1
|
Chakravarti AR, Groer CE, Gong H, Yudistyra V, Forrest ML, Berkland CJ. Design of a Tumor Binding GMCSF as Intratumoral Immunotherapy of Solid Tumors. Mol Pharm 2023; 20:1975-1989. [PMID: 36825806 DOI: 10.1021/acs.molpharmaceut.2c00897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Next-generation cancer immunotherapies may utilize immunostimulants to selectively activate the host immune system against tumor cells. Checkpoint inhibitors (CPIs) like anti-PD1/PDL-1 that inhibit immunosuppression have shown unprecedented success but are only effective in the 20-30% of patients that possess an already "hot" (immunogenic) tumor. In this regard, intratumoral (IT) injection of immunostimulants is a promising approach since they can work synergistically with CPIs to overcome the resistance to immunotherapies by inducing immune stimulation in the tumor. One such immunostimulant is granulocyte macrophage-colony-stimulating factor (GMCSF) that functions by recruiting and activating antigen-presenting cells (dendritic cells) in the tumor, thereby initiating anti-tumor immune responses. However, key problems with GMCSF are lack of efficacy and the risk of systemic toxicity caused by the leakage of GMCSF from the tumor tissue. We have designed tumor-retentive versions of GMCSF that are safe yet potent immunostimulants for the local treatment of solid tumors. The engineered GMCSFs (eGMCSF) were synthesized by recombinantly fusing tumor-ECM (extracellular matrix) binding peptides to GMCSF. The eGMCSFs exhibited enhanced tumor binding and potent immunological activity in vitro and in vivo. Upon IT administration, the tumor-retentive eGMCSFs persisted in the tumor, thereby alleviating systemic toxicity, and elicited localized immune activation to effectively turn an unresponsive immunologically "cold" tumor "hot".
Collapse
Affiliation(s)
| | - Chad E Groer
- HylaPharm, LLC, Lawrence, Kansas 66047, United States.,Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Huan Gong
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Vivian Yudistyra
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Marcus Laird Forrest
- HylaPharm, LLC, Lawrence, Kansas 66047, United States.,Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Cory J Berkland
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66045, United States.,Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States.,Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
2
|
Noppiboon S, Lapanusorn N, Ekkpongpaisit P, Slack S, Frank S, Hocharoen L. A Simple and Cost-Efficient Platform for a Novel Porcine Circovirus Type 2d (PCV2d) Vaccine Manufacturing. Vaccines (Basel) 2023; 11:169. [PMID: 36680014 PMCID: PMC9865830 DOI: 10.3390/vaccines11010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/18/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Porcine circovirus type 2d (PCV2d) is becoming the predominant PCV genotype and considerably affects the global pig industry. Nevertheless, currently, no commercial PCV2d vaccine is available. Preventing and controlling the disease caused by PCV2d is therefore based on other genotype-based vaccines. However, their production platforms are laborious, limited in expression level, and relatively expensive for veterinary applications. To address these challenges, we have developed a simple and cost-efficient platform for a novel PCV2d vaccine production process, using fed-batch E. coli fermentation followed by cell disruption and filtration, and a single purification step via cation exchange chromatography. The process was developed at bench scale and then pilot scale, where the PCV2d subunit protein yield was approximately 0.93 g/L fermentation volume in a short production time. Moreover, we have successfully implemented this production process at two different sites, in Southeast Asia and Europe. This demonstrates transferability and the high potential for successful industrial production.
Collapse
Affiliation(s)
- Sarawuth Noppiboon
- Bioprocess Research and Innovation Centre, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Neeracha Lapanusorn
- Bioprocess Research and Innovation Centre, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Pisit Ekkpongpaisit
- Bioprocess Research and Innovation Centre, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Sarah Slack
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Stefanie Frank
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Lalintip Hocharoen
- Bioprocess Research and Innovation Centre, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| |
Collapse
|
3
|
Ko JH, Forsythe NL, Gelb MB, Messina KMM, Lau UY, Bhattacharya A, Olafsen T, Lee JT, Kelly KA, Maynard HD. Safety and Biodistribution Profile of Poly(styrenyl acetal trehalose) and Its Granulocyte Colony Stimulating Factor Conjugate. Biomacromolecules 2022; 23:3383-3395. [PMID: 35767465 DOI: 10.1021/acs.biomac.2c00511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(styrenyl acetal trehalose) (pSAT), composed of trehalose side chains linked to a polystyrene backbone via acetals, stabilizes a variety of proteins and enzymes against fluctuations in temperature. A promising application of pSAT is conjugation of the polymer to therapeutic proteins to reduce renal clearance. To explore this possibility, the safety of the polymer was first studied. Investigation of acute toxicity of pSAT in mice showed that there were no adverse effects of the polymer at a high (10 mg/kg) concentration. The immune response (antipolymer antibody and cytokine production) in mice was also studied. No significant antipolymer IgG was detected for pSAT, and only a transient and low level of IgM was elicited. pSAT was also safe in terms of cytokine response. The polymer was then conjugated to a granulocyte colony stimulating factor (GCSF), a therapeutic protein that is approved by the Federal Drug Administration, in order to study the biodistribution of a pSAT conjugate. A site-selective, two-step synthesis approach was developed for efficient conjugate preparation for the biodistribution study resulting in 90% conjugation efficiency. The organ distribution of GCSF-pSAT was measured by positron emission tomography and compared to controls GCSF and GCSF-poly(ethylene glycol), which confirmed that the trehalose polymer conjugate improved the in vivo half-life of the protein by reducing renal clearance. These findings suggest that trehalose styrenyl polymers are promising for use in therapeutic protein-polymer conjugates for reduced renal clearance of the biomolecule.
Collapse
Affiliation(s)
- Jeong Hoon Ko
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Neil L Forsythe
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Madeline B Gelb
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Kathryn M M Messina
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Uland Y Lau
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Arvind Bhattacharya
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Tove Olafsen
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Jason T Lee
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Kathleen A Kelly
- Department of Pathology and Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Cho JS, Oh HJ, Jang YE, Kim HJ, Kim A, Song J, Lee EJ, Lee J. Synthetic pro-peptide design to enhance the secretion of heterologous proteins by Saccharomyces cerevisiae. Microbiologyopen 2022; 11:e1300. [PMID: 35765186 PMCID: PMC9178654 DOI: 10.1002/mbo3.1300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
Heterologous protein production in Saccharomyces cerevisiae is a useful and effective strategy with many advantages, including the secretion of proteins that require posttranslational processing. However, heterologous proteins in S. cerevisiae are often secreted at comparatively low levels. To improve the production of the heterologous protein, human granulocyte colony-stimulating factor (hG-CSF) in S. cerevisiae, a secretion-enhancing peptide cassette including an hIL-1β-derived pro-peptide, was added and used as a secretion enhancer to alleviate specific bottlenecks in the yeast secretory pathway. The effects of three key parameters-N-glycosylation, net negative charge balance, and glycine-rich flexible linker-were investigated in batch cultures of S. cerevisiae. Using a three-stage design involving screening, selection, and optimization, the production and secretion of hG-CSF by S. cerevisiae were significantly increased. The amount of extracellular mature hG-CSF produced by the optimized pro-peptide after the final stage increased by 190% compared to that of the original pro-peptide. Although hG-CSF was used as the model protein in the current study, this strategy is applicable to the enhanced production of other heterologous proteins, using S. cerevisiae as the host.
Collapse
Affiliation(s)
- Ji Sung Cho
- Department of Chemical and Biological Engineering, College of EngineeringKorea UniversitySeoulKorea
| | - Hye Ji Oh
- Department of Chemical and Biological Engineering, College of EngineeringKorea UniversitySeoulKorea
| | - Young Eun Jang
- Department of Chemical and Biological Engineering, College of EngineeringKorea UniversitySeoulKorea
| | - Hyun Jin Kim
- Department of Chemical and Biological Engineering, College of EngineeringKorea UniversitySeoulKorea
| | - Areum Kim
- Department of Chemical and Biological Engineering, College of EngineeringKorea UniversitySeoulKorea
| | - Jong‐Am Song
- Department of Chemical and Biological Engineering, College of EngineeringKorea UniversitySeoulKorea
| | - Eun Jung Lee
- Department of Chemical Engineering, School of Applied Chemical EngineeringKyungpook National UniversityDaeguKorea
| | - Jeewon Lee
- Department of Chemical and Biological Engineering, College of EngineeringKorea UniversitySeoulKorea
| |
Collapse
|
5
|
Mohammadi Z, Alijanianzadeh M, Khalilzadeh R, Khodadadi S. Process Development for the Production and Purification of PEGylated
RhG-CSF Expressed in Escherichia coli. Protein Pept Lett 2022; 29:293-305. [DOI: 10.2174/0929866529666220126100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
Background and objective:
Recombinant human granulocyte-colony stimulating factor (rhG-CSF) and its PEGylated form (PEG-GCSF) are used in the cancer therapy. Thus the development of a more cost-effectively method for expressing rhG-CSF and the PEGylation optimization of rhG-CSF by reaction engineering and subsequent the purification strategy is necessary.
Methods:
RhG-CSF expression in Escherichia coli BL21 (DE3) was carried out by auto-induction batch fermentation and improved for maximizing rhG-CSF productivity. After that, purified rhG-CSF was PEGylated using methoxy polyethylene glycol propionaldehydes (mPEG20-ALD). The various conditions effect of extraction and purification of rhG-CSF and PEG-GCSF were assayed.
Results:
The assessment results revealed that auto-induction batch cultivation strategy had maximum productivity and rhG-CSF purity was more than 99%. The obtained Data of rhG-CSF PEGylation displayed that the optimized conditions of rhG-CSF PEGylation and purification enhanced hemogenisity PEG-GCSF and managed reaction toward optimal yield of PEG-GCSF (70%) and purity of 99.9%. Findings from FTIR, CD, and fluorescence spectroscopy and bioassay revealed that PEGylation was executed exactly in the rhG-CSF N-terminus, and products maintained their conformation properties.
Conclusion:
Overall, the developed approach expanded strategies for high yield rhG-CSF by simplified auto-induction batch fermentation system and rhG-CSF PEGylation, which are simple and time-saving, economical and high efficiency.
Collapse
Affiliation(s)
- Zeinab Mohammadi
- Department of Bioscience and Biotechnology, Malek-Ashtar University of Technology, Tehran, Iran
| | - Mahdi Alijanianzadeh
- Department of Bioscience and Biotechnology, Malek-Ashtar University of Technology, Tehran, Iran
- Department of
Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Rassoul Khalilzadeh
- Department of Bioscience and Biotechnology, Malek-Ashtar University of Technology, Tehran, Iran
| | - Sirus Khodadadi
- Department of Bioscience and Biotechnology, Malek-Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
6
|
Chow LT, Vassylyev DG. Application of a Novel CL7/Im7 Affinity System in Purification of Complex and Pharmaceutical Proteins. Methods Mol Biol 2022; 2466:61-82. [PMID: 35585311 DOI: 10.1007/978-1-0716-2176-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We have developed the CL7/Im7 protein purification system to achieve high-yield, high-purity and high-activity (HHH) products in one step. The system is based on the natural ultrahigh-affinity complex between the two small proteins encoded by colicinogenic plasmids carried by certain E. coli strains, the DNAse domain of colicin E7 (CE7; MW ~ 15 kDa) and its natural endogenous inhibitor, the immunity protein 7 (Im7; MW ~ 10 kDa). CL7 is an engineered variant of CE7, in which the toxic DNA-binding and catalytic activities have been eliminated while retaining the high affinity to Im7. CL7 is used as a protein tag, while Im7 is covalently attached to agarose beads. To make the CL7/Im7 technique easy to use, we have designed a set of the E. coli expression vectors for fusion of a target protein to the protease-cleavable CL7-tag either at the N- or the C-terminus, and also have the options of the dual (CL7/His8) tag. A subset of vectors is dedicated for cloning membrane and multisubunit proteins. The CL7/Im7 system has several notable advatantages over other available affinity purification techniques. First, high concentrations of the small Im7 protein are coupled to the beads resulting in the high column capacities (up to 60 mg/mL). Second, an exceptional stability of Im7 allows for multiple (100+) regeneration cycles with no loss of binding capacities. Third, the CL7-tag improves protein expression levels, solubility and, in some cases, assists folding of the target proteins. Fourth, the on-column proteolytic elution produces purified proteins with few or no extra amino acid residues. Finally, the CL7/Im7 affinity is largely insensitive to high salt concentrations. For many target proteins, loading the bacterial lysates on the Im7 column in high salt is a key to high purity. Altogether, these properties of the CL7/Im7 system allow for a one-step HHH purification of most challenging, biologically and clinically significant proteins.
Collapse
Affiliation(s)
- Louise T Chow
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dmitry G Vassylyev
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
Production of recombinant human G-CSF from non-classical inclusion bodies in Escherichia coli. Braz J Microbiol 2021; 52:541-546. [PMID: 33483893 DOI: 10.1007/s42770-020-00413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022] Open
Abstract
Recombinant granulocyte colony-stimulating factor (G-CSF) protein produced in Escherichia coli has been widely used for the treatment of neutropenia induced by chemotherapy for decades. In E. coli cells, G-CSF is usually expressed as inactive inclusion bodies, which requires costly and inefficient denaturation and refolding steps to obtain the protein in its active form. However, following the findings of previous studies, we here successfully produced G-CSF in E. coli as non-classical inclusion bodies (ncIBs), which contained likely correctly folded protein. The ncIBs were easily dissolved in 0.2% N-lauroylsarcosine solution and then directly applied to a Ni-NTA affinity chromatography column to get G-CSF with high purity (> 90%). The obtained G-CSF was demonstrated to have a similar bioactivity with the well-known G-CSF containing product Neupogen (Amgen, Switzerland). Our finding clearly verified that the G-CSF production from ncIBs is a feasible approach to improve the yield and lower the cost of G-CSF manufacturing process.
Collapse
|
8
|
Production of PEGylated GCSF from Non-classical Inclusion Bodies Expressed in Escherichia coli. Avicenna J Med Biotechnol 2021; 13:192-200. [PMID: 34900145 PMCID: PMC8606113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/04/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The recombinant human granulocyte colony stimulating factor conjugated with polyethylene glycol (PEGylated GCSF) has currently been used as an efficient drug for the treatment of neutropenia caused by chemotherapy due to its long circulating half-life. Previous studies showed that Granulocyte Colony Stimulating Factor (GCSF) could be expressed as non-classical Inclusion Bodies (ncIBs), which contained likely correctly folded GCSF inside at low temperature. Therefore, in this study, a simple process was developed to produce PEGylated GCSF from ncIBs. METHODS BL21 (DE3)/pET-GCSF cells were cultured in the LiFlus GX 1.5 L bioreactor and the expression of GCSF was induced by adding 0.5 mM IPTG. After 24 hr of fermentation, cells were collected, resuspended, and disrupted. The insoluble fraction was obtained from cell lysates and dissolved in 0.1% N-lauroylsarcosine solution. The presence and structure of dissolved GCSF were verified using SDS-PAGE, Native-PAGE, and RP-HPLC analyses. The dissolved GCSF was directly used for the conjugation with 5 kDa PEG. The PEGylated GCSF was purified using two purification steps, including anion exchange chromatography and gel filtration chromatography. RESULTS PEGylated GCSF was obtained with high purity (∼97%) and was finally demonstrated as a form containing one GCSF molecule and one 5 kDa PEG molecule (monoPEG-GCSF). CONCLUSION These results clearly indicate that the process developed in this study might be a potential and practical approach to produce PEGylated GCSF from ncIBs expressed in Escherichia coli (E. coli).
Collapse
|
9
|
Development of recombinant human granulocyte colony-stimulating factor (nartograstim) production process in Escherichia coli compatible with industrial scale and with no antibiotics in the culture medium. Appl Microbiol Biotechnol 2020; 105:169-183. [PMID: 33201277 DOI: 10.1007/s00253-020-11014-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
The granulocyte colony-stimulating factor (G-CSF) is a hematopoietic cytokine that has important clinical applications for treating neutropenia. Nartograstim is a recombinant variant of human G-CSF. Nartograstim has been produced in Escherichia coli as inclusion bodies (IB) and presents higher stability and biological activity than the wild type of human G-CSF because of its mutations. We developed a production process of nartograstim in a 10-L bioreactor using auto-induction or chemically defined medium. After cell lysis, centrifugation, IB washing, and IB solubilization, the following three refolding methods were evaluated: diafiltration, dialysis, and direct dilution in two refolding buffers. Western blot and SDS-PAGE confirmed the identity of 18.8-kDa bands as nartograstim in both cultures. The auto-induction medium produced 1.17 g/L and chemically defined medium produced 0.95 g/L. The dilution method yielded the highest percentage of refolding (99%). After refolding, many contaminant proteins precipitated during pH adjustment to 5.2, increasing purity from 50 to 78%. After applying the supernatant to cation exchange chromatography (CEC), nartograstim recovery was low and the purity was 87%. However, when the refolding solution was applied to anion exchange chromatography followed by CEC, 91%-98% purity and 2.2% recovery were obtained. The purification process described in this work can be used to obtain nartograstim with high purity, structural integrity, and the expected biological activity. KEY POINTS: • Few papers report the final recovery of the purification process from inclusion bodies. • The process developed led to high purity and reasonable recovery compared to literature. • Nartograstim biological activity was demonstrated in mice using a neutropenia model.
Collapse
|
10
|
Dewi KS, Fuad AM. Improving the Expression of Human Granulocyte Colony Stimulating Factor in Escherichia coli by Reducing the GC-content and Increasing mRNA Folding Free Energy at 5'-Terminal End. Adv Pharm Bull 2020; 10:610-616. [PMID: 33072539 PMCID: PMC7539321 DOI: 10.34172/apb.2020.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/24/2019] [Accepted: 01/27/2020] [Indexed: 01/16/2023] Open
Abstract
Purpose: Strategy for improving the production of biopharmaceutical protein continues to develop due to increasing market demand. Human granulocyte colony stimulating factor (hG-CSF) is one of biopharmaceutical proteins that has many applications, and easily produced in Escherichia coli expression system. Previous studies reported that codon usage, rare codon, mRNA folding and GC-content at 5’-terminal end were crucial for protein production in E. coli. In the present study, the effect of reducing the GC-content and increasing the mRNA folding free energy at the 5’-terminal end on the expression level of hG-CSF proteins was investigated. Methods: Synonymous codon substitutions were performed to generate mutant variants of open reading frame (ORF) with lower GC-content at 5’-terminal ends. Oligoanalyzer tool was used to calculate the GC content of eight codons sequence after ATG. Whereas, mRNA folding free energy was predicted using KineFold and RNAfold tools. The template DNA was amplified using three variant forward primers and one same reverse primer. Those DNA fragments were individually cloned into pJexpress414 expression vector and were confirmed using restriction and DNA sequencing analyses. The confirmed constructs were transformed into E. coli NiCo21(DE3) host cells and the recombinant protein was expressed using IPTG-induction. Total protein obtained were characterized using SDS-PAGE, Western blot and ImageJ software analyses. Results: The result showed that the mutant variant with lower GC-content and higher mRNA folding free energy near the translation initiation region (TIR) could produce a higher amount of hG-CSF proteins compared to the original gene sequence. Conclusion: This study emphasized the important role of the nucleotide composition immediately downstream the start codon to achieve high-yield protein product on heterologous expression in E. coli.
Collapse
Affiliation(s)
- Kartika Sari Dewi
- Research Center for Biotechnology, Indonesian Institute of Sciences, Cibinong, Bogor, Indonesia, 16911
| | - Asrul Muhamad Fuad
- Research Center for Biotechnology, Indonesian Institute of Sciences, Cibinong, Bogor, Indonesia, 16911
| |
Collapse
|
11
|
Peymanfar SH, Roghanian R, Ghaedi K, Zarkesh-Esfahani SH, Yari R. Characterization and In Silico Analysis of The Structural Features of G-CSF Derived from Lysates of Escherichia coli. CELL JOURNAL 2019; 21:426-432. [PMID: 31376324 PMCID: PMC6722442 DOI: 10.22074/cellj.2020.6158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/10/2018] [Indexed: 11/08/2022]
Abstract
Objective Granulocyte colony-stimulating factor (G-CSF) has a wide variety of functions including stimulation of hematopoiesis
and proliferation of granulocyte progenitor cells. Recombinant human G-CSF (rh-G-CSF) is used for treatment of neutropenia
in patients receiving chemotherapy. The mature bloodstream neutrophils express G-CSF receptor (G-CSFR), presenting
a significant and specific mechanism for circulating G-CSF clearance. Computational studies are essential bioinformatics
methods used for characterization of proteins with regard to their physicochemical properties and 3D configuration, as well
as protein–ligand interactions for recombinant drugs. We formerly produced rh-G-CSF in E. coli and showed that the isolated
protein had unacceptable biological activity in mice. In the present paper, we aimed to characterize the purified rh-G-CSF by
analytical tests and developed an in vivo model by computational modelling of G-CSF.
Materials and Methods In this experimental study, we analyzed the purified G-CSF using the analytical experiments.
Then, the crystalline structure was extracted from Protein Data Bank (PDB) and molecular dynamics (MD) simulation was
performed using Gromacs 5.1 package under an Amber force field. The importance of amino acid contents of G-CSF, to bind
the respective receptor was also detected; moreover, the effect of dithiothreitol (DTT) used in G-CSF purification was studied.
Results The results revealed that characteristics of the produced recombinant G-CSF were comparable with those of
the standard G-CSF and the recombinant G-CSF with the residual amino acid was stable. Also, purification conditions
(DTT and existence of extra cysteine) had a significant effect on the stability and functionality of the produced G-CSF.
Conclusion Experimental and in silico analyses provided good information regarding the function and characteristics of our
recombinant G-CSF which could be useful for industrial researches.
Collapse
Affiliation(s)
- S Harareh Peymanfar
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| | - Rasoul Roghanian
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran.Electronic Address:
| | - Kamran Ghaedi
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| | | | - Reza Yari
- Department of Biology, Borujerd Branch, Islamic Azad University, Borujerd, Iran
| |
Collapse
|
12
|
Dagar VK, Adivitiya, Khasa YP. High-level expression and efficient refolding of therapeutically important recombinant human Interleukin-3 (hIL-3) in E. coli. Protein Expr Purif 2017; 131:51-59. [DOI: 10.1016/j.pep.2016.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 10/27/2016] [Accepted: 11/04/2016] [Indexed: 11/17/2022]
|
13
|
Vemula S, Vemula S, Dedaniya A, Kante RK, Ronda SR. Characterization of recombinant human granulocyte colony-stimulating factor expression by FT-IR spectroscopy: Studies on thermal induction and media formulation on the stability of the protein secondary structure. Prep Biochem Biotechnol 2016; 46:586-95. [PMID: 26528735 DOI: 10.1080/10826068.2015.1084933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The Fourier-transform infrared (FT-IR) spectroscopic approach has been employed to understand the recombinant human G-CSF (rhG-CSF) protein accumulation, secondary structure, and thermal stability in Escherichia coli grown under a temperature shift strategy (37 and 28°C) in various media formulations. The choline + sodium pyruvate (37°C) and sodium pyruvate (28°C) formulations have shown the highest inclusion body (IB) accumulation of 0.41 and 0.46 mg/mL, respectively. Furthermore, insights on the structure of the rhG-CSF within IBs and intact cells have been investigated through secondary structure analysis. Thermal stability experiments were also carried out to explain the pattern of the second derivative structure of rhG-CSF. The studies showed that choline + sodium pyruvate formulation has preserved the protein secondary structure even at 82°C. Overall, the FT-IR spectroscopic technique can also be adopted to accelerate the characterization of other recombinant therapeutic proteins of E. coli origin.
Collapse
Affiliation(s)
- Sandeep Vemula
- a Centre for Bioprocess Technology, Department of Biotechnology , K. L. E. F. University , Guntur , Andhra Pradesh , India
| | - Sushma Vemula
- b Department of Pharmacology, Kakatiya University , Warangal , Andhra Pradesh , India
| | - Akshay Dedaniya
- a Centre for Bioprocess Technology, Department of Biotechnology , K. L. E. F. University , Guntur , Andhra Pradesh , India
| | - Rajesh Kumar Kante
- a Centre for Bioprocess Technology, Department of Biotechnology , K. L. E. F. University , Guntur , Andhra Pradesh , India
| | - Srinivasa Reddy Ronda
- a Centre for Bioprocess Technology, Department of Biotechnology , K. L. E. F. University , Guntur , Andhra Pradesh , India
| |
Collapse
|
14
|
Bashir S, Sadaf S, Ahmad S, Akhtar MW. Enhanced and Secretory Expression of Human Granulocyte Colony Stimulating Factor by Bacillus subtilis SCK6. BIOMED RESEARCH INTERNATIONAL 2015; 2015:636249. [PMID: 26881203 PMCID: PMC4735991 DOI: 10.1155/2015/636249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 11/18/2022]
Abstract
This study describes a simplified approach for enhanced expression and secretion of a pharmaceutically important human cytokine, that is, granulocyte colony stimulating factor (GCSF), in the culture supernatant of Bacillus subtilis SCK6 cells. Codon optimized GCSF and pNWPH vector containing SpymwC signal sequence were amplified by prolonged overlap extension PCR to generate multimeric plasmid DNA, which was used directly to transform B. subtilis SCK6 supercompetent cells. Expression of GCSF was monitored in the culture supernatant for 120 hours. The highest expression, which corresponded to 17% of the total secretory protein, was observed at 72 hours of growth. Following ammonium sulphate precipitation, GCSF was purified to near homogeneity by fast protein liquid chromatography on a QFF anion exchange column. Circular dichroism spectroscopic analysis showed that the secondary structure contents of the purified GCSF are similar to the commercially available GCSF. Biological activity, as revealed by the regeneration of neutrophils in mice treated with ifosfamine, was also similar to the commercial preparation of GCSF. This, to our knowledge, is the first study that reports secretory expression of human GCSF in B. subtilis SCK6 with final recovery of up to 96 mg/L of the culture supernatant, without involvement of any chemical inducer.
Collapse
Affiliation(s)
- Shaista Bashir
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Saima Sadaf
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Pakistan
| | - Sajjad Ahmad
- School of Biological Sciences, University of the Punjab, Lahore 54590, Pakistan
| | | |
Collapse
|
15
|
Roberts AG, Johnston EV, Shieh JH, Sondey JP, Hendrickson RC, Moore MAS, Danishefsky SJ. Fully Synthetic Granulocyte Colony-Stimulating Factor Enabled by Isonitrile-Mediated Coupling of Large, Side-Chain-Unprotected Peptides. J Am Chem Soc 2015; 137:13167-75. [PMID: 26401918 PMCID: PMC4617663 DOI: 10.1021/jacs.5b08754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human granulocyte colony-stimulating factor (G-CSF) is an endogenous glycoprotein involved in hematopoiesis. Natively glycosylated and nonglycosylated recombinant forms, lenograstim and filgrastim, respectively, are used clinically to manage neutropenia in patients undergoing chemotherapeutic treatment. Despite their comparable therapeutic potential, the purpose of O-linked glycosylation at Thr133 remains a subject of controversy. In light of this, we have developed a synthetic platform to prepare G-CSF aglycone with the goal of enabling access to native and designed glycoforms with site-selectivity and glycan homogeneity. To address the synthesis of a relatively large, aggregation-prone sequence, we advanced an isonitrile-mediated ligation method. The chemoselective activation and coupling of C-terminal peptidyl Gly thioacids with the N-terminus of an unprotected peptide provide ligated peptides directly in a manner complementary to that with conventional native chemical ligation-desulfurization strategies. Herein, we describe the details and application of this method as it enabled the convergent total synthesis of G-CSF aglycone.
Collapse
Affiliation(s)
- Andrew G. Roberts
- Laboratory for Bio-Organic Chemistry, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
- Chemical Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Eric V. Johnston
- Laboratory for Bio-Organic Chemistry, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
- Chemical Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Jae-Hung Shieh
- Cell Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Joseph P. Sondey
- Chemical Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Ronald C. Hendrickson
- Chemical Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Malcolm A. S. Moore
- Cell Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
| | - Samuel J. Danishefsky
- Laboratory for Bio-Organic Chemistry, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
- Chemical Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
- Cell Biology Program, Sloan Kettering Institute (SKI) for Cancer Research, New York, New York 10065, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
16
|
Vemula S, Dedaniya A, Bandaru R, Mallu MR, Settaluri VS, Ronda SR. Production of Recombinant Human Granulocyte-Colony Stimulating Factor in Escherichia coli Using Novel Media Supplements Through Integrated Statistical Optimization Designs. Int J Pept Res Ther 2015. [DOI: 10.1007/s10989-015-9458-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Vemula S, Thunuguntla R, Dedaniya A, Kokkiligadda S, Palle C, Ronda SR. Improved Production and Characterization of Recombinant Human Granulocyte Colony Stimulating Factor from E. coli under Optimized Downstream Processes. Protein Expr Purif 2015; 108:62-72. [PMID: 25659501 DOI: 10.1016/j.pep.2015.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 02/06/2023]
Abstract
This work reports the upstream and downstream process of recombinant human granulocyte colony stimulating factor (rhG-CSF) expressed in Escherichia coli BL21 (DE3)pLysS. The fed batch mode was selected for the maximum output of biomass (6.4g/L) and purified rhG-CSF (136mg/L) under suitable physicochemical environment. The downstream processing steps viz., recovery, solubilization, refolding and concentration were optimized in this study. The maximum rhG-CSF inclusion bodies recovery yield (97%) was accomplished with frequent homogenization and sonication procedure. An efficient solubilization (96%) of rhG-CSF inclusion bodies were observed with 8M urea at pH 9.5. Refolding efficiency studies showed maximum refolding ⩾86% and ⩾84% at 20°C and pH 9 respectively. The renatured protein solution was concentrated, clarified and partially purified (⩾95%) by the cross flow filtration technique. The concentrated protein was further purified by a single step size exclusion chromatography with ⩾98% purity. The characterization of purified rhG-CSF molecular mass as evidenced by SDS-PAGE, western blot and LC/MS analysis was shown to be 18.8kDa. The secondary structure of rhG-CSF was evaluated by the CD spectroscopic technique based on the helical structural components. The biological activity of the purified rhG-CSF showed a similar activity of cell proliferation with the standard rhG-CSF. Overall, the results demonstrate an optimized downstream process for obtaining high yields of biologically active rhG-CSF.
Collapse
Affiliation(s)
- Sandeep Vemula
- K L E F University, Centre for Bioprocess Technology, Department of Biotechnology, Guntur 522 502, Andhra Pradesh, India
| | - Rahul Thunuguntla
- K L E F University, Centre for Bioprocess Technology, Department of Biotechnology, Guntur 522 502, Andhra Pradesh, India
| | - Akshay Dedaniya
- K L E F University, Centre for Bioprocess Technology, Department of Biotechnology, Guntur 522 502, Andhra Pradesh, India
| | - Sujana Kokkiligadda
- K L E F University, Centre for Bioprocess Technology, Department of Biotechnology, Guntur 522 502, Andhra Pradesh, India
| | - Chaitanya Palle
- K L E F University, Centre for Bioprocess Technology, Department of Biotechnology, Guntur 522 502, Andhra Pradesh, India
| | - Srinivasa Reddy Ronda
- K L E F University, Centre for Bioprocess Technology, Department of Biotechnology, Guntur 522 502, Andhra Pradesh, India.
| |
Collapse
|
18
|
Expression and purification of recombinant human granulocyte colony-stimulating factor in fed-batch culture of Escherichia coli. Appl Biochem Biotechnol 2014; 172:2425-35. [PMID: 24390866 DOI: 10.1007/s12010-013-0708-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/25/2013] [Indexed: 12/23/2022]
Abstract
Granulocyte colony-stimulating factor (G-CSF) is a cytokine that has multiple roles in hematopoietic cells such as the regulation of proliferation and differentiation. Here, we describe fed-batch culture, refolding, and purification of rhG-CSF. The suitability of urea or sarcosine for solubilizing inclusion bodies (IBs) was tested. It was observed that urea is more efficient for solubilizing and refolding IBs than sarcosine is. The purity of rhG-CSF and the removal percentage of the rhG-CSF isoforms during purification were increased by pH 5.5 precipitation. The purity and the yield of purified rhG-CSF were 99% and 0.5 g of protein per liter culture broth, respectively. Our protocols of recombinant protein purification using ion exchange chromatography and semipreparative high performance liquid chromatography of pH-precipitated refolded solution may be informative to the industrial scale production of biopharmaceuticals.
Collapse
|