1
|
Sun L, Jiang Z, Li S, Liu J, Su M, Lu Y, Li Z, Ding X. What Is Left After Resolution of Neonatal Retinal Hemorrhage: The Longitudinal Long-term Outcome in Foveal Structure and Visual Function. Am J Ophthalmol 2021; 226:182-190. [PMID: 33556380 DOI: 10.1016/j.ajo.2021.01.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE Neonatal retinal hemorrhage (NRH) is one of the most common neonatal fundus conditions. Hemorrhage resolves spontaneously; however, its long-term outcome is unknown yet. The current study explores the long-term role of NRH in foveal structure and visual function. DESIGN Cohort study (a prospective longitudinal study, in which the participants were followed up for 4-6 years). METHODS A total of 125 healthy newborns during 2013-2015, including 50 newborns with NRH and 75 newborns without NRH, were enrolled. The eyes with NRH were further categorized into the foveal hemorrhage (FH) group and non-FH group. A comprehensive ophthalmic examination including best-corrected visual acuity (BCVA) measurement, slit-lamp examination, refractive error measurement, scanning laser ophthalmoscopy, and spectral-domain OCT was performed. Total retinal thickness (TRT) and the inner and outer retinal layers in the fovea were measured and compared. RESULTS The NRH was absorbed within 2.1 ± 0.98 weeks (median: 3 weeks). No difference was noted in the demographic characteristics between the groups; there was no significant difference in the logMAR BCVA (P = .83) or in the TRT. Subgroup analysis showed that TRT at the fovea in the FH group was significantly thicker (P = .005). Segmentation analysis showed a significantly thicker foveal outer nuclear layer (ONL) in the FH group (P = .017). CONCLUSIONS Birth-related retinal hemorrhage, even FH, might not lead to obvious visual abnormalities at the age of 4 years, at least according to this study with relatively small sample size. However, a thicker fovea, mainly attributed to a wider ONL and a shallower foveal pit, is noted in our study.
Collapse
|
2
|
Abstract
Amblyopia is a neurodevelopmental disorder of the visual cortex arising from abnormal visual experience early in life which is a major cause of impaired vision in infants and young children (prevalence around 3.5%). Current treatments such as eye patching are ineffective in a large number of patients, especially when applied after the juvenile critical period. Physical exercise has been recently shown to enhance adult visual cortical plasticity and to promote visual acuity recovery. With the aim to understand the potentialities for translational applications, we investigated the effects of voluntary physical activity on recovery of depth perception in adult amblyopic rats with unrestricted binocular vision; visual acuity recovery was also assessed. We report that three weeks of voluntary physical activity (free running) induced a marked and long-lasting recovery of both depth perception and visual acuity. In the primary visual cortex, ocular dominance recovered both for excitatory and inhibitory cells and was linked to activation of a specific intracortical GABAergic circuit.
Collapse
|
3
|
Fong MF, Finnie PS, Kim T, Thomazeau A, Kaplan ES, Cooke SF, Bear MF. Distinct Laminar Requirements for NMDA Receptors in Experience-Dependent Visual Cortical Plasticity. Cereb Cortex 2020; 30:2555-2572. [PMID: 31832634 PMCID: PMC7174998 DOI: 10.1093/cercor/bhz260] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Abstract
Primary visual cortex (V1) is the locus of numerous forms of experience-dependent plasticity. Restricting visual stimulation to one eye at a time has revealed that many such forms of plasticity are eye-specific, indicating that synaptic modification occurs prior to binocular integration of thalamocortical inputs. A common feature of these forms of plasticity is the requirement for NMDA receptor (NMDAR) activation in V1. We therefore hypothesized that NMDARs in cortical layer 4 (L4), which receives the densest thalamocortical input, would be necessary for all forms of NMDAR-dependent and input-specific V1 plasticity. We tested this hypothesis in awake mice using a genetic approach to selectively delete NMDARs from L4 principal cells. We found, unexpectedly, that both stimulus-selective response potentiation and potentiation of open-eye responses following monocular deprivation (MD) persist in the absence of L4 NMDARs. In contrast, MD-driven depression of deprived-eye responses was impaired in mice lacking L4 NMDARs, as was L4 long-term depression in V1 slices. Our findings reveal a crucial requirement for L4 NMDARs in visual cortical synaptic depression, and a surprisingly negligible role for them in cortical response potentiation. These results demonstrate that NMDARs within distinct cellular subpopulations support different forms of experience-dependent plasticity.
Collapse
Affiliation(s)
- Ming-fai Fong
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter Sb Finnie
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Taekeun Kim
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aurore Thomazeau
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eitan S Kaplan
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Samuel F Cooke
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Maurice Wohl Institute for Clinical Neuroscience, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
- The Medical Research Council Centre for Neurodevelopmental Disorders (MRC CNDD), King's College London, London SE5 8AF, UK
| | - Mark F Bear
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Olcese U, Bos JJ, Vinck M, Pennartz CMA. Functional determinants of enhanced and depressed interareal information flow in nonrapid eye movement sleep between neuronal ensembles in rat cortex and hippocampus. Sleep 2019; 41:5078618. [PMID: 30423179 DOI: 10.1093/sleep/zsy167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Indexed: 11/12/2022] Open
Abstract
Compared with wakefulness, neuronal activity during nonrapid eye movement (NREM) sleep is characterized by a decreased ability to integrate information, but also by the reemergence of task-related information patterns. To investigate the mechanisms underlying these seemingly opposing phenomena, we measured directed information flow by computing transfer entropy between neuronal spiking activity in three cortical regions and the hippocampus of rats across brain states. State-dependent information flow was jointly determined by the anatomical distance between neurons and by their functional specialization. We distinguished two regimes, operating at short and long time scales, respectively. From wakefulness to NREM sleep, transfer entropy at short time scales increased for interareal connections between neurons showing behavioral task correlates. Conversely, transfer entropy at long time scales became stronger between nontask modulated neurons and weaker between task-modulated neurons. These results may explain how, during NREM sleep, a global interareal disconnection is compatible with highly specific task-related information transfer.
Collapse
Affiliation(s)
- Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen J Bos
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Martin Vinck
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.,Ernst Strungmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| | - Cyriel M A Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Xu X, Tian X, Wang G. Sevoflurane reduced functional connectivity of excitatory neurons in prefrontal cortex during working memory performance of aged rats. Biomed Pharmacother 2018; 106:1258-1266. [DOI: 10.1016/j.biopha.2018.07.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/24/2018] [Accepted: 07/07/2018] [Indexed: 01/21/2023] Open
|
6
|
Kokinovic B, Medini P. Loss of GABA B -mediated interhemispheric synaptic inhibition in stroke periphery. J Physiol 2018; 596:1949-1964. [PMID: 29508394 DOI: 10.1113/jp275690] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/22/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Recovery from the potentially devastating consequences of stroke depends largely upon plastic changes occurring in the lesion periphery and its inputs. In a focal model of stroke in mouse somatosensory cortex, we found that the recovery of sensory responsiveness occurs at the level of synaptic inputs, without gross changes of the intrinsic electrical excitability of neurons, and also that recovered responses had longer than normal latencies. Under normal conditions, one somatosensory cortex inhibits the responsiveness of the other located in the opposite hemisphere (interhemispheric inhibition) via activation of GABAB receptors. In stroke-recovered animals, the powerful interhemispheric inhibition normally present in controls is lost in the lesion periphery. By contrast, contralateral hemisphere activation selective contributes to the recovery of sensory responsiveness after stroke. ABSTRACT Recovery after stroke is mediated by plastic changes largely occurring in the lesion periphery. However, little is known about the microcircuit changes underlying recovery, the extent to which perilesional plasticity occurs at synaptic input vs. spike output level, and the connectivity behind such synaptic plasticity. We combined intrinsic imaging with extracellular and intracellular recordings and pharmacological inactivation in a focal stroke in mouse somatosensory cortex (S1). In vivo whole-cell recordings in hindlimb S1 (hS1) showed synaptic responses also to forelimb stimulation in controls, and such responses were abolished by stroke in the neighbouring forelimb area (fS1), suggesting that, under normal conditions, they originate via horizontal connections from the neighbouring fS1. Synaptic and spike responses to forelimb stimulation in hS1 recovered to quasi-normal levels 2 weeks after stroke, without changes in intrinsic excitability and hindlimb-evoked spike responses. Recovered synaptic responses had longer latencies, suggesting a long-range origin of the recovery, prompting us to investigate the role of callosal inputs in the recovery process. Contralesional S1 silencing unmasked significantly larger responses to both limbs in controls, a phenomenon that was not observed when GABAB receptors were antagonized in the recorded area. Conversely, such GABAB -mediated interhemispheric inhibition was not detectable after stroke: callosal input silencing failed to change hindlimb responses, whereas it robustly reduced recovered forelimb responses. Thus, recovery of subthreshold responsiveness in the stroke periphery is accompanied by a loss of interhemispheric inhibition and this is a result of pathway-specific facilitatory action on the affected sensory response from the contralateral cortex.
Collapse
Affiliation(s)
- Bojana Kokinovic
- Department of Integrative Medical Biology (IMB), Physiology section, Umeå University, Umeå, Sweden.,Department of Neuroscience and Brain Technologies (NBT), Italian Institute of Technology (IIT), Genova, Italy
| | - Paolo Medini
- Department of Integrative Medical Biology (IMB), Physiology section, Umeå University, Umeå, Sweden
| |
Collapse
|
7
|
Temporal Processing in the Visual Cortex of the Awake and Anesthetized Rat. eNeuro 2017; 4:eN-NWR-0059-17. [PMID: 28791331 PMCID: PMC5547194 DOI: 10.1523/eneuro.0059-17.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/16/2017] [Accepted: 07/17/2017] [Indexed: 12/18/2022] Open
Abstract
The activity pattern and temporal dynamics within and between neuron ensembles are essential features of information processing and believed to be profoundly affected by anesthesia. Much of our general understanding of sensory information processing, including computational models aimed at mathematically simulating sensory information processing, rely on parameters derived from recordings conducted on animals under anesthesia. Due to the high variety of neuronal subtypes in the brain, population-based estimates of the impact of anesthesia may conceal unit- or ensemble-specific effects of the transition between states. Using chronically implanted tetrodes into primary visual cortex (V1) of rats, we conducted extracellular recordings of single units and followed the same cell ensembles in the awake and anesthetized states. We found that the transition from wakefulness to anesthesia involves unpredictable changes in temporal response characteristics. The latency of single-unit responses to visual stimulation was delayed in anesthesia, with large individual variations between units. Pair-wise correlations between units increased under anesthesia, indicating more synchronized activity. Further, the units within an ensemble show reproducible temporal activity patterns in response to visual stimuli that is changed between states, suggesting state-dependent sequences of activity. The current dataset, with recordings from the same neural ensembles across states, is well suited for validating and testing computational network models. This can lead to testable predictions, bring a deeper understanding of the experimental findings and improve models of neural information processing. Here, we exemplify such a workflow using a Brunel network model.
Collapse
|
8
|
Spike-Based Functional Connectivity in Cerebral Cortex and Hippocampus: Loss of Global Connectivity Is Coupled to Preservation of Local Connectivity During Non-REM Sleep. J Neurosci 2017; 36:7676-92. [PMID: 27445145 DOI: 10.1523/jneurosci.4201-15.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 06/08/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Behavioral states are commonly considered global phenomena with homogeneous neural determinants. However, recent studies indicate that behavioral states modulate spiking activity with neuron-level specificity as a function of brain area, neuronal subtype, and preceding history. Although functional connectivity also strongly depends on behavioral state at a mesoscopic level and is globally weaker in non-REM (NREM) sleep and anesthesia than wakefulness, it is unknown how neuronal communication is modulated at the cellular level. We hypothesize that, as for neuronal activity, the influence of behavioral states on neuronal coupling strongly depends on type, location, and preceding history of involved neurons. Here, we applied nonlinear, information-theoretical measures of functional connectivity to ensemble recordings with single-cell resolution to quantify neuronal communication in the neocortex and hippocampus of rats during wakefulness and sleep. Although functional connectivity (measured in terms of coordination between firing rate fluctuations) was globally stronger in wakefulness than in NREM sleep (with distinct traits for cortical and hippocampal areas), the drop observed during NREM sleep was mainly determined by a loss of inter-areal connectivity between excitatory neurons. Conversely, local (intra-area) connectivity and long-range (inter-areal) coupling between interneurons were preserved during NREM sleep. Furthermore, neuronal networks that were either modulated or not by a behavioral task remained segregated during quiet wakefulness and NREM sleep. These results show that the drop in functional connectivity during wake-sleep transitions globally holds true at the cellular level, but confine this change mainly to long-range coupling between excitatory neurons. SIGNIFICANCE STATEMENT Studies performed at a mesoscopic level of analysis have shown that communication between cortical areas is disrupted in non-REM sleep and anesthesia. However, the neuronal determinants of this phenomenon are not known. Here, we applied nonlinear, information-theoretical measures of functional coupling to multi-area tetrode recordings from freely moving rats to investigate whether and how brain state modulates coordination between individual neurons. We found that the previously observed drop in functional connectivity during non-REM (NREM) sleep can be explained by a decrease in coupling between excitatory neurons located in distinct brain areas. Conversely, intra-area communication and coupling between interneurons are preserved. Our results provide significant new insights into the neuron-level mechanisms responsible for the loss of consciousness occurring in NREM sleep.
Collapse
|
9
|
Tognini P, Napoli D, Pizzorusso T. Dynamic DNA methylation in the brain: a new epigenetic mark for experience-dependent plasticity. Front Cell Neurosci 2015; 9:331. [PMID: 26379502 PMCID: PMC4548453 DOI: 10.3389/fncel.2015.00331] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/10/2015] [Indexed: 02/04/2023] Open
Abstract
Experience-dependent plasticity is the ability of brain circuits to undergo molecular, structural and functional changes as a function of neural activity. Neural activity continuously shapes our brain during all the stages of our life, from infancy through adulthood and beyond. Epigenetic modifications of histone proteins and DNA seem to be a leading molecular mechanism to modulate the transcriptional changes underlying the fine-tuning of synaptic connections and circuitry rewiring during activity-dependent plasticity. The recent discovery that cytosine methylation is an epigenetic mark particularly dynamic in brain cells has strongly increased the interest of neuroscientists in understanding the role of covalent modifications of DNA in activity-induced remodeling of neuronal circuits. Here, we provide an overview of the role of DNA methylation and hydroxylmethylation in brain plasticity both during adulthood, with emphasis on learning and memory related processes, and during postnatal development, focusing specifically on experience-dependent plasticity in the visual cortex.
Collapse
Affiliation(s)
- Paola Tognini
- Department of Biological Chemistry, University of California, Irvine Irvine, CA, USA
| | - Debora Napoli
- BioSNS laboratory, Scuola Normale Superiore di Pisa Pisa, Italy
| | - Tommaso Pizzorusso
- Institute of Neuroscience CNR Pisa, Italy ; Department of Neuroscience, Psychology, Drug Research and Child Health Neurofarba, University of Florence Florence, Italy
| |
Collapse
|
10
|
Saiepour MH, Rajendran R, Omrani A, Ma WP, Tao HW, Heimel JA, Levelt CN. Ocular dominance plasticity disrupts binocular inhibition-excitation matching in visual cortex. Curr Biol 2015; 25:713-721. [PMID: 25754642 DOI: 10.1016/j.cub.2015.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 12/16/2014] [Accepted: 01/08/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND To ensure that neuronal networks function in a stable fashion, neurons receive balanced inhibitory and excitatory inputs. In various brain regions, this balance has been found to change temporarily during plasticity. Whether changes in inhibition have an instructive or permissive role in plasticity remains unclear. Several studies have addressed this question using ocular dominance plasticity in the visual cortex as a model, but so far, it remains controversial whether changes in inhibition drive this form of plasticity by directly affecting eye-specific responses or through increasing the plasticity potential of excitatory connections. RESULTS We tested how three major classes of interneurons affect eye-specific responses in normally reared or monocularly deprived mice by optogenetically suppressing their activity. We find that in contrast to somatostatin-expressing or vasoactive intestinal polypeptide-expressing interneurons, parvalbumin (PV)-expressing interneurons strongly inhibit visual responses. In individual neurons of normal mice, inhibition and excitation driven by either eye are balanced, and suppressing PV interneurons does not alter ocular preference. Monocular deprivation disrupts the binocular balance of inhibition and excitation in individual neurons, causing suppression of PV interneurons to change their ocular preference. Importantly, however, these changes do not consistently favor responses to one of the eyes at the population level. CONCLUSIONS Monocular deprivation disrupts the binocular balance of inhibition and excitation of individual cells. This disbalance does not affect the overall expression of ocular dominance. Our data therefore support a permissive rather than an instructive role of inhibition in ocular dominance plasticity.
Collapse
Affiliation(s)
- M Hadi Saiepour
- Department of Molecular Visual Plasticity, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Rajeev Rajendran
- Department of Molecular Visual Plasticity, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Azar Omrani
- Department of Molecular Visual Plasticity, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Wen-Pei Ma
- Zilkha Neurogenetic Institute, Department of Cell & Neurobiology, University of Southern California, 1501 San Pablo Street, ZNI 439, Los Angeles, CA 90033, USA
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute, Department of Cell & Neurobiology, University of Southern California, 1501 San Pablo Street, ZNI 439, Los Angeles, CA 90033, USA
| | - J Alexander Heimel
- Department of Molecular Visual Plasticity, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Christiaan N Levelt
- Department of Molecular Visual Plasticity, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Medini P. Experience-dependent plasticity of visual cortical microcircuits. Neuroscience 2014; 278:367-84. [PMID: 25171791 DOI: 10.1016/j.neuroscience.2014.08.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 11/18/2022]
Abstract
The recent decade testified a tremendous increase in our knowledge on how cell-type-specific microcircuits process sensory information in the neocortex and on how such circuitry reacts to manipulations of the sensory environment. Experience-dependent plasticity has now been investigated with techniques endowed with cell resolution during both postnatal development and in adult animals. This review recapitulates the main recent findings in the field using mainly the primary visual cortex as a model system to highlight the more important questions and physiological principles (such as the role of non-competitive mechanisms, the role of inhibition in excitatory cell plasticity, the functional importance of spine and axonal plasticity on a microscale level). I will also discuss on which scientific problems the debate and controversies are more pronounced. New technologies that allow to perturbate cell-type-specific subcircuits will certainly shine new light in the years to come at least on some of the still open questions.
Collapse
Affiliation(s)
- P Medini
- Institutionen för Molekylärbiologi, and Institutionen för Integrativ Medicinsk Biologi (IMB), Fysiologi Avdelning, Umeå Universitet, 90187 Umeå, Sweden.
| |
Collapse
|
12
|
Pietrasanta M, Restani L, Cerri C, Olcese U, Medini P, Caleo M. A switch from inter-ocular to inter-hemispheric suppression following monocular deprivation in the rat visual cortex. Eur J Neurosci 2014; 40:2283-92. [PMID: 24689940 DOI: 10.1111/ejn.12573] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/04/2014] [Accepted: 02/25/2014] [Indexed: 11/28/2022]
Abstract
Binocularity is a key property of primary visual cortex (V1) neurons that is widely used to study synaptic integration in the brain and plastic mechanisms following an altered visual experience. However, it is not clear how the inputs from the two eyes converge onto binocular neurons, and how their interaction is modified by an unbalanced visual drive. Here, using visual evoked potentials recorded in the juvenile rat V1, we report evidence for a suppressive mechanism by which contralateral eye activity inhibits responses from the ipsilateral eye. Accordingly, we found a lack of additivity of the responses evoked independently by the two eyes in the V1, and acute silencing of the contralateral eye resulted in the enhancement of ipsilateral eye responses in cortical neurons. We reverted the relative cortical strength of the two eyes by suturing the contralateral eye shut [monocular deprivation (MD)]. After 7 days of MD, there was a loss of interocular suppression mediated by the contralateral, deprived eye, and weak inputs from the closed eye were functionally inhibited by interhemispheric callosal pathways. We conclude that interocular suppressive mechanisms play a crucial role in shaping normal binocularity in visual cortical neurons, and a switch from interocular to interhemispheric suppression represents a key step in the ocular dominance changes induced by MD. These data have important implications for a deeper understanding of the key mechanisms that underlie activity-dependent rearrangements of cortical circuits following alteration of sensory experience.
Collapse
Affiliation(s)
- Marta Pietrasanta
- CNR Neuroscience Institute, Pisa, Italy; Italian Institute of Technology, Genova, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Griffen TC, Maffei A. GABAergic synapses: their plasticity and role in sensory cortex. Front Cell Neurosci 2014; 8:91. [PMID: 24723851 PMCID: PMC3972456 DOI: 10.3389/fncel.2014.00091] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/12/2014] [Indexed: 12/17/2022] Open
Abstract
The mammalian neocortex is composed of a variety of cell types organized in a highly interconnected circuit. GABAergic neurons account for only about 20% of cortical neurons. However, they show widespread connectivity and a high degree of diversity in morphology, location, electrophysiological properties and gene expression. In addition, distinct populations of inhibitory neurons have different sensory response properties, capacities for plasticity and sensitivities to changes in sensory experience. In this review we summarize experimental evidence regarding the properties of GABAergic neurons in primary sensory cortex. We will discuss how distinct GABAergic neurons and different forms of GABAergic inhibitory plasticity may contribute to shaping sensory cortical circuit activity and function.
Collapse
Affiliation(s)
- Trevor C Griffen
- SUNY Eye Research Consortium Buffalo, NY, USA ; Program in Neuroscience, SUNY - Stony Brook Stony Brook, NY, USA ; Medical Scientist Training Program, SUNY - Stony Brook Stony Brook, NY, USA
| | - Arianna Maffei
- SUNY Eye Research Consortium Buffalo, NY, USA ; Department of Neurobiology and Behavior, SUNY - Stony Brook Stony Brook, NY, USA
| |
Collapse
|