1
|
Euteneuer CF, Davis BN, Lui LM, Neville AJ, Davis PH. Expanded Gram-Negative Activity of Marinopyrrole A. Pathogens 2025; 14:290. [PMID: 40137776 PMCID: PMC11946689 DOI: 10.3390/pathogens14030290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
The rise of bacterial infections is a global health issue that calls for the development and availability of additional antimicrobial agents. Known for its in vitro effects on Gram-positive organisms, the drug-like small molecule marinopyrrole A was re-examined for the potential of broader efficacy against a wider array of microbes. We uncovered selective efficacy against an important subset of Gram-negative bacteria from three genera: Neisseria, Moraxella, and Campylobacter. This susceptibility is correlated with the absence of canonical LPS in these specific Gram-negative species, a phenomenon observed with other hydrophobic anti-microbial compounds. Further, when exposed to molecules which inhibit the LpxC enzyme of the LPS synthesis pathway, previously resistant LPS-producing Gram-negative bacteria showed increased susceptibility to marinopyrrole A. These results demonstrate marinopyrrole A's efficacy against a broader range of Gram-negative bacteria than previously known, including N. gonorrhea, a species identified as a priority pathogen by the WHO.
Collapse
Affiliation(s)
| | | | | | | | - Paul H. Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA; (C.F.E.); (B.N.D.); (L.M.L.); (A.J.N.)
| |
Collapse
|
2
|
Al-Odat OS, Elbezanti WO, Gowda K, Srivastava SK, Amin SG, Jonnalagadda SC, Budak-Alpdogan T, Pandey MK. KS18, a Mcl-1 inhibitor, improves the effectiveness of bortezomib and overcomes resistance in refractory multiple myeloma by triggering intrinsic apoptosis. Front Pharmacol 2024; 15:1436786. [PMID: 39411073 PMCID: PMC11473443 DOI: 10.3389/fphar.2024.1436786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Despite a record number of clinical studies investigating various anti-myeloma treatments, the 5-year survival rate for multiple myeloma (MM) patients in the US is only 55%, and almost all patients relapse. Poor patient outcomes demonstrate that myeloma cells are "born to survive" which means they can adapt and evolve following treatment. Thus, new therapeutic approaches to combat survival mechanisms and target treatment resistance are required. Importantly, Mcl-1, anti-apoptotic protein, is required for the development of MM and treatment resistance. This study looks at the possibility of KS18, a selective Mcl-1 inhibitor, to treat MM and overcome resistance. Our investigation demonstrates that KS18 effectively induces cell death in MM by dual regulatory mechanisms targeting the Mcl-1 protein at both transcriptional and post-translational levels. Specifically, KS18 suppresses Mcl-1 activation via STAT-3 pathway and promotes Mcl-1 phosphorylation/ubiquitination/proteasome-dependent protein degradation (UPS). Significantly, KS18 triggered caspase-dependent apoptosis in MM patient samples and bortezomib-resistant cells, synergizing with venetoclax to boost apoptosis. KS18 promises to overcome bortezomib and venetoclax resistance and re-sensitize myeloma cells to chemotherapy. Furthermore, the study shows the tremendous impact of KS18 in inhibiting colony formation in bortezomib-resistant cells and demonstrates significant tumor shrinkage in KS18-treated NSG mice without notable toxicity signs after 4 weeks of therapy with a single acceptable dose each week, indicating its powerful anti-neoplastic and anti-resistance characteristics. This study strongly implies that KS18 may treat MM and provide new hope to patients who are experiencing recurrence or resistance.
Collapse
Affiliation(s)
- Omar S. Al-Odat
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
- Department of Chemistry and Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, NJ, United States
| | - Weam Othman Elbezanti
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
- Department of Surgery, Cooper University Health Care, Camden, NJ, United States
| | - Krishne Gowda
- Department of Pharmacology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA, United States
| | | | - Shantu G. Amin
- Department of Pharmacology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Subash C. Jonnalagadda
- Department of Chemistry and Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, NJ, United States
| | - Tulin Budak-Alpdogan
- Department of Hematology, Cooper University Health Care, Camden, NJ, United States
| | - Manoj K. Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
3
|
Kshirsagar S, Islam MA, Reddy AP, Reddy PH. Resolving the current controversy of use and reuse of housekeeping proteins in ageing research: Focus on saving people's tax dollars. Ageing Res Rev 2024; 100:102437. [PMID: 39067773 PMCID: PMC11384260 DOI: 10.1016/j.arr.2024.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
The use of housekeeping genes and proteins to normalize mRNA and protein levels in biomedical research has faced growing scrutiny. Researchers encounter challenges in determining the optimal frequency for running housekeeping proteins such as β-actin, Tubulin, and GAPDH for nuclear-encoded proteins, and Porin, HSP60, and TOM20 for mitochondrial proteins alongside experimental proteins. The regulation of these proteins varies with age, gender, disease progression, epitope nature, gel running conditions, and their reported sizes can differ among antibody suppliers. Additionally, anonymous readers have raised concerns about peer-reviewed and published articles, creating confusion and concern within the research and academic institutions. To clarify these matters, this minireview discusses the role of reference housekeeping proteins in Western blot analysis and outlines key considerations for their use as normalization controls. Instead of Western blotting of housekeeping proteins, staining of total proteins, using Amido Black and Coomassie Blue can be visualized the total protein content on a membrane. The reducing repeated Western blotting analysis of housekeeping proteins, will save resources, time and efforts and in turn increase the number of competitive grants from NIH and funding agencies. We also discussed the use of dot blots over traditional Western blots, when protein levels are low in rare tissues/specimens and cell lines. We sincerely hope that the facts, figures, and discussions presented in this article will clarify the current controversy regarding housekeeping protein(s) use, reuse, and functional aspects of housekeeping proteins. The contents presented in our article will be useful to students, scholars and researchers of all levels in cell biology, protein chemistry and mitochondrial research.
Collapse
Affiliation(s)
- Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
4
|
Iksen, Witayateeraporn W, Hardianti B, Pongrakhananon V. Comprehensive review of Bcl-2 family proteins in cancer apoptosis: Therapeutic strategies and promising updates of natural bioactive compounds and small molecules. Phytother Res 2024; 38:2249-2275. [PMID: 38415799 DOI: 10.1002/ptr.8157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Cancer has a considerably higher fatality rate than other diseases globally and is one of the most lethal and profoundly disruptive ailments. The increasing incidence of cancer among humans is one of the greatest challenges in the field of healthcare. A significant factor in the initiation and progression of tumorigenesis is the dysregulation of physiological processes governing cell death, which results in the survival of cancerous cells. B-cell lymphoma 2 (Bcl-2) family members play important roles in several cancer-related processes. Drug research and development have identified various promising natural compounds that demonstrate potent anticancer effects by specifically targeting Bcl-2 family proteins and their associated signaling pathways. This comprehensive review highlights the substantial roles of Bcl-2 family proteins in regulating apoptosis, including the intricate signaling pathways governing the activity of these proteins, the impact of reactive oxygen species, and the crucial involvement of proteasome degradation and the stress response. Furthermore, this review discusses advances in the exploration and potential therapeutic applications of natural compounds and small molecules targeting Bcl-2 family proteins and thus provides substantial scientific information and therapeutic strategies for cancer management.
Collapse
Affiliation(s)
- Iksen
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacy, Sekolah Tinggi Ilmu Kesehatan Senior Medan, Medan, Indonesia
| | - Wasita Witayateeraporn
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Besse Hardianti
- Laboratory of Pharmacology and Clinical Pharmacy, Faculty of Health Sciences, Almarisah Madani University, South Sulawesi, Indonesia
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Past, Present, and a Glance into the Future of Multiple Myeloma Treatment. Pharmaceuticals (Basel) 2023; 16:ph16030415. [PMID: 36986514 PMCID: PMC10056051 DOI: 10.3390/ph16030415] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Multiple myeloma (MM) is a challenging hematological cancer which typically grows in bone marrow. MM accounts for 10% of hematological malignancies and 1.8% of cancers. The recent treatment strategies have significantly improved progression-free survival for MM patients in the last decade; however, a relapse for most MM patients is inevitable. In this review we discuss current treatment, important pathways for proliferation, survival, immune suppression, and resistance that could be targeted for future treatments.
Collapse
|
6
|
Zhou Z, Cao Q, Diao Y, Wang Y, Long L, Wang S, Li P. Non-coding RNA-related antitumor mechanisms of marine-derived agents. Front Pharmacol 2022; 13:1053556. [PMID: 36532760 PMCID: PMC9752855 DOI: 10.3389/fphar.2022.1053556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/21/2022] [Indexed: 09/26/2023] Open
Abstract
In the last two decades, natural active substances have attracted great attention in developing new antitumor drugs, especially in the marine environment. A series of marine-derived compounds or derivatives with potential antitumor effects have been discovered and developed, but their mechanisms of action are not well understood. Emerging studies have found that several tumor-related signaling pathways and molecules are involved in the antitumor mechanisms of marine-derived agents, including noncoding RNAs (ncRNAs). In this review, we provide an update on the regulation of marine-derived agents associated with ncRNAs on tumor cell proliferation, apoptosis, cell cycle, invasion, migration, drug sensitivity and resistance. Herein, we also describe recent advances in marine food-derived ncRNAs as antitumor agents that modulate cross-species gene expression. A better understanding of the antitumor mechanisms of marine-derived agents mediated, regulated, or sourced by ncRNAs will provide new biomarkers or targets for potential antitumor drugs from preclinical discovery and development to clinical application.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Qianqian Cao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yujing Diao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Linhai Long
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Shoushi Wang
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Cele N, Awolade P, Dhawan S, Khubone L, Raza A, Sharma AK, Singh P. Quinoline–1,3,4-Oxadiazole Conjugates: Synthesis, Anticancer Evaluation, and Molecular Modelling Studies. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2117205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nosipho Cele
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Sanjeev Dhawan
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Lungisani Khubone
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Asif Raza
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, Hershey, PA, USA
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, Hershey, PA, USA
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
8
|
Hong J, Zheng W, Cai X. Small-molecule high-throughput screening identifies a MEK inhibitor PD1938306 that enhances sorafenib efficacy via MCL-1 and BIM in hepatocellular carcinoma cells. Comb Chem High Throughput Screen 2022; 26:1364-1374. [PMID: 36043792 PMCID: PMC9971357 DOI: 10.2174/1386207325666220830145026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022]
Abstract
Background Sorafenib is the most widely used systematic therapy drug for treating unresectable hepatocellular carcinoma (HCC) but showed dissatisfactory efficacy in clinical applications. Objective We conducted a combinational quantitative small-molecule high-throughput screening (qHTS) to identify potential candidates to enhance the treatment effectiveness of sorafenib. Methods First, using a Hep3B human HCC cell line, 7051 approved drugs and bioactive compounds were screened, then the primary hits were tested with/ without 0.5 μM sorafenib respectively, the compound has the half maximal inhibitory concentration (IC50) shift value greater than 1.5 was thought to have the synergistic effect with sorafenib. Furthermore, the MEK inhibitor PD198306 was selected for further mechanistic study. Results 12 effective compounds were identified, including kinase inhibitors that target MEK, AURKB, CAMK, ROCK2, BRAF, PI3K, AKT and EGFR, as well as a μ-opioid receptor agonist and a L-type calcium channel blocker. The mechanistic research of the combination of sorafenib plus PD198306 showed that the two compounds synergistically inhibited MEK-ERK and mTORC1-4EBP1, and induced apoptosis in HCC cells, which can be attributed to the transcriptional and posttranslational regulation of MCL-1 and BIM. Conclusion Small-molecule qHTS identifies MEK inhibitor PD1938306 as a potent sorafenib enhancer, together with several novel combination strategies that are valuable for further studies.
Collapse
Affiliation(s)
- Junjie Hong
- Department of General Surgery, Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310016, China,National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Xiujun Cai
- Department of General Surgery, Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310016, China,Correspondence to: Xiujun Cai, 3 East Qingchun Road, Jianggan District, Hangzhou 310000, China. Tel: +86-0571-8600-6617; Fax: +86-0571-8604-4817;
| |
Collapse
|
9
|
Al-Odat O, von Suskil M, Chitren R, Elbezanti W, Srivastava S, Budak-Alpddogan T, Jonnalagadda S, Aggarwal B, Pandey M. Mcl-1 Inhibition: Managing Malignancy in Multiple Myeloma. Front Pharmacol 2021; 12:699629. [PMID: 34349655 PMCID: PMC8327170 DOI: 10.3389/fphar.2021.699629] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/24/2021] [Indexed: 01/29/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cells neoplasm. The overexpression of Bcl-2 family proteins, particularly myeloid cell leukemia 1 (Mcl-1), plays a critical role in the pathogenesis of MM. The overexpression of Mcl-1 is associated with drug resistance and overall poor prognosis of MM. Thus, inhibition of the Mcl-1 protein considered as a therapeutic strategy to kill the myeloma cells. Over the last decade, the development of selective Mcl-1 inhibitors has seen remarkable advancement. This review presents the critical role of Mcl-1 in the progression of MM, the most prominent BH3 mimetic and semi-BH3 mimetic that selectively inhibit Mcl-1, and could be used as single agent or combined with existing therapies.
Collapse
Affiliation(s)
- Omar Al-Odat
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States.,Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| | - Max von Suskil
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States.,Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| | - Robert Chitren
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States.,Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| | - Weam Elbezanti
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States.,Department of Hematology, Cooper Health University, Camden, NJ, United States
| | | | | | - Subash Jonnalagadda
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| | | | - Manoj Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
10
|
Patel A, Shah H, Shah U, Bambharoliya T, Patel M, Panchal I, Parikh V, Nagani A, Patel H, Vaghasiya J, Solanki N, Patel S, Shah A, Parmar G. A Review on the Synthetic Approach of Marinopyrroles: A Natural Antitumor Agent from the Ocean. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617999200718004012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Natural products play an important role in various drug discovery and development approaches.
They are known to be the rich resources for the identification of new chemical entities
(NCEs) intended to treat various diseases. Many drugs have been discovered and developed from natural
sources. Indeed, collaborative efforts involving biologists as well as organic, medicinal, and phytochemists
usually facilitate the identification of potent NCEs derived from natural sources. Over the past
20 years, more than 50% of NCEs have been derived either from marine sources or synthetic/
semisynthetic derivatives of natural products. Indeed, many drug molecules have been designed by
considering natural products as the starting scaffold. The first bis-pyrrole alkaloid derivative of
marinopyrroles was obtained from the marine-derived streptomycete species. In the laboratory, it can
be synthesized via Clauson-Kaas and Friedel-Crafts arylation as well as copper-mediated N-arylation
process under microwave irradiation. The marinopyrrole A (±)-28 was discovered to overcome resistance
against human cancer cells by antagonizing B-cell lymphoma extra-large (Bcl-xL) and induced
myeloid leukaemia cell (Mcl-1). In this review, we elaborated on various synthetic pathways of
marinopyrroles possessing anti-cancer potential, which could encourage researchers to discover promising
anti-tumor agents.
Collapse
Affiliation(s)
- Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Ta. Petlad, Dist. Anand, Gujarat,India
| | - Hirak Shah
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat,India
| | - Umang Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Ta. Petlad, Dist. Anand, Gujarat,India
| | | | - Mehul Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Ta. Petlad, Dist. Anand, Gujarat,India
| | - Ishan Panchal
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat,India
| | - Vruti Parikh
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat,India
| | - Afzal Nagani
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat,India
| | - Harnisha Patel
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat,India
| | | | - Nilay Solanki
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Ta. Petlad, Dist. Anand, Gujarat,India
| | - Swayamprakash Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Ta. Petlad, Dist. Anand, Gujarat,India
| | - Ashish Shah
- Department of Pharmacy, Sumandeep Vidhyapeeth, Vadodara, Gujarat,India
| | - Ghanshyam Parmar
- Department of Pharmacy, Sumandeep Vidhyapeeth, Vadodara, Gujarat,India
| |
Collapse
|
11
|
Xiang BLS, Kwok-Wai L, Soo-Beng AK, Mohana-Kumaran N. Single Agent and Synergistic Activity of Maritoclax with ABT-263 in Nasopharyngeal Carcinoma (NPC) Cell Lines. Trop Life Sci Res 2020; 31:1-13. [PMID: 33214852 PMCID: PMC7652248 DOI: 10.21315/tlsr2020.31.3.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The BCL-2 anti-apoptotic proteins are over-expressed in many cancers and hence are attractive therapeutic targets. In this study, we tested the sensitivity of two Nasopharyngeal Carcinoma (NPC) cell lines HK1 and C666-1 to Maritoclax, which is reported to repress anti-apoptotic protein MCL-1 and BH3 mimetic ABT-263, which selectively inhibits anti-apoptotic proteins BCL-2, BCL-XL and BCL-w. We investigated the sensitisation of the NPC cell lines to these drugs using the SYBR Green I assay and 3D NPC spheroids. We report that Maritoclax repressed anti-apoptotic proteins MCL-1, BCL-2, and BCL-XL in a dose- and time-dependent manner and displayed a single agent activity in inhibiting cell proliferation of the NPC cell lines. Moreover, combination of Maritoclax and ABT-263 exhibited synergistic antiproliferative effect in the HK1 cells. Similar results were obtained in the 3D spheroids generated from the HK1 cells. More notably, 3D HK1 spheroids either treated with single agent Maritoclax or combination with ABT-263, over 10 days, did not develop resistance to the treatment rapidly. Collectively, the findings illustrate that Maritoclax as a single agent or combination with BH3 mimetics could be potentially useful as treatment strategies for the management of NPC.
Collapse
Affiliation(s)
| | - Lo Kwok-Wai
- Department of Anatomical and Cellular Pathology and State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, Central Ave, Hong Kong
| | - Alan Khoo Soo-Beng
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | - Nethia Mohana-Kumaran
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| |
Collapse
|
12
|
Pervushin NV, Senichkin VV, Zhivotovsky B, Kopeina GS. Mcl-1 as a "barrier" in cancer treatment: Can we target it now? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 351:23-55. [PMID: 32247581 DOI: 10.1016/bs.ircmb.2020.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the last two decades, the study of Mcl-1, an anti-apoptotic member of the Bcl-2 family, attracted researchers due to its important role in cancer cell survival and tumor development. The significance of Mcl-1 protein in resistance to chemotherapeutics makes it an attractive target in cancer therapy. Here, we discuss the diverse possibilities for indirect Mcl-1 inhibition through its downregulation, for example, via targeting for proteasomal degradation or blockage of translation and transcription. We also provide an overview of the direct blocking of protein-protein interactions with pro-apoptotic Bcl-2 family proteins, including examples of the most promising regulators of Mcl-1 and selective BH3-mimetics, which at present are under clinical evaluation. Moreover, several approaches for the co-targeting of Mcl-1 and other proteins (e.g., CDKs) are also presented. In addition, we highlight the broad spectrum of problems that accompanied the discovery and development of effective Mcl-1 inhibitors.
Collapse
Affiliation(s)
| | | | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
13
|
Yi X, Sarkar A, Kismali G, Aslan B, Ayres M, Iles LR, Keating MJ, Wierda WG, Long JP, Bertilaccio MTS, Gandhi V. AMG-176, an Mcl-1 Antagonist, Shows Preclinical Efficacy in Chronic Lymphocytic Leukemia. Clin Cancer Res 2020; 26:3856-3867. [PMID: 31937611 DOI: 10.1158/1078-0432.ccr-19-1397] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/28/2019] [Accepted: 01/10/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE Survival of CLL cells due to the presence of Bcl-2 and Mcl-1 has been established. Direct inhibition of Bcl-2 by venetoclax and indirect targeting of Mcl-1 with transcription inhibitors have been successful approaches for CLL. AMG-176 is a selective and direct antagonist of Mcl-1, which has shown efficacy in several hematologic malignancies; however, its effect on CLL is elusive. We evaluated biological and molecular effects of AMG-176 in primary CLL cells. EXPERIMENTAL DESIGN Using samples from patients (n = 74) with CLL, we tested effects of AMG-176 on CLL and normal hematopoietic cell death and compared importance of CLL prognostic factors on this biological activity. We evaluated CLL cell apoptosis in the presence of stromal cells and identified cell death pathway including stabilization of Mcl-1 protein. Finally, we tested a couplet of AMG-176 and venetoclax in CLL lymphocytes. RESULTS AMG-176 incubations resulted in time- and dose-dependent CLL cell death. At 100 and 300 nmol/L, there was 30% and 45% cell death at 24 hours. These concentrations did not result in significant cell death in normal hematopoietic cells. Presence of stroma did not affect AMG-176-induced CLL cell death. IGHV unmutated status, high β2M and Mcl-1 protein levels resulted in slightly lower cell death. Mcl-1, but not Bcl-2 protein levels, in CLL cells increased with AMG-176. Low concentrations of venetoclax (1-30 nmol/L) were additive or synergistic with AMG-176. CONCLUSIONS AMG-176 is active in inducing CLL cell death while sparing normal blood cells. Combination with low-dose venetoclax was additive or synergistic.
Collapse
Affiliation(s)
- Xue Yi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Hematology, Wuhan No. 1 Hospital, Wuhan, Hubei, China
| | - Aloke Sarkar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gorkem Kismali
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Biochemistry, Ankara University Faculty of Veterinary Medicine, Ankara, Turkey
| | - Burcu Aslan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mary Ayres
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - LaKesla R Iles
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James P Long
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
14
|
Targeting cancer's Achilles’ heel: role of BCL-2 inhibitors in cellular senescence and apoptosis. Future Med Chem 2019; 11:2287-2312. [DOI: 10.4155/fmc-2018-0366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Members of the antiapoptotic BCL-2 proteins are involved in tumor growth, progression and survival, and are also responsible for chemoresistance to conventional anticancer agents. Early efforts to target these proteins yielded some active compounds; however, newer methodologies involving structure-based drug design, Nuclear Magnetic Resonance (NMR)-based screening and fragment-based screening yielded more potent compounds. Discovery of specific as well as nonspecific inhibitors of this class of proteins has resulted in great advances in targeted chemotherapy and decrease in chemoresistance. Here, we review the history and current progress in direct as well as selective targeting of the BCL-2 proteins for anticancer therapy.
Collapse
|
15
|
Rice SJ, Liu X, Wang HG, Belani CP. EGFR mutations and AKT phosphorylation are markers for sensitivity to combined MCL-1 and BCL-2/xL inhibition in non-small cell lung cancer. PLoS One 2019; 14:e0217657. [PMID: 31150457 PMCID: PMC6544263 DOI: 10.1371/journal.pone.0217657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is among the common and deadly cancers. Although the treatment options for late-stage cancer patients have continued to increase in numbers, the overall survival rates for these patients have not shown significant improvement. This highlights the need for new targets and drugs to more effectively treat lung cancer patients. In this study, we characterize the MCL-1 inhibitor maritoclax alone or in combination with a BCL-2/xL inhibitor in a panel of lung cancer cell lines. BCL-2 family proteins, phosphorylated proteins, and apoptosis were monitored following the treatments. We found that maritoclax was effective at inhibiting growth in these lung cancer cells. We also establish that cell lines with EGFR mutations were most sensitive to the combined inhibition of MCL-1 and BCL-2/xL. In addition, a high level of phosphorylated AKT (S473) was identified as a marker for sensitivity to the combination treatment. This work has defined EGFR mutations and AKT phosphorylation as markers for sensitivity to combined MCL-1 and BCL-2/xL targeted therapy and establishes a rationale to explore multiple BCL-2 family members in patients who are refractory to EGFR inhibitor treatment. Our data support the design of a clinical trial that aims to employ inhibitors of the BCL-2 family of proteins in lung cancer patients.
Collapse
Affiliation(s)
- Shawn J. Rice
- Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Xin Liu
- Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Hong-Gang Wang
- Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Chandra P. Belani
- Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
16
|
Anantram A, Kundaikar H, Degani M, Prabhu A. Molecular dynamic simulations on an inhibitor of anti-apoptotic Bcl-2 proteins for insights into its interaction mechanism for anti-cancer activity. J Biomol Struct Dyn 2018; 37:3109-3121. [DOI: 10.1080/07391102.2018.1508371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Aarti Anantram
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Harish Kundaikar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Mariam Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Arati Prabhu
- Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
17
|
Maritoclax Enhances TRAIL-Induced Apoptosis via CHOP-Mediated Upregulation of DR5 and miR-708-Mediated Downregulation of cFLIP. Molecules 2018; 23:molecules23113030. [PMID: 30463333 PMCID: PMC6278439 DOI: 10.3390/molecules23113030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 01/05/2023] Open
Abstract
Maritoclax, an active constituent isolated from marine bacteria, has been known to induce Mcl-1 downregulation through proteasomal degradation. In this study, we investigated the sensitizing effect of maritoclax on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human renal carcinoma cells. We found that combined treatment with maritoclax and TRAIL markedly induced apoptosis in renal carcinoma (Caki, ACHN and A498), lung cancer (A549) and hepatocellular carcinoma (SK-Hep1) cells. The upregulation of death receptor 5 (DR5) and downregulation of cellular FLICE-inhibitory protein (cFLIP) were involved in maritoclax plus TRAIL-induced apoptosis. Maritoclax-induced DR5 upregulation was regulated by induction of C/EBP homologous protein (CHOP) expression. Interestingly, maritoclax induced cFLIP downregulation through the increased expression of miR-708. Ectopic expression of cFLIP prevented combined maritoclax and TRAIL-induced apoptosis. Taken together, maritoclax sensitized TRAIL-induced apoptosis through CHOP-mediated DR5 upregulation and miR-708-mediated cFLIP downregulation.
Collapse
|
18
|
Pandey MK, Gowda K, Sung SS, Abraham T, Budak-Alpdogan T, Talamo G, Dovat S, Amin S. A novel dual inhibitor of microtubule and Bruton's tyrosine kinase inhibits survival of multiple myeloma and osteoclastogenesis. Exp Hematol 2017. [DOI: 10.1016/j.exphem.2017.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Glantz-Gashai Y, Meirson T, Reuveni E, Samson AO. Virtual screening for potential inhibitors of Mcl-1 conformations sampled by normal modes, molecular dynamics, and nuclear magnetic resonance. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1803-1813. [PMID: 28684899 PMCID: PMC5484510 DOI: 10.2147/dddt.s133127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Myeloid cell leukemia-1 (Mcl-1) is often overexpressed in human cancer and is an important target for developing antineoplastic drugs. In this study, a data set containing 2.3 million lead-like molecules and a data set of all the US Food and Drug Administration (FDA)-approved drugs are virtually screened for potential Mcl-1 ligands using Protein Data Bank (PDB) ID 2MHS. The potential Mcl-1 ligands are evaluated and computationally docked on to three conformation ensembles generated by normal mode analysis (NMA), molecular dynamics (MD), and nuclear magnetic resonance (NMR), respectively. The evaluated potential Mcl-1 ligands are then compared with their clinical use. Remarkably, half of the top 30 potential drugs are used clinically to treat cancer, thus partially validating our virtual screen. The partial validation also favors the idea that the other half of the top 30 potential drugs could be used in the treatment of cancer. The normal mode-, MD-, and NMR-based conformation greatly expand the conformational sampling used herein for in silico identification of potential Mcl-1 inhibitors.
Collapse
Affiliation(s)
| | - Tomer Meirson
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| | - Eli Reuveni
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| | - Abraham O Samson
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| |
Collapse
|
20
|
Desouza-Armstrong M, Gunning PW, Stehn JR. Tumor suppressor tropomyosin Tpm2.1 regulates sensitivity to apoptosis beyond anoikis characterized by changes in the levels of intrinsic apoptosis proteins. Cytoskeleton (Hoboken) 2017; 74:233-248. [PMID: 28378936 DOI: 10.1002/cm.21367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/03/2017] [Accepted: 03/28/2017] [Indexed: 01/15/2023]
Abstract
The actin cytoskeleton is a polymer system that acts both as a sensor and mediator of apoptosis. Tropomyosins (Tpm) are a family of actin binding proteins that form co-polymers with actin and diversify actin filament function. Previous studies have shown that elevated expression of the tropomyosin isoform Tpm2.1 sensitized cells to apoptosis induced by cell detachment (anoikis) via an unknown mechanism. It is not yet known whether Tpm2.1 or other tropomyosin isoforms regulate sensitivity to apoptosis beyond anoikis. In this study, rat neuroepithelial cells overexpressing specific tropomyosin isoforms (Tpm1.7, Tpm2.1, Tpm3.1, and Tpm4.2) were screened for sensitivity to different classes of apoptotic stimuli, including both cytoskeletal and non-cytoskeletal targeting compounds. Results showed that elevated expression of tropomyosins in general inhibited apoptosis sensitivity to different stimuli. However, Tpm2.1 overexpression consistently enhanced sensitivity to anoikis as well as apoptosis induced by the actin targeting drug jasplakinolide (JASP). In contrast the cancer-associated isoform Tpm3.1 inhibited the induction of apoptosis by a range of agents. Treatment of Tpm2.1 overexpressing cells with JASP was accompanied by enhanced sensitivity to mitochondrial depolarization, a hallmark of intrinsic apoptosis. Moreover, Tpm2.1 overexpressing cells showed elevated levels of the apoptosis proteins Bak (proapoptotic), Mcl-1 (prosurvival), Bcl-2 (prosurvival) and phosphorylated p53 (Ser392). Finally, JASP treatment of Tpm2.1 cells caused significantly reduced Mcl-1, Bcl-2 and p53 (Ser392) levels relative to control cells. We therefore propose that Tpm2.1 regulates sensitivity to apoptosis beyond the scope of anoikis by modulating the expression of key intrinsic apoptosis proteins which primes the cell for death.
Collapse
Affiliation(s)
- Melissa Desouza-Armstrong
- Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Peter W Gunning
- Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Justine R Stehn
- Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Novogen Ltd. Hornsby, Sydney, New South Wales, 2077, Australia
| |
Collapse
|
21
|
Abstract
INTRODUCTION BCL-2 proteins are key players in the balance of cell life and death. Their roles in the development and biology of cancer have been well established and continue to be investigated. Understanding the mechanisms by which these proteins regulate apoptosis has led to the development of small molecule targeted therapies that act to overcome the cell's ability to evade programmed cell death. Areas covered: The biology of the intrinsic apoptotic pathway is reviewed with attention to the varied roles of the anti-apoptotic members of the BCL-2 family. BH3 profiling is reviewed. Historical therapeutic agents are addressed, and currently investigated BH3 mimetics are described with attention to clinical significance. The limitations of BCL-2 family targeted drugs with regard to on-target and off-target toxicities are explored. Agents under development for targeting MCL-1 and other BCL-2 family members are discussed. Expert opinion: ABT-199 (venetoclax) and other BH3 mimetics have entered the clinical arena and show promising results in both hematologic and solid malignancies. Use of agents targeting this system will likely expand, and likely a number of malignant diseases will be successfully targeted resulting in improved treatment responses and patient survival.
Collapse
Affiliation(s)
- Michelle A Levy
- a Penn State Milton S. Hershey Medical Center , Penn State Hershey Cancer Institute , Hershey , PA , USA
| | - David F Claxton
- a Penn State Milton S. Hershey Medical Center , Penn State Hershey Cancer Institute , Hershey , PA , USA
| |
Collapse
|
22
|
YM155 enhances ABT-737-mediated apoptosis through Mcl-1 downregulation in Mcl-1-overexpressed cancer cells. Mol Cell Biochem 2017; 429:91-102. [PMID: 28120212 DOI: 10.1007/s11010-016-2938-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/23/2016] [Indexed: 10/20/2022]
Abstract
ABT-737 is a BH3 mimetic inhibitor of Bcl-xL, Bcl-2, and Bcl-w, and it has been reported for anti-cancer effects in various types of cancer cells. However, ABT-737 fails to induce apoptosis in cancer cell with high levels of Mcl-1 expression. The pharmacological survivin inhibitor YM155 has been reported to induce downregulation of Mcl-1 expression. Therefore, we investigated the effect of YM155 to sensitize resistance against ABT-737 in Mcl-1-overexpressed human renal carcinoma Caki cells. We found that ABT-737 alone and YM155 alone did not induce apoptosis, but YM155 markedly sensitized ABT-737-mediated apoptosis in Mcl-1-overexpressed Caki cells, human glioma cells (U251MG), and human lung carcinoma cells (A549). In contrast, combined treatment with ABT-737 and YM155 did not increase apoptosis in normal mouse kidney cells (TCMK-1) and human mesangial cells (MC). YM155 induced lysosome-dependent downregulation of Mcl-1 expression in Mcl-1-overexpressed Caki cells. In addition, combined treatment with ABT-737 and YM155 induced loss of mitochondrial membrane potential and inhibited interaction of Bcl-xL and Bax. Taken together, our results suggested that YM155 effectively improves sensitivity to ABT-737 through downregulation of Mcl-1 expression.
Collapse
|
23
|
Schneider P, Schneider G. De-orphaning the marine natural product (±)-marinopyrrole A by computational target prediction and biochemical validation. Chem Commun (Camb) 2017; 53:2272-2274. [DOI: 10.1039/c6cc09693j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A machine-learning method led to the discovery of the macromolecular targets of the natural anticancer compound marinopyrrol A.
Collapse
Affiliation(s)
- P. Schneider
- Department of Chemistry and Applied Biosciences
- Swiss Federal Institute of Technology (ETH)
- Zurich
- Switzerland
- inSili.com LLC
| | - G. Schneider
- Department of Chemistry and Applied Biosciences
- Swiss Federal Institute of Technology (ETH)
- Zurich
- Switzerland
| |
Collapse
|
24
|
Song T, Wang Z, Zhang Z. Substituted indole Mcl-1 inhibitors: a patent evaluation (WO2015148854A1). Expert Opin Ther Pat 2016; 26:1227-1238. [DOI: 10.1080/13543776.2016.1240786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ting Song
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, China
| | - Ziqian Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, China
| | - Zhichao Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, China
| |
Collapse
|
25
|
Gomez-Bougie P, Dousset C, Descamps G, Schnitzler A, Audiger L, Tessier A, Dubreuil D, Lebreton J, Pellat-Deceunynck C, Amiot M. The selectivity of Marinopyrrole A to induce apoptosis in MCL1high
BCL2low
expressing myeloma cells is related to its ability to impair protein translation. Br J Haematol 2016; 180:157-159. [DOI: 10.1111/bjh.14293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Patricia Gomez-Bougie
- CRCNA, CNRS, INSERM; Centre Hospitalier Universitaire de Nantes; Université d'Angers, Université de Nantes; Nantes France
| | - Christelle Dousset
- CRCNA, CNRS, INSERM; Centre Hospitalier Universitaire de Nantes; Université d'Angers, Université de Nantes; Nantes France
| | - Geraldine Descamps
- CRCNA, CNRS, INSERM; Centre Hospitalier Universitaire de Nantes; Université d'Angers, Université de Nantes; Nantes France
| | - Anne Schnitzler
- CRCNA, CNRS, INSERM; Centre Hospitalier Universitaire de Nantes; Université d'Angers, Université de Nantes; Nantes France
| | | | | | | | | | - Catherine Pellat-Deceunynck
- CRCNA, CNRS, INSERM; Centre Hospitalier Universitaire de Nantes; Université d'Angers, Université de Nantes; Nantes France
| | - Martine Amiot
- CRCNA, CNRS, INSERM; Centre Hospitalier Universitaire de Nantes; Université d'Angers, Université de Nantes; Nantes France
| |
Collapse
|
26
|
Morton SD, Cadamuro M, Brivio S, Vismara M, Stecca T, Massani M, Bassi N, Furlanetto A, Joplin RE, Floreani A, Fabris L, Strazzabosco M. Leukemia inhibitory factor protects cholangiocarcinoma cells from drug-induced apoptosis via a PI3K/AKT-dependent Mcl-1 activation. Oncotarget 2016; 6:26052-64. [PMID: 26296968 PMCID: PMC4694885 DOI: 10.18632/oncotarget.4482] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/08/2015] [Indexed: 12/15/2022] Open
Abstract
Cholangiocarcinoma is an aggressive, strongly chemoresistant liver malignancy. Leukemia inhibitory factor (LIF), an IL-6 family cytokine, promotes progression of various carcinomas. To investigate the role of LIF in cholangiocarcinoma, we evaluated the expression of LIF and its receptor (LIFR) in human samples. LIF secretion and LIFR expression were assessed in established and primary human cholangiocarcinoma cell lines. In cholangiocarcinoma cells, we tested LIF effects on proliferation, invasion, stem cell-like phenotype, chemotherapy-induced apoptosis (gemcitabine+cisplatin), expression levels of pro-apoptotic (Bax) and anti-apoptotic (Mcl-1) proteins, with/without PI3K inhibition, and of pSTAT3, pERK1/2, pAKT. LIF effect on chemotherapy-induced apoptosis was evaluated after LIFR silencing and Mcl-1 inactivation. Results show that LIF and LIFR expression were higher in neoplastic than in control cholangiocytes; LIF was also expressed by tumor stromal cells. LIF had no effects on cholangiocarcinoma cell proliferation, invasion, and stemness signatures, whilst it counteracted drug-induced apoptosis. Upon LIF stimulation, decreased apoptosis was associated with Mcl-1 and pAKT up-regulation and abolished by PI3K inhibition. LIFR silencing and Mcl-1 blockade restored drug-induced apoptosis. In conclusion, autocrine and paracrine LIF signaling promote chemoresistance in cholangiocarcinoma by up-regulating Mcl-1 via a novel STAT3- and MAPK-independent, PI3K/AKT-dependent pathway. Targeting LIF signaling may increase CCA responsiveness to chemotherapy.
Collapse
Affiliation(s)
| | - Massimiliano Cadamuro
- Department of Molecular Medicine, University of Padua, Padua, Italy.,Department of Surgery & Translational Medicine, University of Milan-Bicocca, Milan, Italy
| | - Simone Brivio
- Department of Surgery & Translational Medicine, University of Milan-Bicocca, Milan, Italy
| | - Marta Vismara
- Department of Molecular Medicine, University of Padua, Padua, Italy.,Department of Surgery & Translational Medicine, University of Milan-Bicocca, Milan, Italy
| | - Tommaso Stecca
- Fourth Surgery Division, Treviso Regional Hospital, Treviso, Italy
| | - Marco Massani
- Fourth Surgery Division, Treviso Regional Hospital, Treviso, Italy
| | - Nicolò Bassi
- Fourth Surgery Division, Treviso Regional Hospital, Treviso, Italy.,Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | | | | | - Annarosa Floreani
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua, Padua, Italy.,Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Mario Strazzabosco
- Department of Surgery & Translational Medicine, University of Milan-Bicocca, Milan, Italy.,Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
27
|
Varadarajan S, Poornima P, Milani M, Gowda K, Amin S, Wang HG, Cohen GM. Maritoclax and dinaciclib inhibit MCL-1 activity and induce apoptosis in both a MCL-1-dependent and -independent manner. Oncotarget 2016; 6:12668-81. [PMID: 26059440 PMCID: PMC4494965 DOI: 10.18632/oncotarget.3706] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/05/2015] [Indexed: 11/25/2022] Open
Abstract
The anti-apoptotic BCL-2 family proteins are important targets for cancer chemotherapy. Specific and potent inhibitors of the BCL-2 family, such as ABT-263 (navitoclax) and ABT-199, are only effective against some members of the BCL-2 family but do not target MCL-1, which is commonly amplified in tumors and associated with chemoresistance. In this report, the selectivity and potency of two putative MCL-1 inhibitors, dinaciclib and maritoclax, were assessed. Although both compounds induced Bax/Bak- and caspase-9-dependent apoptosis, dinaciclib was more potent than maritoclax in downregulating MCL-1 and also in inducing apoptosis. However, the compounds induced apoptosis, even in cells lacking MCL-1, suggesting multiple mechanisms of cell death. Furthermore, maritoclax induced extensive mitochondrial fragmentation, and a Bax/Bak- but MCL-1-independent accumulation of mitochondrial reactive oxygen species (ROS), with an accompanying loss of complexes I and III of the electron transport chain. ROS scavengers, such as MitoQ, could not salvage maritoclax-mediated effects on mitochondrial structure and function. Taken together, our data demonstrate that neither dinaciclib nor maritoclax exclusively target MCL-1. Although dinaciclib is clearly not a specific MCL-1 inhibitor, its ability to rapidly downregulate MCL-1 may be beneficial in many clinical settings, where it may reverse chemoresistance or sensitize to other chemotherapeutic agents.
Collapse
Affiliation(s)
- Shankar Varadarajan
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Paramasivan Poornima
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Mateus Milani
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Krishne Gowda
- Department of Pharmacology, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - Shantu Amin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - Hong-Gang Wang
- Department of Pharmacology, Pennsylvania State University College of Medicine, Pennsylvania, USA.,Department of Pediatrics, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - Gerald M Cohen
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
28
|
Targeting Cell Survival Proteins for Cancer Cell Death. Pharmaceuticals (Basel) 2016; 9:ph9010011. [PMID: 26927133 PMCID: PMC4812375 DOI: 10.3390/ph9010011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/08/2016] [Accepted: 02/16/2016] [Indexed: 12/18/2022] Open
Abstract
Escaping from cell death is one of the adaptations that enable cancer cells to stave off anticancer therapies. The key players in avoiding apoptosis are collectively known as survival proteins. Survival proteins comprise the Bcl-2, inhibitor of apoptosis (IAP), and heat shock protein (HSP) families. The aberrant expression of these proteins is associated with a range of biological activities that promote cancer cell survival, proliferation, and resistance to therapy. Several therapeutic strategies that target survival proteins are based on mimicking BH3 domains or the IAP-binding motif or competing with ATP for the Hsp90 ATP-binding pocket. Alternative strategies, including use of nutraceuticals, transcriptional repression, and antisense oligonucleotides, provide options to target survival proteins. This review focuses on the role of survival proteins in chemoresistance and current therapeutic strategies in preclinical or clinical trials that target survival protein signaling pathways. Recent approaches to target survival proteins-including nutraceuticals, small-molecule inhibitors, peptides, and Bcl-2-specific mimetic are explored. Therapeutic inventions targeting survival proteins are promising strategies to inhibit cancer cell survival and chemoresistance. However, complete eradication of resistance is a distant dream. For a successful clinical outcome, pretreatment with novel survival protein inhibitors alone or in combination with conventional therapies holds great promise.
Collapse
|
29
|
Plano D, Karelia DN, Pandey MK, Spallholz JE, Amin S, Sharma AK. Design, Synthesis, and Biological Evaluation of Novel Selenium (Se-NSAID) Molecules as Anticancer Agents. J Med Chem 2016; 59:1946-59. [PMID: 26750401 DOI: 10.1021/acs.jmedchem.5b01503] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The synthesis and anticancer evaluation of novel selenium-nonsteroidal anti-inflammatory drug (Se-NSAID) hybrid molecules are reported. The Se-aspirin analogue 8 was identified as the most effective agent in reducing the viability of different cancer cell lines, particularly colorectal cancer (CRC) cells, was more selective toward cancer cells than normal cells, and was >10 times more potent than 5-FU, the current therapy for CRC. Compound 8 inhibits CRC growth via the inhibition of the cell cycle in G1 and G2/M phases and reduces the cell cycle markers like cyclin E1 and B1 in a dose dependent manner; the inhibition of the cell cycle may be dependent on the ability of 8 to induce p21 expression. Furthermore, 8 induces apoptosis by activating caspase 3/7 and PARP cleavage, and its longer exposure causes increase in intracellular ROS levels in CRC cells. Taken together, 8 has the potential to be developed further as a chemotherapeutic agent for CRC.
Collapse
Affiliation(s)
- Daniel Plano
- Department of Organic and Pharmaceutical Chemistry, University of Navarra , Irunlarrea 1, E-31008 Pamplona, Spain
| | - Deepkamal N Karelia
- Department of Pharmacology, Penn State Hershey Cancer Institute, CH72, Penn State College of Medicine , 500 University Drive, Hershey, Pennsylvania 17033, United States
| | - Manoj K Pandey
- Department of Pharmacology, Penn State Hershey Cancer Institute, CH72, Penn State College of Medicine , 500 University Drive, Hershey, Pennsylvania 17033, United States
| | - Julian E Spallholz
- Department of Nutrition, Texas Tech University , Lubbock, Texas 79430, United States
| | - Shantu Amin
- Department of Pharmacology, Penn State Hershey Cancer Institute, CH72, Penn State College of Medicine , 500 University Drive, Hershey, Pennsylvania 17033, United States
| | - Arun K Sharma
- Department of Pharmacology, Penn State Hershey Cancer Institute, CH72, Penn State College of Medicine , 500 University Drive, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
30
|
Nhu D, Lessene G, Huang DCS, Burns CJ. Small molecules targeting Mcl-1: the search for a silver bullet in cancer therapy. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00582e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Progress towards the development of potent and selective inhibitors of the pro-survival protein Mcl-1 is reviewed.
Collapse
Affiliation(s)
- Duong Nhu
- The Walter and Eliza Hall Institute of Medical Research
- Australia
- Department of Medical Biology
- The University of Melbourne
- Australia
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research
- Australia
- Department of Medical Biology
- The University of Melbourne
- Australia
| | - David C. S. Huang
- The Walter and Eliza Hall Institute of Medical Research
- Australia
- Department of Medical Biology
- The University of Melbourne
- Australia
| | - Christopher J. Burns
- The Walter and Eliza Hall Institute of Medical Research
- Australia
- Department of Medical Biology
- The University of Melbourne
- Australia
| |
Collapse
|
31
|
Doi K, Gowda K, Liu Q, Lin JM, Sung SS, Dower C, Claxton D, Loughran TP, Amin S, Wang HG. Pyoluteorin derivatives induce Mcl-1 degradation and apoptosis in hematological cancer cells. Cancer Biol Ther 2015; 15:1688-99. [PMID: 25535900 DOI: 10.4161/15384047.2014.972799] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mcl-1, a pro-survival member of the Bcl-2 protein family, is an attractive target for cancer therapy. We have recently identified the natural product marinopyrrole A (maritoclax) as a novel small molecule Mcl-1 inhibitor. Here, we describe the structure-activity relationship study of pyoluteorin derivatives based on maritoclax. To date, we synthesized over 30 derivatives of maritoclax and evaluated their inhibitory actions and cytotoxicity toward Mcl-1-dependent cell lines. As a result, several functional groups were identified in the pyoluteorin motif that significantly potentiate biological activity. A number of such derivatives, KS04 and KS18, interacted with Mcl-1 in a conserved fashion according to NMR spectroscopy and molecular modeling. KS04 and KS18 induced apoptosis selectively in Mcl-1-dependent but not Bcl-2-dependent K562 cells through selective Mcl-1 down-regulation, and synergistically enhanced apoptosis in combination with ABT-737. Moreover, the intraperitoneal administration of KS18 (10 mg/kg/d) and ABT-737 (20 mg/kg/d) significantly suppressed the growth of ABT-737-resistant HL-60 xenografts in nude mice without apparent toxicity. Overall, we identified the pharmacophore of pyoluteorin derivatives that act as potent and promising Mcl-1 antagonists against Mcl-1-dependent hematological cancers.
Collapse
Key Words
- ABTR, ABT-737 resistant
- AML, Acute Myeloid Leukemia
- AUCinf, area under curve extrapolated to time infinity
- AUClast, area under curve until last observed timepoint
- Apoptosis
- BH3, Bcl-2 homology domain 3
- Bcl-2 family
- Bcl-2, B-cell lymphoma-2
- CHX, Cycloheximide
- CL, rate of plasma clearance
- Cmax, maximal plasma concentration
- EC50, Half maximal effective concentration
- IRES, Internal ribosome entry site
- LD50, median lethal dose
- MTD, Maximal tolerated dose
- Mcl-1
- Mcl-1, Myeloid cell leukemia-1
- NMR, Nuclear magnetic resonance
- PARP, Poly (ADP-ribose) polymerase
- SAR, Structure-activity relationship
- T1/2, plasma half-life
- Tmax, time to maximal plasma concentration
- VD, Volume of distribution
- i.p., Intraperitoneal
- leukemia
- lymphoma
- maritoclax
- multiple myeloma
- pyoluteorin
Collapse
Affiliation(s)
- Kenichiro Doi
- a Department of Pediatrics ; Pennsylvania State University College of Medicine ; Hershey , PA USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li R. Marinopyrroles: Unique Drug Discoveries Based on Marine Natural Products. Med Res Rev 2015; 36:169-89. [DOI: 10.1002/med.21359] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Rongshi Li
- Department of Pharmaceutical Sciences, Center for Drug Discovery; College of Pharmacy, Cancer Genes and Molecular Regulation Program, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center; Omaha NE 68198-6805
| |
Collapse
|
33
|
Kaur G, Mahajan MP, Pandey MK, Singh P, Ramisetti SR, Sharma AK. Design, synthesis and evaluation of Ospemifene analogs as anti-breast cancer agents. Eur J Med Chem 2014; 86:211-8. [DOI: 10.1016/j.ejmech.2014.08.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 12/01/2022]
|
34
|
Belmar J, Fesik SW. Small molecule Mcl-1 inhibitors for the treatment of cancer. Pharmacol Ther 2014; 145:76-84. [PMID: 25172548 DOI: 10.1016/j.pharmthera.2014.08.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/14/2014] [Indexed: 11/28/2022]
Abstract
The Bcl-2 family of proteins serves as primary regulators of apoptosis. Myeloid cell leukemia 1 (Mcl-1), a pro-survival member of the Bcl-2 family of proteins, is overexpressed and the Mcl-1 gene is amplified in many tumor types. Moreover, the overexpression of Mcl-1 is the cause of resistance to several chemotherapeutic agents. Thus, Mcl-1 is a promising cancer target. This review highlights the current progress on the discovery of small molecule Mcl-1 inhibitors.
Collapse
Affiliation(s)
- Johannes Belmar
- Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, TN 37232-0146, United States
| | - Stephen W Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, TN 37232-0146, United States.
| |
Collapse
|
35
|
Grazia G, Penna I, Perotti V, Anichini A, Tassi E. Towards combinatorial targeted therapy in melanoma: from pre-clinical evidence to clinical application (review). Int J Oncol 2014; 45:929-49. [PMID: 24920406 PMCID: PMC4121406 DOI: 10.3892/ijo.2014.2491] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/30/2014] [Indexed: 12/15/2022] Open
Abstract
Over the last few years, clinical trials with BRAF and mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitors have shown significant clinical activity in melanoma, but only a fraction of patients respond to these therapies, and development of resistance is frequent. This has prompted a large set of preclinical studies looking at several new combinatorial approaches of pathway- or target-specific inhibitors. At least five main drug association strategies have been verified in vitro and in preclinical models. The most promising include: i) vertical targeting of either MEK or phosphoinositide-3 kinase (PI3K)/mammalian target of rapamycin (mTOR) pathways, or their combined blockade; ii) association of receptor tyrosine kinases (RTKs) inhibitors with other pro-apoptotic strategies; iii) engagement of death receptors in combination with MEK-, mTOR/PI3K-, histone deacetylase (HDAC)-inhibitors, or with anti-apoptotic molecules modulators; iv) strategies aimed at blocking anti-apoptotic proteins belonging to B-cell lymphoma (Bcl-2) or inhibitors of apoptosis (IAP) families associated with MEK/BRAF/p38 inhibition; v) co-inhibition of other molecules important for survival [proteasome, HDAC and Signal transducers and activators of transcription (Stat)3] and the major pathways activated in melanoma; vi) simultaneous targeting of multiple anti-apoptotic molecules. Here we review the anti-melanoma efficacy and mechanism of action of the above-mentioned combinatorial strategies, together with the potential clinical application of the most promising studies that may eventually lead to therapeutic benefit.
Collapse
Affiliation(s)
- Giulia Grazia
- Human Tumors Immunobiology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Ilaria Penna
- Human Tumors Immunobiology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Valentina Perotti
- Human Tumors Immunobiology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Andrea Anichini
- Human Tumors Immunobiology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Elena Tassi
- Human Tumors Immunobiology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| |
Collapse
|
36
|
Doi K, Liu Q, Gowda K, Barth BM, Claxton D, Amin S, Loughran TP, Wang HG. Maritoclax induces apoptosis in acute myeloid leukemia cells with elevated Mcl-1 expression. Cancer Biol Ther 2014; 15:1077-86. [PMID: 24842334 DOI: 10.4161/cbt.29186] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is one of the deadliest leukemias for which there is an urgent and unmet need for the development of novel treatment strategies. Multiple drug resistance mechanisms mediate poor drug response and relapse in patients, and a selective Mcl-1 inhibitor has been speculated to be a promising agent in the treatment of AML. Here, we describe that maritoclax, a small molecule Mcl-1 inhibitor, induces Mcl-1 proteasomal degradation without transcriptional downregulation. Maritoclax killed AML cell lines and primary cells with elevated Mcl-1 levels through selective Mcl-1 downregulation, and synergized with ABT-737 to overcome Mcl-1-mediated ABT-737 resistance. Maritoclax was more effective than daunorubicin at inducing leukemic cell death when co-cultured with HS-5 bone marrow stroma cells, while being less toxic than daunorubicin against HS-5 stroma cells, primary mouse bone marrow cells, and hematopoietic progenitor cells. Moreover, maritoclax administration at 20 mg/kg/d intraperitoneally caused significant U937 tumor shrinkage, as well as 36% tumors remission rate in athymic nude mice, without apparent toxicity to healthy tissue or circulating blood cells. In summary, our studies suggest that maritoclax belongs to a novel class of Mcl-1 inhibitors that has the potential to be developed for the treatment of AML.
Collapse
Affiliation(s)
- Kenichiro Doi
- Department of Pediatrics; Pennsylvania State University College of Medicine; Hershey, PA USA
| | - Qiang Liu
- Department of Pharmacology; Pennsylvania State University College of Medicine; Hershey, PA USA
| | - Krishne Gowda
- Department of Pharmacology; Pennsylvania State University College of Medicine; Hershey, PA USA
| | - Brian M Barth
- Penn State Hershey Cancer Institute; Pennsylvania State University College of Medicine; Hershey, PA USA
| | - David Claxton
- Penn State Hershey Cancer Institute; Pennsylvania State University College of Medicine; Hershey, PA USA
| | - Shantu Amin
- Department of Pharmacology; Pennsylvania State University College of Medicine; Hershey, PA USA
| | - Thomas P Loughran
- Penn State Hershey Cancer Institute; Pennsylvania State University College of Medicine; Hershey, PA USA
| | - Hong-Gang Wang
- Department of Pediatrics; Pennsylvania State University College of Medicine; Hershey, PA USA; Department of Pharmacology; Pennsylvania State University College of Medicine; Hershey, PA USA; Penn State Hershey Cancer Institute; Pennsylvania State University College of Medicine; Hershey, PA USA
| |
Collapse
|
37
|
Mohana-Kumaran N, Hill DS, Allen JD, Haass NK. Targeting the intrinsic apoptosis pathway as a strategy for melanoma therapy. Pigment Cell Melanoma Res 2014; 27:525-39. [PMID: 24655414 DOI: 10.1111/pcmr.12242] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/17/2014] [Indexed: 01/02/2023]
Abstract
Melanoma drug resistance is often attributed to abrogation of the intrinsic apoptosis pathway. Targeting regulators of apoptosis is thus considered a promising approach to sensitizing melanomas to treatment. The development of small-molecule inhibitors that mimic natural antagonists of either antiapoptotic members of the BCL-2 family or the inhibitor of apoptosis proteins (IAPs), known as BH3- or SMAC-mimetics, respectively, are helping us to understand the mechanisms behind apoptotic resistance. Studies using BH3-mimetics indicate that the antiapoptotic BCL-2 protein MCL-1 and its antagonist NOXA are particularly important regulators of BCL-2 family signaling, while SMAC-mimetic studies show that both XIAP and the cIAPs must be targeted to effectively induce apoptosis of cancer cells. Although most solid tumors, including melanoma, are insensitive to these mimetic drugs as single agents, combinations with other therapeutics have yielded promising results, and tests combining them with BRAF-inhibitors, which have already revolutionized melanoma treatment, are a clear priority.
Collapse
Affiliation(s)
- Nethia Mohana-Kumaran
- The Centenary Institute, Newtown, NSW, Australia; School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | | | | |
Collapse
|