1
|
Schittenhelm MM, Kaiser M, Győrffy B, Kampa-Schittenhelm KM. Evaluation of apoptosis stimulating protein of TP53-1 (ASPP1/PPP1R13B) to predict therapy resistance and overall survival in acute myeloid leukemia (AML). Cell Death Dis 2024; 15:25. [PMID: 38195541 PMCID: PMC10776670 DOI: 10.1038/s41419-023-06372-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024]
Abstract
ASPP1 (PPP1R13B) belongs to a family of p53-binding proteins and enhances apoptosis by stimulation of p53-transactivation of selected proapoptotic target genes. It is preferentially expressed in hematopoietic stem cells (HSC) and together with p53 preserves the genomic integrity of the HSC pool. Consequently, dysfunction of ASPP1 has been associated with malignant transformation and development of acute lymphoblastic leukemias and lymphomas - whereas methylation of the promoter region is linked to reduced transcription and ultimately attenuated expression of ASPP1. The role of ASPP1 in AML is not known. We now show that impaired regulation of PPP1R13B contributes to the biology of leukemogenesis and primary therapy resistance in AML. PPP1R13B mRNA expression patterns thereby define a distinct prognostic profile - which is not reflected by the European leukemia net (ELN) risk score. These findings have direct therapeutic implications and we provide a strategy to restore ASPP1 protein levels using hypomethylating agents to sensitize cells towards proapoptotic drugs. Prospective clinical trials are warranted to investigate the role of ASPP1 (PPP1R13B) as a biomarker for risk stratification and as a potential therapeutic target to restore susceptibility to chemotherapy.
Collapse
Affiliation(s)
- Marcus M Schittenhelm
- Medical research center (MFZ) and Clinic of Medical Oncology and Hematology, Cantonal Hospital St. Gallen (KSSG), St. Gallen, Switzerland
| | - Max Kaiser
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen (UKT), Tübingen, Germany
| | - Balázs Győrffy
- Semmelweis University Dept. of Bioinformatics and Dept. of Pediatrics, Budapest, H-1094, Hungary
- TTK Cancer Biomarker Research Group, Institute of Enzymology, Budapest, H-1117, Hungary
| | - Kerstin M Kampa-Schittenhelm
- Medical research center (MFZ) and Clinic of Medical Oncology and Hematology, Cantonal Hospital St. Gallen (KSSG), St. Gallen, Switzerland.
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen (UKT), Tübingen, Germany.
| |
Collapse
|
2
|
Huang BS, Chen CT, Yeh CC, Fan TY, Chen FY, Liou JM, Shun CT, Wu MS, Chow LP. miR-21 Targets ASPP2 to Inhibit Apoptosis via CHOP-Mediated Signaling in Helicobacter pylori-Infected Gastric Cancer Cells. JOURNAL OF ONCOLOGY 2023; 2023:6675265. [PMID: 37547633 PMCID: PMC10403333 DOI: 10.1155/2023/6675265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 08/08/2023]
Abstract
Helicobacter pylori (H. pylori) infection affects cell survival pathways, including apoptosis and proliferation in host cells, and disruption of this balance is the key event in the development of H. pylori-induced gastric cancer (HPGC). H. pylori infection induces alterations in microRNAs expression that may be involved in GC development. Bioinformatic analysis showed that microRNA-21 (miR-21) is significantly upregulated in HPGC. Furthermore, quantitative proteomics and in silico prediction were employed to identify potential targets of miR-21. Following functional enrichment and clustered interaction network analyses, five candidates of miR-21 targets, PDCD4, ASPP2, DAXX, PIK3R1, and MAP3K1, were found across three functional clusters in association with cell death and survival, cellular movement, and cellular growth and proliferation. ASPP2 is inhibited by H. pylori-induced miR-21 overexpression. Moreover, ASPP2 levels are inversely correlated with miR-21 levels in HPGC tumor tissues. Thus, ASPP2 was identified as a miR-21 target in HPGC. Here, we observed that H. pylori-induced ASPP2 suppression enhances resistance to apoptosis in GC cells using apoptosis assays. Using protein interaction network and coimmunoprecipitation assay, we identified CHOP as a direct mediator of the ASPP2 proapoptotic activity in H. pylori-infected GC cells. Mechanistically, ASPP2 suppression promotes p300-mediated CHOP degradation, in turn inhibiting CHOP-mediated transcription of Noxa, Bak, and suppression of Bcl-2 to enact antiapoptosis in the GC cells after H. pylori infection. Clinicopathological analysis revealed correlations between decreased ASPP2 expression and higher HPGC risk and poor prognosis. In summary, the discovery of H. pylori-induced antiapoptosis via miR-21-mediated suppression of ASPP2/CHOP-mediated signaling provides a novel perspective for developing HPGC management and treatment.
Collapse
Affiliation(s)
- Bo-Shih Huang
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Ta Chen
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chao-Chi Yeh
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Yu Fan
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fang-Yun Chen
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jyh-Ming Liou
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Lu-Ping Chow
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Tsintari V, Walter B, Fend F, Overkamp M, Rothermundt C, Lopez CD, Schittenhelm MM, Kampa-Schittenhelm KM. Alternative splicing of Apoptosis Stimulating Protein of TP53-2 (ASPP2) results in an oncogenic isoform promoting migration and therapy resistance in soft tissue sarcoma (STS). BMC Cancer 2022; 22:725. [PMID: 35780096 PMCID: PMC9250729 DOI: 10.1186/s12885-022-09726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Metastatic soft tissue sarcoma (STS) are a heterogeneous group of malignancies which are not curable with chemotherapy alone. Therefore, understanding the molecular mechanisms of sarcomagenesis and therapy resistance remains a critical clinical need. ASPP2 is a tumor suppressor, that functions through both p53-dependent and p53-independent mechanisms. We recently described a dominant-negative ASPP2 isoform (ASPP2κ), that is overexpressed in human leukemias to promote therapy resistance. However, ASPP2κ has never been studied in STS. Materials and methods Expression of ASPP2κ was quantified in human rhabdomyosarcoma tumors using immunohistochemistry and qRT-PCR from formalin-fixed paraffin-embedded (FFPE) and snap-frozen tissue. To study the functional role of ASPP2κ in rhabdomyosarcoma, isogenic cell lines were generated by lentiviral transduction with short RNA hairpins to silence ASPP2κ expression. These engineered cell lines were used to assess the consequences of ASPP2κ silencing on cellular proliferation, migration and sensitivity to damage-induced apoptosis. Statistical analyses were performed using Student’s t-test and 2-way ANOVA. Results We found elevated ASPP2κ mRNA in different soft tissue sarcoma cell lines, representing five different sarcoma sub-entities. We found that ASSP2κ mRNA expression levels were induced in these cell lines by cell-stress. Importantly, we found that the median ASPP2κ expression level was higher in human rhabdomyosarcoma in comparison to a pool of tumor-free tissue. Moreover, ASPP2κ levels were elevated in patient tumor samples versus adjacent tumor-free tissue within individual patients. Using isogenic cell line models with silenced ASPP2κ expression, we found that suppression of ASPP2κ enhanced chemotherapy-induced apoptosis and attenuated cellular proliferation. Conclusion Detection of oncogenic ASPP2κ in human sarcoma provides new insights into sarcoma tumor biology. Our data supports the notion that ASPP2κ promotes sarcomagenesis and resistance to therapy. These observations provide the rationale for further evaluation of ASPP2κ as an oncogenic driver as well as a prognostic tool and potential therapeutic target in STS. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09726-7.
Collapse
Affiliation(s)
- Vasileia Tsintari
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen (UKT), Tübingen, Germany
| | - Bianca Walter
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen (UKT), Tübingen, Germany
| | - Falko Fend
- Institute of Pathology, University Hospital Tübingen, Tübingen, Germany
| | - Mathis Overkamp
- Institute of Pathology, University Hospital Tübingen, Tübingen, Germany
| | - Christian Rothermundt
- Department of Medical Oncology and Hematology, Cantonal Hospital St. Gallen (KSSG), St. Gallen, Switzerland
| | - Charles D Lopez
- Department of Hematology and Medical Oncology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Marcus M Schittenhelm
- Department of Medical Oncology and Hematology, Cantonal Hospital St. Gallen (KSSG), St. Gallen, Switzerland
| | - Kerstin M Kampa-Schittenhelm
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen (UKT), Tübingen, Germany. .,Laboratory of Translational Experimental Hematology and Oncology, Medical Research Center and Department of Medical Oncology and Hematology, Cantonal Hospital, Rorschacherstr. 95, St. Gallen, 9007, Switzerland, St.Gallen. .,, St. Gallen, Switzerland.
| |
Collapse
|
4
|
Rieger I, Tsintari V, Overkamp M, Fend F, Lopez CD, Schittenhelm MM, Kampa-Schittenhelm KM. ASPP2κ Is Expressed In Human Colorectal Carcinoma And Promotes Chemotherapy Resistance And Tumorigenesis. Front Mol Biosci 2021; 8:727203. [PMID: 34805267 PMCID: PMC8602356 DOI: 10.3389/fmolb.2021.727203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022] Open
Abstract
Alternative splicing is a common physiologic mechanism to generate numerous distinct gene products from one gene locus, which can result in unique gene products with differing important functional outcomes depending on cell context. Aberrant alternative splicing is a hallmark of cancer that can contribute to oncogenesis and aggressiveness of the disease as well as resistance to therapy. However, aberrant splicing might also result in novel targets for cancer therapy. ASPP2 is a haplo-insufficient tumor suppressor, that functions through both p53-dependent as well as p53-independent mechanisms to enhance cell death after stress. Interestingly, the common human tumor TP53 mutations result in a loss of the binding sites to ASPP2, leading to impaired induction of apoptosis. Vice versa, attenuation of ASPP2 has been described to be associated with high-risk disease, therapy failure and poor clinical outcome especially in tumors harboring the TP53 wildtype (WT) isoform. We have recently identified a novel, dominant-negative splicing variant of ASPP2, named ASPP2κ, with oncogenic potential. Exon-skipping results in a reading-frame shift with a premature translation stop, omitting most of the ASPP2 C-terminus - which harbors the p53-binding domain. Consequently, the ASPP2-p53 interaction is abrogated, which in part impacts on oncogenesis, aggressiveness of disease and response to therapy. Since ASPP2κ has been shown in hematologic malignancies to promote tumorigenesis, we further wished to determine if aberrant ASPP2κ expression plays a role in human solid tumors. In this report, we find that ASPP2κ is frequently expressed in human colorectal tumors (CRC). Using ASPP2κ overexpressing and interference CRC models, we demonstrate a functional role of ASPP2κ in contributing to oncogenesis and resistance to therapy in CRC by 1) enhancing proliferation, 2) promoting cell migration and, 3) conferring resistance to chemotherapy induced apoptosis. Our findings have far-reaching consequences for future diagnostic and therapeutic strategies for ASPP2κ expressing colorectal cancer patients and provide proof-of-principle to further explore ASPP2κ as potential predictive marker and target for therapy in clinical trials.
Collapse
Affiliation(s)
- Ingmar Rieger
- Department of Oncology, Hematology, Clinical Immunology and Rheumatology, University Hospital Tübingen (UKT), Tübingen, Germany
| | - Vasileia Tsintari
- Department of Oncology, Hematology, Clinical Immunology and Rheumatology, University Hospital Tübingen (UKT), Tübingen, Germany
| | - Mathis Overkamp
- Institute of Pathology at the University Hospital Tübingen, Tübingen, Germany
| | - Falko Fend
- Institute of Pathology at the University Hospital Tübingen, Tübingen, Germany
| | - Charles D Lopez
- Department of Hematology and Medical Oncology, Oregon Health and Science University (OHSU), Portland, OR, United States
| | - Marcus M Schittenhelm
- Clinic of Medical Oncology and Hematology, Cantonal Hospital St. Gallen (KSSG), St. Gallen, Switzerland
| | - Kerstin M Kampa-Schittenhelm
- Department of Oncology, Hematology, Clinical Immunology and Rheumatology, University Hospital Tübingen (UKT), Tübingen, Germany.,Translational Experimental Hematology and Oncology, Medical Research Center and Department of Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
5
|
Knockout of ASPP2 promotes DEN-induced hepatocarcinogenesis via the NF-κB pathway in mice. Cancer Gene Ther 2021; 29:202-214. [PMID: 33558702 PMCID: PMC8850195 DOI: 10.1038/s41417-021-00300-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/06/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022]
Abstract
Apoptosis-stimulating protein p53 2 (ASPP2) is a member of the p53-binding protein family, which is closely related to tumor development. However, the precise mechanism of ASPP2 in liver inflammation and tumorigenesis remains largely unclear. We aimed to characterize the mechanistic significance and clinical implication of ASPP2 in hepatitis and hepatocellular carcinoma (HCC). In this study, ASPP2 knockout (APKO) mice were generated to confirm the role of ASPP2 in the development of hepatitis and HCC. Liver tissues from mice were analyzed by immunohistochemistry, Western blotting, proteomic analysis, ChIP-Seq, and qRT-PCR to evaluate the role of ASPP2 in DEN-induced hepatitis and HCC. We found that APKO promoted the formation of hepatitis/hepatocarcinoma and the increased expression of proinflammatory factors. The proteomics and Western blotting results showed that APKO activated the NF-κB signaling pathway. Further, ChIP-Seq results revealed that NF-κB target genes were dramatically increased in APKO mice. In contrast, blockade of the NF-κB pathway by QNZ reduced the expression of proinflammatory factors and the susceptibility of APKO mice to DEN-induced hepatocarcinogenesis. These results suggested that the absence of ASPP2 activates the NF-κB pathway to promote the occurrence of DEN-induced hepatocarcinogenesis, indicating that ASPP2 may be a potential target for the treatment of hepatocarcinoma.
Collapse
|
6
|
Schittenhelm MM, Walter B, Tsintari V, Federmann B, Bajrami Saipi M, Akmut F, Illing B, Mau-Holzmann U, Fend F, Lopez CD, Kampa-Schittenhelm KM. Alternative splicing of the tumor suppressor ASPP2 results in a stress-inducible, oncogenic isoform prevalent in acute leukemia. EBioMedicine 2019; 42:340-351. [PMID: 30952616 PMCID: PMC6491939 DOI: 10.1016/j.ebiom.2019.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 01/01/2023] Open
Abstract
Background Apoptosis-stimulating Protein of TP53-2 (ASPP2) is a tumor suppressor enhancing TP53-mediated apoptosis via binding to the TP53 core domain. TP53 mutations found in cancers disrupt ASPP2 binding, arguing for an important role of ASPP2 in TP53-mediated tumor suppression. We now identify an oncogenic splicing variant, ASPP2κ, with high prevalence in acute leukemia. Methods An mRNA screen to detect ASPP2 splicing variants was performed and ASPP2κ was validated using isoform-specific PCR approaches. Translation into a genuine protein isoform was evaluated after establishing epitope-specific antibodies. For functional studies cell models with forced expression of ASPP2κ or isoform-specific ASPP2κ-interference were created to evaluate proliferative, apoptotic and oncogenic characteristics of ASPP2κ. Findings Exon skipping generates a premature stop codon, leading to a truncated C-terminus, omitting the TP53-binding sites. ASPP2κ translates into a dominant-negative protein variant impairing TP53-dependent induction of apoptosis. ASPP2κ is expressed in CD34+ leukemic progenitor cells and functional studies argue for a role in early oncogenesis, resulting in perturbed proliferation and impaired induction of apoptosis, mitotic failure and chromosomal instability (CIN) – similar to TP53 mutations. Importantly, as expression of ASPP2κ is stress-inducible it defines a novel class of dynamic oncogenes not represented by genomic mutations. Interpretation Our data demonstrates that ASPP2κ plays a distinctive role as an antiapoptotic regulator of the TP53 checkpoint, rendering cells to a more aggressive phenotype as evidenced by proliferation and apoptosis rates – and ASPP2κ expression results in acquisition of genomic mutations, a first initiating step in leukemogenesis. We provide proof-of-concept to establish ASPP2κ as a clinically relevant biomarker and a target for molecule-defined therapy. Fund Unrestricted grant support from the Wilhelm Sander Foundation for Cancer Research, the IZKF Program of the Medical Faculty Tübingen, the Brigitte Schlieben-Lange Program and the Margarete von Wrangell Program of the State Ministry Baden-Wuerttemberg for Science, Research and Arts and the Athene Program of the excellence initiative of the Eberhard-Karls University, Tübingen.
Collapse
Affiliation(s)
- Marcus Matthias Schittenhelm
- Department of Oncology, Hematology, Rheumatology, Immunology and Pulmology, University Hospital Tübingen, Germany
| | - Bianca Walter
- Department of Oncology, Hematology, Rheumatology, Immunology and Pulmology, University Hospital Tübingen, Germany
| | - Vasileia Tsintari
- Department of Oncology, Hematology, Rheumatology, Immunology and Pulmology, University Hospital Tübingen, Germany
| | - Birgit Federmann
- Institute of General and Molecular Pathology and Pathological Anatomy, University Hospital Tübingen, Germany
| | - Mihada Bajrami Saipi
- Department of Oncology, Hematology, Rheumatology, Immunology and Pulmology, University Hospital Tübingen, Germany
| | - Figen Akmut
- Department of Oncology, Hematology, Rheumatology, Immunology and Pulmology, University Hospital Tübingen, Germany
| | - Barbara Illing
- Department of Oncology, Hematology, Rheumatology, Immunology and Pulmology, University Hospital Tübingen, Germany
| | | | - Falko Fend
- Institute of General and Molecular Pathology and Pathological Anatomy, University Hospital Tübingen, Germany
| | - Charles Darin Lopez
- Department of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, United States of America
| | | |
Collapse
|
7
|
VENTURI V, MASEK T, POSPISEK M. A Blood Pact: the Significance and Implications of eIF4E on Lymphocytic Leukemia. Physiol Res 2018. [DOI: 10.33549/physiolres.933696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Elevated levels of eukaryotic initiation factor 4E (eIF4E) are implicated in neoplasia, with cumulative evidence pointing to its role in the etiopathogenesis of hematological diseases. As a node of convergence for several oncogenic signaling pathways, eIF4E has attracted a great deal of interest from biologists and clinicians whose efforts have been targeting this translation factor and its biological circuits in the battle against leukemia. The role of eIF4E in myeloid leukemia has been ascertained and drugs targeting its functions have found their place in clinical trials. Little is known, however, about the pertinence of eIF4E to the biology of lymphocytic leukemia and a paucity of literature is available in this regard that prospectively evaluates the topic to guide practice in hematological cancer. A comprehensive analysis on the significance of eIF4E translation factor in the clinical picture of leukemia arises, therefore, as a compelling need. This review presents aspects of eIF4E involvement in the realm of the lymphoblastic leukemia status; translational control of immunological function via eIF4E and the state-of-the-art in drugs will also be outlined.
Collapse
Affiliation(s)
| | | | - M. POSPISEK
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
8
|
Yin L, Lin Y, Wang X, Su Y, Hu H, Li C, Wang L, Jiang Y. The family of apoptosis-stimulating proteins of p53 is dysregulated in colorectal cancer patients. Oncol Lett 2018; 15:6409-6417. [PMID: 29731851 PMCID: PMC5921073 DOI: 10.3892/ol.2018.8151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 01/16/2018] [Indexed: 12/21/2022] Open
Abstract
The apoptosis-stimulating protein of p53 (ASPP) family is a newly identified family protein including ASPP1, ASPP2 and inhibitor of ASPP (iASPP), by which the tumor protein 53 (TP53)-mediated apoptotic process is selectively regulated. Downregulation of ASPP1/ASPP2 and upregulation of iASPP were revealed to be associated with a poor prognosis and metastasis in several types of cancer. However, to the best of our knowledge, the expression of ASPP in colorectal cancer (CRC) has not previously been investigated. The present study analyzed ASPP expression in human CRC tissues with multiple clinical and pathological profiles. A total of 41 patients diagnosed with CRC were enrolled in the present study. The expression of ASPP was detected by immunohistochemistry, immunofluorescence and reverse transcription-quantitative polymerase chain reaction. In addition, the variation in ASPP expression was examined in a number of pathological groups. The associations among ASPP expression, and the expression of TP53, plasma carcinoembryonic antigen (CEA) levels and α-fetoprotein (AFP) levels were also investigated. ASPP1 and ASPP2 expression was significantly reduced, while iASPP expression was elevated in CRC samples compared with expression in adjacent non-cancerous tissues. Downregulation of ASPP1 was detected in the TP53-positive group compared with the TP53-negative group. The increase in iASPP expression was correlated with the grade of malignancy, but not with regional lymph node status or metastases. The expression of ASPP2 was negatively correlated with plasma CEA levels. The results of the present study, not only enrich CRC epidemic and pathological data, but also provide valuable indices for CRC clinical treatment and prognosis.
Collapse
Affiliation(s)
- Libin Yin
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuyang Lin
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xu Wang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanzhuo Su
- Department of Gastrointestinal Colorectal and Anal Surgery, China Japan Union Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Han Hu
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chao Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lei Wang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanfang Jiang
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
9
|
Liu B, Yang L, Li XJ, Li R, Sun W, Chen XY, Liu JC. Expression and significance of ASPP2 in squamous carcinoma of esophagus. Kaohsiung J Med Sci 2018; 34:321-329. [PMID: 29747775 DOI: 10.1016/j.kjms.2017.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/18/2017] [Accepted: 12/27/2017] [Indexed: 11/18/2022] Open
Abstract
To study the significance of apoptosis stimulating protein of P53 2 (ASPP2) expression in esophageal squamous cell carcinoma (ESCC), immunohistochemistry S-P method was used to examine the expression of ASPP2 in 136 cases of ESCC, 35 cases of high grade intraepithelial neoplasia (HGIN), 29 cases of low grade intraepithelial neoplasia (LGIN) and 37 cases of normal esophageal epithelium (NEE). The associations of ASPP2 expression with clinicopathological data and overall survival (OS) were also analyzed. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to evaluate ASPP2 expression in a total of 20 matched human ESCC tumor tissues and normal adjacent tissues (NAT). In addition, EC109 cells were treated with cisplatin (CDDP) in vitro for 24 h (the intervention group) and the control group was set up at the same time. Western blot was used to examine the expression of ASPP2 protein between the two groups. The expression of ASPP2 decreased progressively from NEE to LGIN, to HGIN, and to ESCC, and it was related to TNM stage, histological differentiation and lymph node metastasis in ESCC (P < 0.05). ASPP2 was a protective factor of patients with ESCC (P = 0.008). The relative expression of ASPP2 mRNA was markedly downregulated in ESCC compared with the paired NAT (P < 0.01). Western blot results showed that cells in the intervention group could express ASPP2 while there was no expression of ASPP2 in the control group. Taken together, these results indicate that the abnormal expression of ASPP2 may play an important role for development and metastasis in ESCC.
Collapse
Affiliation(s)
- Bo Liu
- Department of Pathology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China.
| | - Lv Yang
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, China
| | - Xiu-Juan Li
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, China
| | - Rou Li
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, China
| | - Wei Sun
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, China
| | - Xiao-Yi Chen
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, China
| | - Jun-Chao Liu
- Department of Pathology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| |
Collapse
|
10
|
Wu P, Jie W, Shang Q, Annan E, Jiang X, Hou C, Chen T, Guo X. DNA methylation in silkworm genome may provide insights into epigenetic regulation of response to Bombyx mori cypovirus infection. Sci Rep 2017; 7:16013. [PMID: 29167521 PMCID: PMC5700172 DOI: 10.1038/s41598-017-16357-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/10/2017] [Indexed: 12/27/2022] Open
Abstract
DNA methylation is an important epigenetic modification that regulates a wide range of biological processes including immune response. However, information on the epigenetics-mediated immune mechanisms in insects is limited. Therefore, in this study, we examined transcriptomes and DNA methylomes in the fat body and midgut tissues of silkworm, Bombyx mori with or without B. mori cytoplasmic polyhedrosis virus (BmCPV) infection. The transcriptional profile and the genomic DNA methylation patterns in the midgut and fat body were tissue-specific and dynamically altered after BmCPV challenge. KEGG pathway analysis revealed that differentially methylated genes (DMGs) could be involved in pathways of RNA transport, RNA degradation, nucleotide excision repair, DNA replication, etc. 27 genes were shown to have both differential expression and differential methylation in the midgut and fat body of infected larvae, respectively, indicating that the BmCPV infection-induced expression changes of these genes could be mediated by variations in DNA methylation. BS-PCR validated the hypomethylation of G2/M phase-specific E3 ubiquitin-protein ligase-like gene in the BmCPV infected midgut. These results demonstrated that epigenetic regulation may play roles in host-virus interaction in silkworm and would be potential value for further studies on mechanism of BmCPV epithelial-specific infection and epigenetic regulation in the silkworm.
Collapse
Affiliation(s)
- Ping Wu
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Wencai Jie
- Beijing Genomics Institute (BGI), Shenzhen, Guangdong, China
| | - Qi Shang
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Enoch Annan
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Xiaoxu Jiang
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Chenxiang Hou
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Tao Chen
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Xijie Guo
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China.
| |
Collapse
|
11
|
Liu K, Zhao X, Gu J, Wu J, Zhang H, Li Y. Effects of 12C6+ heavy ion beam irradiation on the p53 signaling pathway in HepG2 liver cancer cells. Acta Biochim Biophys Sin (Shanghai) 2017; 49:989-998. [PMID: 29036263 DOI: 10.1093/abbs/gmx096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Indexed: 12/20/2022] Open
Abstract
The heavy ion beam is considered to be the ideal source for radiotherapy. The p53 tumor suppressor gene senses DNA damage and transducts intracellular apoptosis signals. Previous reports showed that the heavy ion beam can trigger complex forms of damage to cellular DNA, leading to cell cycle arrest and apoptosis of HepG2 human liver cancer cells; however, the mechanisms remains unclear fully. In order to explore whether the intrinsic or extrinsic pathway participates this process, HepG2 cells were treated with 12C6+ HIB irradiation at doses of 0 (control), 1, 2, 4, and 6 Gy with various methods employed to understand relevant mechanisms, such as detection of apoptosis, cell cycle, and Fas expression by flow cytometry, analysis of apoptotic morphology by electron microscopy and laser scanning confocal microscopy, and screening differentially expressed genes relating to p53 signaling pathway by PCR-array assay following with any genes confirmed by western blot analysis. This study showed that 12C6+ heavy ion beam irradiation at a dose of 6 Gy leads to endogenous DNA double-strand damage, G2/M cell cycle arrest, and apoptosis of human HepG2 cells via synergistic effect of the extrinsic and intrinsic pathways. Differentially expressed genes in the p53 signaling pathway related to DNA damage repair, apoptosis, cycle regulation, metastasis, deterioration and radioresistance were also discovered. Consequently, the expressions of Fas, TP53BP2, TP53AIP1, and CASP9 were confirmed upregulated after 12C6+ HIB irradiation treatment. In conclusion, this study demonstrated the mechanisms of inhibition and apoptosis induced by 12C6+ heavy ion beam irradiation on HepG2 cancer cells is mediated by initiation of the biological function of p53 signaling pathway including extrinsic and intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- Kai Liu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Xinke Zhao
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jing Gu
- Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jianjun Wu
- Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Hong Zhang
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Department of Heavy Ion Irradiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yingdong Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- Gansu University of Chinese Medicine, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Department of Heavy Ion Irradiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
12
|
Liu X, Xu J, Wang S, Yu X, Kou B, Chai M, Zang Y, Chen D. Synergistic inhibitory effects on hepatocellular carcinoma with recombinant human adenovirus Aspp2 and oxaliplatin via p53-independent pathway in vitro and in vivo. Int J Oncol 2017; 51:1291-1299. [PMID: 28902369 DOI: 10.3892/ijo.2017.4105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/26/2017] [Indexed: 11/06/2022] Open
Abstract
The present study was designed to investigate the synergistic inhibitory effects on hepatocellular carcinoma with recombinant human adenovirus Aspp2 (Aspp2-ad) and oxaliplatin via p53-independent pathway in vitro and in vivo. After being treated with Aspp2-ad and/or oxaliplatin for 24-48 h, HepG2P53-/- and Hep3B cells showed a significant growth inhibition compared with vehicle control. Combination group showed a synergetic effect, the inhibitory rates were all above 80% at 48 h point in HepG2P53-/- and Hep3B cells. The apoptotic cell numbers of Aspp2-ad and/or oxaliplatin treatment groups were increased remarkably, especially for the combined therapy group in the liver cancer cells. The Hep3B xenograft experiment also showed similar inhibition of Aspp2-ad and/or oxaliplatin to the in vitro experiment. H&E results showed that combination group had the least mitotic indexes and the most necrosis. The immunohistochemistry results showed that PCNA, CD31 expression decreased greatly in treatment groups. These results suggested that Aspp2-ad might inhibit proliferation and vascular growth of hepatocarcinoma. Aspp2 induced apoptosis protein expression in Aspp2-ad and combination groups, the Aspp2, Bax and activation of caspase-3 expression increased greatly both in vitro and in vivo. But interestingly, the autophagy proteins showed different responses not only in HepG2P53-/- and Hep3B cells but also in vitro and in vivo. We found that Aspp2-ad downregulated the p-ERK, p-STAT3 expression, the synergistic effects were observed in combination group, while there was not response of mTOR to Aspp2-ad. In conclusion, Aspp2-ad, in P53-independent manner, regulated ERK and STAT3 signal moleculars to inhibit hepatocarcinoma in coordination with oxaliplatin by influencing the protein expression of proliferation, apoptosis, autophagy and vascular growth. Aspp2-ad has the potential to be developed in gene therapy for HCC, especially for P53 deletion or mutation in HCC.
Collapse
Affiliation(s)
- Xiaoni Liu
- Beijing Institute of Hepatology and Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Jianji Xu
- Beijing Institute of Hepatology and Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Shuang Wang
- Beijing Institute of Hepatology and Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Xiaoxiao Yu
- Beijing Institute of Hepatology and Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Boxin Kou
- Beijing Institute of Hepatology and Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Mengyin Chai
- Beijing Institute of Hepatology and Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Yunjin Zang
- Beijing Institute of Hepatology and Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Dexi Chen
- Beijing Institute of Hepatology and Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
13
|
Van Hook K, Wang Z, Chen D, Nold C, Zhu Z, Anur P, Lee HJ, Yu Z, Sheppard B, Dai MS, Sears R, Spellman P, Lopez CD. ΔN-ASPP2, a novel isoform of the ASPP2 tumor suppressor, promotes cellular survival. Biochem Biophys Res Commun 2016; 482:1271-1277. [PMID: 27939881 DOI: 10.1016/j.bbrc.2016.12.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022]
Abstract
ASPP2 is a tumor suppressor that works, at least in part, through enhancing p53-dependent apoptosis. We now describe a new ASPP2 isoform, ΔN-ASPP2, generated from an internal transcription start site that encodes an N-terminally truncated protein missing a predicted 254 amino acids. ΔN-ASPP2 suppresses p53 target gene transactivation, promoter occupancy, and endogenous p53 target gene expression in response to DNA damage. Moreover, ΔN-ASPP2 promotes progression through the cell cycle, as well as resistance to genotoxic stress-induced growth inhibition and apoptosis. Additionally, we found that ΔN-ASPP2 expression is increased in human breast tumors as compared to adjacent normal breast tissue; in contrast, ASPP2 is suppressed in the majority of these breast tumors. Together, our results provide insight into how this new ASPP2 isoform may play a role in regulating the ASPP2-p53 axis.
Collapse
Affiliation(s)
- Kathryn Van Hook
- Department of Medicine, Division of Hematology and Medical Oncology and the Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Zhiping Wang
- Department of Medicine, Division of Hematology and Medical Oncology and the Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Dexi Chen
- Department of Medicine, Division of Hematology and Medical Oncology and the Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA; Beijing Institute of Hepatology, Beijing You'an Hospital, Capital Medical University, Beijing, 100069, China
| | - Casey Nold
- Department of Medicine, Division of Hematology and Medical Oncology and the Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Zhiyi Zhu
- Department of Medicine, Division of Hematology and Medical Oncology and the Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Pavana Anur
- Department of Molecular and Medical Genetics and the Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hun-Joo Lee
- Department of Medicine, Division of Hematology and Medical Oncology and the Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Zhiyong Yu
- Shandong Tumor Hospital and Institute, Jinan, 250117, China
| | - Brett Sheppard
- Department of Surgery and the Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics and the Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rosalie Sears
- Department of Molecular and Medical Genetics and the Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Paul Spellman
- Department of Molecular and Medical Genetics and the Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Charles D Lopez
- Department of Medicine, Division of Hematology and Medical Oncology and the Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
14
|
Reingewertz TH, Iosub-Amir A, Bonsor DA, Mayer G, Amartely H, Friedler A, Sundberg EJ. An Intrinsically Disordered Region in the Proapoptotic ASPP2 Protein Binds to the Helicobacter pylori Oncoprotein CagA. Biochemistry 2015; 54:3337-47. [PMID: 25963096 DOI: 10.1021/acs.biochem.5b00084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The leading risk factor for gastric cancer in humans is infection by Helicobacter pylori strains that express and translocate the oncoprotein CagA into host epithelial cells. Once inside host cells, CagA interacts with ASPP2, which specifically stimulates p53-mediated apoptosis and reverses its pro-apoptotic function to promote ASPP2-dependent degradation of p53. The X-ray crystal structure of a complex between the N-terminal domain of CagA and a 56-residue fragment of ASPP2, of which 22 residues were resolved, was recently described. Here, we present biochemical and biophysical analyses of the interaction between the additional regions of CagA and ASPP2 potentially involved in this interaction. Using size exclusion chromatography-multiangle laser light scattering, circular dichroism, and nuclear magnetic resonance analyses, we observed that the ASPP2 region spanning residues 331-692, which was not part of the ASPP2 fragment used for crystallization, is intrinsically disordered in its unbound state. By surface plasmon resonance analysis and isothermal titration calorimetry, we found that a portion of this disordered region in ASPP2, residues 448-692, binds to the N-terminal domain of CagA. We also measured the affinity of the complex between the ASPP2 fragment composed of residues 693-918 and inclusive of the fragment used for crystallization and CagA. Additionally, we mapped the binding regions between ASPP2 and CagA using peptide arrays, demonstrating interactions between CagA and numerous peptides distributed throughout the ASPP2 protein sequence. Our results identify previously uncharacterized regions distributed throughout the protein sequence of ASPP2 as determinants of CagA binding, providing mechanistic insight into apoptosis reprogramming by CagA and potential new drug targets for H. pylori-mediated gastric cancer.
Collapse
Affiliation(s)
| | - Anat Iosub-Amir
- ‡Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | - Guy Mayer
- ‡Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Hadar Amartely
- ‡Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Assaf Friedler
- ‡Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
15
|
Iosub-Amir A, Friedler A. Protein–protein interactions of ASPP2: an emerging therapeutic target. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00147h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ASPP2 induces apoptosis and is downregulated in many types of cancer, making it a promising target for anti-cancer drugs.
Collapse
Affiliation(s)
- Anat Iosub-Amir
- Institute of Chemistry
- The Hebrew University of Jerusalem
- Safra Campus
- Jerusalem 91904, Israel
| | - Assaf Friedler
- Institute of Chemistry
- The Hebrew University of Jerusalem
- Safra Campus
- Jerusalem 91904, Israel
| |
Collapse
|