosidase-positive cells and decreases in the degradation and disappearance of cellular organelles in a time-dependent manner. The levels of reactive oxygen species and malondialdehyde were elevated, whereas the activities of antioxidant enzymes superoxide dismutase and glutathione peroxidase were decreased, along with upregulation of p53, p21(Cip1/Waf1), and p16(INK4a) in the aging cardiomyocytes. These deleterious alterations were abrogated in aging NRVCs cocultured with BMSCs. Qualitatively, the same senescent phenotypes were consistently observed in aging rat hearts. Notably, BMSC transplantation significantly prevented these detrimental alterations and improved the impaired cardiac function in the aging rats. In summary, BMSCs possess strong antisenescence action on the aging NRVCs and hearts and can improve cardiac function after transplantation in aging rats. The present study, therefore, provides an alternative approach for the treatment of heart failure in the elderly population.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Di Liu
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Shuang Li
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Lingling Chang
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yu Zhang
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Ruixue Liu
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Fei Sun
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Wenqi Duan
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Weijie Du
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yanping Wu
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Tianyang Zhao
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Chaoqian Xu
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yanjie Lu
- Department of Pharmacology and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| |
Collapse
|
32
|
Horie N, Hiu T, Nagata I. Stem cell transplantation enhances endogenous brain repair after experimental stroke. Neurol Med Chir (Tokyo) 2015; 55:107-12. [PMID: 25746304 PMCID: PMC4533406 DOI: 10.2176/nmc.ra.2014-0271] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stem cell transplantation for stroke treatment has been a promising therapy in small and large animal models, and many clinical trials are ongoing to establish this strategy in a clinical setting. However, the mechanism underlying functional recovery after stem cell transplantation has not been fully established and there is still a need to determine the ideal subset of stem cells for such therapy. We herein reviewed the recent evidences showing the underlying mechanism of functional recovery after cell transplantation, focusing on endogenous brain repair. First, angiogenesis/neovascularization is promoted by trophic factors including vascular endothelial growth factor secreted from stem cells, and stem cells migrated to the lesion along with the vessels. Second, axonal sprouting, dendritic branching, and synaptogenesis were enhanced altogether in the both ipsilateral and contralateral hemisphere remapping the pyramidal tract across the board. Finally, endogenous neurogenesis was also enhanced although little is known how much these neurogenesis contribute to the functional recovery. Taken together, it is clear that stem cell transplantation provides functional recovery via endogenous repair enhancement from multiple ways. This is important to maximize the effect of stem cell therapy after stroke, although it is still undetermined which repair mechanism is mostly contributed.
Collapse
Affiliation(s)
- Nobutaka Horie
- Department of Neurosurgery, Nagasaki University School of Medicine
| | | | | |
Collapse
|
33
|
Protective effects of humanin on okadaic Acid-induced neurotoxicities in cultured cortical neurons. Neurochem Res 2014; 39:2150-9. [PMID: 25142935 DOI: 10.1007/s11064-014-1410-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 12/30/2022]
Abstract
Neurofibrillary tangles are pathological hallmarks of Alzheimer's disease (AD), which are mostly composed of hyperphosphorylated tau and directly correlate with dementia in AD patients. Okadaic acid (OA), a toxin extracted from marine life, can specifically inhibit protein phosphatases (PPs), including PP1 and Protein phosphatase 2A (PP2A), resulting in tau hyperphosphorylation. Humanin (HN), a peptide of 24 amino acids, was initially reported to protect neurons from AD-related cell toxicities. The present study was designed to test if HN could attenuate OA-induced neurotoxicities, including neural insults, apoptosis, autophagy, and tau hyperphosphorylation. We found that administration of OA for 24 h induced neuronal insults, including lactate dehydrogenase released, decreased of cell viability and numbers of living cells, neuronal apoptosis, cells autophagy and tau protein hyperphosphorylation. Pretreatment of cells with HN produced significant protective effects against OA-induced neural insults, apoptosis, autophagy and tau hyperphosphorylation. We also found that OA treatment inhibited PP2A activity and HN pretreatment significantly attenuated the inhibitory effects of OA. This study demonstrated for the first time that HN protected cortical neurons against OA-induced neurotoxicities, including neuronal insults, apoptosis, autophagy, and tau hyperphosphorylation. The mechanisms underlying the protections of HN may involve restoration of PP2A activity.
Collapse
|