1
|
Berking BB, Karagrigoriou D, Galimberti DR, Zhang BHE, Wilson DA, Neumann K. Water-Soluble Sulfur-Ylide-Functionalized Polyacrylamides for Antibacterial Surface Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8627-8636. [PMID: 40127126 PMCID: PMC11984111 DOI: 10.1021/acs.langmuir.4c05134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/12/2025] [Accepted: 03/11/2025] [Indexed: 03/26/2025]
Abstract
Surface fouling induced by biomolecules and microorganisms remains a persistent challenge in materials science, particularly in healthcare applications, where biofilm formation on medical devices may lead to infections and antimicrobial resistance. Antifouling strategies typically rely on the formation of either hydration layers or cytotoxic materials for direct antimicrobial effects. Recent advances in zwitterionic polymers derived from ylides offer a promising yet unexplored toolbox for the construction of antifouling and antimicrobial coatings. While N-oxide-based ylides have been extensively studied as building blocks for antifouling materials, sulfur-ylide-based materials, and the precise underlying mechanisms remain underexplored despite their broader chemical versatility. Here, we present a fully water-soluble acrylamide-based poly(sulfur ylide) and compare its properties to those of previously reported hydrophobic polystyrene-derived analogues. Notably, water-soluble poly(sulfur ylides) retain antimicrobial efficacy on surfaces but lose cytotoxicity in solution, unlike its hydrophobic counterpart. Computational studies reveal that the dipole moment of sulfur ylides is environmentally responsive, stabilizing in hydrophobic environments. Genetic analysis confirms outer membrane destabilization for both polymers but suggests that the hydrophobicity of the polystyrene backbone promotes stronger interactions. We suggest that future work should focus on elucidating additional interactions, including supramolecular behaviors of amphiphilic sulfur ylides, to refine their structure-property relationships and optimize their antifouling and antimicrobial properties.
Collapse
Affiliation(s)
- Bela B. Berking
- Systems
Chemistry Department, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Dimitrios Karagrigoriou
- Systems
Chemistry Department, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Daria R. Galimberti
- Theoretical
and Computational Chemistry Department, Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Bai H. E. Zhang
- Systems
Chemistry Department, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Daniela A. Wilson
- Systems
Chemistry Department, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Kevin Neumann
- Systems
Chemistry Department, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
2
|
Guercio D, Boon E. The histidine kinase NahK regulates denitrification and nitric oxide accumulation through RsmA in Pseudomonas aeruginosa. J Bacteriol 2025; 207:e0040824. [PMID: 39660891 PMCID: PMC11784011 DOI: 10.1128/jb.00408-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
Pseudomonas aeruginosa have a versatile metabolism; they can adapt to many stressors, including limited oxygen and nutrient availability. This versatility is especially important within a biofilm where multiple microenvironments are present. As a facultative anaerobe, P. aeruginosa can survive under anaerobic conditions utilizing denitrification. This process produces nitric oxide (NO) which has been shown to result in cell elongation. However, the molecular mechanism underlying this phenotype is poorly understood. Our laboratory has previously shown that NosP is a NO-sensitive hemoprotein that works with the histidine kinase NahK to regulate biofilm formation in P. aeruginosa. In this study, we identify NahK as a novel regulator of denitrification under anaerobic conditions. Under anaerobic conditions, deletion of nahK leads to a reduction of growth coupled with reduced transcriptional expression and activity of the denitrification reductases. Furthermore, during stationary phase under anaerobic conditions, ΔnahK does not exhibit cell elongation, which is characteristic of P. aeruginosa. We determine the loss of cell elongation is due to changes in NO accumulation in ΔnahK. We further provide evidence that NahK may regulate denitrification through modification of RsmA levels. IMPORTANCE Pseudomonas aeruginosa is an opportunistic multi-drug resistance pathogen that is associated with hospital-acquired infections. P. aeruginosa is highly virulent, in part due to its versatile metabolism and ability to form biofilms. Therefore, better understanding of the molecular mechanisms that regulate these processes should lead to new therapeutics to treat P. aeruginosa infections. The histidine kinase NahK has been previously shown to be involved in both nitric oxide (NO) signaling and quorum sensing through RsmA. The data presented here demonstrate that NahK is responsive to NO produced during denitrification to regulate cell morphology. Understanding the role of NahK in metabolism under anaerobic conditions has larger implications in determining its role in a heterogeneous metabolic environment such as a biofilm.
Collapse
Affiliation(s)
- Danielle Guercio
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, USA
| | - Elizabeth Boon
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, USA
- Department of Chemistry, Stony Brook University Department of Chemistry, Stony Brook, New York, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
3
|
Yuan S, Shen Y, Quan Y, Gao S, Zuo J, Jin W, Li R, Yi L, Wang Y, Wang Y. Molecular mechanism and application of emerging technologies in study of bacterial persisters. BMC Microbiol 2024; 24:480. [PMID: 39548389 PMCID: PMC11568608 DOI: 10.1186/s12866-024-03628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Since the discovery of antibiotics, they have served as a potent weapon against bacterial infections; however, natural evolution has allowed bacteria to adapt and develop coping mechanisms, ultimately leading to the concerning escalation of multidrug resistance. Bacterial persisters are a subpopulation that can survive briefly under high concentrations of antibiotic treatment and resume growth after lethal stress. Importantly, bacterial persisters are thought to be a significant cause of ineffective antibiotic therapy and recurrent infections in clinical practice and are thought to contribute to the development of antibiotic resistance. Therefore, it is essential to elucidate the molecular mechanisms of persister formation and to develop precise medical strategies to combat persistent infections. However, there are many difficulties in studying persisters due to their small proportion in the microbiota and their non-heritable nature. In this review, we discuss the similarities and differences of antibiotic resistance, tolerance, persistence, and viable but non-culturable cells, summarize the molecular mechanisms that affect the formation of persisters, and outline the emerging technologies in the study of persisters.
Collapse
Affiliation(s)
- Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Rishun Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
4
|
Deng J, Yuan Y, Wu Y, Wen F, Yang X, Gou S, Chu Y, Zhao K. Isovanillin decreases the virulence regulated by the quorum sensing system of Pseudomonas aeruginosa. Microb Pathog 2024; 196:107010. [PMID: 39396686 DOI: 10.1016/j.micpath.2024.107010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The quorum-sensing (QS) system of Pseudomonas aeruginosa dominates the pathogenicity of the acute or chronic infection process. Hence, curbing the pathogenicity of P. aeruginosa by targeting QS system is an ideal strategy. This study aims to identify potential anti-virulence compounds that can effectively disrupt the QS system of P. aeruginosa using a combination of virtual screening and experimental validation techniques. We explored inhibitory effect of isovanillin obtained by virtual screening on P. aeruginosa QS regulated virulence factors extracellular protease, biofilm, and pyocyanin. Results displayed that isovanillin could inhibit the virulence phenotypes regulated by the las- and pqs-QS systems of P. aeruginosa. The synthesis of extracellular proteases, pyocyanin, and biofilm formation by P. aeruginosa were dramatically inhibited by sub-MICs doses of isovanillin. The results of RNA sequencing and quantitative PCR revealed that the QS-activated genes down-regulated by subinhibitory isovanillin in the transcriptional evels. Furthermore, the presence of isovanillin increased the susceptibility of drug-resistant P. aeruginosa to kanamycin, meropenem, and polymyxin B. Treatment of isovanillin as a monotherapy significantly decreased the mortality of C. elegans in P. aeruginosa PAO1 or UCBPP-PA14 (PA14) infection. Our study reported the anti-virulence activity of isovanillin against P. aeruginosa, and provided a structural foundation for developing anti-virulence drugs targeting the QS system of P. aeruginosa.
Collapse
Affiliation(s)
- Junfeng Deng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610106, China
| | - Yang Yuan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610106, China; Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yi Wu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610106, China
| | - Fulong Wen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610106, China
| | - Xiting Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610106, China
| | - Shiyi Gou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610106, China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610106, China.
| | - Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
5
|
Kim SJ, Jo J, Kim J, Ko KS, Lee W. Polymyxin B nonapeptide potentiates the eradication of Gram-negative bacterial persisters. Microbiol Spectr 2024; 12:e0368723. [PMID: 38391225 PMCID: PMC10986493 DOI: 10.1128/spectrum.03687-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Antibiotic-resistant Gram-negative bacteria remain a globally leading cause of bacterial infection-associated mortality, and it is imperative to identify novel therapeutic strategies. Recently, the advantage of using antibacterials selective against Gram-negative bacteria has been demonstrated with polymyxins that specifically target the lipopolysaccharides of Gram-negative bacteria. However, the severe cytotoxicity of polymyxins limits their clinical use. Here, we demonstrate that polymyxin B nonapeptide (PMBN), a polymyxin B derivative without the terminal amino acyl residue, can significantly enhance the effectiveness of commonly used antibiotics against only Gram-negative bacteria and their persister cells. We show that although PMBN itself does not exhibit antibacterial activity or cytotoxicity well above the 100-fold minimum inhibitory concentration of polymyxin B, PMBN can increase the potency of co-treated antibiotics. We also demonstrate that using PMBN in combination with other antibiotics significantly reduces the frequency of resistant mutant formation. Together, this work provides evidence of the utilities of PMBN as a novel potentiator for antibiotics against Gram-negative bacteria and insights for the eradication of bacterial persister cells during antibiotic treatment. IMPORTANCE The significance of our study lies in addressing the problem of antibiotic-resistant Gram-negative bacteria, which continue to be a global cause of mortality associated with bacterial infections. Therefore, identifying innovative therapeutic approaches is an urgent need. Recent research has highlighted the potential of selective antibacterials like polymyxins, which specifically target the lipopolysaccharides of Gram-negative bacteria. However, the clinical use of polymyxins is limited by their severe cytotoxicity. This study unveils the effectiveness of polymyxin B nonapeptide (PMBN) in significantly enhancing the eradication of persister cells in Gram-negative bacteria. Although PMBN itself does not exhibit antibacterial activity or cytotoxicity, it remarkably reduces persister cells during the treatment of antibiotics. Moreover, combining PMBN with other antibiotics reduces the emergence of resistant mutants. Our research emphasizes the utility of PMBN as a novel potentiator to decrease persister cells during antibiotic treatments for Gram-negative bacteria.
Collapse
Affiliation(s)
- Sun Ju Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeongwoo Jo
- Department of Microbiology, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jihyeon Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
6
|
Naik H, Maiti S, Amaresan N. Microbial volatile compounds (MVCs): an eco-friendly tool to manage abiotic stress in plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91746-91760. [PMID: 37531051 DOI: 10.1007/s11356-023-29010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/23/2023] [Indexed: 08/03/2023]
Abstract
Microbial volatile compounds (MVCs) are produced during the metabolism of microorganisms, are widely distributed in nature, and have significant applications in various fields. To date, several MVCs have been identified. Microbial groups such as bacteria and fungi release many organic and inorganic volatile compounds. They are typically small odorous compounds with low molecular masses, low boiling points, and lipophilic moieties with high vapor pressures. The physicochemical properties of MVCs help them to diffuse more readily in nature and allow dispersal to a more profound distance than other microbial non-volatile metabolites. In natural environments, plants communicate with several microorganisms and respond differently to MVCs. Here, we review the following points: (1) MVCs produced by various microbes including bacteria, fungi, viruses, yeasts, and algae; (2) How MVCs are effective, simple, efficient, and can modulate plant growth and developmental processes; and (3) how MVCs improve photosynthesis and increase plant resistance to various abiotic stressors.
Collapse
Affiliation(s)
- Hetvi Naik
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli, Surat, Gujarat, 394 350, India
| | - Saborni Maiti
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Natarajan Amaresan
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli, Surat, Gujarat, 394 350, India.
| |
Collapse
|
7
|
Chakraborty A, Kabashi A, Wilk S, Rahme LG. Quorum-Sensing Signaling Molecule 2-Aminoacetophenone Mediates the Persistence of Pseudomonas aeruginosa in Macrophages by Interference with Autophagy through Epigenetic Regulation of Lipid Biosynthesis. mBio 2023; 14:e0015923. [PMID: 37010415 PMCID: PMC10127747 DOI: 10.1128/mbio.00159-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/13/2023] [Indexed: 04/04/2023] Open
Abstract
Macrophages are crucial components of the host's defense against pathogens. Recent studies indicate that macrophage functions are influenced by lipid metabolism. However, knowledge of how bacterial pathogens exploit macrophage lipid metabolism for their benefit remains rudimentary. We have shown that the Pseudomonas aeruginosa MvfR-regulated quorum-sensing (QS) signaling molecule 2-aminoacetophenone (2-AA) mediates epigenetic and metabolic changes associated with this pathogen's persistence in vivo. We provide evidence that 2-AA counteracts the ability of macrophages to clear the intracellular P. aeruginosa, leading to persistence. The intracellular action of 2-AA in macrophages is linked to reduced autophagic functions and the impaired expression of a central lipogenic gene, stearoyl-CoA desaturase 1 (Scd1), which catalyzes the biosynthesis of monounsaturated fatty acids. 2-AA also reduces the expression of the autophagic genes Unc-51-like autophagy activating kinase 1 (ULK1) and Beclin1 and the levels of the autophagosomal membrane protein microtubule-associated protein 1, light chain 3 isoform B (LC3B) and p62. Reduced autophagy is accompanied by the reduced expression of the lipogenic gene Scd1, preventing bacterial clearance. Adding the SCD1 substrates palmitoyl-CoA and stearoyl-CoA increases P. aeruginosa clearance by macrophages. The impact of 2-AA on lipogenic gene expression and autophagic machinery is histone deacetylase 1 (HDAC1) mediated, implicating the HDAC1 epigenetic marks at the promoter sites of Scd1 and Beclin1 genes. This work provides novel insights into the complex metabolic alterations and epigenetic regulation promoted by QS and uncovers additional 2-AA actions supporting P. aeruginosa sustainment in macrophages. These findings may aid in designing host-directed therapeutics and protective interventions against P. aeruginosa persistence. IMPORTANCE This work sheds new light on how P. aeruginosa limits bacterial clearance in macrophages through 2-aminoacetophenone (2-AA), a secreted signaling molecule by this pathogen that is regulated by the quorum-sensing transcription factor MvfR. The action of 2-AA on the lipid biosynthesis gene Scd1 and the autophagic genes ULK1 and Beclin1 appears to secure the reduced intracellular clearance of P. aeruginosa by macrophages. In support of the 2-AA effect on lipid biosynthesis, the ability of macrophages to reduce the intracellular P. aeruginosa burden is reinstated following the supplementation of palmitoyl-CoA and stearoyl-CoA. The 2-AA-mediated reduction of Scd1 and Beclin1 expression is linked to chromatin modifications, implicating the enzyme histone deacetylase 1 (HDAC1), thus opening new avenues for future strategies against this pathogen's persistence. Overall, the knowledge obtained from this work provides for developing new therapeutics against P. aeruginosa.
Collapse
Affiliation(s)
- Arijit Chakraborty
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children Boston, Boston, Massachusetts, USA
| | - Asel Kabashi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel Wilk
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Laurence G. Rahme
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children Boston, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Hamed MM, Abdelsamie AS, Rox K, Schütz C, Kany AM, Röhrig T, Schmelz S, Blankenfeldt W, Arce‐Rodriguez A, Borrero‐de Acuña JM, Jahn D, Rademacher J, Ringshausen FC, Cramer N, Tümmler B, Hirsch AKH, Hartmann RW, Empting M. Towards Translation of PqsR Inverse Agonists: From In Vitro Efficacy Optimization to In Vivo Proof-of-Principle. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204443. [PMID: 36596691 PMCID: PMC9929129 DOI: 10.1002/advs.202204443] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Pseudomonas aeruginosa (PA) is an opportunistic human pathogen, which is involved in a wide range of dangerous infections. It develops alarming resistances toward antibiotic treatment. Therefore, alternative strategies, which suppress pathogenicity or synergize with antibiotic treatments are in great need to combat these infections more effectively. One promising approach is to disarm the bacteria by interfering with their quorum sensing (QS) system, which regulates the release of various virulence factors as well as biofilm formation. Herein, this work reports the rational design, optimization, and in-depth profiling of a new class of Pseudomonas quinolone signaling receptor (PqsR) inverse agonists. The resulting frontrunner compound features a pyrimidine-based scaffold, high in vitro and in vivo efficacy, favorable pharmacokinetics as well as clean safety pharmacology characteristics, which provide the basis for potential pulmonary as well as systemic routes of administration. An X-ray crystal structure in complex with PqsR facilitated further structure-guided lead optimization. The compound demonstrates potent pyocyanin suppression, synergizes with aminoglycoside antibiotic tobramycin against PA biofilms, and is active against a panel of clinical isolates from bronchiectasis patients. Importantly, this in vitro effect translated into in vivo efficacy in a neutropenic thigh infection model in mice providing a proof-of-principle for adjunctive treatment scenarios.
Collapse
Affiliation(s)
- Mostafa M. Hamed
- Helmholtz‐Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) Campus E8.166123SaarbrückenGermany
- German Centre for Infection Research (DZIF)Partner Site Hannover‐Braunschweig Saarbrücken66123SaarbrückenGermany
| | - Ahmed S. Abdelsamie
- Helmholtz‐Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) Campus E8.166123SaarbrückenGermany
- German Centre for Infection Research (DZIF)Partner Site Hannover‐Braunschweig Saarbrücken66123SaarbrückenGermany
- Department of Chemistry of Natural and Microbial ProductsInstitute of Pharmaceutical and Drug Industries ResearchNational Research CentreEl‐Buhouth St.DokkiCairo12622Egypt
| | - Katharina Rox
- German Centre for Infection Research (DZIF)Partner Site Hannover‐Braunschweig Saarbrücken66123SaarbrückenGermany
- Department of Chemical Biology (CBIO)Helmholtz Centre for Infection Research (HZI)Inhoffenstr. 7 Braunschweig38124SaarbrückenGermany
| | - Christian Schütz
- Helmholtz‐Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) Campus E8.166123SaarbrückenGermany
- German Centre for Infection Research (DZIF)Partner Site Hannover‐Braunschweig Saarbrücken66123SaarbrückenGermany
| | - Andreas M. Kany
- Helmholtz‐Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) Campus E8.166123SaarbrückenGermany
- German Centre for Infection Research (DZIF)Partner Site Hannover‐Braunschweig Saarbrücken66123SaarbrückenGermany
| | - Teresa Röhrig
- Helmholtz‐Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) Campus E8.166123SaarbrückenGermany
- German Centre for Infection Research (DZIF)Partner Site Hannover‐Braunschweig Saarbrücken66123SaarbrückenGermany
| | - Stefan Schmelz
- Department of Structure and Function of Proteins (SFPR)Helmholtz Centre for Infection Research (HZI)Inhoffenstr. 7 Braunschweig38124SaarbrückenGermany
| | - Wulf Blankenfeldt
- Department of Structure and Function of Proteins (SFPR)Helmholtz Centre for Infection Research (HZI)Inhoffenstr. 7 Braunschweig38124SaarbrückenGermany
- Institute for BiochemistryBiotechnology and BioinformaticsTechnische Universität BraunschweigBraunschweigGermany
| | | | - José Manuel Borrero‐de Acuña
- Institute of MicrobiologyTechnische Universität Braunschweig38106BraunschweigGermany
- Braunschweig Integrated Centre of Systems Biology (BRICS)Technische Universität Braunschweig38106BraunschweigGermany
- Departamento de MicrobiologíaFacultad de BiologíaUniversidad de SevillaAv. de la Reina Mercedesno. 6SevillaCP 41012Spain
| | - Dieter Jahn
- Institute of MicrobiologyTechnische Universität Braunschweig38106BraunschweigGermany
- Braunschweig Integrated Centre of Systems Biology (BRICS)Technische Universität Braunschweig38106BraunschweigGermany
| | - Jessica Rademacher
- Department for Respiratory MedicineMedizinische Hochschule HannoverCarl‐Neuberg‐Str. 130625HannoverGermany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)German Center for Lung Research (DZL)30625HannoverGermany
| | - Felix C. Ringshausen
- Department for Respiratory MedicineMedizinische Hochschule HannoverCarl‐Neuberg‐Str. 130625HannoverGermany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)German Center for Lung Research (DZL)30625HannoverGermany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN‐ LUNG)FrankfurtGermany
| | - Nina Cramer
- Department for Pediatric PneumologyAllergology and NeonatologyMedizinische Hochschule HannoverCarl‐Neuberg‐Str. 130625HannoverGermany
| | - Burkhard Tümmler
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)German Center for Lung Research (DZL)30625HannoverGermany
- Department for Pediatric PneumologyAllergology and NeonatologyMedizinische Hochschule HannoverCarl‐Neuberg‐Str. 130625HannoverGermany
| | - Anna K. H. Hirsch
- Helmholtz‐Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) Campus E8.166123SaarbrückenGermany
- German Centre for Infection Research (DZIF)Partner Site Hannover‐Braunschweig Saarbrücken66123SaarbrückenGermany
- Department of PharmacySaarland University Campus E8.166123SaarbrückenGermany
| | - Rolf W. Hartmann
- Helmholtz‐Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) Campus E8.166123SaarbrückenGermany
- German Centre for Infection Research (DZIF)Partner Site Hannover‐Braunschweig Saarbrücken66123SaarbrückenGermany
- Department of PharmacySaarland University Campus E8.166123SaarbrückenGermany
| | - Martin Empting
- Helmholtz‐Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) Campus E8.166123SaarbrückenGermany
- German Centre for Infection Research (DZIF)Partner Site Hannover‐Braunschweig Saarbrücken66123SaarbrückenGermany
- Department of PharmacySaarland University Campus E8.166123SaarbrückenGermany
| |
Collapse
|
9
|
Shi X, Zarkan A. Bacterial survivors: evaluating the mechanisms of antibiotic persistence. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748698 DOI: 10.1099/mic.0.001266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacteria withstand antibiotic onslaughts by employing a variety of strategies, one of which is persistence. Persistence occurs in a bacterial population where a subpopulation of cells (persisters) survives antibiotic treatment and can regrow in a drug-free environment. Persisters may cause the recalcitrance of infectious diseases and can be a stepping stone to antibiotic resistance, so understanding persistence mechanisms is critical for therapeutic applications. However, current understanding of persistence is pervaded by paradoxes that stymie research progress, and many aspects of this cellular state remain elusive. In this review, we summarize the putative persister mechanisms, including toxin-antitoxin modules, quorum sensing, indole signalling and epigenetics, as well as the reasons behind the inconsistent body of evidence. We highlight present limitations in the field and underscore a clinical context that is frequently neglected, in the hope of supporting future researchers in examining clinically important persister mechanisms.
Collapse
Affiliation(s)
- Xiaoyi Shi
- Cambridge Centre for International Research, Cambridge CB4 0PZ, UK
| | - Ashraf Zarkan
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
10
|
Gao Z, Chen H, Wang Y, Lv Y. Advances in AHLs-mediated quorum sensing system in wastewater biological nitrogen removal: mechanism, function, and application. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1927-1943. [PMID: 36315086 DOI: 10.2166/wst.2022.305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Biological nitrogen removal process is to convert organic nitrogen and ammonia nitrogen into nitrogen via a series of reactions by microorganisms, and is widely used in wastewater treatment for its costless, high-effective, secondary pollution-free characteristics. Quorum sensing (QS) is a communication mode for microorganisms to regulate bacteria's physiological behaviors in response to environmental changes. N-acyl-homoserine lactones (AHLs)-mediated QS system is widespread in nitrogen removal-related functional bacteria and promotes biological nitrogen removal performance by regulating bacteria behavior. Recently, there has been an increasingly investigated AHLs-mediated QS system in wastewater biological nitrogen removal process. Consequently, the AHLs-mediated QS system is considered a promising regulatory strategy in the biological nitrogen removal process. This article reviewed the QS mechanism in various nitrogen removal-related functional bacteria and analyzed its effect on biological nitrogen removal performance. Combined with the application research of the QS system for enhanced biological nitrogen removal, it further put forward some prospects and suggestions which are of practical significance in practical application.
Collapse
Affiliation(s)
- Zhixiang Gao
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China E-mail:
| | - Hu Chen
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
| | - Ying Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China E-mail: ; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
| | - Yongkang Lv
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China E-mail: ; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
| |
Collapse
|
11
|
Singh VK, Almpani M, Maura D, Kitao T, Ferrari L, Fontana S, Bergamini G, Calcaterra E, Pignaffo C, Negri M, de Oliveira Pereira T, Skinner F, Gkikas M, Andreotti D, Felici A, Déziel E, Lépine F, Rahme LG. Tackling recalcitrant Pseudomonas aeruginosa infections in critical illness via anti-virulence monotherapy. Nat Commun 2022; 13:5103. [PMID: 36042245 PMCID: PMC9428149 DOI: 10.1038/s41467-022-32833-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Intestinal barrier derangement allows intestinal bacteria and their products to translocate to the systemic circulation. Pseudomonas aeruginosa (PA) superimposed infection in critically ill patients increases gut permeability and leads to gut-driven sepsis. PA infections are challenging due to multi-drug resistance (MDR), biofilms, and/or antibiotic tolerance. Inhibition of the quorum-sensing transcriptional regulator MvfR(PqsR) is a desirable anti-PA anti-virulence strategy as MvfR controls multiple acute and chronic virulence functions. Here we show that MvfR promotes intestinal permeability and report potent anti-MvfR compounds, the N-Aryl Malonamides (NAMs), resulting from extensive structure-activity-relationship studies and thorough assessment of the inhibition of MvfR-controlled virulence functions. This class of anti-virulence non-native ligand-based agents has a half-maximal inhibitory concentration in the nanomolar range and strong target engagement. Using a NAM lead in monotherapy protects murine intestinal barrier function, abolishes MvfR-regulated small molecules, ameliorates bacterial dissemination, and lowers inflammatory cytokines. This study demonstrates the importance of MvfR in PA-driven intestinal permeability. It underscores the utility of anti-MvfR agents in maintaining gut mucosal integrity, which should be part of any successful strategy to prevent/treat PA infections and associated gut-derived sepsis in critical illness settings. NAMs provide for the development of crucial preventive/therapeutic monotherapy options against untreatable MDR PA infections.
Collapse
Affiliation(s)
- Vijay K Singh
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, 02114, USA
- Shriners Hospitals for Children, Boston, MA, 02114, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Marianna Almpani
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, 02114, USA
- Shriners Hospitals for Children, Boston, MA, 02114, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Damien Maura
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, 02114, USA
- Shriners Hospitals for Children, Boston, MA, 02114, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Voyager Therapeutics, Cambridge, MA, 02139, USA
| | - Tomoe Kitao
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, 02114, USA
- Shriners Hospitals for Children, Boston, MA, 02114, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- T. Kitao, Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, 501-1194, Japan
| | - Livia Ferrari
- Translational Biology Department, Aptuit (Verona) S.rl, an Evotec Company, 37135 Via A. Fleming 4, Verona, Italy
| | - Stefano Fontana
- DMPK Department, Aptuit (Verona) S.rl, an Evotec Company, 37135 Via A. Fleming 4, Verona, Italy
| | - Gabriella Bergamini
- Translational Biology Department, Aptuit (Verona) S.rl, an Evotec Company, 37135 Via A. Fleming 4, Verona, Italy
| | - Elisa Calcaterra
- Translational Biology Department, Aptuit (Verona) S.rl, an Evotec Company, 37135 Via A. Fleming 4, Verona, Italy
| | - Chiara Pignaffo
- DMPK Department, Aptuit (Verona) S.rl, an Evotec Company, 37135 Via A. Fleming 4, Verona, Italy
| | - Michele Negri
- In vitro Chemotherapy Laboratory, Aptuit (Verona) S.r.l., an Evotec Company, 37135 Via A. Fleming 4, Verona, Italy
| | - Thays de Oliveira Pereira
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Quebec, H7V 1B7, Canada
| | - Frances Skinner
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Manos Gkikas
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Danielle Andreotti
- Global Synthetic Chemistry Department, Aptuit (Verona) S.r.l., an Evotec Company, 37135 Via A. Fleming 4, Verona, Italy
| | - Antonio Felici
- Department of Microbiology Discovery, In Vitro Biology, Aptuit (Verona) S.r.l., an Evotec Company, 37135 Via A. Fleming 4, Verona, Italy
- A Felici, Academic Partnership, Evotec SE, 37135 Via A. Fleming 4, Verona, Italy
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Quebec, H7V 1B7, Canada
| | - Francois Lépine
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Quebec, H7V 1B7, Canada
| | - Laurence G Rahme
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA, 02114, USA.
- Shriners Hospitals for Children, Boston, MA, 02114, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Wang S, Zhao C, Xue B, Li C, Zhang X, Yang X, Li Y, Yang Y, Shen Z, Wang J, Qiu Z. Nanoalumina triggers the antibiotic persistence of Escherichia coli through quorum sensing regulators lrsF and qseB. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129198. [PMID: 35739728 DOI: 10.1016/j.jhazmat.2022.129198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Nanomaterials with bactericidal effects might provide novel strategies against bacteria. However, some bacteria can survive despite the exposure to nanomaterials, which challenges the safety of antibacterial nanomaterials. Here, we used a high dose of antibiotics to kill the E. coli. that survived under different concentrations of nanoalumina treatment to screen persisters, and found that nanoalumina could significantly trigger persisters formation. Treatment with 50 mg/L nanoalumina for 4 h resulted in the formation of (0.084 ± 0.005) % persisters. Both reactive oxygen species (ROS) and toxin-antitoxin (TA) system were involved in persisters formation. Interestingly, RT-PCR analysis and knockout of the five genes related to ROS and TA confirmed that only hipB was associated with the formation of persisters, suggesting the involvement of other mechanisms. We further identified 73 differentially expressed genes by transcriptome sequencing and analyzed them with bioinformatics tools. We selected six candidate genes and verified that five of them closely related to quorum sensing (QS) that were involved in persisters formation, and further validated that the coexpression of QS factors lrsF and qseB was a novel pathway for persisters. Our findings provided a better understanding on the emergence of bacterial persistence and the microbial behavior under nanomaterials exposure.
Collapse
Affiliation(s)
- Shang Wang
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Chen Zhao
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Bin Xue
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Chenyu Li
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xi Zhang
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xiaobo Yang
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yan Li
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yanping Yang
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhiqiang Shen
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Jingfeng Wang
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Zhigang Qiu
- Department of Hygienic Toxicology And Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
13
|
De Wit G, Svet L, Lories B, Steenackers HP. Microbial Interspecies Interactions and Their Impact on the Emergence and Spread of Antimicrobial Resistance. Annu Rev Microbiol 2022; 76:179-192. [PMID: 35609949 DOI: 10.1146/annurev-micro-041320-031627] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria are social organisms that commonly live in dense communities surrounded by a multitude of other species. The competitive and cooperative interactions between these species not only shape the bacterial communities but also influence their susceptibility to antimicrobials. While several studies have shown that mixed-species communities are more tolerant toward antimicrobials than their monospecies counterparts, only limited empirical data are currently available on how interspecies interactions influence resistance development. We here propose a theoretic framework outlining the potential impact of interspecies social behavior on different aspects of resistance development. We identify factors by which interspecies interactions might influence resistance evolution and distinguish between their effect on (a) the emergence of a resistant mutant and (b) the spread of this resistance throughout the population. Our analysis indicates that considering the social life of bacteria is imperative to the rational design of more effective antibiotic treatment strategies with a minimal hazard for resistance development. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Gitta De Wit
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium; , , ,
| | - Luka Svet
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium; , , ,
| | - Bram Lories
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium; , , ,
| | - Hans P Steenackers
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium; , , ,
| |
Collapse
|
14
|
Rahim Hateet R. Isolation and Identification of Some Bacteria Contemn in Burn Wounds in Misan, Iraq. ARCHIVES OF RAZI INSTITUTE 2021; 76:1665-1670. [PMID: 35546990 PMCID: PMC9083866 DOI: 10.22092/ari.2021.356367.1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/21/2021] [Indexed: 01/25/2023]
Abstract
The current study aimed to isolate and identify the bacteria associated with burn wounds and investigate the antimicrobial susceptibility pattern against a group of most commonly prescribed antibiotics. In total, 105 burn wound swabs were collected from burn patients admitted to the burn unit of Al-Sadr Teaching Hospital in Misan City, Iraq. The swabs had been cultured on different media; the colonies were diagnosed based on the phenotypic and culture characteristics. The bacteria were identified through cultural characters and Gram staining diagnosed by VITEK® 2 Compact Automated Systems. In total, there were nine distinct bacterial isolations, of which, Pseudomonas aeruginosa was the most common pathogen [20%] followed by Staphylococcus aureus [17.14%], Enterobacter spp.[16.19%], Proteus vulgaris [13.33%], Proteus mirabilis [10.47%], Escherichia coli [7.6%], Klebsiella pneumoniae [6.6%], and at last, Staphylococcus lentus and Aeromonas sobria, which had the same percentage [4.7%]. Most isolates showed high resistance to Tobramycin, Trimethoprim, Cephalothin, and Imipenem while isolates mostly had high susceptibility to Amikacin, Cefotaxime, and Ciprofloxacin. Wound burn infection still represents a serious problem for burn patients with many bacteria developing different degrees of resistance to most known antibiotics.
Collapse
Affiliation(s)
- R Rahim Hateet
- Department of Biology, College of Science, University of Misan, Maysan, Iraq
| |
Collapse
|
15
|
Verstraete L, Van den Bergh B, Verstraeten N, Michiels J. Ecology and evolution of antibiotic persistence. Trends Microbiol 2021; 30:466-479. [PMID: 34753652 DOI: 10.1016/j.tim.2021.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
Bacteria have at their disposal a battery of strategies to withstand antibiotic stress. Among these, resistance is a well-known mechanism, yet bacteria can also survive antibiotic attack by adopting a tolerant phenotype. In the case of persistence, only a small fraction within an isogenic population switches to this antibiotic-tolerant state. Persistence depends on the ecological niche and the genetic background of the strains involved. Furthermore, it has been shown to be under direct and indirect evolutionary pressure. Persister cells play a role in chronic infections and the development of resistance, and therefore a better understanding of this phenotype could contribute to the development of effective antibacterial therapies. In the current review, we discuss how ecological and evolutionary forces shape persistence.
Collapse
Affiliation(s)
- L Verstraete
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium; Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
| | - B Van den Bergh
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium; Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
| | - N Verstraeten
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium; Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
| | - J Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium; Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium.
| |
Collapse
|
16
|
Huang L, Ahmed S, Gu Y, Huang J, An B, Wu C, Zhou Y, Cheng G. The Effects of Natural Products and Environmental Conditions on Antimicrobial Resistance. Molecules 2021; 26:molecules26144277. [PMID: 34299552 PMCID: PMC8303546 DOI: 10.3390/molecules26144277] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
Due to the extensive application of antibiotics in medical and farming practices, the continued diversification and development of antimicrobial resistance (AMR) has attracted serious public concern. With the emergence of AMR and the failure to treat bacterial infections, it has led to an increased interest in searching for novel antibacterial substances such as natural antimicrobial substances, including microbial volatile compounds (MVCs), plant-derived compounds, and antimicrobial peptides. However, increasing observations have revealed that AMR is associated not only with the use of antibacterial substances but also with tolerance to heavy metals existing in nature and being used in agriculture practice. Additionally, bacteria respond to environmental stresses, e.g., nutrients, oxidative stress, envelope stress, by employing various adaptive strategies that contribute to the development of AMR and the survival of bacteria. Therefore, we need to elucidate thoroughly the factors and conditions affecting AMR to take comprehensive measures to control the development of AMR.
Collapse
Affiliation(s)
- Lulu Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
| | - Saeed Ahmed
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Yufeng Gu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
| | - Junhong Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
| | - Boyu An
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
| | - Cuirong Wu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
| | - Yujie Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (L.H.); (Y.G.); (J.H.); (B.A.); (C.W.)
- Correspondence:
| |
Collapse
|
17
|
Curry EC, Hart RG, Habtu DY, Chamberlain NR. Detection and partial characterization of extracellular inducers of persistence in Staphylococcus epidermidis and Staphylococcus aureus. J Med Microbiol 2021; 70. [PMID: 34170218 DOI: 10.1099/jmm.0.001392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. This study describes the identification and partial characterization of persistence-inducing factors (PIFs) from staphylococci.Hypothesis/Gap Statement. Increases in persisters during mid-log phase growth indicate that quorum-sensing factors might be produced by staphylococci.Aim. To identify and partially characterize PIFs from Staphylococcus epidermidis RP62A and Staphylococcus aureus SH1000.Methodology. Others have demonstrated a significant increase in persister numbers during mid-log phase. Inducers of this mid-log increase have yet to be identified in staphylococci. Optical density at 600 nm (OD600) was used instead of time to determine when persister numbers increased during logarithmic growth. Concentrated culture filtrates (CCFs) from S. epidermidis and S. aureus were obtained at various OD600s and following incubation at 16 h. The CCFs were used to develop a PIF assay. The PIF assay was used to partially characterize PIF from S. epidermidis and S. aureus for sizing of PIF activity, temperature and protease sensitivity and inter-species communications.Results. The optimal OD600s for S. epidermidis and S. aureus PIF assays were 2.0 and 0.5, respectively. The highest PIF activity for both species was from CCF following incubation overnight (16 h). S. epidermidis' PIF activity was decreased by storage at 4 oC but not at 20 oC (16 h), 37 oC (1 h) or 100 oC (15 min). S. aureus' PIF activity was decreased following storage at 4 oC (2 weeks) and after boiling at 100 oC for 5 min but not after incubation at 37 oC (1 h). PIF activity from both species went through a 3000 molecular weight cutoff ultrafilter. Proteinase K treatment of S. aureus PIF decreased activity but did not decrease the PIF activity of S. epidermidis. PIF from S. epidermidis did not increase persisters when used to treat S. aureus cells and nor did PIF from S. aureus increase persisters when used to treat S. epidermidis cells.Conclusions. Attempts to discover PIFs for staphylococci were unsuccessful due to the time-based means used to identify mid-log. Both staphylococcal species produce extracellular, low-molecular-weight inducers of persistence when assayed using an OD600 -based PIF assay.
Collapse
Affiliation(s)
- Elyse C Curry
- The Department of Microbiology/Immunology, A. T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, 800 West Jefferson Street, Kirksville, USA
| | - Ryan G Hart
- The Department of Microbiology/Immunology, A. T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, 800 West Jefferson Street, Kirksville, USA.,Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, One Shields Avenue, USA
| | - Danni Y Habtu
- The Department of Microbiology/Immunology, A. T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, 800 West Jefferson Street, Kirksville, USA.,Department of Medicine, Detroit Medical Center/Wayne State University - Sinai Grace, 6071 W. Outer Drive, 4 Main, Detroit, MI 48235, USA
| | - Neal R Chamberlain
- The Department of Microbiology/Immunology, A. T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, 800 West Jefferson Street, Kirksville, USA
| |
Collapse
|
18
|
Jafari P, Luscher A, Siriwardena T, Michetti M, Que YA, Rahme LG, Reymond JL, Raffoul W, Van Delden C, Applegate LA, Köhler T. Antimicrobial Peptide Dendrimers and Quorum-Sensing Inhibitors in Formulating Next-Generation Anti-Infection Cell Therapy Dressings for Burns. Molecules 2021; 26:molecules26133839. [PMID: 34202446 PMCID: PMC8270311 DOI: 10.3390/molecules26133839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/02/2021] [Accepted: 06/12/2021] [Indexed: 12/21/2022] Open
Abstract
Multidrug resistance infections are the main cause of failure in the pro-regenerative cell-mediated therapy of burn wounds. The collagen-based matrices for delivery of cells could be potential substrates to support bacterial growth and subsequent lysis of the collagen leading to a cell therapy loss. In this article, we report the development of a new generation of cell therapy formulations with the capacity to resist infections through the bactericidal effect of antimicrobial peptide dendrimers and the anti-virulence effect of anti-quorum sensing MvfR (PqsR) system compounds, which are incorporated into their formulation. Anti-quorum sensing compounds limit the pathogenicity and antibiotic tolerance of pathogenic bacteria involved in the burn wound infections, by inhibiting their virulence pathways. For the first time, we report a biological cell therapy dressing incorporating live progenitor cells, antimicrobial peptide dendrimers, and anti-MvfR compounds, which exhibit bactericidal and anti-virulence properties without compromising the viability of the progenitor cells.
Collapse
Affiliation(s)
- Paris Jafari
- Regenerative Therapy Unit (UTR), Department of Musculoskeletal Medicine DAL, Lausanne University Hospital, 1011 Lausanne, Switzerland; (P.J.); (M.M.)
- Service of Plastic, Reconstructive & Hand Surgery, Lausanne University Hospital, 1011 Lausanne, Switzerland;
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexandre Luscher
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneva, Switzerland; (A.L.); (C.V.D.)
| | - Thissa Siriwardena
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; (T.S.); (J.-L.R.)
| | - Murielle Michetti
- Regenerative Therapy Unit (UTR), Department of Musculoskeletal Medicine DAL, Lausanne University Hospital, 1011 Lausanne, Switzerland; (P.J.); (M.M.)
- Service of Plastic, Reconstructive & Hand Surgery, Lausanne University Hospital, 1011 Lausanne, Switzerland;
| | - Yok-Ai Que
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
| | - Laurence G. Rahme
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA;
- Shriners Hospitals for Children Boston, Boston, MA 02114, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; (T.S.); (J.-L.R.)
| | - Wassim Raffoul
- Service of Plastic, Reconstructive & Hand Surgery, Lausanne University Hospital, 1011 Lausanne, Switzerland;
| | - Christian Van Delden
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneva, Switzerland; (A.L.); (C.V.D.)
- Division on Infectious Disease and Transplantation, University Hospital of Geneva, 1205 Geneva, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit (UTR), Department of Musculoskeletal Medicine DAL, Lausanne University Hospital, 1011 Lausanne, Switzerland; (P.J.); (M.M.)
- Service of Plastic, Reconstructive & Hand Surgery, Lausanne University Hospital, 1011 Lausanne, Switzerland;
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215028, China
- Correspondence: (L.A.A.); (T.K.); Tel.: +41-21-314-3510 (L.A.A.); +41-22-379-5571 (T.K.)
| | - Thilo Köhler
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneva, Switzerland; (A.L.); (C.V.D.)
- Division on Infectious Disease and Transplantation, University Hospital of Geneva, 1205 Geneva, Switzerland
- Correspondence: (L.A.A.); (T.K.); Tel.: +41-21-314-3510 (L.A.A.); +41-22-379-5571 (T.K.)
| |
Collapse
|
19
|
Chebotar' IV, Emelyanova MA, Bocharova JA, Mayansky NA, Kopantseva EE, Mikhailovich VM. The classification of bacterial survival strategies in the presence of antimicrobials. Microb Pathog 2021; 155:104901. [PMID: 33930413 DOI: 10.1016/j.micpath.2021.104901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 01/14/2023]
Abstract
The survival of bacteria under antibiotic therapy varies in nature and is based on the bacterial ability to employ a wide range of fundamentally different resistance mechanisms. This great diversity requires a disambiguation of the term 'resistance' and the development of a more precise classification of bacterial survival strategies during contact with antibiotics. The absence of a unified definition for the terms 'resistance', 'tolerance' and 'persistence' further aggravates the imperfections of the current classification system. This review suggests a number of original classification criteria that will take into account (1) the bacterial ability to replicate in the presence of antimicrobial agents, (2) existing evolutionary stability of a trait within a species, and (3) the presence or absence of specialized genes that determine the ability of a microorganism to decrease its own metabolism or switch it completely off. This review describes potential advantages of the suggested classification system, which include a better understanding of the relationship between bacterial survival in the presence of antibiotics and molecular mechanisms of cellular metabolism suppression, the opportunity to pinpoint targets to identify a true bacterial resistance profile. The true resistance profile in turn, could be used to develop effective diagnostic and antimicrobial therapy methods, while taking into consideration specific bacterial survival mechanisms.
Collapse
Affiliation(s)
- Igor V Chebotar'
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., Moscow, 119991, Russian Federation; Pirogov Russian National Research Medical University, 1 Ostrovitianov St., Moscow, 117997, Russian Federation
| | - Marina A Emelyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., Moscow, 119991, Russian Federation
| | - Julia A Bocharova
- Pirogov Russian National Research Medical University, 1 Ostrovitianov St., Moscow, 117997, Russian Federation
| | - Nikolay A Mayansky
- Pirogov Russian National Research Medical University, 1 Ostrovitianov St., Moscow, 117997, Russian Federation
| | - Elena E Kopantseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., Moscow, 119991, Russian Federation
| | - Vladimir M Mikhailovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., Moscow, 119991, Russian Federation.
| |
Collapse
|
20
|
Wolter LA, Wietz M, Ziesche L, Breider S, Leinberger J, Poehlein A, Daniel R, Schulz S, Brinkhoff T. Pseudooceanicola algae sp. nov., isolated from the marine macroalga Fucus spiralis, shows genomic and physiological adaptations for an algae-associated lifestyle. Syst Appl Microbiol 2021; 44:126166. [PMID: 33310406 DOI: 10.1016/j.syapm.2020.126166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/23/2022]
Abstract
The genus Pseudooceanicola from the alphaproteobacterial Roseobacter group currently includes ten validated species. We herein describe strain Lw-13eT, the first Pseudooceanicola species from marine macroalgae, isolated from the brown alga Fucus spiralis abundant at European and North American coasts. Physiological and pangenome analyses of Lw-13eT showed corresponding adaptive features. Adaptations to the tidal environment include a broad salinity tolerance, degradation of macroalgae-derived substrates (mannitol, mannose, proline), and resistance to several antibiotics and heavy metals. Notably, Lw-13eT can degrade oligomeric alginate via PL15 alginate lyase encoded in a polysaccharide utilization locus (PUL), rarely described for roseobacters to date. Plasmid localization of the PUL strengthens the importance of mobile genetic elements for evolutionary adaptations within the Roseobacter group. PL15 homologs were primarily detected in marine plant-associated metagenomes from coastal environments but not in the open ocean, corroborating its adaptive role in algae-rich habitats. Exceptional is the tolerance of Lw-13eT against the broad-spectrum antibiotic tropodithietic acid, produced by Phaeobacter spp. co-occurring in coastal habitats. Furthermore, Lw-13eT exhibits features resembling terrestrial plant-bacteria associations, i.e. biosynthesis of siderophores, terpenes and volatiles, which may contribute to mutual bacteria-algae interactions. Closest described relative of Lw-13eT is Pseudopuniceibacterium sediminis CY03T with 98.4% 16S rRNA gene sequence similarity. However, protein sequence-based core genome phylogeny and average nucleotide identity indicate affiliation of Lw-13eT with the genus Pseudooceanicola. Based on phylogenetic, physiological and (chemo)taxonomic distinctions, we propose strain Lw-13eT (=DSM 29013T=LMG 30557T) as a novel species with the name Pseudooceanicola algae.
Collapse
Affiliation(s)
- Laura A Wolter
- Institute for Chemistry and Biology of the Marine Environment, Oldenburg, Germany; JST ERATO Nomura Project, Faculty of Life and Environmental Sciences, Tsukuba, Japan.
| | - Matthias Wietz
- Institute for Chemistry and Biology of the Marine Environment, Oldenburg, Germany; Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Lisa Ziesche
- Institute of Organic Chemistry, Technische Universität Braunschweig, Germany
| | - Sven Breider
- Institute for Chemistry and Biology of the Marine Environment, Oldenburg, Germany
| | - Janina Leinberger
- Institute for Chemistry and Biology of the Marine Environment, Oldenburg, Germany
| | - Anja Poehlein
- Institute of Microbiology and Genetics, Genomic and Applied Microbiology, and Göttingen Genomics Laboratory, Germany
| | - Rolf Daniel
- Institute of Microbiology and Genetics, Genomic and Applied Microbiology, and Göttingen Genomics Laboratory, Germany
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, Oldenburg, Germany.
| |
Collapse
|
21
|
Rocha-Granados MC, Zenick B, Englander HE, Mok WWK. The social network: Impact of host and microbial interactions on bacterial antibiotic tolerance and persistence. Cell Signal 2020; 75:109750. [PMID: 32846197 DOI: 10.1016/j.cellsig.2020.109750] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
Antibiotics have vastly improved our quality of life since their discovery and introduction into modern medicine. Yet, widespread use and misuse have compromised the efficacy of these compounds and put our ability to cure infectious diseases in jeopardy. To defend themselves against antibiotics, bacteria have evolved an arsenal of survival strategies. In addition to acquiring mutations and genetic determinants that confer antibiotic resistance, bacteria can respond to environmental cues and adopt reversible phenotypic changes that transiently enhance their ability to survive adverse conditions, including those brought on by antibiotics. These antibiotic tolerant and persistent bacteria, which are prevalent in biofilms and can survive antimicrobial therapy without inheriting resistance, are thought to underlie treatment failure and infection relapse. At infection sites, bacteria encounter a range of signals originating from host immunity and the local microbiota that can induce transcriptomic and metabolic reprogramming. In this review, we will focus on the impact of host factors and microbial interactions on antibiotic tolerance and persistence. We will also outline current efforts in leveraging the knowledge of host-microbe and microbe-microbe interactions in designing therapies that potentiate antibiotic activity and reduce the burden caused by recurrent infections.
Collapse
Affiliation(s)
| | - Blesing Zenick
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, CT, 06032, USA
| | - Hanna E Englander
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, CT, 06032, USA; Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269-3156, United States of America
| | - Wendy W K Mok
- Department of Molecular Biology & Biophysics, UCONN Health, Farmington, CT, 06032, USA.
| |
Collapse
|
22
|
Salcedo-Sora JE, Kell DB. A Quantitative Survey of Bacterial Persistence in the Presence of Antibiotics: Towards Antipersister Antimicrobial Discovery. Antibiotics (Basel) 2020; 9:E508. [PMID: 32823501 PMCID: PMC7460088 DOI: 10.3390/antibiotics9080508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Bacterial persistence to antibiotics relates to the phenotypic ability to survive lethal concentrations of otherwise bactericidal antibiotics. The quantitative nature of the time-kill assay, which is the sector's standard for the study of antibiotic bacterial persistence, is an invaluable asset for global, unbiased, and cross-species analyses. Methods: We compiled the results of antibiotic persistence from antibiotic-sensitive bacteria during planktonic growth. The data were extracted from a sample of 187 publications over the last 50 years. The antibiotics used in this compilation were also compared in terms of structural similarity to fluorescent molecules known to accumulate in Escherichia coli. Results: We reviewed in detail data from 54 antibiotics and 36 bacterial species. Persistence varies widely as a function of the type of antibiotic (membrane-active antibiotics admit the fewest), the nature of the growth phase and medium (persistence is less common in exponential phase and rich media), and the Gram staining of the target organism (persistence is more common in Gram positives). Some antibiotics bear strong structural similarity to fluorophores known to be taken up by E. coli, potentially allowing competitive assays. Some antibiotics also, paradoxically, seem to allow more persisters at higher antibiotic concentrations. Conclusions: We consolidated an actionable knowledge base to support a rational development of antipersister antimicrobials. Persistence is seen as a step on the pathway to antimicrobial resistance, and we found no organisms that failed to exhibit it. Novel antibiotics need to have antipersister activity. Discovery strategies should include persister-specific approaches that could find antibiotics that preferably target the membrane structure and permeability of slow-growing cells.
Collapse
Affiliation(s)
- Jesus Enrique Salcedo-Sora
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
| | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
23
|
Netzker T, Shepherdson EMF, Zambri MP, Elliot MA. Bacterial Volatile Compounds: Functions in Communication, Cooperation, and Competition. Annu Rev Microbiol 2020; 74:409-430. [PMID: 32667838 DOI: 10.1146/annurev-micro-011320-015542] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria produce a multitude of volatile compounds. While the biological functions of these deceptively simple molecules are unknown in many cases, for compounds that have been characterized, it is clear that they serve impressively diverse purposes. Here, we highlight recent studies that are uncovering the volatile repertoire of bacteria, and the functional relevance and impact of these molecules. We present work showing the ability of volatile compounds to modulate nutrient availability in the environment; alter the growth, development, and motility of bacteria and fungi; influence protist and arthropod behavior; and impact plant and animal health. We further discuss the benefits associated with using volatile compounds for communication and competition, alongside the challenges of studying these molecules and their functional roles. Finally, we address the opportunities these compounds present from commercial, clinical, and agricultural perspectives.
Collapse
Affiliation(s)
- Tina Netzker
- Department of Biology and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada; , , ,
| | - Evan M F Shepherdson
- Department of Biology and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada; , , ,
| | - Matthew P Zambri
- Department of Biology and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada; , , ,
| | - Marie A Elliot
- Department of Biology and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada; , , ,
| |
Collapse
|
24
|
Gollan B, Grabe G, Michaux C, Helaine S. Bacterial Persisters and Infection: Past, Present, and Progressing. Annu Rev Microbiol 2020; 73:359-385. [PMID: 31500532 DOI: 10.1146/annurev-micro-020518-115650] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Persisters are nongrowing, transiently antibiotic-tolerant bacteria within a clonal population of otherwise susceptible cells. Their formation is triggered by environmental cues and involves the main bacterial stress response pathways that allow persisters to survive many harsh conditions, including antibiotic exposure. During infection, bacterial pathogens are exposed to a vast array of stresses in the host and form nongrowing persisters that survive both antibiotics and host immune responses, thereby most likely contributing to the relapse of many infections. While antibiotic persisters have been extensively studied over the last decade, the bulk of the work has focused on how these bacteria survive exposure to drugs in vitro. The ability of persisters to survive their interaction with a host is important yet underinvestigated. In order to tackle the problem of persistence of infections that contribute to the worldwide antibiotic resistance crisis, efforts should be made by scientific communities to understand and merge these two fields of research: antibiotic persisters and host-pathogen interactions. Here we give an overview of the history of the field of antibiotic persistence, report evidence for the importance of persisters in infection, and highlight studies that bridge the two areas.
Collapse
Affiliation(s)
- Bridget Gollan
- Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom; , , ,
| | - Grzegorz Grabe
- Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom; , , ,
| | - Charlotte Michaux
- Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom; , , ,
| | - Sophie Helaine
- Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom; , , ,
| |
Collapse
|
25
|
García-Reyes S, Soberón-Chávez G, Cocotl-Yanez M. The third quorum-sensing system of Pseudomonas aeruginosa: Pseudomonas quinolone signal and the enigmatic PqsE protein. J Med Microbiol 2020; 69:25-34. [PMID: 31794380 DOI: 10.1099/jmm.0.001116] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that produces several virulence factors such as lectin A, pyocyanin, elastase and rhamnolipids. These compounds are controlled transcriptionally by three quorum-sensing circuits, two based on the synthesis and detection of N-acyl-homoserine-lactone termed the Las and Rhl system and a third system named the Pseudomonas quinolone signal (PQS) system, which is responsible for generating 2-alkyl-4(1 h)-quinolones (AQs). The transcriptional regulator called PqsR binds to the promoter of pqsABCDE in the presence of PQS or HHQ creating a positive feedback-loop. PqsE, encoded in the operon for AQ synthesis, is a crucial protein for pyocyanin production, activating the Rhl system by a still not fully understood mechanism. In turn, the regulation of the PQS system is modulated by Las and Rhl systems, which act positively and negatively, respectively. This review focuses on the PQS system, from its discovery to its role in Pseudomonas pathogenesis, such as iron depletion and pyocyanin synthesis that involves the PqsE protein - an intriguing player of this system.
Collapse
Affiliation(s)
- Selene García-Reyes
- Departamento de Biología molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo Postal 70228, C.P. 04510, Ciudad de México, Mexico
| | - Gloria Soberón-Chávez
- Departamento de Biología molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo Postal 70228, C.P. 04510, Ciudad de México, Mexico
| | - Miguel Cocotl-Yanez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México. Av. Universidad 3000, Cd. Universitaria, C.P. 04510, Coyoacán, Ciudad de México, Mexico
| |
Collapse
|
26
|
Avalos M, Garbeva P, Raaijmakers JM, van Wezel GP. Production of ammonia as a low-cost and long-distance antibiotic strategy by Streptomyces species. ISME JOURNAL 2019; 14:569-583. [PMID: 31700119 DOI: 10.1038/s41396-019-0537-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
Abstract
Soil-inhabiting streptomycetes are nature's medicine makers, producing over half of all known antibiotics and many other bioactive natural products. However, these bacteria also produce many volatiles, molecules that disperse through the soil matrix and may impact other (micro)organisms from a distance. Here, we show that soil- and surface-grown streptomycetes have the ability to kill bacteria over long distances via air-borne antibiosis. Our research shows that streptomycetes do so by producing surprisingly high amounts of the low-cost volatile ammonia, dispersing over long distances to inhibit the growth of Gram-positive and Gram-negative bacteria. Glycine is required as precursor to produce ammonia, and inactivation of the glycine cleavage system nullified ammonia biosynthesis and concomitantly air-borne antibiosis. Reduced expression of the porin master regulator OmpR and its cognate kinase EnvZ is used as a resistance strategy by E. coli cells to survive ammonia-mediated antibiosis. Finally, ammonia was shown to enhance the activity of canonical antibiotics, suggesting that streptomycetes adopt a low-cost strategy to sensitize competitors for antibiosis from a distance.
Collapse
Affiliation(s)
- Mariana Avalos
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Jos M Raaijmakers
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.,Department of Microbial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands. .,Department of Microbial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
27
|
Veselova MA, Plyuta VA, Khmel IA. Volatile Compounds of Bacterial Origin: Structure, Biosynthesis, and Biological Activity. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719030160] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Drabińska N, de Lacy Costello B, Hewett K, Smart A, Ratcliffe N. From fast identification to resistance testing: Volatile compound profiling as a novel diagnostic tool for detection of antibiotic susceptibility. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Fleitas Martínez O, Cardoso MH, Ribeiro SM, Franco OL. Recent Advances in Anti-virulence Therapeutic Strategies With a Focus on Dismantling Bacterial Membrane Microdomains, Toxin Neutralization, Quorum-Sensing Interference and Biofilm Inhibition. Front Cell Infect Microbiol 2019; 9:74. [PMID: 31001485 PMCID: PMC6454102 DOI: 10.3389/fcimb.2019.00074] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/05/2019] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial resistance constitutes one of the major challenges facing humanity in the Twenty-First century. The spread of resistant pathogens has been such that the possibility of returning to a pre-antibiotic era is real. In this scenario, innovative therapeutic strategies must be employed to restrict resistance. Among the innovative proposed strategies, anti-virulence therapy has been envisioned as a promising alternative for effective control of the emergence and spread of resistant pathogens. This review presents some of the anti-virulence strategies that are currently being developed, it will cover strategies focused on quench pathogen quorum sensing (QS) systems, disassemble of bacterial functional membrane microdomains (FMMs), disruption of biofilm formation and bacterial toxin neutralization.
Collapse
Affiliation(s)
- Osmel Fleitas Martínez
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Marlon Henrique Cardoso
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Suzana Meira Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, Brazil
| | - Octavio Luiz Franco
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
30
|
Prasetyoputri A, Jarrad AM, Cooper MA, Blaskovich MA. The Eagle Effect and Antibiotic-Induced Persistence: Two Sides of the Same Coin? Trends Microbiol 2019; 27:339-354. [DOI: 10.1016/j.tim.2018.10.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/21/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022]
|
31
|
Verbrugghe E, Adriaensen C, Martel A, Vanhaecke L, Pasmans F. Growth Regulation in Amphibian Pathogenic Chytrid Fungi by the Quorum Sensing Metabolite Tryptophol. Front Microbiol 2019; 9:3277. [PMID: 30671052 PMCID: PMC6331427 DOI: 10.3389/fmicb.2018.03277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/17/2018] [Indexed: 01/06/2023] Open
Abstract
Amphibians face many threats leading to declines and extinctions, but the chytrid fungal skin pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) have been identified as the causative factors leading to one of the greatest disease-driven losses of amphibian biodiversity worldwide. Infection may lead to different clinical outcomes, and lethal infections are commonly associated with unrestricted, exponential fungal growth in the amphibian epidermis. Mechanisms underpinning Bd and Bsal growth in the amphibian host are poorly understood. Here, we describe a quorum sensing mechanism that allows cell-to-cell communication by Bd and Bsal in order to regulate fungal densities and infection strategies. Addition of chytrid culture supernatant to chytrid cultures resulted in a concentration-dependent growth reduction and using dialysis, small metabolites were shown to be the causative factor. U-HPLC-MS/MS and in vitro growth tests identified the aromatic alcohol tryptophol as a key metabolite in regulating fungal growth. We determined tryptophol kinetics in both Bd and Bsal and confirmed the autostimulatory mode of action of this quorum sensing metabolite. Finally, we linked expression of genes that might be involved in tryptophol production, with in vitro and in vivo chytrid growth. Our results show that Bd and Bsal fungi use tryptophol to act as multicellular entities in order to regulate their growth.
Collapse
Affiliation(s)
- Elin Verbrugghe
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Connie Adriaensen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Ghent University, Merelbeke, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
32
|
Morgan J, Smith M, Mc Auley MT, Enrique Salcedo-Sora J. Disrupting folate metabolism reduces the capacity of bacteria in exponential growth to develop persisters to antibiotics. Microbiology (Reading) 2018; 164:1432-1445. [DOI: 10.1099/mic.0.000722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jasmine Morgan
- 1Department of Biology, Edge Hill University, St. Helens Road, Ormskirk, Lancashire, L39 4QP, UK
| | - Matthew Smith
- 2School of Health Sciences, Liverpool Hope University, Hope Park, L16 9JD, Liverpool, UK
| | - Mark T. Mc Auley
- 3Chemical Engineering Department, University of Chester, Thronton Science Park, CH2 4NU, Chester, UK
| | | |
Collapse
|
33
|
Schütz C, Empting M. Targeting the Pseudomonas quinolone signal quorum sensing system for the discovery of novel anti-infective pathoblockers. Beilstein J Org Chem 2018; 14:2627-2645. [PMID: 30410625 PMCID: PMC6204780 DOI: 10.3762/bjoc.14.241] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
The Gram-negative opportunistic pathogen Pseudomonas aeruginosa causes severe nosocomial infections. It uses quorum sensing (QS) to regulate and coordinate population-wide group behaviours in the infection process like concerted secretion of virulence factors. One very important signalling network is the Pseudomonas quinolone signal (PQS) QS. With the aim to devise novel and innovative anti-infectives, inhibitors have been designed to address the various potential drug targets present within pqs QS. These range from enzymes within the biosynthesis cascade of the signal molecules PqsABCDE to the receptor of these autoinducers PqsR (MvfR). This review shortly introduces P. aeruginosa and its pathogenicity traits regulated by the pqs system and highlights the published drug discovery efforts providing insights into the compound binding modes if available. Furthermore, suitability of the individual targets for pathoblocker design is discussed.
Collapse
Affiliation(s)
- Christian Schütz
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Martin Empting
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Saarbrücken, Germany
| |
Collapse
|
34
|
Fighting bacterial persistence: Current and emerging anti-persister strategies and therapeutics. Drug Resist Updat 2018; 38:12-26. [DOI: 10.1016/j.drup.2018.03.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/07/2018] [Accepted: 03/25/2018] [Indexed: 01/13/2023]
|
35
|
Avalos M, van Wezel GP, Raaijmakers JM, Garbeva P. Healthy scents: microbial volatiles as new frontier in antibiotic research? Curr Opin Microbiol 2018; 45:84-91. [PMID: 29544125 DOI: 10.1016/j.mib.2018.02.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
Abstract
Microorganisms represent a large and still resourceful pool for the discovery of novel compounds to combat antibiotic resistance in human and animal pathogens. The ability of microorganisms to produce structurally diverse volatile compounds has been known for decades, yet their biological functions and antimicrobial activities have only recently attracted attention. Various studies revealed that microbial volatiles can act as infochemicals in long-distance cross-kingdom communication as well as antimicrobials in competition and predation. Here, we review recent insights into the natural functions and modes of action of microbial volatiles and discuss their potential as a new class of antimicrobials and modulators of antibiotic resistance.
Collapse
Affiliation(s)
- Mariana Avalos
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Jos M Raaijmakers
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Paolina Garbeva
- Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
36
|
Bojer MS, Lindemose S, Vestergaard M, Ingmer H. Quorum Sensing-Regulated Phenol-Soluble Modulins Limit Persister Cell Populations in Staphylococcus aureus. Front Microbiol 2018; 9:255. [PMID: 29515541 PMCID: PMC5826201 DOI: 10.3389/fmicb.2018.00255] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/31/2018] [Indexed: 11/15/2022] Open
Abstract
Incomplete killing of bacterial pathogens by antibiotics is an underlying cause of treatment failure and accompanying complications. Among those avoiding chemotherapy are persisters being individual cells in a population that for extended periods of time survive high antibiotic concentrations proposedly by being in a quiescent state refractory to antibiotic killing. While investigating the human pathogen Staphylococcus aureus and the influence of growth phase on persister formation, we noted that spent supernatants of stationary phase cultures of S. aureus or S. epidermidis, but not of distantly related bacteria, significantly reduced the persister cell frequency upon ciprofloxacin challenge when added to exponentially growing and stationary phase S. aureus cells. Curiously, the persister reducing activity of S. aureus supernatants was also effective against persisters formed by either S. carnosus or Listeria monocytogenes. The persister reducing component, which resisted heat but not proteases and was produced in the late growth phase in an agr quorum-sensing dependent manner, was identified to be the phenol-soluble modulin (PSM) toxins. S. aureus express several PSMs, each with distinct cytolytic and antimicrobial properties; however, the persister reducing activity was specifically linked to synthesis of the PSMα family. Correspondingly, a high-persister phenotype of a PSMα mutant was observed upon fluoroquinolone or aminoglycoside challenge, demonstrating that the persister reducing activity of PSMs can be endogenously synthesized or extrinsically added. Given that PSMs have been associated with lytic activity against bacterial membranes we propose that PSM toxins increase the susceptibility of persister cells to killing by intracellularly acting antibiotics and that chronic and re-occurring infections with quorum sensing, agr negative mutants may be difficult to treat with antibiotics because of persister cells formed in the absence of PSM toxins.
Collapse
Affiliation(s)
- Martin S. Bojer
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - Søren Lindemose
- Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - Martin Vestergaard
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Ingmer
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Amoh T, Murakami K, Kariyama R, Hori K, Viducic D, Hirota K, Igarashi J, Suga H, Parsek MR, Kumon H, Miyake Y. Effects of an autoinducer analogue on antibiotic tolerance in Pseudomonas aeruginosa. J Antimicrob Chemother 2018; 72:2230-2240. [PMID: 28510695 DOI: 10.1093/jac/dkx132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/07/2017] [Indexed: 01/01/2023] Open
Abstract
Objectives Antibiotic tolerance causes chronic, refractory and persistent infections. In order to advance the development of a new type of drug for the treatment of infectious diseases, we herein investigated the effects of a newly synthesized analogue of the Pseudomonas aeruginosa quorum-sensing autoinducer named AIA-1 ( a uto i nducer a nalogue) on antibiotic tolerance in P. aeruginosa . Methods A P. aeruginosa luminescent strain derived from PAO1 was injected into neutropenic ICR mice and bioluminescence images were acquired for a period of time after treatments with antibiotics and AIA-1. In vitro susceptibility testing and killing assays for the planktonic and biofilm cells of PAO1 were performed using antibiotics and AIA-1. The expression of quorum-sensing-related genes was examined using real-time PCR. Results In vivo and in vitro assays showed that AIA-1 alone did not exert any bactericidal effects and also did not affect the MICs of antibiotics. However, the combined use of AIA-1 and antibiotics exerted markedly stronger therapeutic effects against experimental infection than antibiotics alone. The presence of AIA-1 also enhanced the killing effects of antibiotics in planktonic and biofilm cells. Although AIA-1 did not inhibit the expression of lasB and rhlA genes, which are directly regulated by quorum sensing, it clearly suppressed expression of the rpoS gene. Conclusions The new compound, AIA-1, did not alter the antibiotic susceptibility of P. aeruginosa by itself; however, its addition enhanced the antibacterial activity of antibiotics. AIA-1 did not inhibit quorum sensing, but reduced the antibiotic tolerance of P. aeruginosa by suppressing rpoS gene expression.
Collapse
Affiliation(s)
- Takashi Amoh
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - Keiji Murakami
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - Reiko Kariyama
- Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan.,Department of Food and Nutrition, Okayama Gakuin University, 787 Aruki, Kurashiki, Okayama 710-0031, Japan
| | - Kenji Hori
- Innovation Center Okayama for Nanobio-targeted Therapy, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Darija Viducic
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - Katsuhiko Hirota
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - Jun Igarashi
- Discovery Research Lab., Otsuka Chemical Co. Ltd., 463, Kagasuno, Kawauchi, Tokushima 771-0193, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Hiromi Kumon
- Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Yoichiro Miyake
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| |
Collapse
|
38
|
Molecular Insights into Function and Competitive Inhibition of Pseudomonas aeruginosa Multiple Virulence Factor Regulator. mBio 2018; 9:mBio.02158-17. [PMID: 29339431 PMCID: PMC5770554 DOI: 10.1128/mbio.02158-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
New approaches to antimicrobial drug discovery are urgently needed to combat intractable infections caused by multidrug-resistant (MDR) bacteria. Multiple virulence factor regulator (MvfR or PqsR), a Pseudomonas aeruginosa quorum sensing transcription factor, regulates functions important in both acute and persistent infections. Recently identified non-ligand-based benzamine-benzimidazole (BB) inhibitors of MvfR suppress both acute and persistent P. aeruginosa infections in mice without perturbing bacterial growth. Here, we elucidate the crystal structure of the MvfR ligand binding domain (LBD) in complex with one potent BB inhibitor, M64. Structural analysis indicated that M64 binds, like native ligands, to the MvfR hydrophobic cavity. A hydrogen bond and pi interaction were found to be important for MvfR-M64 affinity. Surface plasmon resonance analysis demonstrated that M64 is a competitive inhibitor of MvfR. Moreover, a protein engineering approach revealed that Gln194 and Tyr258 are critical for the interaction between MvfR and M64. Random mutagenesis of the full-length MvfR protein identified a single-amino-acid substitution, I68F, at a DNA binding linker domain that confers M64 insensitivity. In the presence of M64, I68F but not the wild-type (WT) MvfR protein retained DNA binding ability. Our findings strongly suggest that M64 promotes conformational change at the DNA binding domain of MvfR and that the I68F mutation may compensate for this change, indicating allosteric inhibition. This work provides critical new insights into the molecular mechanism of MvfR function and inhibition that could aid in the optimization of anti-MvfR compounds and improve our understanding of MvfR regulation. Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that causes serious acute, persistent, and relapsing infections. New approaches to antimicrobial drug discovery are urgently needed to combat intractable infections caused by this pathogen. The Pseudomonas aeruginosa quorum sensing transcription factor MvfR regulates functions important in both acute and persistent infections. We used recently identified inhibitors of MvfR to perform structural studies and reveal important insights that would benefit the optimization of anti-MvfR compounds. Altogether, the results reported here provide critical detailed mechanistic insights into the function of MvfR domains that may benefit the optimization of the chemical, pharmacological, and safety properties of MvfR antagonist series.
Collapse
|
39
|
Maura D, Bandyopadhaya A, Rahme LG. Animal Models for Pseudomonas aeruginosa Quorum Sensing Studies. Methods Mol Biol 2018; 1673:227-241. [PMID: 29130177 DOI: 10.1007/978-1-4939-7309-5_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Quorum sensing (QS) systems play global regulatory roles in bacterial virulence. They synchronize the expression of multiple virulence factors and they control and modulate bacterial antibiotic tolerance systems and host defense mechanisms. Therefore, it is important to obtain knowledge about QS modes of action and to test putative therapeutics that may interrupt QS actions in the context of infections. This chapter describes methods to study bacterial pathogenesis in murine acute and persistent/relapsing infection models, using the Gram-negative bacterial pathogen Pseudomonas aeruginosa as an example. These infection models can be used to probe bacterial virulence functions and in mechanistic studies, as well as for the assessment of the therapeutic potential of antibacterials, including anti-virulence agents.
Collapse
Affiliation(s)
- Damien Maura
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.,Shriners Hospitals for Children Boston, Boston, MA, USA
| | - Arunava Bandyopadhaya
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.,Shriners Hospitals for Children Boston, Boston, MA, USA
| | - Laurence G Rahme
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA. .,Shriners Hospitals for Children Boston, Boston, MA, USA.
| |
Collapse
|
40
|
Bandyopadhaya A, Tsurumi A, Rahme LG. NF-κBp50 and HDAC1 Interaction Is Implicated in the Host Tolerance to Infection Mediated by the Bacterial Quorum Sensing Signal 2-Aminoacetophenone. Front Microbiol 2017; 8:1211. [PMID: 28713342 PMCID: PMC5492500 DOI: 10.3389/fmicb.2017.01211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 06/14/2017] [Indexed: 12/11/2022] Open
Abstract
Some bacterial quorum sensing (QS) small molecules are important mediators of inter-kingdom signaling and impact host immunity. The QS regulated small volatile molecule 2-aminoacetophenone (2-AA), which has been proposed as a biomarker of Pseudomonas aeruginosa colonization in chronically infected human tissues, is critically involved in "host tolerance training" that involves a distinct molecular mechanism of host chromatin regulation through histone deacetylase (HDAC)1. 2-AA's epigenetic reprogramming action enables host tolerance to high bacterial burden and permits long-term presence of P. aeruginosa without compromising host survival. Here, to further elucidate the molecular mechanisms of 2-AA-mediated host tolerance/resilience we investigated the connection between histone acetylation status and nuclear factor (NF)-κB signaling components that together coordinate 2-AA-mediated control of transcriptional activity. We found increased NF-κBp65 acetylation levels in 2-AA stimulated cells that are preceded by association of CBP/p300 and increased histone acetyltransferase activity. In contrast, in 2-AA-tolerized cells the protein-protein interaction between p65 and CBP/p300 is disrupted and conversely, the interaction between p50 and co-repressor HDAC1 is enhanced, leading to repression of the pro-inflammatory response. These results highlight how a bacterial QS signaling molecule can establish a link between intracellular signaling and epigenetic reprogramming of pro-inflammatory mediators that may contribute to host tolerance training. These new insights might contribute to the development of novel therapeutic interventions against bacterial infections.
Collapse
Affiliation(s)
- Arunava Bandyopadhaya
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, BostonMA, United States
- Department of Microbiology and Immunobiology, Harvard Medical School, BostonMA, United States
- Shriners Hospitals for Children Boston, BostonMA, United States
| | - Amy Tsurumi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, BostonMA, United States
- Department of Microbiology and Immunobiology, Harvard Medical School, BostonMA, United States
- Shriners Hospitals for Children Boston, BostonMA, United States
| | - Laurence G. Rahme
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, BostonMA, United States
- Department of Microbiology and Immunobiology, Harvard Medical School, BostonMA, United States
- Shriners Hospitals for Children Boston, BostonMA, United States
| |
Collapse
|
41
|
Allegretta G, Maurer CK, Eberhard J, Maura D, Hartmann RW, Rahme L, Empting M. In-depth Profiling of MvfR-Regulated Small Molecules in Pseudomonas aeruginosa after Quorum Sensing Inhibitor Treatment. Front Microbiol 2017; 8:924. [PMID: 28596760 PMCID: PMC5442231 DOI: 10.3389/fmicb.2017.00924] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 05/08/2017] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium, which causes opportunistic infections in immuno-compromised individuals. Due to its multiple resistances toward antibiotics, the development of new drugs is required. Interfering with Quorum Sensing (QS), a cell-to-cell communication system, has shown to be highly efficient in reducing P. aeruginosa pathogenicity. One of its QS systems employs Pseudomonas Quinolone Signal (PQS) and 4-hydroxy-2-heptylquinoline (HHQ) as signal molecules. Both activate the transcriptional regulator MvfR (Multiple Virulence Factor Regulator), also called PqsR, driving the production of QS molecules as well as toxins and biofilm formation. The aim of this work was to elucidate the effects of QS inhibitors (QSIs), such as MvfR antagonists and PqsBC inhibitors, on the biosynthesis of the MvfR-regulated small molecules 2′-aminoacetophenone (2-AA), dihydroxyquinoline (DHQ), HHQ, PQS, and 4-hydroxy-2-heptylquinoline-N-oxide (HQNO). The employed synthetic MvfR antagonist fully inhibited pqs small molecule formation showing expected sigmoidal dose-response curves for 2-AA, HQNO, HHQ and PQS. Surprisingly, DHQ levels were enhanced at lower antagonist concentrations followed by a full suppression at higher QSI amounts. This particular bi-phasic profile hinted at the accumulation of a biosynthetic intermediate resulting in the observed overproduction of the shunt product DHQ. Additionally, investigations on PqsBC inhibitors showed a reduction of MvfR natural ligands, while increased 2-AA, DHQ and HQNO levels compared to the untreated cells were detected. Moreover, PqsBC inhibitors did not show any significant effect in PA14 pqsC mutant demonstrating their target selectivity. As 2-AA is important for antibacterial tolerance, the QSIs were evaluated in their capability to attenuate persistence. Indeed, persister cells were reduced along with 2-AA inhibition resulting from MvfR antagonism, but not from PqsBC inhibition. In conclusion, antagonizing MvfR using a dosage capable of fully suppressing this QS system will lead to a favorable therapeutic outcome as DHQ overproduction is avoided and bacterial persistence is reduced.
Collapse
Affiliation(s)
- Giuseppe Allegretta
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrücken, Germany
| | - Christine K Maurer
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrücken, Germany
| | - Jens Eberhard
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrücken, Germany
| | - Damien Maura
- Department of Surgery and Department of Microbiology and Immunobiology, Harvard Medical School, BostonMA, United States.,Department of Surgery, Center for Surgery, Innovation and Bioengineering, Massachusetts General Hospital, BostonMA, United States.,Shriners Hospitals for Children, BostonMA, United States
| | - Rolf W Hartmann
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrücken, Germany.,Pharmaceutical and Medicinal Chemistry, Saarland UniversitySaarbrücken, Germany
| | - Laurence Rahme
- Department of Surgery and Department of Microbiology and Immunobiology, Harvard Medical School, BostonMA, United States.,Department of Surgery, Center for Surgery, Innovation and Bioengineering, Massachusetts General Hospital, BostonMA, United States.,Shriners Hospitals for Children, BostonMA, United States
| | - Martin Empting
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research SaarlandSaarbrücken, Germany
| |
Collapse
|
42
|
Viducic D, Murakami K, Amoh T, Ono T, Miyake Y. RpoN Promotes Pseudomonas aeruginosa Survival in the Presence of Tobramycin. Front Microbiol 2017; 8:839. [PMID: 28553272 PMCID: PMC5427110 DOI: 10.3389/fmicb.2017.00839] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 04/24/2017] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas aeruginosa has developed diverse strategies to respond and adapt to antibiotic stress. Among the factors that modulate survival in the presence of antibiotics, alternative sigma factors play an important role. Here, we demonstrate that the alternative sigma factor RpoN (σ54) promotes survival in the presence of tobramycin. The tobramycin-sensitive phenotype of logarithmic phase ΔrpoN mutant cells is suppressed by the loss of the alternative sigma factor RpoS. Transcriptional analysis indicated that RpoN positively regulates the expression of RsmA, an RNA-binding protein, in the P. aeruginosa stationary growth phase in a nutrient-rich medium. The loss of RpoS led to the upregulation of gacA expression in the nutrient-limited medium-grown stationary phase cells. Conversely, in the logarithmic growth phase, the ΔrpoS mutant demonstrated lower expression of gacA, underscoring a regulatory role of RpoS for GacA. Supplementation of tobramycin to stationary phase ΔrpoN mutant cells grown in nutrient-rich medium resulted in decreased expression of gacA, relA, and rpoS without altering the expression of rsmA relative to wild-type PAO1. The observed downregulation of gacA and relA in the ΔrpoN mutant in the presence of tobramycin could be reversed through the mutation of rpoS in the ΔrpoN mutant background. The tobramycin-tolerant phenotype of the ΔrpoNΔrpoS mutant logarithmic phase cells may be associated with the expression of relA, which remained unresponsive upon addition of tobramycin. The logarithmic phase ΔrpoS and ΔrpoNΔrpoS mutant cells demonstrated increased expression of gacA in response to tobramycin. Together, these results suggest that a complex regulatory interaction between RpoN, RpoS, the Gac/Rsm pathway, and RelA modulates the P. aeruginosa response to tobramycin.
Collapse
Affiliation(s)
- Darija Viducic
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate SchoolTokushima, Japan.,Department of Molecular Microbiology, Institute of Health Biosciences, Tokushima University Graduate SchoolTokushima, Japan
| | - Keiji Murakami
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate SchoolTokushima, Japan
| | - Takashi Amoh
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate SchoolTokushima, Japan
| | - Tsuneko Ono
- Department of Molecular Microbiology, Institute of Health Biosciences, Tokushima University Graduate SchoolTokushima, Japan
| | - Yoichiro Miyake
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate SchoolTokushima, Japan
| |
Collapse
|
43
|
Westhoff S, van Wezel GP, Rozen DE. Distance-dependent danger responses in bacteria. Curr Opin Microbiol 2017; 36:95-101. [PMID: 28258981 DOI: 10.1016/j.mib.2017.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/27/2017] [Accepted: 02/01/2017] [Indexed: 12/23/2022]
Abstract
The last decade has seen a resurgence in our understanding of the diverse mechanisms that bacteria use to kill one another. We are also beginning to uncover the responses and countermeasures that bacteria use when faced with specific threats or general cues of potential danger from bacterial competitors. In this Perspective, we propose that diverse offensive and defensive responses in bacteria have evolved to offset dangers detected at different distances. Thus, while volatile organic compounds provide bacterial cells with a warning at the greatest distance, diffusible compounds like antibiotics or contact mediated killing systems, indicate a more pressing danger warranting highly-specific responses. In the competitive environments in which bacteria live, it is crucial that cells are able to detect real or potential dangers from other cells. By utilizing mechanisms of detection that can infer the distance from danger, bacteria can fine-tune aggressive interactions so that they can optimally respond to threats occurring with distinct levels of risk.
Collapse
Affiliation(s)
- Sanne Westhoff
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2300 BE Leiden, The Netherlands.
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2300 BE Leiden, The Netherlands
| | - Daniel E Rozen
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2300 BE Leiden, The Netherlands
| |
Collapse
|
44
|
Van den Bergh B, Fauvart M, Michiels J. Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiol Rev 2017; 41:219-251. [DOI: 10.1093/femsre/fux001] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/12/2017] [Indexed: 12/19/2022] Open
|
45
|
Gallo SW, Donamore BK, Pagnussatti VE, Ferreira CAS, de Oliveira SD. Effects of meropenem exposure in persister cells of Acinetobacter calcoaceticus-baumannii. Future Microbiol 2017; 12:131-140. [DOI: 10.2217/fmb-2016-0118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the influence of meropenem in the Acinetobacter calcoaceticus-baumannii (ACB) persister levels. Methods: Persister levels in planktonic and biofilm cultures from ACB isolates were evaluated after exposure to different meropenem concentrations. Results: A high variability of persister fractions was observed among the isolates cultured under planktonic and biofilm conditions. Meropenem concentration did not influence persister fractions, even when far above the MIC. No correlation was found between persister levels and biofilm biomass. Conclusion: The magnitude of persister levels from ACB planktonic and, particularly, biofilm cultures exposed to meropenem was independent of the antibiotic concentration, dosing regimen and biofilm biomass. These findings, in a context of meropenem failure to treat chronic infections, strengthen the importance of understanding persister behavior.
Collapse
Affiliation(s)
- Stephanie Wagner Gallo
- Laboratório de Imunologia e Microbiologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul – PUCRS, Porto Alegre, RS, Brazil
| | - Bruna Kern Donamore
- Laboratório de Imunologia e Microbiologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul – PUCRS, Porto Alegre, RS, Brazil
| | - Vany Elisa Pagnussatti
- Departamento de Microbiologia, Laboratório de Patologia Clínica, Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul – PUCRS, Porto Alegre, RS, Brazil
| | - Carlos Alexandre Sanchez Ferreira
- Laboratório de Imunologia e Microbiologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul – PUCRS, Porto Alegre, RS, Brazil
| | - Sílvia Dias de Oliveira
- Laboratório de Imunologia e Microbiologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul – PUCRS, Porto Alegre, RS, Brazil
| |
Collapse
|
46
|
Kamal AAM, Maurer CK, Allegretta G, Haupenthal J, Empting M, Hartmann RW. Quorum Sensing Inhibitors as Pathoblockers for Pseudomonas aeruginosa Infections: A New Concept in Anti-Infective Drug Discovery. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2017_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Cheng X, Cordovez V, Etalo DW, van der Voort M, Raaijmakers JM. Role of the GacS Sensor Kinase in the Regulation of Volatile Production by Plant Growth-Promoting Pseudomonas fluorescens SBW25. FRONTIERS IN PLANT SCIENCE 2016; 7:1706. [PMID: 27917180 PMCID: PMC5114270 DOI: 10.3389/fpls.2016.01706] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 10/31/2016] [Indexed: 05/25/2023]
Abstract
In plant-associated Pseudomonas species, the production of several secondary metabolites and exoenzymes is regulated by the GacS/GacA two-component regulatory system (the Gac-system). Here, we investigated if a mutation in the GacS sensor kinase affects the production of volatile organic compounds (VOCs) in P. fluorescens SBW25 (Pf.SBW25) and how this impacts on VOCs-mediated growth promotion and induced systemic resistance of Arabidopsis and tobacco. A total of 205 VOCs were detected by Gas Chromatography Mass Spectrometry for Pf. SBW25 and the gacS-mutant grown on two different media for 3 and 6 days. Discriminant function analysis followed by hierarchical clustering revealed 24 VOCs that were significantly different in their abundance between Pf.SBW25 and the gacS-mutant, which included three acyclic alkenes (3-nonene, 4-undecyne, 1-undecene). These alkenes were significantly reduced by the gacS mutation independently of the growth media and of the incubation time. For Arabidopsis, both Pf.SBW25 and the gacS-mutant enhanced, via VOCs, root and shoot biomass, induced systemic resistance against leaf infections by P. syringae and rhizosphere acidification to the same extent. For tobacco, however, VOCs-mediated effects on shoot and root growth were significantly different between Pf.SBW25 and the gacS-mutant. While Pf.SBW25 inhibited tobacco root growth, the gacS-mutant enhanced root biomass and lateral root formation relative to the non-treated control plants. Collectively these results indicate that the sensor kinase GacS is involved in the regulation of VOCs production in Pf.SBW25, affecting plant growth in a plant species-dependent manner.
Collapse
Affiliation(s)
- Xu Cheng
- Laboratory of Phytopathology, Wageningen UniversityWageningen, Netherlands
| | - Viviane Cordovez
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | - Desalegn W. Etalo
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | | | - Jos M. Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of EcologyWageningen, Netherlands
- Institute of Biology Leiden, Leiden UniversityLeiden, Netherlands
| |
Collapse
|
48
|
A quorum-sensing signal promotes host tolerance training through HDAC1-mediated epigenetic reprogramming. Nat Microbiol 2016; 1:16174. [PMID: 27694949 PMCID: PMC5066596 DOI: 10.1038/nmicrobiol.2016.174] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 08/17/2016] [Indexed: 12/20/2022]
Abstract
The mechanisms by which pathogens evade elimination without affecting host fitness are not well understood. For the pathogen Pseudomonas aeruginosa, this evasion appears to be triggered by excretion of the quorum sensing (QS) molecule 2-aminoacetophenone (2-AA), which dampens host immune responses and modulates host metabolism, thereby enabling the bacteria to persist at a high burden level. Here, we examined how 2-AA trains host tissues to become tolerant to a high bacterial burden, without compromising host fitness. We found that 2-AA regulates histone deacetylase1 (HDAC1) expression and activity, resulting in hypoacetylation of lysine 18 of histone H3 (H3K18) at pro-inflammatory cytokine loci. Specifically, 2-AA induced reprogramming of immune cells occurs via alterations in histone acetylation of immune cytokines in vivo and in vitro. This host epigenetic reprograming, which was maintained for up to 7 days, dampened host responses to subsequent exposure to 2-AA or other pathogen-associated molecules. The process was found to involve a distinct molecular mechanism of host chromatin regulation. Inhibition of HDAC1 prevented the immunomodulatory effects of 2-AA. These observations provide the first mechanistic example of a QS molecule regulating a host epigenome to enable tolerance of infection. These insights have enormous potential for developing preventive treatments against bacterial infections.
Collapse
|
49
|
Maura D, Hazan R, Kitao T, Ballok AE, Rahme LG. Evidence for Direct Control of Virulence and Defense Gene Circuits by the Pseudomonas aeruginosa Quorum Sensing Regulator, MvfR. Sci Rep 2016; 6:34083. [PMID: 27678057 PMCID: PMC5039717 DOI: 10.1038/srep34083] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/01/2016] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa defies eradication by antibiotics and is responsible for acute and chronic human infections due to a wide variety of virulence factors. Currently, it is believed that MvfR (PqsR) controls the expression of many of these factors indirectly via the pqs and phnAB operons. Here we provide strong evidence that MvfR may also bind and directly regulate the expression of additional 35 loci across the P. aeruginosa genome, including major regulators and virulence factors, such as the quorum sensing (QS) regulators lasR and rhlR, and genes involved in protein secretion, translation, and response to oxidative stress. We show that these anti-oxidant systems, AhpC-F, AhpB-TrxB2 and Dps, are critical for P. aeruginosa survival to reactive oxygen species and antibiotic tolerance. Considering that MvfR regulated compounds generate reactive oxygen species, this indicates a tightly regulated QS self-defense anti-poisoning system. These findings also challenge the current hierarchical regulation model of P. aeruginosa QS systems by revealing new interconnections between them that suggest a circular model. Moreover, they uncover a novel role for MvfR in self-defense that favors antibiotic tolerance and cell survival, further demonstrating MvfR as a highly desirable anti-virulence target.
Collapse
Affiliation(s)
- Damien Maura
- Department of Surgery, Massachusetts General Hospital, Boston MA 02114, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston MA 02115, USA.,Shriners Hospitals for Children Boston, Boston, 02114, Massachusetts, USA
| | - Ronen Hazan
- Department of Surgery, Massachusetts General Hospital, Boston MA 02114, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston MA 02115, USA.,Shriners Hospitals for Children Boston, Boston, 02114, Massachusetts, USA.,Institute of Dental Sciences and School of Dental Medicine, Hebrew University, Jerusalem P.O.B 12272, 91120, Israel
| | - Tomoe Kitao
- Department of Surgery, Massachusetts General Hospital, Boston MA 02114, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston MA 02115, USA.,Shriners Hospitals for Children Boston, Boston, 02114, Massachusetts, USA
| | - Alicia E Ballok
- Department of Surgery, Massachusetts General Hospital, Boston MA 02114, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston MA 02115, USA.,Shriners Hospitals for Children Boston, Boston, 02114, Massachusetts, USA
| | - Laurence G Rahme
- Department of Surgery, Massachusetts General Hospital, Boston MA 02114, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston MA 02115, USA.,Shriners Hospitals for Children Boston, Boston, 02114, Massachusetts, USA
| |
Collapse
|
50
|
Effect of Human Burn Wound Exudate on Pseudomonas aeruginosa Virulence. mSphere 2016; 1:mSphere00111-15. [PMID: 27303724 PMCID: PMC4894682 DOI: 10.1128/msphere.00111-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/03/2016] [Indexed: 11/20/2022] Open
Abstract
Burn wound sepsis is currently the main cause of morbidity and mortality after burn trauma. Infections by notorious pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii impair patient recovery and can even lead to fatality. In this study, we investigated the effect of burn wound exudates (BWEs) on the virulence of those pathogens. BWEs were collected within 7 days after burn trauma from 5 burn patients. We first monitored their effect on pathogen growth. In contrast to A. baumannii and S. aureus, P. aeruginosa was the only pathogen able to grow within these human fluids. Expression of typical virulence factors such as pyocyanin and pyoverdine was even enhanced compared the levels seen with standard laboratory medium. A detailed chemical composition analysis of BWE was performed, which enabled us to determine the major components of BWE and underline the metabolic modifications induced by burn trauma. These data are essential for the development of an artificial medium mimicking the burn wound environment and the establishment of an in vitro system to analyze the initial steps of burn wound infections. IMPORTANCE Microbial infection of severe burn wounds is currently a major medical challenge. Of the infections by bacteria able to colonize such injuries, those by Pseudomonas aeruginosa are among the most severe, causing major delays in burn patient recovery or leading to fatal issues. In this study, we investigated the growth properties of several burn wound pathogens in biological fluids secreted from human burn wounds. We found that P. aeruginosa strains were able to proliferate but not those of the other pathogens tested. In addition, burn wound exudates (BWEs) stimulate the expression of virulence factors in P. aeruginosa. The chemical composition analysis of BWEs enabled us to determine the major components of these fluids. These data are essential for the development of an artificial medium mimicking the burn wound environment and for in vitro analysis of the initial step in the development of burn wound infections.
Collapse
|