1
|
Araujo-Abad S, Rizzuti B, Vidal M, Abian O, Fárez-Vidal ME, Velazquez-Campoy A, de Juan Romero C, Neira JL. Unveiling the Binding between the Armadillo-Repeat Domain of Plakophilin 1 and the Intrinsically Disordered Transcriptional Repressor RYBP. Biomolecules 2024; 14:561. [PMID: 38785968 PMCID: PMC11117474 DOI: 10.3390/biom14050561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Plakophilin 1 (PKP1), a member of the p120ctn subfamily of the armadillo (ARM)-repeat-containing proteins, is an important structural component of cell-cell adhesion scaffolds although it can also be ubiquitously found in the cytoplasm and the nucleus. RYBP (RING 1A and YY1 binding protein) is a multifunctional intrinsically disordered protein (IDP) best described as a transcriptional regulator. Both proteins are involved in the development and metastasis of several types of tumors. We studied the binding of the armadillo domain of PKP1 (ARM-PKP1) with RYBP by using in cellulo methods, namely immunofluorescence (IF) and proximity ligation assay (PLA), and in vitro biophysical techniques, namely fluorescence, far-ultraviolet (far-UV) circular dichroism (CD), and isothermal titration calorimetry (ITC). We also characterized the binding of the two proteins by using in silico experiments. Our results showed that there was binding in tumor and non-tumoral cell lines. Binding in vitro between the two proteins was also monitored and found to occur with a dissociation constant in the low micromolar range (~10 μM). Finally, in silico experiments provided additional information on the possible structure of the binding complex, especially on the binding ARM-PKP1 hot-spot. Our findings suggest that RYBP might be a rescuer of the high expression of PKP1 in tumors, where it could decrease the epithelial-mesenchymal transition in some cancer cells.
Collapse
Affiliation(s)
- Salome Araujo-Abad
- Cancer Research Group, Faculty of Engineering and Applied Sciences, Universidad de Las Américas, 170124 Quito, Ecuador;
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Spain
| | - Bruno Rizzuti
- CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy;
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; (O.A.); (A.V.-C.)
| | - Miguel Vidal
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Calle Ramiro de Maeztu, 9, 28040 Madrid, Spain;
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; (O.A.); (A.V.-C.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - María Esther Fárez-Vidal
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain;
- Instituto de Investigación Biomédica IBS, Granada, Complejo Hospitalario Universitario de Granada, Universidad de Granada, 18071 Granada, Spain
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; (O.A.); (A.V.-C.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Camino de Juan Romero
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Spain
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l’Almazara 11, 03203 Elche, Spain
| | - José L. Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; (O.A.); (A.V.-C.)
| |
Collapse
|
2
|
Chen F, Hou W, Yu X, Wu J, Li Z, Xu J, Deng Z, Chen G, Liu B, Yin X, Yu W, Zhang L, Xu G, Ji H, Liang C, Wang Z. CBX4 deletion promotes tumorigenesis under Kras G12D background by inducing genomic instability. Signal Transduct Target Ther 2023; 8:343. [PMID: 37696812 PMCID: PMC10495400 DOI: 10.1038/s41392-023-01623-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/03/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023] Open
Abstract
Chromobox protein homolog 4 (CBX4) is a component of the Polycomb group (PcG) multiprotein Polycomb repressive complexes 1 (PRC1), which is participated in several processes including growth, senescence, immunity, and tissue repair. CBX4 has been shown to have diverse, even opposite functions in different types of tissue and malignancy in previous studies. In this study, we found that CBX4 deletion promoted lung adenocarcinoma (LUAD) proliferation and progression in KrasG12D mutated background. In vitro, over 50% Cbx4L/L, KrasG12D mouse embryonic fibroblasts (MEFs) underwent apoptosis in the initial period after Adeno-Cre virus treatment, while a small portion of survival cells got increased proliferation and transformation abilities, which we called selected Cbx4-/-, KrasG12D cells. Karyotype analysis and RNA-seq data revealed chromosome instability and genome changes in selected Cbx4-/-, KrasG12D cells compared with KrasG12D cells. Further study showed that P15, P16 and other apoptosis-related genes were upregulated in the primary Cbx4-/-, KrasG12D cells due to chromosome instability, which led to the large population of cell apoptosis. In addition, multiple pathways including Hippo pathway and basal cell cancer-related signatures were altered in selected Cbx4-/-, KrasG12D cells, ultimately leading to cancer. We also found that low expression of CBX4 in LUAD was associated with poorer prognosis under Kras mutation background from the human clinical data. To sum up, CBX4 deletion causes genomic instability to induce tumorigenesis under KrasG12D background. Our study demonstrates that CBX4 plays an emerging role in tumorigenesis, which is of great importance in guiding the clinical treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Fangzhen Chen
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Wulei Hou
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, China
| | - Xiangtian Yu
- Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jing Wu
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Zhengda Li
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Jietian Xu
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Zimu Deng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Gaobin Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Bo Liu
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxing Yin
- Department of General Surgery, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Wei Yu
- Key Laboratory of Respiratory Disease, People's Hospital of Yangjiang, Yangjiang, Guangdong, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Guoliang Xu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Chunmin Liang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China.
| | - Zuoyun Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China.
| |
Collapse
|
3
|
Fischer S, Liefke R. Polycomb-like Proteins in Gene Regulation and Cancer. Genes (Basel) 2023; 14:genes14040938. [PMID: 37107696 PMCID: PMC10137883 DOI: 10.3390/genes14040938] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Polycomb-like proteins (PCLs) are a crucial group of proteins associated with the Polycomb repressive complex 2 (PRC2) and are responsible for setting up the PRC2.1 subcomplex. In the vertebrate system, three homologous PCLs exist: PHF1 (PCL1), MTF2 (PCL2), and PHF19 (PCL3). Although the PCLs share a similar domain composition, they differ significantly in their primary sequence. PCLs play a critical role in targeting PRC2.1 to its genomic targets and regulating the functionality of PRC2. However, they also have PRC2-independent functions. In addition to their physiological roles, their dysregulation has been associated with various human cancers. In this review, we summarize the current understanding of the molecular mechanisms of the PCLs and how alterations in their functionality contribute to cancer development. We particularly highlight the nonoverlapping and partially opposing roles of the three PCLs in human cancer. Our review provides important insights into the biological significance of the PCLs and their potential as therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Sabrina Fischer
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, 35043 Marburg, Germany
| |
Collapse
|
4
|
Nunnelly LF, Campbell M, Lee DI, Dummer P, Gu G, Menon V, Au E. St18 specifies globus pallidus projection neuron identity in MGE lineage. Nat Commun 2022; 13:7735. [PMID: 36517477 PMCID: PMC9751150 DOI: 10.1038/s41467-022-35518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
The medial ganglionic eminence (MGE) produces both locally-projecting interneurons, which migrate long distances to structures such as the cortex as well as projection neurons that occupy subcortical nuclei. Little is known about what regulates the migratory behavior and axonal projections of these two broad classes of neurons. We find that St18 regulates the migration and morphology of MGE neurons in vitro. Further, genetic loss-of-function of St18 in mice reveals a reduction in projection neurons of the globus pallidus pars externa. St18 functions by influencing cell fate in MGE lineages as we observe a large expansion of nascent cortical interneurons at the expense of putative GPe neurons in St18 null embryos. Downstream of St18, we identified Cbx7, a component of Polycomb repressor complex 1, and find that it is essential for projection neuron-like migration but not morphology. Thus, we identify St18 as a key regulator of projection neuron vs. interneuron identity.
Collapse
Affiliation(s)
- Luke F Nunnelly
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Melissa Campbell
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Dylan I Lee
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Patrick Dummer
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Edmund Au
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Columbia Translational Neuroscience Initiative Scholar, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
5
|
Zhang Y, Yu B, Tian Y, Ren P, Lyu B, Fu L, Chen H, Li J, Gong S. A novel risk score model based on fourteen chromatin regulators-based genes for predicting overall survival of patients with lower-grade gliomas. Front Genet 2022; 13:957059. [PMID: 36246611 PMCID: PMC9554745 DOI: 10.3389/fgene.2022.957059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Low grade gliomas(LGGs) present vexatious management issues for neurosurgeons. Chromatin regulators (CRs) are emerging as a focus of tumor research due to their pivotal role in tumorigenesis and progression. Hence, the goal of the current work was to unveil the function and value of CRs in patients with LGGs. Methods: RNA-Sequencing and corresponding clinical data were extracted from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) database. A single-cell RNA-seq dataset was sourced from the Gene Expression Omnibus (GEO) database. Altogether 870 CRs were retrieved from the published articles in top academic journals. The least absolute shrinkage and selection operator (LASSO) algorithm and Cox regression analysis were applied to construct the prognostic risk model. Patients were then assigned into high- and low-risk groups based on the median risk score. The Kaplan–Meier (K-M) survival curve and receiver operating characteristic curve (ROC) were performed to assess the prognostic value. Sequentially, functional enrichment, tumor immune microenvironment, tumor mutation burden, drug prediction, single cell analysis and so on were analyzed to further explore the value of CR-based signature. Finally, the expression of signature genes were validated by immunohistochemistry (IHC) and quantitative real-time PCR (qRT-PCR). Results: We successfully constructed and validated a 14 CRs-based model for predicting the prognosis of patients with LGGs. Moreover, we also found 14 CRs-based model was an independent prognostic factor. Functional analysis revealed that the differentially expressed genes were mainly enriched in tumor and immune related pathways. Subsequently, our research uncovered that LGGs patients with higher risk scores exhibited a higher TMB and were less likely to be responsive to immunotherapy. Meanwhile, the results of drug analysis offered several potential drug candidates. Furthermore, tSNE plots highlighting the magnitude of expression of the genes of interest in the cells from the scRNA-seq assay. Ultimately, transcription expression of six representative signature genes at the mRNA level was consistent with their protein expression changes. Conclusion: Our findings provided a reliable biomarker for predicting the prognosis, which is expected to offer new insight into LGGs management and would hopefully become a promising target for future research.
Collapse
Affiliation(s)
- Yongfeng Zhang
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Beibei Yu
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Yunze Tian
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Pengyu Ren
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Boqiang Lyu
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Longhui Fu
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Huangtao Chen
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Jianzhong Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
- *Correspondence: Jianzhong Li, ; Shouping Gong,
| | - Shouping Gong
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
- *Correspondence: Jianzhong Li, ; Shouping Gong,
| |
Collapse
|
6
|
Zheng ZQ, Yuan GQ, Kang NL, Nie QQ, Zhang GG, Wang Z. Chromobox 7/8 serve as independent indicators for glioblastoma via promoting proliferation and invasion of glioma cells. Front Neurol 2022; 13:912039. [PMID: 36034290 PMCID: PMC9403790 DOI: 10.3389/fneur.2022.912039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background The chromobox family, a critical component of epigenetic regulators, participates in the tumorigenesis and progression of many malignancies. However, the roles of the CBX family members (CBXs) in glioblastoma (GBM) remain unclear. Methods The mRNA expression of CBXs was analyzed in tissues and cell lines by Oncomine and Cancer Cell Line Encyclopedia (CCLE). The differential expression of CBXs at the mRNA level was explored in The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases with the “beeswarm” R package. The protein expression of CBXs in GBM was further examined on Human Protein Atlas (HPA). The correlations between CBXs and IDH mutation and between CBXs and GBM subtypes were investigated in the TCGA portal and CGGA database with the “survminer” R package. The alteration of CBXs and their prognostic value were further determined via the cBioPortal and CGGA database with the “survival” R package. The univariate and multivariate analyses were performed to screen out the independent prognostic roles of CBXs in the CGGA database. Cytoscape was used to visualize the functions and related pathways of CBXs in GBM. U251 and U87 glioma cells with gene intervention were used to validate the role of CBX7/8 in tumor proliferation and invasion. Proliferation/invasion-related markers were conducted by Western blot and immunostaining. Results CBXs presented significantly differential expressions in pan-cancers. CBX2/3/5/8 were upregulated, whereas CBX6/7 were downregulated at mRNA level in GBM of TCGA and CGGA databases. Similarly, high expression of CBX2/3/5 and low expression of CBX6/8 were further confirmed at the protein level in the HPA. CBX2/6/7 were positively correlated with IDH mutation and CBX1/2/4/5/8 were closely related to GBM subtypes. CBX7 and CBX8 presented the independent prognostic factors for GBM patient survival. GO and KEGG analyses indicated that CBXs were closely related to the histone H3-K36, PcG protein complex, ATPase, and Wnt pathway. The overexpression of CBX7 and underexpression of CBX8 significantly inhibited the proliferation and invasion of glioma cells in vivo and in vitro. Conclusion Our results suggested that CBX7 and CBX8 served as independent prognostic indicators that promoted the proliferation and invasion of glioma cells, providing a promising strategy for diagnosing and treating GBM.
Collapse
Affiliation(s)
- Zong-Qing Zheng
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gui-Qiang Yuan
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurosurgery, Changshu Second People's Hospital, Suzhou, China
| | - Na-Ling Kang
- Liver Center, The First Affiliated Hospital, Fujian Medical University, Fujian, China
| | - Qian-Qian Nie
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guo-Guo Zhang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Zhong Wang
| |
Collapse
|
7
|
Kaundal B, Karmakar S, Roy Choudhury S. Mitochondria-targeting nano therapy altering IDH2-mediated EZH2/EZH1 interaction as precise epigenetic regulation in glioblastoma. Biomater Sci 2022; 10:5301-5317. [PMID: 35917200 DOI: 10.1039/d1bm02006d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glioblastoma (GBM) is a complex brain cancer with frequent relapses and high mortality and still awaits effective treatment. Mitochondria dysfunction is a pathogenic condition in GBM and could be a prime therapeutic target for ceasing GBM progression. Strategies to overcome brain solid tumor barriers and selectively target mitochondria within specific cell types may improve GBM treatment. Here, we present hypericin-conjugated gold nanoparticles (PEG-AuNPs@Hyp) where hypericin is a mitochondrion-targeting agent exhibiting multimodal therapy by critically impacting the IDH2 gene (Isocitrate dehydrogenase) and its interaction with polycomb methyltransferase EZH1/2 for GBM therapy. It significantly localizes in mitochondria by enhanced cellular uptake in the human GBM cell lines/three-dimensional (3D) culture model under red-light exposure. It triggers oxidative stress and changes the mitochondrial potential, with increased Bax/Bcl2 ratio enhancing GBM cell death. The suppressed expression of mutated IDH2 and polycomb group of proteins upon PEG-AuNPs@Hyp/light exposure regulates mitochondria-targeting-mediated GBM metabolism with epigenetic repression of complex machinery function. Polyubiquitination and proteasomal degradation of EZH1 indicate the implication of these polycomb proteins in GBM progression. Chromatin immunoprecipitation reveals the IDH2 and EZH1/EZH2 direct interaction, confirming the role played by IDH2 in modulating the expression of EZH1 and EZH2. In vivo studies further displayed better tumor ablation in a GBM tumor-bearing nude mouse model. The present multimodal nanoformulation compromised the functional dependency of polycomb on mitochondrial IDH2 and established the mechanism of GBM inhibition.
Collapse
Affiliation(s)
- Babita Kaundal
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab-140306, India.
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab-140306, India.
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, Punjab-140306, India.
| |
Collapse
|
8
|
Zhao G, Yu H, Ding L, Wang W, Wang H, Hu Y, Qin L, Deng G, Xie B, Li G, Qi L. microRNA-27a-3p delivered by extracellular vesicles from glioblastoma cells induces M2 macrophage polarization via the EZH1/KDM3A/CTGF axis. Cell Death Dis 2022; 8:260. [PMID: 35568721 PMCID: PMC9107457 DOI: 10.1038/s41420-022-01035-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/09/2022]
Abstract
Glioblastoma (GBM) cell-derived extracellular vesicles (EVs) have been demonstrated to modulate tumor microenvironment. In the present study, we attempted to discuss the role of hsa-microRNA-27a-3p (miR-27a-3p) delivered by GBM-EVs in M2 macrophage polarization. The isolated GBM-EVs were co-cultured with macrophages. After co-culture under normoxia/hypoxia, the effect of EV-derived hsa-miR-27a-3p on GBM cell biological processes was analyzed. Additionally, the target genes of hsa-miR-27a-3p were predicted. Moreover, the binding of enhancer of zeste homologue 1 (EZH1) to lysine-specific demethylase 3A (KDM3A) promoter region and the interaction between KDM3A and connective tissue growth factor (CTGF) were analyzed. GBM mouse models were established to verify the functions of EV-derived hsa-miR-27a-3p in vivo. We found increased hsa-miR-27a-3p in GBM tissues as well as GBM-EVs, which induced M2 polarization, thus promoting proliferative, migrative and invasive potentials of GBM cells. hsa-miR-27a-3p targeted EZH1 and promoted KDM3A expression to elevate the CTGF expression. GBM-EV-delivered hsa-miR-27a-3p promoted the KDM3A-upregulated CTGF by downregulating EZH1, thereby promoting M2 macrophage polarization and development of GBM in vivo. We demonstrated that EV-derived hsa-miR-27a-3p may promote M2 macrophage polarization to induce GBM.
Collapse
Affiliation(s)
- Guifang Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.,Jilin Medical University, Jilin, 132013, China
| | - Hongquan Yu
- Department of Oncological Neurosurgery, the First Hospital of Jilin University, Changchun, 130021, China
| | - Lijuan Ding
- Department of Oncological Neurosurgery, the First Hospital of Jilin University, Changchun, 130021, China
| | - Weiyao Wang
- Jilin Medical University, Jilin, 132013, China
| | - Huan Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yao Hu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Lingsha Qin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Guangce Deng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Buqing Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Guofeng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Ling Qi
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| |
Collapse
|
9
|
Parreno V, Martinez AM, Cavalli G. Mechanisms of Polycomb group protein function in cancer. Cell Res 2022; 32:231-253. [PMID: 35046519 PMCID: PMC8888700 DOI: 10.1038/s41422-021-00606-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/10/2021] [Indexed: 02/01/2023] Open
Abstract
Cancer arises from a multitude of disorders resulting in loss of differentiation and a stem cell-like phenotype characterized by uncontrolled growth. Polycomb Group (PcG) proteins are members of multiprotein complexes that are highly conserved throughout evolution. Historically, they have been described as essential for maintaining epigenetic cellular memory by locking homeotic genes in a transcriptionally repressed state. What was initially thought to be a function restricted to a few target genes, subsequently turned out to be of much broader relevance, since the main role of PcG complexes is to ensure a dynamically choregraphed spatio-temporal regulation of their numerous target genes during development. Their ability to modify chromatin landscapes and refine the expression of master genes controlling major switches in cellular decisions under physiological conditions is often misregulated in tumors. Surprisingly, their functional implication in the initiation and progression of cancer may be either dependent on Polycomb complexes, or specific for a subunit that acts independently of other PcG members. In this review, we describe how misregulated Polycomb proteins play a pleiotropic role in cancer by altering a broad spectrum of biological processes such as the proliferation-differentiation balance, metabolism and the immune response, all of which are crucial in tumor progression. We also illustrate how interfering with PcG functions can provide a powerful strategy to counter tumor progression.
Collapse
Affiliation(s)
- Victoria Parreno
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| |
Collapse
|
10
|
Ghamlouch H, Boyle EM, Blaney P, Wang Y, Choi J, Williams L, Bauer M, Auclair D, Bruno B, Walker BA, Davies FE, Morgan GJ. Insights into high-risk multiple myeloma from an analysis of the role of PHF19 in cancer. J Exp Clin Cancer Res 2021; 40:380. [PMID: 34857028 PMCID: PMC8638425 DOI: 10.1186/s13046-021-02185-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/13/2021] [Indexed: 02/07/2023] Open
Abstract
Despite improvements in outcome, 15-25% of newly diagnosed multiple myeloma (MM) patients have treatment resistant high-risk (HR) disease with a poor survival. The lack of a genetic basis for HR has focused attention on the role played by epigenetic changes. Aberrant expression and somatic mutations affecting genes involved in the regulation of tri-methylation of the lysine (K) 27 on histone 3 H3 (H3K27me3) are common in cancer. H3K27me3 is catalyzed by EZH2, the catalytic subunit of the Polycomb Repressive Complex 2 (PRC2). The deregulation of H3K27me3 has been shown to be involved in oncogenic transformation and tumor progression in a variety of hematological malignancies including MM. Recently we have shown that aberrant overexpression of the PRC2 subunit PHD Finger Protein 19 (PHF19) is the most significant overall contributor to HR status further focusing attention on the role played by epigenetic change in MM. By modulating both the PRC2/EZH2 catalytic activity and recruitment, PHF19 regulates the expression of key genes involved in cell growth and differentiation. Here we review the expression, regulation and function of PHF19 both in normal and the pathological contexts of solid cancers and MM. We present evidence that strongly implicates PHF19 in the regulation of genes important in cell cycle and the genetic stability of MM cells making it highly relevant to HR MM behavior. A detailed understanding of the normal and pathological functions of PHF19 will allow us to design therapeutic strategies able to target aggressive subsets of MM.
Collapse
Affiliation(s)
- Hussein Ghamlouch
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA.
| | - Eileen M Boyle
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Patrick Blaney
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
- Applied Bioinformatics Laboratories (ABL), NYU Langone Medical Center, New York, NY, USA
| | - Yubao Wang
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Jinyoung Choi
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Louis Williams
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Michael Bauer
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Daniel Auclair
- The Multiple Myeloma Research Foundation (MMRF), Norwalk, CT, USA
| | - Benedetto Bruno
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Brian A Walker
- Division of Hematology Oncology, Indiana University, Indianapolis, IN, USA
| | - Faith E Davies
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Gareth J Morgan
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA.
| |
Collapse
|
11
|
Wang L, Ren B, Zhuang H, Zhong Y, Nan Y. CBX2 Induces Glioma Cell Proliferation and Invasion Through the Akt/PI3K Pathway. Technol Cancer Res Treat 2021; 20:15330338211045831. [PMID: 34709960 PMCID: PMC8558802 DOI: 10.1177/15330338211045831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glioma is the most common primary intracranial tumor. Abnormal expression of CBX2 (ChromoBox2) is associated with tumorigenesis and tumor development. TCGA data in UALCAN showed that CBX2 was overexpressed in glioma tissue. To confirm the role of CBX2 in glioma, we regulated the level of CBX2 and conducted colony formation, Transwell, and CCK-8 assays to verify the effect of CBX2. The results showed that CBX2 knockdown reduced glioma cell proliferation and invasion and that the cells were less tumorigenic. CBX2 overexpression induced glioma cell proliferation and invasion and glioma stem cell self-renewal. The animal experiments showed that CBX2 knockdown inhibited glioma growth and improved survival time. CBX2 knockdown inhibited activation of the Akt/PI3K pathway. epidermal growth factor rescued the effects of CBX2. CBX2 could induce the growth and invasion of glioma cells via the Akt/PI3K pathway.
Collapse
Affiliation(s)
- Le Wang
- 117865Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Bingcheng Ren
- 117865Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Hao Zhuang
- Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Yue Zhong
- 117865Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Yang Nan
- 117865Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Medical University General Hospital Airport Site, Tianjin, China
| |
Collapse
|
12
|
Soler M, Davalos V, Sánchez-Castillo A, Mora-Martinez C, Setién F, Siqueira E, Castro de Moura M, Esteller M, Guil S. The transcribed ultraconserved region uc.160+ enhances processing and A-to-I editing of the miR-376 cluster: hypermethylation improves glioma prognosis. Mol Oncol 2021; 16:648-664. [PMID: 34665919 PMCID: PMC8807354 DOI: 10.1002/1878-0261.13121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 11/11/2022] Open
Abstract
Transcribed ultraconserved regions (T‐UCRs) are noncoding RNAs derived from DNA sequences that are entirely conserved across species. Their expression is altered in many tumor types, and, although a role for T‐UCRs as regulators of gene expression has been proposed, their functions remain largely unknown. Herein, we describe the epigenetic silencing of the uc.160+ T‐UCR in gliomas and mechanistically define a novel RNA–RNA regulatory network in which uc.160+ modulates the biogenesis of several members of the miR‐376 cluster. This includes the positive regulation of primary microRNA (pri‐miRNA) cleavage and an enhanced A‐to‐I editing on its mature sequence. As a consequence, the expression of uc.160+ affects the downstream, miR‐376‐regulated genes, including the transcriptional coregulators RING1 and YY1‐binding protein (RYBP) and forkhead box P2 (FOXP2). Finally, we elucidate the clinical impact of our findings, showing that hypermethylation of the uc.160+ CpG island is an independent prognostic factor associated with better overall survival in lower‐grade gliomas, highlighting the importance of T‐UCRs in cancer pathophysiology.
Collapse
Affiliation(s)
- Marta Soler
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Veronica Davalos
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Anaís Sánchez-Castillo
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, The Netherlands
| | - Carlos Mora-Martinez
- Centre of Excellence in Experimental and Computational Developmental Biology, Institute of Biotechnology, University of Helsinki, Finland
| | - Fernando Setién
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Edilene Siqueira
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.,Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq), Brasilia, Brazil
| | | | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Spain
| | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.,Germans Trias i Pujol Health Science Research Institute, Barcelona, Spain
| |
Collapse
|
13
|
Wang S, C Ordonez-Rubiano S, Dhiman A, Jiao G, Strohmier BP, Krusemark CJ, Dykhuizen EC. Polycomb group proteins in cancer: multifaceted functions and strategies for modulation. NAR Cancer 2021; 3:zcab039. [PMID: 34617019 PMCID: PMC8489530 DOI: 10.1093/narcan/zcab039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Polycomb repressive complexes (PRCs) are a heterogenous collection of dozens, if not hundreds, of protein complexes composed of various combinations of subunits. PRCs are transcriptional repressors important for cell-type specificity during development, and as such, are commonly mis-regulated in cancer. PRCs are broadly characterized as PRC1 with histone ubiquitin ligase activity, or PRC2 with histone methyltransferase activity; however, the mechanism by which individual PRCs, particularly the highly diverse set of PRC1s, alter gene expression has not always been clear. Here we review the current understanding of how PRCs act, both individually and together, to establish and maintain gene repression, the biochemical contribution of individual PRC subunits, the mis-regulation of PRC function in different cancers, and the current strategies for modulating PRC activity. Increased mechanistic understanding of PRC function, as well as cancer-specific roles for individual PRC subunits, will uncover better targets and strategies for cancer therapies.
Collapse
Affiliation(s)
- Sijie Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Sandra C Ordonez-Rubiano
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Alisha Dhiman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Guanming Jiao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Brayden P Strohmier
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Casey J Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| |
Collapse
|
14
|
Milosevich N, Wilson CR, Brown TM, Alpsoy A, Wang S, Connelly KE, Sinclair KAD, Ponio FR, Hof R, Dykhuizen EC, Hof F. Polycomb Paralog Chromodomain Inhibitors Active against Both CBX6 and CBX8*. ChemMedChem 2021; 16:3027-3034. [PMID: 34174168 PMCID: PMC8497432 DOI: 10.1002/cmdc.202100262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/20/2021] [Indexed: 02/06/2023]
Abstract
Methyllysine reader proteins bind to methylated lysine residues and alter gene transcription by changing either the compaction state of chromatin or by the recruitment of other multiprotein complexes. The polycomb paralog family of methyllysine readers bind to trimethylated lysine on the tail of histone 3 (H3) via a highly conserved aromatic cage located in their chromodomains. Each of the polycomb paralogs are implicated in several disease states. CBX6 and CBX8 are members of the polycomb paralog family with two structurally similar chromodomains. By exploring the structure-activity relationships of a previously reported CBX6 inhibitor we have discovered more potent and cell permeable analogs. Our current report includes potent, dual-selective inhibitors of CBX6 and CBX8. We have shown that the -2 position in our scaffold is an important residue for selectivity amongst the polycomb paralogs. Preliminary cell-based studies show that the new inhibitors impact cell proliferation in a rhabdoid tumor cell line.
Collapse
Affiliation(s)
- Natalia Milosevich
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada
| | - Chelsea R. Wilson
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada
| | - Tyler M. Brown
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada
| | - Aktan Alpsoy
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Sijie Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Katelyn E. Connelly
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | | | - Felino R. Ponio
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada
| | - Rebecca Hof
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada
| | - Emily C. Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Fraser Hof
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada
| |
Collapse
|
15
|
Freire-Benéitez V, Pomella N, Millner TO, Dumas AA, Niklison-Chirou MV, Maniati E, Wang J, Rajeeve V, Cutillas P, Marino S. Elucidation of the BMI1 interactome identifies novel regulatory roles in glioblastoma. NAR Cancer 2021; 3:zcab009. [PMID: 34316702 PMCID: PMC8210184 DOI: 10.1093/narcan/zcab009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/27/2021] [Accepted: 02/28/2021] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive intrinsic brain tumour in adults. Epigenetic mechanisms controlling normal brain development are often dysregulated in GBM. Among these, BMI1, a structural component of the Polycomb Repressive Complex 1 (PRC1), which promotes the H2AK119ub catalytic activity of Ring1B, is upregulated in GBM and its tumorigenic role has been shown in vitro and in vivo. Here, we have used protein and chromatin immunoprecipitation followed by mass spectrometry (MS) analysis to elucidate the protein composition of PRC1 in GBM and transcriptional silencing of defining interactors in primary patient-derived GIC lines to assess their functional impact on GBM biology. We identify novel regulatory functions in mRNA splicing and cholesterol transport which could represent novel targetable mechanisms in GBM.
Collapse
Affiliation(s)
- Verónica Freire-Benéitez
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Nicola Pomella
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Thomas O Millner
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Anaëlle A Dumas
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Maria Victoria Niklison-Chirou
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Eleni Maniati
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Jun Wang
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Vinothini Rajeeve
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Pedro Cutillas
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Silvia Marino
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| |
Collapse
|
16
|
Wang J, He H, Jiang Q, Wang Y, Jia S. CBX6 Promotes HCC Metastasis Via Transcription Factors Snail/Zeb1-Mediated EMT Mechanism. Onco Targets Ther 2020; 13:12489-12500. [PMID: 33311989 PMCID: PMC7727033 DOI: 10.2147/ott.s257363] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/22/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is the most common malignant tumor worldwide with high morbidity and mortality rates. We aimed to examine the expression of chromobox 6 (CBX6) in HCC and analyze its correlation with clinicopathological features of HCC patients. Moreover, the role of CBX6 in the HCC cell proliferation, invasion and metastasis and the potential mechanism underlying HCC metastasis were also investigated. METHODS We used quantitative polymerase chain reaction (qRT-PCR) and Western blot to evaluate the expression levels of CBX6 in HCC cell lines. Furthermore, the expression of CBX6 in HCC and the adjacent non-tumor tissues was assessed by immunohistochemistry (IHC). Cell proliferation was evaluated using MTT assay, cell migration and invasion were measured using wound healing and transwell assays. Finally, we detected the expression of target proteins in HCC cell lines transfected with CBX6 overexpression plasmid or CBX6 shRNA plasmid by Western blot. RESULTS We found that the expression of CBX6 was increased in 280 cases of HCC tissues compared that in adjacent non-tumor tissues. HCC patients with high CBX6 expression had a higher tendency to have high growth rate, strong invasion ability, high clinical stage and poor tumor differentiation. Functional study demonstrated that the upregulation of CBX6 promotes proliferation, migration and invasion of HCC cells while silencing CBX6 in HCC cells significantly inhibited cell proliferation, migration and invasion. Furthermore, CBX6 could accelerate the EMT process in HCC cells by upregulating the expression of snail and zeb1. CONCLUSION CBX6 played an important role in the process of tumorigenesis and progression in HCC and enhanced the invasion and metastasis ability of HCC cells through regulating transcription factors snail/zeb1-mediated EMT mechanism, which indicated that the protein could serve as a novel therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Jiamu Wang
- Liaocheng Peoples’ Hospital, Liaocheng252000, People’s Republic of China
| | - Hui He
- Liaocheng Peoples’ Hospital, Liaocheng252000, People’s Republic of China
| | - Qiucheng Jiang
- Liaocheng Peoples’ Hospital, Liaocheng252000, People’s Republic of China
| | - Yu Wang
- Liaocheng Peoples’ Hospital, Liaocheng252000, People’s Republic of China
| | - Shuzhao Jia
- Liaocheng Peoples’ Hospital, Liaocheng252000, People’s Republic of China
| |
Collapse
|
17
|
McMullen ER, Skala SL, Gonzalez ME, Djomehri S, Chandrashekar DS, Varambally S, Kleer CG. Subcellular localization of EZH2 phosphorylated at T367 stratifies metaplastic breast carcinoma subtypes. Breast Cancer 2020; 28:496-505. [PMID: 33247371 DOI: 10.1007/s12282-020-01189-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Metaplastic carcinoma is an aggressive, triple-negative breast cancer (TNBC) with differentiation towards squamous, spindle, or mesenchymal cell types. The molecular underpinnings of the histological subtypes are unclear. Our lab discovered a cytoplasmic function of EZH2, a transcriptional repressor, whereby pEZH2 T367 binds to cytoplasmic proteins in TNBC cells and enhances invasion and metastasis. Here, we investigated the expression and subcellular localization of pEZH2 T367 protein in metaplastic carcinomas. METHODS Thirty-five metaplastic carcinomas (17 squamous, 10 mesenchymal, and 8 spindle) were evaluated and immunostained with anti-pEZH2 T367. We analyzed staining intensity (score 1-4), subcellular localization (nuclear/cytoplasmic), and localization within the tumor (center/invasive edge). Protein expression of pEZH2 T367-binding partners was measured from a quantitative multiplex proteomics analysis performed in our lab. RESULTS Cytoplasmic pEZH2 T367 was significantly upregulated in squamous (14 of 17, 82%) compared to mesenchymal (4 of 10, 40%) and spindle (2 of 6, 33%) subtypes (p = 0.011). Twenty-five of 34 (73%) tumors with available tumor-normal interface showed accentuated cytoplasmic pEZH2 T367 at the infiltrative edge. Cytoplasmic pEZH2 T367 was upregulated in 9 of 10 (90%) tumors with lymph node metastasis (p = 0.05). Bioinformatics analyses identified an EZH2 protein network in metaplastic carcinomas (p value: < 1.0e-16). Using quantitative proteomics, we found significantly increased expression of cytoplasmic EZH2-binding partners in squamous compared to spindle and mesenchymal subtypes. CONCLUSIONS pEZH2 T367 expression and subcellular localization may be useful to distinguish metaplastic carcinoma subtypes. pEZH2 T367 may play a role in the histological diversity and behavior of these tumors.
Collapse
Affiliation(s)
- Emily R McMullen
- Department of Pathology, University of Michigan Medical School, 4217 Rogel Cancer Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Stephanie L Skala
- Department of Pathology, University of Michigan Medical School, 4217 Rogel Cancer Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Maria E Gonzalez
- Department of Pathology, University of Michigan Medical School, 4217 Rogel Cancer Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109, USA.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sabra Djomehri
- Department of Pathology, University of Michigan Medical School, 4217 Rogel Cancer Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109, USA.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Darshan Shimoga Chandrashekar
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, 35233, AL, USA.,Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, 35233, AL, USA
| | - Sooryanarayana Varambally
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, 35233, AL, USA.,Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, 35233, AL, USA.,The Informatics Institute, University of Alabama at Birmingham, Birmingham, 35233, AL, USA
| | - Celina G Kleer
- Department of Pathology, University of Michigan Medical School, 4217 Rogel Cancer Center, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109, USA. .,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA. .,Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
18
|
Yang Y, Li G. Post-translational modifications of PRC2: signals directing its activity. Epigenetics Chromatin 2020; 13:47. [PMID: 33129354 PMCID: PMC7603765 DOI: 10.1186/s13072-020-00369-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) is a chromatin-modifying enzyme that catalyses the methylation of histone H3 at lysine 27 (H3K27me1/2/3). This complex maintains gene transcriptional repression and plays an essential role in the maintenance of cellular identity as well as normal organismal development. The activity of PRC2, including its genomic targeting and catalytic activity, is controlled by various signals. Recent studies have revealed that these signals involve cis chromatin features, PRC2 facultative subunits and post-translational modifications (PTMs) of PRC2 subunits. Overall, these findings have provided insight into the biochemical signals directing PRC2 function, although many mysteries remain.
Collapse
Affiliation(s)
- Yiqi Yang
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Macau, China. .,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China. .,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
19
|
Proteasomal degradation of polycomb-group protein CBX6 confers MMP-2 expression essential for mesothelioma invasion. Sci Rep 2020; 10:16678. [PMID: 33028834 PMCID: PMC7541533 DOI: 10.1038/s41598-020-72448-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/26/2020] [Indexed: 12/23/2022] Open
Abstract
The aggressive invasiveness of malignant mesothelioma limits cancer therapy, however, the molecular mechanisms underlying the invasiveness remain largely unknown. Here we found that the matrix metalloproteinase-2 (MMP-2) was required for the invasion of mesothelioma cells in the collagen matrix and the gene expression of MMP-2 was correlated with the invasive phenotype. The MMP-2 gene expression was regulated by DNA and histone methylation around the transcription start site, implicating the involvement of the polycomb repressive complex (PRC). Knockdown of PRC component chromobox 6 (CBX6) promoted MMP-2 expression and invasion of mesothelioma cells. Transcriptome analysis suggested that CBX6 regulates sets of genes involved in cancer cell migration and metastasis. In invasive but not non-invasive cells, CBX6 was constantly unstable owing to ubiquitination and protein degradation. In human tissues, CBX6 localized in the nuclei of normal mesothelium and benign mesothelioma, but the nuclear staining of CBX6 was lost in malignant mesothelioma. These results suggest involvement of proteasomal degradation of CBX6 in mesothelioma progression.
Collapse
|
20
|
Jia Y, Wang Y, Zhang C, Chen MY. Upregulated CBX8 Promotes Cancer Metastasis via the WNK2/ MMP2 Pathway. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:188-196. [PMID: 33251331 PMCID: PMC7666318 DOI: 10.1016/j.omto.2020.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 09/30/2020] [Indexed: 12/28/2022]
Abstract
Metastasis is associated with poor prognosis in cancer and is a multistep process that includes invasion and migration. Several epigenetic factors are involved in this process, including chromobox protein homolog 8 (CBX8). Here, we show that CBX8 is overexpressed in many cancers compared with normal tissues. Functional analyses indicated that CBX8 promoted invasion and migration in glioblastoma, breast cancer, and lung cancer in vitro and in vivo. WNK2 was identified as a target gene of CBX8, which interacted with the WNK2 promoter to suppress WNK2 expression and activity. WNK2 acted as an antioncogene, and decreased WNK2 levels resulted in high activity of matrix metalloprotease (MMP)-2 and RAC1, which play a central role in invasion and migration, respectively. There was a positive relationship between MMP2 and RAC1 activity in CBX8-modulated cell lines. In addition, WNK2 negatively regulated MMP2 and RAC1 activity. Collectively, the results indicated that CBX8 promoted invasion and migration by targeting WNK2, which resulted in increased RAC1 and MMP2 expression and activity. Therefore, CBX8 may be a novel therapeutic target to treat metastatic cancers.
Collapse
Affiliation(s)
- Yongsheng Jia
- Thyroid and Neck Department, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Division of Neurosurgery, City of Hope and Beckman Research Institute, Duarte, CA, USA
| | - Yujun Wang
- Division of Neurosurgery, City of Hope and Beckman Research Institute, Duarte, CA, USA
| | - Cuicui Zhang
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Mike Yue Chen
- Division of Neurosurgery, City of Hope and Beckman Research Institute, Duarte, CA, USA
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Corresponding author: Mike Yue Chen, Division of Neurosurgery, City of Hope and Beckman Research Institute, City of Hope, Duarte, CA 91010.
| |
Collapse
|
21
|
Lin K, Zhu J, Hu C, Bu F, Luo C, Zhu X, Zhu Z. Comprehensive analysis of the prognosis for chromobox family in gastric cancer. J Gastrointest Oncol 2020; 11:932-951. [PMID: 33209489 DOI: 10.21037/jgo-20-208] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Chromobox (CBX) family proteins are a class of transcriptional repressors involved in epigenetic regulation and developmental processes of various tumors, including gastric cancer. However, the function and prognosis of different CBXs in gastric cancer remain unknown. Methods This study addresses this issue by synthesizing several mainstream databases (Oncomine, GEPIA2, cBioportal, and Kaplan-Meier plotter, among others) that currently contain many tumor samples and provide very reliable analysis results, investigating the role of CBXs in the prognosis of gastric cancer. Results The mRNA of CBX1/2/3/4/5/8 was highly expressed in gastric cancer, the mRNA of CBX7 was lowly expressed in gastric cancer, and the mRNA expression of CBX6 was not significantly different in CRC. Besides, high and low CBXs mRNA expression correlated with cancer stage, node metastasis status, H. pylori infection status, and tumor grade in CRC patients. We found that high mRNA expression of CBX4/5/6/7/8 was significantly associated with worse overall survival (OS), progression-free survival (FP), and post-progression survival (PPS) in a large number of CRC patients. High mRNA expression of CBX3 was significantly associated with better OS and FP. We also found that none of the eight CBXs family genes had a mutation rate of less than 5% in gastric cancer, and the highest mutation rate was in CBX3 (14%). Conclusions These results suggest that CBX3/4/5/6/7/8 could be a prognostic biomarker in gastric cancer patients.
Collapse
Affiliation(s)
- Kang Lin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinfeng Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cegui Hu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fanqin Bu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chen Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaojian Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhengming Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Ma T, Ma N, Chen JL, Tang FX, Zong Z, Yu ZM, Chen S, Zhou TC. Expression and prognostic value of Chromobox family members in gastric cancer. J Gastrointest Oncol 2020; 11:983-998. [PMID: 33209492 DOI: 10.21037/jgo-20-223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The Chromobox (CBX) protein family, which is a crucial part of the epigenetic regulatory complex, plays an important role in the occurrence and development of cancer; however, the function and prognostic value of CBX family members in gastric cancer is not clear. Methods we investigated the relationship between CBX members and gastric cancer using a range of tools and databases: Oncomine, Kaplan-Meier plotter, cBioPortal, ULCAN, Metascape, and GEPIA. Results The results showed that, relative to normal gastric tissue, mRNA expression levels of CBX1-6 were significantly higher in gastric cancer tissue, whereas the level of CBX7 was significantly lower. Furthermore, overexpression of CBX3-6 and underexpression of CBX7 mRNAs was significantly related to the poor prognosis and survival of gastric cancer patients, making these CBX family members useful biomarkers. Finally, overexpression of CBX1 mRNA was significantly related to the poor prognosis of gastric cancer patients treated with adjuvant 5-fluorouracil-based chemotherapy. Conclusions The members of the CBX family can be used as prognosis and survival biomarkers for gastric cancer and CBX1 may be a biomarker for choosing the chemotherapy regimen of gastric cancer patients.
Collapse
Affiliation(s)
- Tao Ma
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Ning Ma
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Jia-Lin Chen
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Fu-Xin Tang
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhuo-Min Yu
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Shuang Chen
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Tai-Cheng Zhou
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| |
Collapse
|
23
|
Canchi S, Raao B, Masliah D, Rosenthal SB, Sasik R, Fisch KM, De Jager PL, Bennett DA, Rissman RA. Integrating Gene and Protein Expression Reveals Perturbed Functional Networks in Alzheimer's Disease. Cell Rep 2020; 28:1103-1116.e4. [PMID: 31340147 PMCID: PMC7503200 DOI: 10.1016/j.celrep.2019.06.073] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/20/2019] [Accepted: 06/19/2019] [Indexed: 12/23/2022] Open
Abstract
Asymptomatic and symptomatic Alzheimer’s disease (AD) subjects may present with equivalent neuropathological burdens but have significantly different antemortem cognitive decline rates. Using the transcriptome as a proxy for functional state, we selected 414 expression profiles of symptomatic AD subjects and age-matched non-demented controls from a community-based neuropathological study. By combining brain tissue-specific protein interactomes with gene networks, we identified functionally distinct composite clusters of genes that reveal extensive changes in expression levels in AD. Global expression for clusters broadly corresponding to synaptic transmission, metabolism, cell cycle, survival, and immune response were downregulated, while the upregulated cluster included largely uncharacterized processes. We propose that loss of EGR3 regulation mediates synaptic deficits by targeting the synaptic vesicle cycle. Our results highlight the utility of integrating protein interactions with gene perturbations to generate a comprehensive framework for characterizing alterations in the molecular network as applied to AD. Canchi et al. reveal the transcriptomic dynamics of clinically and neuropathologically confirmed Alzheimer’s disease subjects by integrating brain tissue-specific proteome data with gene network analysis. They identify perturbed biological processes and provide insights into the interactions between molecular mechanisms in symptomatic Alzheimer’s disease.
Collapse
Affiliation(s)
- Saranya Canchi
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Balaji Raao
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Deborah Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Roman Sasik
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kathleen M Fisch
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
24
|
RYBP inhibits esophageal squamous cell carcinoma proliferation through downregulating CDC6 and CDC45 in G1-S phase transition process. Life Sci 2020; 250:117578. [PMID: 32209426 DOI: 10.1016/j.lfs.2020.117578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/21/2022]
Abstract
AIMS RING1 and YY1-binding protein (RYBP) is an epigenetic regulator and plays crucial roles in embryonic development. The anti-tumor effect of RYBP has been reported in several cancers recently, but the role of RYBP in esophageal squamous cell carcinoma (ESCC) has not been fully elucidated. The present study aimed to investigate the biological function and the underlying molecular mechanisms of RYBP in ESCC. MATERIALS AND METHODS We detected the expression of RYBP in ESCC tissue microarrays (TMA) by immunohistochemistry. Cell proliferation was assessed by CCK8 and colony formation assays. Cell cycle was analyzed by flow cytometry. Gene expression was determined by transcriptome arrays, quantitative real-time PCR (qRT-PCR) and Western blot. Four-week-old male nude mice were used to evaluate the effect of RYBP in ESCC growth. KEY FINDINGS We found that RYBP was downregulated in ESCC compared with adjacent normal tissues. A high level of RYBP expression predicted a better outcome of ESCC patients. Furthermore, overexpression of RYBP inhibited ESCC growth both in vitro and in vivo. Transcriptome arrays and functional studies showed that RYBP decreased the expression of genes related to cell cycles, especially CDC6 and CDC45, which were essential to initiate the DNA replication and G1-S transition. SIGNIFICANCE Taken together, our study suggests that RYBP suppresses ESCC proliferation by downregulating CDC6 and CDC45, thus inhibiting the G1-S transition.
Collapse
|
25
|
Yan R, Cui F, Dong L, Liu Y, Chen X, Fan R. Repression of PCGF1 Decreases the Proliferation of Glioblastoma Cells in Association with Inactivation of c-Myc Signaling Pathway. Onco Targets Ther 2020; 13:253-261. [PMID: 32021272 PMCID: PMC6957096 DOI: 10.2147/ott.s234517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/12/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose Glioblastoma (GBM) is the most common primary brain tumor with a poor therapeutic outcome. Polycomb group factor 1 (PCGF1), a member of the PcG (Polycomb group) family, is highly expressed in the developing nervous system of mice. However, the function and the mechanism of PCGF1 in GBM proliferation still remain unclear. Methods Knockdown of PCGF1 was performed in U87 GBM cell by shRNA strategy via lentivirus vector. MTT assay, colony formation assays, and flow cytometry were used to measure the properties of cell proliferation and cell cycle distribution, respectively. GeneChip analysis was performed to identify the downstream effector molecules. Rescue assay was constructed to verify the screening results. Results We first found that knockdown of PCGF1 led to the inhibition of U87 cells proliferation and decreased colony formation ability. The data from GeneChip expression profiling and Ingenuity Pathway Analysis (IPA) indicated that many of the altered gene cells are associated with the cell proliferation control pathways. We have further confirmed the suppression of AKT/GSK3β/c-Myc/cyclinD1 expressions by Western blotting analysis. The over-expression of c-Myc could partly restore the attenuated proliferation ability caused by knockdown of PCGF1. Conclusion All the above evidences suggested that PCGF1 might be closely associated with tumorigenesis and progression of glioblastoma (GBM), in which process the oncoprotein c-Myc may participate. PCGF1 could thus be a potential therapeutic target for the treatment of glioblastoma (GBM).
Collapse
Affiliation(s)
- Rui Yan
- Department of Thoracic Surgery, The Third Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100039, People's Republic of China
| | - Fengmei Cui
- Department of Radiation Medicine, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, People's Republic of China
| | - Lijin Dong
- Editorial Department, Logistic University of Chinese People's Armed Police Force, Tianjin 300309, People's Republic of China
| | - Yong Liu
- Central Laboratory, Xi Qing Hospital, Tianjin 300380, People's Republic of China
| | - Xuewei Chen
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Rong Fan
- Central Laboratory, Xi Qing Hospital, Tianjin 300380, People's Republic of China
| |
Collapse
|
26
|
McFarlane JMB, Krause KD, Paci I. Accelerated Structural Prediction of Flexible Protein–Ligand Complexes: The SLICE Method. J Chem Inf Model 2019; 59:5263-5275. [DOI: 10.1021/acs.jcim.9b00688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- James M. B. McFarlane
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Katherine D. Krause
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Irina Paci
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| |
Collapse
|
27
|
Connelly KE, Weaver TM, Alpsoy A, Gu BX, Musselman CA, Dykhuizen EC. Engagement of DNA and H3K27me3 by the CBX8 chromodomain drives chromatin association. Nucleic Acids Res 2019; 47:2289-2305. [PMID: 30597065 PMCID: PMC6411926 DOI: 10.1093/nar/gky1290] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 01/17/2023] Open
Abstract
Polycomb repressive complex 1 (PRC1) is critical for mediating gene repression during development and adult stem cell maintenance. Five CBX proteins, CBX2,4,6,7,8, form mutually exclusive PRC1 complexes and are thought to play a role in the association of PRC1 with chromatin. Specifically, the N-terminal chromodomain (CD) in the CBX proteins is thought to mediate specific targeting to methylated histones. For CBX8, however, the chromodomain has demonstrated weak affinity and specificity for methylated histones in vitro, leaving doubt as to its role in CBX8 chromatin association. Here, we investigate the function of the CBX8 CD in vitro and in vivo. We find that the CD is in fact a major driver of CBX8 chromatin association and determine that this is driven by both histone and previously unrecognized DNA binding activity. We characterize the structural basis of histone and DNA binding and determine how they integrate on multiple levels. Notably, we find that the chromatin environment is critical in determining the ultimate function of the CD in CBX8 association.
Collapse
Affiliation(s)
- Katelyn E Connelly
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Tyler M Weaver
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Aktan Alpsoy
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Brian X Gu
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
28
|
Ohka F, Shinjo K, Deguchi S, Matsui Y, Okuno Y, Katsushima K, Suzuki M, Kato A, Ogiso N, Yamamichi A, Aoki K, Suzuki H, Sato S, Arul Rayan N, Prabhakar S, Göke J, Shimamura T, Maruyama R, Takahashi S, Suzumura A, Kimura H, Wakabayashi T, Zong H, Natsume A, Kondo Y. Pathogenic Epigenetic Consequences of Genetic Alterations in IDH-Wild-Type Diffuse Astrocytic Gliomas. Cancer Res 2019; 79:4814-4827. [DOI: 10.1158/0008-5472.can-19-1272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/19/2019] [Accepted: 07/24/2019] [Indexed: 11/16/2022]
|
29
|
Mai J, Gu J, Liu Y, Liu X, Sai K, Chen Z, Lu W, Yang X, Wang J, Guo C, Sun S, Xing F, Sheng L, Lu B, Zhu Z, Sun H, Xue D, Lin Y, Cai J, Tan Y, Li C, Yin W, Cao L, Ou‐yang Y, Qiu P, Su X, Yan G, Liang J, Zhu W. Negative regulation of miR-1275 by H3K27me3 is critical for glial induction of glioblastoma cells. Mol Oncol 2019; 13:1589-1604. [PMID: 31162799 PMCID: PMC6599839 DOI: 10.1002/1878-0261.12525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/09/2019] [Accepted: 05/31/2019] [Indexed: 12/24/2022] Open
Abstract
Activation of the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway induces glial differentiation of glioblastoma (GBM) cells, but the mechanism by which microRNA (miRNA) regulate this process remains poorly understood. In this study, by performing miRNA genomics and loss- and gain-of-function assays in dibutyryl-cAMP-treated GBM cells, we identified a critical negative regulator, hsa-miR-1275, that modulates a set of genes involved in cancer progression, stem cell maintenance, and cell maturation and differentiation. Additionally, we confirmed that miR-1275 directly and negatively regulates the protein expression of glial fibrillary acidic protein (GFAP), a marker of mature astrocytes. Of note, tri-methyl-histone H3 (Lys27) (H3K27me3), downstream of the PKA/polycomb repressive complex 2 (PRC2) pathway, accounts for the downregulation of miR-1275. Furthermore, decreased miR-1275 expression and induction of GFAP expression were also observed in dibutyryl-cAMP-treated primary cultured GBM cells. In a patient-derived glioma stem cell tumor model, a cAMP elevator and an inhibitor of H3K27me3 methyltransferase inhibited tumor growth, induced differentiation, and reduced expression of miR-1275. In summary, our study shows that epigenetic inhibition of miR-1275 by the cAMP/PKA/PRC2/H3K27me3 pathway mediates glial induction of GBM cells, providing a new mechanism and novel targets for differentiation-inducing therapy.
Collapse
Affiliation(s)
- Jialuo Mai
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Department of Anesthesiology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Jiayu Gu
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Ying Liu
- Department of Infectious DiseaseThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Xincheng Liu
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Ke Sai
- Department of Neurosurgery/Neuro-oncologySun Yat-sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Zhijie Chen
- Department of Neurosurgery/Neuro-oncologySun Yat-sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wanjun Lu
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Xiaozhi Yang
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Jingyi Wang
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Cui Guo
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Shuxin Sun
- Department of Neurosurgery/Neuro-oncologySun Yat-sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Fan Xing
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Longxiang Sheng
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Bingzheng Lu
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Zhu Zhu
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Hongjiaqi Sun
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Dongdong Xue
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Jing Cai
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yaqian Tan
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Chuntao Li
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Wei Yin
- Department of Biochemistry, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Lin Cao
- Department of Anesthesiology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Ying Ou‐yang
- Department of Pediatrics, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Pengxin Qiu
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Xingwen Su
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Jiankai Liang
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
30
|
Kaundal B, Srivastava AK, Sardoiwala MN, Karmakar S, Choudhury SR. A NIR-responsive indocyanine green-genistein nanoformulation to control the polycomb epigenetic machinery for the efficient combinatorial photo/chemotherapy of glioblastoma. NANOSCALE ADVANCES 2019; 1:2188-2207. [PMID: 36131972 PMCID: PMC9419092 DOI: 10.1039/c9na00212j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/13/2019] [Indexed: 06/15/2023]
Abstract
Combinatorial photodynamics and chemotherapy have drawn enormous attention as therapeutic modalities via precise stimuli-responsive drug delivery for glioblastoma, which can overcome the limitations associated with conventional therapies. Herein, we have prepared an indocyanine green tagged, genistein encapsulated casein nanoformulation (ICG-Gen@CasNPs) that exhibits the near infra-red region responsive controlled release of genistein and enhanced cellular uptake in the human glioblastoma monolayer and a three-dimensional raft culture model via the enhanced retention effect. ICG-Gen@CasNPs, with the integrated photosensitizer indocyanine green within the nanoformulation, triggered oxidative stress, activating the apoptosis cascade, promoting cell cycle arrest and damaging the mitochondrial membrane potential, collectively directing glioblastoma cell death. The suppression of the polycomb group of proteins in the glioblastoma upon ICG-Gen@CasNPs/NIR exposure revealed the involvement of the epigenetic repression complex machinery in the regulation. Furthermore, ICG-Gen@CasNPs/PDT/PTT directed ubiquitination and proteasomal degradation of EZH2 and BMI1 indicates the implication of the polycomb in conferring glioblastoma survival. The increased activation of the apoptotic pathways and the generation of cellular reactive oxygen species upon inhibiting the expression of EZH2 and BMI1 strengthen our observations. It is worth noting that ICG-Gen@CasNPs robustly accumulated in the brain after crossing the blood-brain barrier, which represents the eminent biocompatibility and means that the system is devoid of any nonspecific toxicity in vivo. Moreover, a superior anti-tumor effect was demonstrated on a three-dimensional glioma spheroid model. Thus, this combinatorial chemo/photodynamic therapy revealed that ICG-Gen@CasNPs mediated epigenetic regulation, which is a crucial molecular mechanism of GBM suppression.
Collapse
Affiliation(s)
- Babita Kaundal
- Institute of Nano Science and Technology, Habitat Centre Phase-10, Sector 64 Mohali Punjab India
| | - Anup K Srivastava
- Institute of Nano Science and Technology, Habitat Centre Phase-10, Sector 64 Mohali Punjab India
| | | | - Surajit Karmakar
- Institute of Nano Science and Technology, Habitat Centre Phase-10, Sector 64 Mohali Punjab India
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology, Habitat Centre Phase-10, Sector 64 Mohali Punjab India
| |
Collapse
|
31
|
Single Nucleotide Polymorphisms of CBX4 and CBX7 Decrease the Risk of Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6436825. [PMID: 31211140 PMCID: PMC6532305 DOI: 10.1155/2019/6436825] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/02/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022]
Abstract
Background The chromobox (CBX) proteins CBX2, CBX4, CBX6, CBX7, and CBX8, also known as Polycomb (Pc) proteins, are canonical components of the Polycomb repressive complex 1 (PRC1). Abundant evidence indicates that abnormal expression of Pc proteins is associated with a variety of tumors, but their role in the pathogenesis of hepatocellular carcinoma (HCC) has not been fully elucidated. In the present study, we performed a case-control study to investigate the relationship between single nucleotide polymorphisms (SNPs) of CBX genes and HCC. Methods Nine SNPs on CBX genes (rs7217395, rs2036316 of CBX2; rs3764374, rs1285251, rs2289728 of CBX4; rs7292074 of CBX6; and rs710190, rs139394, rs5750753 of CBX7) were screened and genotyped using MassARRAY technology in 334 HCC cases and 321 controls. The association between SNPs and their corresponding gene expressions was analyzed through bioinformatics methods using the Ensembl database and Blood eQTL browser online tools. Results The results indicated that rs2289728 (G>A) of CBX4 (P = 0.03, OR = 0.56, 95% CI: 0.33-0.94) and rs139394 (C>A) of CBX7 (P = 0.02, OR = 0.55, 95% CI: 0.33-0.90) decreased the risk of HCC. Interaction between rs2036316 and HBsAg increased the risk of HCC (P = 0.02, OR = 6.88, 95% CI: 5.20-9.11), whereas SNP-SNP interaction between rs710190 and rs139394 reduced the risk of HCC (P = 0.03, OR = 0.33, 95% CI: 0.12-0.91). Gene expression analyses showed that the rs2289728 A allele and the rs139394 A allele significantly reduced CBX4 and CBX7 expression, respectively. Conclusion Our findings suggest that CBX4 rs2289728 and CBX7 rs139394 are protective SNPs against HCC. The two SNPs may reduce the risk of HCC while suppressing the expression of CBX4 and CBX7.
Collapse
|
32
|
Wang L, Liu N, Xue X, Zhou S. The Effect of Overexpression of the Enhancer of Zeste Homolog 1 (EZH1) Gene on Aristolochic Acid-Induced Injury in HK-2 Human Kidney Proximal Tubule Cells In Vitro. Med Sci Monit 2019; 25:801-810. [PMID: 30688289 PMCID: PMC6362760 DOI: 10.12659/msm.911611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Acute kidney injury (AKI) involves the renal tubular epithelium. The enhancer of zeste homolog 1 (EZH1) gene has a role in cell development and differentiation. This study aimed to investigate the effect of overexpression of the EZH1 gene on aristolochic acid-induced injury in HK-2 human kidney proximal tubule epithelial cells in vitro. Material/Methods The HK-2 cells were cultured and treated with aristolochic acid and the effects of aristolochic acid-injury were evaluated using a cell counting kit-8 (CCK-8) assay. Overexpression of EZH1 used gene plasmid transfection into HK-2 cells. The cell apoptosis rate and levels of intracellular reactive oxygen species (ROS) were measured using flow cytometry. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were performed to determine the expressions of inflammatory cytokines including interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), apoptosis-related genes, and the downstream target genes of NF-κB signaling pathway, including NFKBIA, CXCL8, and cyclin D1. Results Aristolochic acid inhibited HK-2 cell viability, induced cell apoptosis, increased the levels of ROS and inflammatory cytokines, including IL-1β, IL-6, TNF-α, and activated the NF-κB pathway. Overexpression the EZH1 gene inhibited HK-2 cell apoptosis, reduced ROS levels, and down-regulated the expressions of IL-1β, IL-6, TNF-α, Bax and Cyt C mRNA and protein, and increased the expressions of Bcl-2 and NFKBIA, CXCL8 and cyclin D1, indicating that overexpression of EZH1 suppressed NF-κB signaling in aristolochic acid-injured HK-2 cells. Conclusions Overexpression of EZH1 reduced HK-2 cell injury induced by aristolochic acid in vitro by inhibition of NF-κB signaling.
Collapse
Affiliation(s)
- Liping Wang
- Department of Emergency, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China (mainland)
| | - Ning Liu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China (mainland)
| | - Xiaoyan Xue
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China (mainland)
| | - Shujun Zhou
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China (mainland)
| |
Collapse
|
33
|
CBX6 is negatively regulated by EZH2 and plays a potential tumor suppressor role in breast cancer. Sci Rep 2019; 9:197. [PMID: 30655550 PMCID: PMC6336801 DOI: 10.1038/s41598-018-36560-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/22/2018] [Indexed: 12/21/2022] Open
Abstract
Chromobox 6 (CBX6) is a subunit of Polycomb Repressive Complex 1 (PRC1) that mediates epigenetic gene repression and acts as an oncogene or tumor suppressor in a cancer type-dependent manner. The specific function of CBX6 in breast cancer is currently undefined. In this study, a comprehensive analysis of The Cancer Genome Atlas (TCGA) dataset led to the identification of CBX6 as a consistently downregulated gene in breast cancer. We provided evidence showing enhancer of zeste homolog 2 (EZH2) negatively regulated CBX6 expression in a Polycomb Repressive Complex 2 (PRC2)-dependent manner. Exogenous overexpression of CBX6 inhibited cell proliferation and colony formation, and induced cell cycle arrest along with suppression of migration and invasion of breast cancer cells in vitro. Microarray analyses revealed that CBX6 governs a complex gene expression program. Moreover, CBX6 induced significant downregulation of bone marrow stromal cell antigen-2 (BST2), a potential therapeutic target, via interactions with its promoter region. Our collective findings support a tumor suppressor role of CBX6 in breast cancer.
Collapse
|
34
|
Yan Y, Zhang R, Zhang X, Zhang A, Zhang Y, Bu X. RNA-Seq profiling of circular RNAs and potential function of hsa_circ_0002360 in human lung adenocarcinom. Am J Transl Res 2019; 11:160-175. [PMID: 30787976 PMCID: PMC6357307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/30/2018] [Indexed: 06/09/2023]
Abstract
CircRNAs have been identified play a key role in various different types of cancer. However, their role in lung adenocarcinoma remains unclear. In this study, we explored the specific circular transcriptome and characterized the circRNA expression profiles of five paired lung adenocarcinoma (LAC) tissues relative to adjacent normal tissues from LAC patients using next-generation sequencing (NGS). To illuminate circRNAs function, their gene targets were initially predicted before using, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses to further analyse the associated significant cell signalling pathways and functions. The potential interactions between circRNA-miRNA-mRNA were also investigated. Additionally, qRT-PCR assay, Western blot and Immunohistochemistry were performed to validate the differential expression of circRNA, microRNA and mRNA in the LAC group in comparison to the control group. Two-hundred-eighty-five dysregulated circular transcripts were found in LAC tissues, among which 102 and 183 were either up or down regulated, respectively. Our biological analysis suggested that the host genes of differentially expressed circRNAs targeted to cancer-related processes and mechanisms. The interaction maps of the circRNA-miRNA-target gene were constructed using Cytoscope. In further study, hsa_circ_0002360 was found to be the most significantly overexpressed circRNA in LAC tissues by interacting with miRNA and its corresponding mRNA. Our results showed that hsa_circ_0002360 was aberrantly and abundantly expressed and implicated in the development of LAC, suggesting a valuable therapeutic target for LAC treatment.
Collapse
Affiliation(s)
- Yulan Yan
- Department of Respiratory Medicine, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, P. R. China
| | - Riting Zhang
- Department of Respiratory Medicine, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, P. R. China
- Clinical Medicine College of Jiangsu UniversityZhenjiang, Jiangsu, P. R. China
| | - Xuanfeng Zhang
- Clinical Medicine College of Jiangsu UniversityZhenjiang, Jiangsu, P. R. China
| | - Anwei Zhang
- Clinical Medicine College of Jiangsu UniversityZhenjiang, Jiangsu, P. R. China
| | - Yao Zhang
- Clinical Medicine College of Jiangsu UniversityZhenjiang, Jiangsu, P. R. China
| | - Xuefeng Bu
- Department of General Surgery, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, P. R. China
| |
Collapse
|
35
|
Deng Q, Hou J, Feng L, Lv A, Ke X, Liang H, Wang F, Zhang K, Chen K, Cui H. PHF19 promotes the proliferation, migration, and chemosensitivity of glioblastoma to doxorubicin through modulation of the SIAH1/β-catenin axis. Cell Death Dis 2018; 9:1049. [PMID: 30323224 PMCID: PMC6189144 DOI: 10.1038/s41419-018-1082-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 12/29/2022]
Abstract
PHD finger protein 19 (PHF19), a critical component of the polycomb repressive complex 2 (PRC2), is crucial for maintaining the repressive transcriptional activity of several developmental regulatory genes and plays essential roles in various biological processes. Abnormal expression of PHF19 causes dysplasia or serious diseases, including chronic myeloid disorders and tumors. However, the biological functions and molecular mechanisms of PHF19 in glioblastoma (GBM) remain unclear. Here, we demonstrated that PHF19 expression was positively associated with GBM progression, including cell proliferation, migration, invasion, chemosensitivity, and tumorigenesis. Using XAV-939, a Wnt/β-catenin inhibitor, we found that the effects of PHF19 on GBM cells were β-catenin-dependent. We also demonstrated that PHF19 expression was positively correlated with cytoplasmic β-catenin expression. PHF19 stabilized β-catenin by inhibiting the transcription of seven in absentia homolog 1 (SIAH1), an E3 ubiquitin ligase of β-catenin, through direct binding to the SIAH1 promoter region. Taken together, our results revealed the novel PHF19-SIAH1–β-catenin axis as a potential and promising therapeutic target.
Collapse
Affiliation(s)
- Qing Deng
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, 400716, Chongqing, People's Republic of China
| | - Jianbing Hou
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, 400716, Chongqing, People's Republic of China
| | - Liying Feng
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, 400716, Chongqing, People's Republic of China
| | - Ailing Lv
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, 400716, Chongqing, People's Republic of China
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, 400716, Chongqing, People's Republic of China
| | - Hanghua Liang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, 400716, Chongqing, People's Republic of China
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, 400716, Chongqing, People's Republic of China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, 400716, Chongqing, People's Republic of China
| | - Kuijun Chen
- Department 6 of the Research Institute of Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, 400042, Chongqing, People's Republic of China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, 400716, Chongqing, People's Republic of China.
| |
Collapse
|
36
|
Kong Y, Ai C, Dong F, Xia X, Zhao X, Yang C, Kang C, Zhou Y, Zhao Q, Sun X, Wu X. Targeting of BMI-1 with PTC-209 inhibits glioblastoma development. Cell Cycle 2018; 17:1199-1211. [PMID: 29886801 PMCID: PMC6110607 DOI: 10.1080/15384101.2018.1469872] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/13/2018] [Indexed: 01/16/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor and refractory to existing therapies. The oncogene BMI-1, a member of Polycomb Repressive Complex 1 (PRC1) plays essential roles in various human cancers and becomes an attractive therapeutic target. Here we showed that BMI-1 is highly expressed in GBM and especially enriched in glioblastoma stem cells (GSCs). Then we comprehensively investigated the anti-GBM effects of PTC-209, a novel specific inhibitor of BMI-1. We found that PTC-209 efficiently downregulates BMI-1 expression and the histone H2AK119ub1 levels at microM concentrations. In vitro, PTC-209 effectively inhibits glioblastoma cell proliferation and migration, and GSC self-renewal. Transcriptomic analyses of TCGA datasets of glioblastoma and PTC-209-treated GBM cells demonstrate that PTC-209 reverses the altered transcriptional program associated with BMI-1 overexpression. And Chromatin Immunoprecipitation assay confirms that the derepressed tumor suppressor genes belong to BMI-1 targets and the enrichment levels of H2AK119ub1 at their promoters is decreased upon PTC-209 treatment. Strikingly, the glioblastoma growth is significantly attenuated by PTC-209 in a murine orthotopic xenograft model. Therefore our study provides proof-of-concept for inhibitors targeting BMI-1 in potential applications as an anti-GBM therapy.
Collapse
MESH Headings
- Animals
- Brain Neoplasms/genetics
- Brain Neoplasms/pathology
- Carcinogenesis/drug effects
- Carcinogenesis/pathology
- Cell Cycle Checkpoints/drug effects
- Cell Cycle Checkpoints/genetics
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Movement/genetics
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Cell Self Renewal/drug effects
- Disease Progression
- Female
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Glioblastoma/genetics
- Glioblastoma/pathology
- Heterocyclic Compounds, 2-Ring/chemistry
- Heterocyclic Compounds, 2-Ring/pharmacology
- Humans
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Targeted Therapy
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Polycomb Repressive Complex 1/antagonists & inhibitors
- Polycomb Repressive Complex 1/genetics
- Polycomb Repressive Complex 1/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Thiazoles/chemistry
- Thiazoles/pharmacology
- Transcription, Genetic/drug effects
- Up-Regulation/drug effects
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Yu Kong
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
- Departments of Pediatric Oncology and Hematology/Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Chunbo Ai
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Feng Dong
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Xianyou Xia
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Xiujuan Zhao
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Chao Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Yan Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences at Wuhan University, Wuhan, China
| | - Qian Zhao
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Xiujing Sun
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xudong Wu
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
37
|
Gollavilli PN, Pawar A, Wilder-Romans K, Natesan R, Engelke CG, Dommeti VL, Krishnamurthy PM, Nallasivam A, Apel IJ, Xu T, Qin ZS, Feng FY, Asangani IA. EWS/ETS-Driven Ewing Sarcoma Requires BET Bromodomain Proteins. Cancer Res 2018; 78:4760-4773. [DOI: 10.1158/0008-5472.can-18-0484] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/27/2018] [Accepted: 06/08/2018] [Indexed: 11/16/2022]
|
38
|
Tao F, Tian X, Ruan S, Shen M, Zhang Z. miR-211 sponges lncRNA MALAT1 to suppress tumor growth and progression through inhibiting PHF19 in ovarian carcinoma. FASEB J 2018; 32:fj201800495RR. [PMID: 29874124 DOI: 10.1096/fj.201800495rr] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Accumulating evidence has indicated that microRNAs (miRNAs) play an important role in the occurrence and progression of ovarian cancer (OC). However, the function of miRNAs implicated in OC remains unclear. This study investigated the potential role of miR-211 in OC. Gene Expression Omnibus database analysis indicated that miR-211 expression was significantly down-regulated in OC tissues compared with normal specimens. In addition, miR-211 overexpression apparently inhibited proliferation, migration, xenograft growth, and induced apoptosis in HEY-T30 and SKOV3 cells. Moreover, PHF19, a component of the polycomb group of proteins, was found to be a direct target of miR-211 based on the luciferase reporter assay and Western blot analysis. Consistently, survival analysis indicated that high PHF19 expression was associated with shorter survival time in patients with OC. Importantly, silence of PHF19 reduced proliferation, induced cell cycle arrest, promoted apoptosis, suppressed migration, and inhibited xenograft growth in SKOV3 cells. Restoration of PHF19 expression markedly reversed the inhibitory effect of miR-211 on OC. Moreover, our results indicate that the long noncoding RNA MALAT1 could sponge miR-211 as a competing endogenous RNA and potentially up-regulate PHF19 expression, thus facilitating the OC progression. These findings suggest that the MALAT1/miR-211/PHF19 axis may act as a key mediator in OC and provide new insight into the prevention of this disease.-Tao, F., Tian, X., Ruan, S., Shen, M., Zhang, Z. miR-211 sponges lncRNA MALAT1 to suppress tumor growth and progression through inhibiting PHF19 in ovarian carcinoma.
Collapse
Affiliation(s)
- Fangfang Tao
- Department of Immunology and Microbiology, Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinxin Tian
- Department of Biochemistry and Biophysics, Texas A&M AgriLife Research, Texas A&M University, College Station, Texas, USA
- Tianjin International Joint Academy of Biomedicine (TJAB), Tianjin, China
| | - Shanming Ruan
- Department of Medical Oncology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Minhe Shen
- Department of Medical Oncology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiqian Zhang
- Tianjin International Joint Academy of Biomedicine (TJAB), Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
39
|
Denton KE, Wang S, Gignac MC, Milosevich N, Hof F, Dykhuizen EC, Krusemark CJ. Robustness of In Vitro Selection Assays of DNA-Encoded Peptidomimetic Ligands to CBX7 and CBX8. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2018; 23:417-428. [PMID: 29309209 PMCID: PMC5962403 DOI: 10.1177/2472555217750871] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The identification of protein ligands from a DNA-encoded library is commonly conducted by an affinity selection assay. These assays are often not validated for robustness, raising questions about selections that fail to identify ligands and the utility of enrichment values for ranking ligand potencies. Here, we report a method for optimizing and utilizing affinity selection assays to identify potent and selective peptidic ligands to the highly related chromodomains of CBX proteins. To optimize affinity selection parameters, statistical analyses (Z' factors) were used to define the ability of selection assay conditions to identify and differentiate ligands of varying affinity. A DNA-encoded positional scanning library of peptidomimetics was constructed around a trimethyllysine-containing parent peptide, and parallel selections against the chromodomains from CBX8 and CBX7 were conducted over three protein concentrations. Relative potencies of off-DNA hit molecules were determined through a fluorescence polarization assay and were consistent with enrichments observed by DNA sequencing of the affinity selection assays. In addition, novel peptide-based ligands were discovered with increased potency and selectivity to the chromodomain of CBX8. The results indicate low DNA tag bias and show that affinity-based in vitro selection assays are sufficiently robust for both ligand discovery and determination of quantitative structure-activity relationships.
Collapse
Affiliation(s)
- Kyle E. Denton
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Sijie Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Michael C. Gignac
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | | | - Fraser Hof
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - Emily C. Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Casey J. Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, West Lafayette, IN, USA
| |
Collapse
|
40
|
Yu T, Wu Y, Hu Q, Zhang J, Nie E, Wu W, Wang X, Wang Y, Liu N. CBX7 is a glioma prognostic marker and induces G1/S arrest via the silencing of CCNE1. Oncotarget 2018; 8:26637-26647. [PMID: 28460453 PMCID: PMC5432285 DOI: 10.18632/oncotarget.15789] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/15/2017] [Indexed: 02/06/2023] Open
Abstract
Chromobox homolog 7 (CBX7) cooperates with other polycomb group (PcG) proteins to maintain target genes in a silenced state. However, the precise role of CBX7 in tumor progression is still controversial. We found that the expression of CBX7 in four public databases was significantly lower in high grade glioma (HGG). The reduced expression of CBX7 correlated with poor outcome in HGG patients. Both KEGG and GO analyses indicated that genes that were negatively correlated to CBX7 were strongly associated with the cell cycle pathway. We observed that decreased CBX7 protein levels enhanced glioma cells proliferation, migration and invasion. Then, we verified that CBX7 overexpression arrested cells in the G0/G1 phase. Moreover, we demonstrated that the underlying mechanism involved in CBX7 induced repression of CCNE1 promoter requiring the recruitment of histone deacetylase 2 (HADC2). Finally, in vivo bioluminescence imaging and survival times of nude mice revealed that CBX7 behaved as a tumor suppressor in gliomas. In summary, our results validate the assumption that CBX7 is a tumor suppressor of gliomas. Moreover, CBX7 is a potential and novel prognostic biomarker in glioma patients. We also clarified that CBX7 silences CCNE1 via the combination of CCNE1 promoter and the recruitment of HDAC2.
Collapse
Affiliation(s)
- Tianfu Yu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Youzhi Wu
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Qi Hu
- Department of Neurosurgery, First People's Hospital of Yueyang, Yueyang 414000, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Er Nie
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Weining Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiefeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yingyi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
41
|
Boucherie C, Boutin C, Jossin Y, Schakman O, Goffinet AM, Ris L, Gailly P, Tissir F. Neural progenitor fate decision defects, cortical hypoplasia and behavioral impairment in Celsr1-deficient mice. Mol Psychiatry 2018; 23:723-734. [PMID: 29257130 PMCID: PMC5822457 DOI: 10.1038/mp.2017.236] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/21/2017] [Accepted: 08/17/2017] [Indexed: 01/09/2023]
Abstract
The development of the cerebral cortex is a tightly regulated process that relies on exquisitely coordinated actions of intrinsic and extrinsic cues. Here, we show that the communication between forebrain meninges and apical neural progenitor cells (aNPC) is essential to cortical development, and that the basal compartment of aNPC is key to this communication process. We found that Celsr1, a cadherin of the adhesion G protein coupled receptor family, controls branching of aNPC basal processes abutting the meninges and thereby regulates retinoic acid (RA)-dependent neurogenesis. Loss-of-function of Celsr1 results in a decreased number of endfeet, modifies RA-dependent transcriptional activity and biases aNPC commitment toward self-renewal at the expense of basal progenitor and neuron production. The mutant cortex has a reduced number of neurons, and Celsr1 mutant mice exhibit microcephaly and behavioral abnormalities. Our results uncover an important role for Celsr1 protein and for the basal compartment of neural progenitor cells in fate decision during the development of the cerebral cortex.
Collapse
Affiliation(s)
- C Boucherie
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - C Boutin
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Y Jossin
- Université catholique de Louvain, Institute of Neuroscience, Mammalian Development and Cell Biology, Brussels, Belgium
| | - O Schakman
- Université catholique de Louvain, Institute of Neuroscience, Cell Physiology, Brussels, Belgium
| | - A M Goffinet
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - L Ris
- Neuroscience Unit Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - P Gailly
- Université catholique de Louvain, Institute of Neuroscience, Cell Physiology, Brussels, Belgium
| | - F Tissir
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| |
Collapse
|
42
|
Zeng J, Cai X, Hao X, Huang F, He Z, Sun H, Lu Y, Lei J, Zeng W, Liu Y, Luo R. LncRNA FUNDC2P4 down-regulation promotes epithelial-mesenchymal transition by reducing E-cadherin expression in residual hepatocellular carcinoma after insufficient radiofrequency ablation. Int J Hyperthermia 2018; 34:802-811. [PMID: 29295626 DOI: 10.1080/02656736.2017.1422030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) after insufficient radiofrequency ablation (RFA) could induce epithelial-mesenchymal transition (EMT) in residual tumours, resulting in rapid and aggressive recurrence. However, the role of EMT-related Long noncoding RNAs (lncRNAs) in residual tumour progression remains unclear. METHODS Insufficient RFA was simulated in vitro by heating Huh7 cells in water bath at 47 °C, named as Huh7-H. Cell invasion, migration assays and wound healing assay were conducted for functional analysis. Cell proliferation was determined by CCK8 assay. Differential expression profile of EMT-related lncRNAs between Huh7-H and Huh7 was analysed by LncPath human EMT array, and validated by qRT-PCR. Gain/loss-of-function assays of selected lncRNA were conducted by over-expressing or silencing its expression. RESULTS Huh7-H presented characteristic EMT morphological changes. WB analysis showed significantly decreased E-cadherin in Huh7-H cells. Transwell assays indicated the abilities of Huh7-H cells in migration and invasion were evidently strengthened. A new lncRNA, FUNDC2P4, was identified by LncPath human EMT array to be significantly down-regulated in Huh7-H cells. In vitro studies showed overexpression of FUNDC2P4 inhibited proliferation, invasion and migration potential and up-regulated E-cadherin expression in SMMC-7721 cells, whereas silencing FUNDC2P4 promoted these potentials and down-regulated E-cadherin expression in Huh7 cells. CONCLUSIONS We explored that lncRNA FUNDC2P4 down-regulation promoted EMT leading to tumour proliferation, invasion and migration by reducing E-cadherin expression in residual HCC after insufficient RFA in vitro. These results suggest that FUNDC2P4 may have potentially therapeutic value for prevention and treatment of HCC recurrence after RFA in the future.
Collapse
Affiliation(s)
- Jiangzheng Zeng
- a Integrated Hospital of Traditional Chinese Medicine, Southern Medical University; Cancer Center, Southern Medical University , Guangzhou , China.,b Department of Medical Oncology , the First Affiliated Hospital of Hainan Medical College; Hainan Medical College Cancer Institute , Haikou , China
| | - Xinrui Cai
- b Department of Medical Oncology , the First Affiliated Hospital of Hainan Medical College; Hainan Medical College Cancer Institute , Haikou , China
| | - Xinbao Hao
- b Department of Medical Oncology , the First Affiliated Hospital of Hainan Medical College; Hainan Medical College Cancer Institute , Haikou , China
| | - Fen Huang
- b Department of Medical Oncology , the First Affiliated Hospital of Hainan Medical College; Hainan Medical College Cancer Institute , Haikou , China
| | - Zhihui He
- b Department of Medical Oncology , the First Affiliated Hospital of Hainan Medical College; Hainan Medical College Cancer Institute , Haikou , China
| | - Huamao Sun
- b Department of Medical Oncology , the First Affiliated Hospital of Hainan Medical College; Hainan Medical College Cancer Institute , Haikou , China
| | - Yanda Lu
- b Department of Medical Oncology , the First Affiliated Hospital of Hainan Medical College; Hainan Medical College Cancer Institute , Haikou , China
| | - Junhua Lei
- b Department of Medical Oncology , the First Affiliated Hospital of Hainan Medical College; Hainan Medical College Cancer Institute , Haikou , China
| | - Wangyuan Zeng
- c Department of Geriatrics , the First Affiliated Hospital of Hainan Medical College , Haikou , China
| | - Yu Liu
- d Department of Breast and Thoracic Tumor Surgery , the First Affiliated Hospital of Hainan Medical College; Hainan Medical College Cancer Institute , Haikou , China
| | - Rongcheng Luo
- a Integrated Hospital of Traditional Chinese Medicine, Southern Medical University; Cancer Center, Southern Medical University , Guangzhou , China
| |
Collapse
|
43
|
Pickl JMA, Tichy D, Kuryshev VY, Tolstov Y, Falkenstein M, Schüler J, Reidenbach D, Hotz-Wagenblatt A, Kristiansen G, Roth W, Hadaschik B, Hohenfellner M, Duensing S, Heckmann D, Sültmann H. Ago-RIP-Seq identifies Polycomb repressive complex I member CBX7 as a major target of miR-375 in prostate cancer progression. Oncotarget 2018; 7:59589-59603. [PMID: 27449098 PMCID: PMC5312160 DOI: 10.18632/oncotarget.10729] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/09/2016] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is a heterogeneous disease. MiR-375 is a marker for prostate cancer progression, but its cellular function is not characterized. Here, we provide the first comprehensive investigation of miR-375 in prostate cancer. We show that miR-375 is enriched in prostate cancer compared to normal cells. Furthermore, miR-375 enhanced proliferation, migration and invasion in vitro and induced tumor growth and reduced survival in vivo showing that miR-375 has oncogenic properties in prostate cancer. On the molecular level, we provide the targetome and genome-wide transcriptional changes of miR-375 expression by applying a generalized linear model for Ago-RIP-Seq and RNA-Seq, and show that miR-375 is involved in tumorigenic networks and Polycomb regulation. Integration of tissue and gene ontology data prioritized miR-375 targets and identified the tumor suppressor gene CBX7, a member of Polycomb repressive complex 1, as a major miR-375 target. MiR-375-mediated repression of CBX7 was accompanied by increased expression of its homolog CBX8 and activated transcriptional programs linked to malignant progression in prostate cancer cells. Tissue analysis showed association of CBX7 loss with advanced prostate cancer. Our study indicates that miR-375 exerts its tumor-promoting role in prostate cancer by influencing the epigenetic regulation of transcriptional programs through its ability to directly target the Polycomb complex member CBX7.
Collapse
Affiliation(s)
- Julia M A Pickl
- Cancer Genome Research Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Diana Tichy
- Department of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vladimir Y Kuryshev
- Cancer Genome Research Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Yanis Tolstov
- Section of Molecular Urooncology, Department of Urology, University of Heidelberg School of Medicine, Heidelberg, Germany
| | - Michael Falkenstein
- Section of Molecular Urooncology, Department of Urology, University of Heidelberg School of Medicine, Heidelberg, Germany
| | - Julia Schüler
- Oncotest GmbH, Institute for Experimental Oncology, Freiburg, Germany
| | - Daniel Reidenbach
- Cancer Genome Research Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- Bioinformatics Group, Core Facility Genomics & Proteomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Glen Kristiansen
- Institute of Pathology, Center for Integrated Oncology, University of Bonn, Bonn, Germany
| | - Wilfried Roth
- NCT Tissue Bank of The National Center of Tumor Diseases (NCT) and Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Boris Hadaschik
- Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Stefan Duensing
- Section of Molecular Urooncology, Department of Urology, University of Heidelberg School of Medicine, Heidelberg, Germany
| | - Doreen Heckmann
- Cancer Genome Research Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Holger Sültmann
- Cancer Genome Research Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
44
|
Zhan S, Wang T, Ge W, Li J. Multiple roles of Ring 1 and YY1 binding protein in physiology and disease. J Cell Mol Med 2018; 22:2046-2054. [PMID: 29383875 PMCID: PMC5867070 DOI: 10.1111/jcmm.13503] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Ring 1 and YY1 binding protein (RYBP) was first identified in 1999, and its structure includes a conserved Npl4 Zinc finger motif at the N‐terminus, a central region that is characteristically enriched with arginine and lysine residues and a C‐terminal region enriched with serine and threonine amino acids. Over nearly 20 years, multiple studies have found that RYBP functions as an organ developmental adaptor. There is also evidence that RYBP regulates the expression of different genes involved in various aspects of biological processes, via a mechanism that is dependent on interactions with components of PcG complexes and/or through binding to different transcriptional factors. In addition, RYBP interacts directly or indirectly with apoptosis‐associated proteins to mediate anti‐apoptotic or pro‐apoptotic activity in both the cytoplasm and nucleus of various cell types. Furthermore, RYBP has also been shown to act as tumour suppressor gene in different solid tumours, but as an oncogene in lymphoma and melanoma. In this review, we summarize our current understanding of the functions of this multifaceted RYBP in physiological and pathological conditions, including embryonic development, apoptosis and cancer, as well as its role as a component of polycomb repressive complex 1.
Collapse
Affiliation(s)
- Shaohua Zhan
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China.,National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Tianxiao Wang
- Key Laboratory of Carcinogenesis and Translational Research, Department of Head and Neck Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wei Ge
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China
| |
Collapse
|
45
|
Grinshtein N, Rioseco CC, Marcellus R, Uehling D, Aman A, Lun X, Muto O, Podmore L, Lever J, Shen Y, Blough MD, Cairncross GJ, Robbins SM, Jones SJ, Marra MA, Al-Awar R, Senger DL, Kaplan DR. Small molecule epigenetic screen identifies novel EZH2 and HDAC inhibitors that target glioblastoma brain tumor-initiating cells. Oncotarget 2018; 7:59360-59376. [PMID: 27449082 PMCID: PMC5312317 DOI: 10.18632/oncotarget.10661] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/07/2016] [Indexed: 01/23/2023] Open
Abstract
Glioblastoma (GBM) is the most lethal and aggressive adult brain tumor, requiring the development of efficacious therapeutics. Towards this goal, we screened five genetically distinct patient-derived brain-tumor initiating cell lines (BTIC) with a unique collection of small molecule epigenetic modulators from the Structural Genomics Consortium (SGC). We identified multiple hits that inhibited the growth of BTICs in vitro, and further evaluated the therapeutic potential of EZH2 and HDAC inhibitors due to the high relevance of these targets for GBM. We found that the novel SAM-competitive EZH2 inhibitor UNC1999 exhibited low micromolar cytotoxicity in vitro on a diverse collection of BTIC lines, synergized with dexamethasone (DEX) and suppressed tumor growth in vivo in combination with DEX. In addition, a unique brain-penetrant class I HDAC inhibitor exhibited cytotoxicity in vitro on a panel of BTIC lines and extended survival in combination with TMZ in an orthotopic BTIC model in vivo. Finally, a combination of EZH2 and HDAC inhibitors demonstrated synergy in vitro by augmenting apoptosis and increasing DNA damage. Our findings identify key epigenetic modulators in GBM that regulate BTIC growth and survival and highlight promising combination therapies.
Collapse
Affiliation(s)
- Natalie Grinshtein
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Constanza C Rioseco
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Richard Marcellus
- Drug Discovery Group, Ontario Institute for Cancer Research, Toronto, Canada
| | - David Uehling
- Drug Discovery Group, Ontario Institute for Cancer Research, Toronto, Canada
| | - Ahmed Aman
- Drug Discovery Group, Ontario Institute for Cancer Research, Toronto, Canada
| | - Xueqing Lun
- Arnie Charbonneau Cancer Institute, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Osamu Muto
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Lauren Podmore
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Jake Lever
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada
| | - Yaoqing Shen
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada
| | - Michael D Blough
- Arnie Charbonneau Cancer Institute, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Greg J Cairncross
- Arnie Charbonneau Cancer Institute, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stephen M Robbins
- Arnie Charbonneau Cancer Institute, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Steven J Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rima Al-Awar
- Drug Discovery Group, Ontario Institute for Cancer Research, Toronto, Canada
| | - Donna L Senger
- Arnie Charbonneau Cancer Institute, Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David R Kaplan
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
46
|
Liang YK, Lin HY, Chen CF, Zeng D. Prognostic values of distinct CBX family members in breast cancer. Oncotarget 2017; 8:92375-92387. [PMID: 29190923 PMCID: PMC5696189 DOI: 10.18632/oncotarget.21325] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/17/2017] [Indexed: 02/05/2023] Open
Abstract
Chromobox (CBX) family proteins are canonical components in polycomb repressive complexes 1 (PRC1), with epigenetic regulatory function and transcriptionally repressing target genes via chromatin modification. A plethora of studies have highlighted the function specifications among CBX family members in various cancer, including lung cancer, colon cancer and breast cancer. Nevertheless, the functions and prognostic roles of distinct CBX family members in breast cancer (BC) remain elusive. In this study, we reported the prognostic values of CBX family members in patients with BC through analysis of a series of databases, including CCLE, ONCOMINE, Xena Public Data Hubs, and Kaplan-Meier plotter. It was found that the mRNA expression of CBX family members were noticeably higher in BC than normal counterparts. CBX2 was highly expressed in Basal-like and HER-2 subtypes, while CBX4 and CBX7 expressions were enriched in Luminal A and Luminal B subtypes of BC. Survival analysis revealed that CBX1, CBX2 and CBX3 mRNA high expression was correlated to worsen relapse-free survival (RFS) for all BC patients, while CBX4, CBX5, CBX6 and CBX7 high expression was correlated to better RFS in this setting. Noteworthily, CBX1 and CBX2 were associated with chemoresistance whereas CBX7 was associated with tamoxifen sensitivity, as well as chemosensitivity in breast tumors. Therefore, we propose that CBX1, CBX2 and CBX7 are potential targets for BC treatment. The results might be beneficial for better understanding the complexity and heterogeneity in the molecular underpinning of BC, and to develop tools to more accurately predict the prognosis of patients with BC.
Collapse
Affiliation(s)
- Yuan-Ke Liang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, China
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hao-Yu Lin
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chun-Fa Chen
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
47
|
Yuan G, Chen X, Lu J, Feng Z, Chen S, Chen R, Wei W, Zhou F, Xie D. Chromobox homolog 8 is a predictor of muscle invasive bladder cancer and promotes cell proliferation by repressing the p53 pathway. Cancer Sci 2017; 108:2166-2175. [PMID: 28837252 PMCID: PMC5665758 DOI: 10.1111/cas.13383] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/08/2017] [Accepted: 08/16/2017] [Indexed: 12/16/2022] Open
Abstract
Chromobox homolog 8 (CBX8), also known as human polycomb 8, is a repressor that maintains the transcriptionally repressive state in various cellular genes, and has been reported to promote tumorigenesis. In the present study, we examined CBX8 expression in eight pairs of muscle invasive bladder cancer tissues and adjacent non-tumor tissues, and found that CBX8 was frequently upregulated in muscle invasive bladder cancer tissues when compared to adjacent non-tumor tissues. Analysis showed that high expression of CBX8 in 152 muscle invasive bladder cancer specimens was associated with progression of the T, N, and M stages (P = 0.004, 0.005, <0.001, respectively). Furthermore, Kaplan-Meier survival analysis and log-rank test showed that muscle invasive bladder cancer patients with high CBX8 expression had a poor rate of overall survival (P < 0.001) and 5-year recurrence-free survival (P < 0.001) compared to patients with low CBX8 expression. High CBX8 expression predicted poor overall survival and 5-year recurrence-free survival in T and N stages of muscle invasive bladder cancer patients. Moreover, knockdown of CBX8 inhibited cell proliferation of urothelial carcinoma of the bladder both in vitro and in vivo. In addition, CBX8 depletion resulted in cell cycle delay of urothelial carcinoma cells of the bladder at the G2/M phase by the p53 pathway. The data suggest that high expression of CBX8 plays a critical oncogenic role in aggressiveness of urothelial carcinoma cells of the bladder through promoting cancer cell proliferation by repressing the p53 pathway, and CBX8 could be used as a novel predictor for muscle invasive bladder cancer patients.
Collapse
Affiliation(s)
- Gang‐jun Yuan
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina,Department of UrologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xin Chen
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina,Department of UrologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jun Lu
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Zi‐hao Feng
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Si‐liang Chen
- Department of UrologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ri‐xin Chen
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wen‐su Wei
- Department of UrologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Fang‐jian Zhou
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina,Department of UrologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Dan Xie
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
48
|
Voigt A, Nowick K, Almaas E. A composite network of conserved and tissue specific gene interactions reveals possible genetic interactions in glioma. PLoS Comput Biol 2017; 13:e1005739. [PMID: 28957313 PMCID: PMC5634634 DOI: 10.1371/journal.pcbi.1005739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 10/10/2017] [Accepted: 08/24/2017] [Indexed: 02/08/2023] Open
Abstract
Differential co-expression network analyses have recently become an important step in the investigation of cellular differentiation and dysfunctional gene-regulation in cell and tissue disease-states. The resulting networks have been analyzed to identify and understand pathways associated with disorders, or to infer molecular interactions. However, existing methods for differential co-expression network analysis are unable to distinguish between various forms of differential co-expression. To close this gap, here we define the three different kinds (conserved, specific, and differentiated) of differential co-expression and present a systematic framework, CSD, for differential co-expression network analysis that incorporates these interactions on an equal footing. In addition, our method includes a subsampling strategy to estimate the variance of co-expressions. Our framework is applicable to a wide variety of cases, such as the study of differential co-expression networks between healthy and disease states, before and after treatments, or between species. Applying the CSD approach to a published gene-expression data set of cerebral cortex and basal ganglia samples from healthy individuals, we find that the resulting CSD network is enriched in genes associated with cognitive function, signaling pathways involving compounds with well-known roles in the central nervous system, as well as certain neurological diseases. From the CSD analysis, we identify a set of prominent hubs of differential co-expression, whose neighborhood contains a substantial number of genes associated with glioblastoma. The resulting gene-sets identified by our CSD analysis also contain many genes that so far have not been recognized as having a role in glioblastoma, but are good candidates for further studies. CSD may thus aid in hypothesis-generation for functional disease-associations.
Collapse
Affiliation(s)
- André Voigt
- Network Systems Biology Group, Department of Biotechnology, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Katja Nowick
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
- Bioinformatics, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
- Human Biology, Institute for Biology, Free University Berlin, Berlin, Germany
| | - Eivind Almaas
- Network Systems Biology Group, Department of Biotechnology, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and General Practice, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
49
|
Schrier MS, Trivedi MS, Deth RC. Redox-Related Epigenetic Mechanisms in Glioblastoma: Nuclear Factor (Erythroid-Derived 2)-Like 2, Cobalamin, and Dopamine Receptor Subtype 4. Front Oncol 2017; 7:46. [PMID: 28424758 PMCID: PMC5371596 DOI: 10.3389/fonc.2017.00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/06/2017] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma is an exceptionally difficult cancer to treat. Cancer is universally marked by epigenetic changes, which play key roles in sustaining a malignant phenotype, in addition to disease progression and patient survival. Studies have shown strong links between the cellular redox state and epigenetics. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a redox-sensitive transcription factor that upregulates endogenous antioxidant production, and is aberrantly expressed in many cancers, including glioblastoma. Methylation of DNA and histones provides a mode of epigenetic regulation, and cobalamin-dependent reactions link the redox state to methylation. Antagonists of dopamine receptor subtype 4 (D4 receptor) were recently shown to restrict glioblastoma stem cell growth by downregulating trophic signaling, resulting in inhibition of functional autophagy. In addition to stimulating glioblastoma stem cell growth, D4 receptors have the unique ability to catalyze cobalamin-dependent phospholipid methylation. Therefore, D4 receptors represent an important node in a molecular reflex pathway involving Nrf2 and cobalamin, operating in conjunction with redox status and methyl group donor availability. In this article, we describe the redox-related effects of Nrf2, cobalamin metabolism, and the D4 receptor on the regulation of the epigenetic state in glioblastoma.
Collapse
Affiliation(s)
- Matthew Scott Schrier
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Malav Suchin Trivedi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Richard Carlton Deth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
50
|
Hu Q, Wu W, Zeng A, Yu T, Shen F, Nie E, Wang Y, Liu N, Zhang J, You Y. Polycomb group expression signatures in the malignant progression of gliomas. Oncol Lett 2017; 13:2583-2590. [PMID: 28454437 PMCID: PMC5403712 DOI: 10.3892/ol.2017.5753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 12/16/2016] [Indexed: 12/03/2022] Open
Abstract
Polycomb group (PcG) proteins form at least two key complexes, namely polycomb repressive complex 1 and polycomb repressive complex 2. These complexes are involved in the progression of various cancers. Systematic research has not been conducted on the aberrant expression of PcG members in gliomas. Using the Chinese Glioma Genome Atlas data set, PcG expression patterns between normal brain tissues and glioma samples were analyzed, and a PcG-based classifier was then developed using BRB Cox regression and risk-score model. These results were validated in an independent GSE16011 set. A total of six PcGs [chromobox protein homolog (CBX) 6, CBX7, PHD finger protein 1, enhancer of zeste homolog 2 (EZH2), DNA (cytosine-5-)-methyltransferase 3β (DNMT3B) and polyhomeotic-like protein 2] were identified to be associated with glioma grade. Survival analysis then revealed a five-PcG gene signature one protective gene (enhancer of zeste homolog 1) and four risky genes (EZH2, PHD finger protein 19, DNMT3A and DNMT3B), which may identify patients with high risk of poor prognosis of glioma. Multivariate Cox analysis indicated that the five-PcG signature was an independent prognostic biomarker. These findings indicated that a novel prognostic classifier, five-PcG signature, served as an independent prognostic marker for patients with glioma.
Collapse
Affiliation(s)
- Qi Hu
- Department of Neurosurgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weining Wu
- Department of Neurosurgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ailiang Zeng
- Department of Neurosurgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Tianfu Yu
- Department of Neurosurgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Feng Shen
- Department of Neurosurgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Er Nie
- Department of Neurosurgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yingyi Wang
- Department of Neurosurgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ning Liu
- Department of Neurosurgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Junxia Zhang
- Department of Neurosurgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yongping You
- Department of Neurosurgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|