1
|
Sinha D, Naskar P, Sikdar PP, Chakraborty T, Datta AB, Sau S. The Critical Roles of Conserved Glu 21 and Asp 23 of a Staphylococcal Anti-Anti-Sigma Factor. J Basic Microbiol 2025:e70046. [PMID: 40357864 DOI: 10.1002/jobm.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/01/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025]
Abstract
Staphylococcus aureus and similar bacteria cope with stressful environments using a set of conserved proteins including σB, an alternative sigma factor. The initiation of transcription by σB is obstructed by RsbW, an anti-sigma factor. RsbW also associates and phosphorylates RsbV, an anti-anti-sigma factor. A modeling study previously suggested that Glu 21, Asp 23, and Tyr 54 of S. aureus RsbV form non-covalent bonds with Arg 23, an indispensable residue of cognate RsbW. Herein, we have noted that Glu 21, and Asp 23 are conserved residues, whereas Tyr 54 is a semi-conserved residue. Additionally, our MD simulation studies indicate that both Glu 21 and Asp 23 may maintain the structure of RsbV. To verify the computational data, two RsbV mutants, created by replacing Glu 21 and Asp 23 with an Ala residue, were elaborately investigated using some in vitro tools. The results reveal that both the above residues are critical for preserving the structure of RsbV. Interestingly, the RsbV mutant harboring Ala at position 23 was very little phosphorylated by RsbW. This mutant, compared to the RsbV mutant carrying Ala at position 21, also showed a weaker interaction with RsbW. The ways Glu 21 and Asp 23 keep various properties of RsbV intact have been discussed at length.
Collapse
Affiliation(s)
- Debasmita Sinha
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Pritam Naskar
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | | | | | | | - Subrata Sau
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
2
|
Zhang H, Hirao H. Mechanism of Regio- and Enantioselective Hydroxylation of Arachidonic Acid Catalyzed by Human CYP2E1: A Combined Molecular Dynamics and Quantum Mechanics/Molecular Mechanics Study. J Chem Inf Model 2025; 65:2080-2092. [PMID: 39932478 DOI: 10.1021/acs.jcim.5c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Regio- and enantioselective hydroxylation of free fatty acids by human cytochrome P450 2E1 (CYP2E1) plays an important role in metabolic regulation and has significant pathological implications. Despite extensive research, the detailed hydroxylation mechanism of CYP2E1 remains incompletely understood. To clarify the origins of regioselectivity and enantioselectivity observed for CYP2E1-mediated fatty acid hydroxylation, molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations were performed. MD simulations provided key insights into the proximity of arachidonic acid's carbon atoms to the reactive iron(IV)-oxo moiety in compound I (Cpd I), with the ω-1 position being closest, indicating higher reactivity at this site. QM/MM calculations identified hydrogen abstraction as the rate-determining step, with the ω-1S transition state exhibiting the lowest energy barrier, consistent with experimentally observed enantioselectivity. Energy decomposition analysis revealed that variations in quantum mechanical energy (ΔEQM) significantly influence reaction barriers, with the most efficient hydrogen abstraction occurring at the ω-1S and ω-2R positions. These findings underscore the importance of substrate positioning within the active site in determining product selectivity. Comparisons with two related P450s, P450BM3 and P450SPα, further highlighted the critical role of active site architecture and substrate positioning in modulating selectivity. While surrounding residues do not directly dictate product selectivity, they shape the active site environment and influence substrate positioning. Furthermore, our analysis revealed a previously unrecognized catalytic role of Ala299. These findings provide a deeper mechanistic understanding of human CYP2E1 and offer valuable insights for its precise engineering in targeted C-H functionalization.
Collapse
Affiliation(s)
- Honghui Zhang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
3
|
Verma J, Jain D, Panda AP, Kant S, Kumar G, Ghosh AS. Involvement of the non-active site Residues in the Catalytic Activity of NDM-4 Metallo beta-lactamase. Protein J 2023:10.1007/s10930-023-10124-6. [PMID: 37170014 DOI: 10.1007/s10930-023-10124-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2023] [Indexed: 05/13/2023]
Abstract
The rise of New Delhi metallo beta-lactamase (NDM) producing bacteria imposes a significant threat to the treatment of bacterial infections due to their broad spectrum against beta-lactams. The activity of metallo beta-lactamases is affected by active site residues as well as residues near the active site. Therefore, we aimed to identify the amino acid residues around the active site of NDM-4 which influence its function. To achieve that, seven substitution mutations (S191A, D192A, S213A, K216A, S217A, D223A and D225A) of NDM-4 were generated through site-directed mutagenesis. Out of these, expression of NDM-4_D192A and NDM-4_S217A in Escherichia coli cells increased the beta-lactam susceptibility as compared to NDM-4. Further, proteins were purified to assess the effect of substitution mutations on zinc content, in vitro catalytic efficiency, and stability of NDM-4. The catalytic efficiency was reduced for these mutants (D192A and S217A) towards beta-lactam substrates, while the thermal stability remained insubstantial as compared to NDM-4. However, the purified NDM-4_D192A exhibited altered zinc content. In silico studies reveal that these changes might be the outcomes of alterations in hydrogen bonding networks and substrate interactions. Taken together, we infer that the D192 and the S217 residues play a substantial role in the activity of NDM-4.
Collapse
Affiliation(s)
- Jyoti Verma
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Diamond Jain
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Aditya Prasad Panda
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Shri Kant
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Gaurav Kumar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Anindya Sundar Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
4
|
Seal S, Banerjee N, Mahato R, Kundu T, Sinha D, Chakraborty T, Sinha D, Sau K, Chatterjee S, Sau S. Serine 106 preserves the tertiary structure, function, and stability of a cyclophilin from Staphylococcus aureus. J Biomol Struct Dyn 2023; 41:1479-1494. [PMID: 34967275 DOI: 10.1080/07391102.2021.2021992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
SaCyp, a staphylococcal cyclophilin involved in both protein folding and pathogenesis, has a Ser residue at position 106 and a Trp residue at position 136. While Ser 106 of SaCyp aligned with a cyclosporin A (CsA) binding Ala residue, its Trp 136 aligned with a Trp or a Phe residue of most other cyclophilins. To demonstrate the exact roles of Ser 106 and Trp 136 in SaCyp, we have elaborately studied rCyp[S106A] and rCyp[W136A], two-point mutants of a recombinant SaCyp (rCyp) harboring an Ala substitution at positions 106 and 136, respectively. Of the mutants, rCyp[W136A] showed the rCyp-like CsA binding affinity and peptidyl-prolyl cis-trans isomerase (PPIase) activity. Conversely, the PPIase activity, CsA binding affinity, stability, tertiary structure, surface hydrophobicity, and Trp accessibility of rCyp[S106A] notably differed from those of rCyp. The computational experiments also reveal that the structure, dimension, and fluctuation of SaCyp are not identical to those of SaCyp[S106A]. Furthermore, Ser at position 106 of SaCyp, compared to Ala at the same position, formed a higher number of non-covalent bonds with CsA. Collectively, Ser 106 is an indispensable residue for SaCyp that keeps its tertiary structure, function, and stability intact.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soham Seal
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Nilanjan Banerjee
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, India
| | - Rohit Mahato
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Tanmoy Kundu
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Debabrata Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | | | - Debasmita Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Keya Sau
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | | | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
5
|
Dong X, Shi P, Liu W, Bai J, Bian L. Metallo-beta-lactamase CphA evolving into more efficient hydrolases through gene mutation is a novel pathway for the resistance of super bacteria. Appl Microbiol Biotechnol 2022; 106:2471-2480. [PMID: 35316383 DOI: 10.1007/s00253-022-11879-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 02/07/2022] [Accepted: 03/05/2022] [Indexed: 11/02/2022]
Abstract
The evolution of metallo-beta-lactamase CphA in discontinuous gradient concentration of imipenem was investigated in this work. The results suggested that single-base mutations K218R, K249T, K249M, Q253H, and a frameshift mutation M1 were observed. Compared with wild type, the minimum inhibitory concentration (MICs) of K249T, K249M, and M1 increased by at least 128 times and that of K218R increased by 64 times. And the catalytic efficiency increased by 312% and 653%, respectively. It is speculated from the details of the structural changes revealed by molecular dynamics simulations that the carbon skeleton migration caused by the outward motion of the loop 3 in the mutant may have significantly increased the cavity volume of the binding pocket, which is more conducive to the entry and expulsion of imipenem and its hydrolytic product. And the conformational change of the TDRAGGN (71-77) is located at the bottom of the binding pocket from order α-helix to disorder random coil enabled the binding pocket to be more conducive to accommodate and hold the imipenem respectively. All these indicated that during the repeated drug resistance, the wild-type achieved gene mutations and conformational change and evolved to the mutant enzymes with a more delicate structure and stronger hydrolysis ability. KEY POINTS: • The mutation and evolution of CphA under the selective pressure of imipenem. • The CphA evolved to the mutants with stronger hydrolysis capacity. • A novel pathway for the resistance of super bacteria.
Collapse
Affiliation(s)
- Xiaoting Dong
- College of Life Science, Northwest University, 229 Taibai Bei Road, Xi'an, 710069, Shaan'xi Province, China
| | - Penghui Shi
- College of Life Science, Northwest University, 229 Taibai Bei Road, Xi'an, 710069, Shaan'xi Province, China
| | - Wenli Liu
- College of Life Science, Northwest University, 229 Taibai Bei Road, Xi'an, 710069, Shaan'xi Province, China
| | - Jiakun Bai
- College of Life Science, Northwest University, 229 Taibai Bei Road, Xi'an, 710069, Shaan'xi Province, China
| | - Liujiao Bian
- College of Life Science, Northwest University, 229 Taibai Bei Road, Xi'an, 710069, Shaan'xi Province, China.
| |
Collapse
|
6
|
Exploring the Role of L10 Loop in New Delhi Metallo-β-lactamase (NDM-1): Kinetic and Dynamic Studies. Molecules 2021; 26:molecules26185489. [PMID: 34576958 PMCID: PMC8467308 DOI: 10.3390/molecules26185489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022] Open
Abstract
Four NDM-1 mutants (L218T, L221T, L269H and L221T/Y229W) were generated in order to investigate the role of leucines positioned in L10 loop. A detailed kinetic analysis stated that these amino acid substitutions modified the hydrolytic profile of NDM-1 against some β-lactams. Significant reduction of kcat values of L218T and L221T for carbapenems, cefazolin, cefoxitin and cefepime was observed. The stability of the NDM-1 and its mutants was explored by thermofluor assay in real-time PCR. The determination of TmB and TmD demonstrated that NDM-1 and L218T were the most stable enzymes. Molecular dynamic studies were performed to justify the differences observed in the kinetic behavior of the mutants. In particular, L218T fluctuated more than NDM-1 in L10, whereas L221T would seem to cause a drift between residues 75 and 125. L221T/Y229W double mutant exhibited a decrease in the flexibility with respect to L221T, explaining enzyme activity improvement towards some β-lactams. Distances between Zn1-Zn2 and Zn1-OH- or Zn2-OH- remained unaffected in all systems analysed. Significant changes were found between Zn1/Zn2 and first sphere coordination residues.
Collapse
|
7
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
8
|
Fröhlich C, Sørum V, Huber S, Samuelsen Ø, Berglund F, Kristiansson E, Kotsakis SD, Marathe NP, Larsson DGJ, Leiros HKS. Structural and biochemical characterization of the environmental MBLs MYO-1, ECV-1 and SHD-1. J Antimicrob Chemother 2021; 75:2554-2563. [PMID: 32464640 PMCID: PMC7443720 DOI: 10.1093/jac/dkaa175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND MBLs form a large and heterogeneous group of bacterial enzymes conferring resistance to β-lactam antibiotics, including carbapenems. A large environmental reservoir of MBLs has been identified, which can act as a source for transfer into human pathogens. Therefore, structural investigation of environmental and clinically rare MBLs can give new insights into structure-activity relationships to explore the role of catalytic and second shell residues, which are under selective pressure. OBJECTIVES To investigate the structure and activity of the environmental subclass B1 MBLs MYO-1, SHD-1 and ECV-1. METHODS The respective genes of these MBLs were cloned into vectors and expressed in Escherichia coli. Purified enzymes were characterized with respect to their catalytic efficiency (kcat/Km). The enzymatic activities and MICs were determined for a panel of different β-lactams, including penicillins, cephalosporins and carbapenems. Thermostability was measured and structures were solved using X-ray crystallography (MYO-1 and ECV-1) or generated by homology modelling (SHD-1). RESULTS Expression of the environmental MBLs in E. coli resulted in the characteristic MBL profile, not affecting aztreonam susceptibility and decreasing susceptibility to carbapenems, cephalosporins and penicillins. The purified enzymes showed variable catalytic activity in the order of <5% to ∼70% compared with the clinically widespread NDM-1. The thermostability of ECV-1 and SHD-1 was up to 8°C higher than that of MYO-1 and NDM-1. Using solved structures and molecular modelling, we identified differences in their second shell composition, possibly responsible for their relatively low hydrolytic activity. CONCLUSIONS These results show the importance of environmental species acting as reservoirs for MBL-encoding genes.
Collapse
Affiliation(s)
- Christopher Fröhlich
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | - Vidar Sørum
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Sandra Huber
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway.,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Fanny Berglund
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Stathis D Kotsakis
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Nachiket P Marathe
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden.,Institute of Marine Research, Bergen, Norway
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Hanna-Kirsti S Leiros
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
9
|
Ali A, Gupta D, Khan AU. Role of non-active site residues in maintaining New Delhi metallo-β-lactamase-1(NDM-1) function: an approach of site-directed mutagenesis and docking. FEMS Microbiol Lett 2021; 368:fnz003. [PMID: 30624634 DOI: 10.1093/femsle/fnz003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/05/2019] [Indexed: 12/17/2023] Open
Abstract
New Delhi metallo-β-lactamase-1 (NDM-1) has been known to hydrolyze nearly all β-lactam antibiotics, leading to a multidrug-resistant state. Hence, it is important to study its structure and function in relation to controlling infections caused by such resistant bacterial strains. Mutagenesis is one of the approaches used to explore it. No study has been performed to explore the role of non-active site residues in the enzyme activity. This study includes mutations of three non-active site residues to comprehend its structure and function simultaneously. Three non-active site laboratory mutants of NDM-1 were generated by site-directed mutagenesis. The minimum inhibitory concentrations of cefotaxime, cefoxitin, imipenem and meropenem were reduced by up to 4-fold for these mutants compared with wild-type. The hydrolytic activity of mutants was also found to be reduced. Mutants showed a significant change in secondary structure compared with wild-type, as determined by CD spectrophotometry. The catalytic properties and stability of these mutants were found to be reduced. Hence, it revealed an imperative role of non-active site residues in the enzymatic activity of NDM-1.
Collapse
|
10
|
Sinha D, Sinha D, Banerjee N, Rai P, Seal S, Chakraborty T, Chatterjee S, Sau S. A conserved arginine residue in a staphylococcal anti-sigma factor is required to preserve its kinase activity, structure, and stability. J Biomol Struct Dyn 2020; 40:4972-4986. [PMID: 33356973 DOI: 10.1080/07391102.2020.1864475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
RsbW, σB, and RsbV, encoded by Staphylococcus aureus and related bacteria, act as an anti-sigma factor, an sigma factor, and an anti-anti-sigma factor, respectively. The interaction between RsbW and σB blocks the transcription initiation activity of the latter protein. RsbW also functions as a serine kinase and phosphorylates RsbV in the presence of ATP. Our modeling study indicates that the RsbW-RsbV complex is stabilized by twenty-four intermolecular non-covalent bonds. Of the bond-forming RsbW residues, Arg 23, and Glu 49 are conserved residues. To understand the roles of Arg 23 in RsbW, rRsbW[R23A], a recombinant S. aureus RsbW (rRsbW) harboring Arg to Ala change at position 23, was investigated using various probes. The results reveal that rRsbW[R23A], like rRsbW, exists as the dimers in the aqueous solution. However, rRsbW[R23A], unlike rRsbW, neither interacted with a chimeric RsbV (rRsbV) nor formed the phosphorylated rRsbV in the presence of ATP. Furthermore, the tertiary structure and hydrophobic surface area of rRsbW[R23A] matched little with those of rRsbW. Conversely, both rRsbW[R23A] and rRsbW showed interaction with a recombinant σB (rσB). rRsbW and rRsbW[R23A] were also unfolded via the formation of at least one intermediate in the presence of urea. However, the thermodynamic stability of rRsbW significantly differed from that of rRsbW[R23A]. Our molecular dynamics (MD) simulation study also reveals the substantial change of structure, dimension, and stability of RsbW due to the above mutation. The ways side chain of critical Arg 23 contributes to maintaining the tertiary structure, and stability of RsbW was elaborately discussed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debasmita Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Debabrata Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Nilanjan Banerjee
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, India
| | - Priya Rai
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, India
| | - Soham Seal
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | | | | | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
11
|
Sharma S, Sharma S, Singh PP, Khan IA. Potential Inhibitors Against NDM-1 Type Metallo-β-Lactamases: An Overview. Microb Drug Resist 2020; 26:1568-1588. [PMID: 32486911 DOI: 10.1089/mdr.2019.0315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A new member of the class metallo-β-lactamase (MBL), New Delhi metallo-beta-lactamase 1 (NDM-1) has emerged recently as a leading threat to the treatment of infections that have spread in all major Gram-negative pathogens. The enzyme inactivates antibiotics of the carbapenem family, which are a mainstay for the treatment of antibiotic-resistant bacterial infections. This review provides information about NDM-1 spatial structure, potential features of the active site, and its mechanism of action. It also enlists the inhibitors/compounds/drugs against NDM-1 in various development phases. Understanding their mode of inhibition and the structure-activity relationship would be beneficial for development, synthesis, and even increasing biological efficacy of inhibitors, making them more promising drug candidates.
Collapse
Affiliation(s)
- Smriti Sharma
- Clinical Microbiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India.,Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Sumit Sharma
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India.,Medicinal Chemistry Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Parvinder Pal Singh
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India.,Medicinal Chemistry Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Inshad Ali Khan
- Clinical Microbiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India.,Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu Tawi, India
| |
Collapse
|
12
|
Rivière G, Oueslati S, Gayral M, Créchet JB, Nhiri N, Jacquet E, Cintrat JC, Giraud F, van Heijenoort C, Lescop E, Pethe S, Iorga BI, Naas T, Guittet E, Morellet N. NMR Characterization of the Influence of Zinc(II) Ions on the Structural and Dynamic Behavior of the New Delhi Metallo-β-Lactamase-1 and on the Binding with Flavonols as Inhibitors. ACS OMEGA 2020; 5:10466-10480. [PMID: 32426604 PMCID: PMC7226869 DOI: 10.1021/acsomega.0c00590] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/15/2020] [Indexed: 05/22/2023]
Abstract
New Delhi metallo-β-lactamase-1 (NDM-1) has recently emerged as a global threat because of its ability to confer resistance to all common β-lactam antibiotics. Understanding the molecular basis of β-lactam hydrolysis by NDM is crucial for designing NDM inhibitors or β-lactams resistant to their hydrolysis. In this study, for the first time, NMR was used to study the influence of Zn(II) ions on the dynamic behavior of NDM-1. Our results highlighted that the binding of Zn(II) in the NDM-1 active site induced several structural and dynamic changes on active site loop 2 (ASL2) and L9 loops and on helix α2. We subsequently studied the interaction of several flavonols: morin, quercetin, and myricetin were identified as natural and specific inhibitors of NDM-1. Quercetin conjugates were also synthesized in an attempt to increase the solubility and bioavailability. Our NMR investigations on NDM-1/flavonol interactions highlighted that both Zn(II) ions and the residues of the NDM-1 ASL1, ASL2, and ASL4 loops are involved in the binding of flavonols. This is the first NMR interaction study of NDM-1/inhibitors, and the models generated using HADDOCK will be useful for the rational design of more active inhibitors, directed against NDM-1.
Collapse
Affiliation(s)
- Gwladys Rivière
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Saoussen Oueslati
- EA7361
“Structure, Dynamic, Function and Expression of Broad Spectrum
β-Lactamases”, Faculty of Medicine, Université Paris-Sud, Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France
| | - Maud Gayral
- Institut
de Chimie Moléculaire et des Matériaux d’Orsay
(ICMMO), CNRS, Université Paris Sud, Université Paris-Saclay, 15 rue Georges Clemenceau, 91405 Orsay Cedex, France
| | | | - Naïma Nhiri
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Eric Jacquet
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Jean-Christophe Cintrat
- Service
de Chimie Bio-organique et Marquage (SCBM), CEA, Université Paris-Saclay, LabEx LERMIT, 91191 Gif/Yvette, France
| | - François Giraud
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Carine van Heijenoort
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Ewen Lescop
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Stéphanie Pethe
- EA7361
“Structure, Dynamic, Function and Expression of Broad Spectrum
β-Lactamases”, Faculty of Medicine, Université Paris-Sud, Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France
| | - Bogdan I. Iorga
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Thierry Naas
- EA7361
“Structure, Dynamic, Function and Expression of Broad Spectrum
β-Lactamases”, Faculty of Medicine, Université Paris-Sud, Université Paris-Saclay, LabEx LERMIT, Le Kremlin-Bicêtre, France
- . Phone:(33)145212019 or (33)145213030. Fax: (33)145216340
| | - Eric Guittet
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Nelly Morellet
- Institut
de Chimie des Substances Naturelles, CNRS UPR 2301, Université
Paris-Sud, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
- . Phone:(33)169823762. Fax: (33)169823784
| |
Collapse
|
13
|
Sang P, Tian SH, Meng ZH, Yang LQ. Anti-HIV drug repurposing against SARS-CoV-2. RSC Adv 2020; 10:15775-15783. [PMID: 35493667 PMCID: PMC9052367 DOI: 10.1039/d0ra01899f] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022] Open
Abstract
A novel severe acute respiratory syndrome human coronavirus (SARS HCoV) was identified from respiratory illness patients (named SARS-CoV-2 by ICTV) in December 2019 and has recently emerged as a serious threat to world public health. However, no approved drugs have been found to effectively inhibit the virus. Since it has been reported that HIV protease inhibitors can be used as anti-SARS drugs by targeting SARS-CoV-1 3CLpro, we chose six approved anti-HIV drugs and investigated their binding interactions with 3CLpro to evaluate their potential to become clinical drugs for the new coronavirus pneumonia (COVID-19) caused by SARS-CoV-2 infection. The molecular docking results indicate that the 3CLpro of SARS-CoV-2 has a higher binding affinity for all the studied inhibitors than does SARS-CoV-1. Two docking complexes (indinavir and darunavir) with high docking scores were further subjected to MM-PBSA binding free energy calculations to detail the molecular interactions between these two protease inhibitors and SARS HCoV 3CLpro. Our results show that, among the inhibitors tested, darunavir has the highest binding affinity with SARS-CoV-2 and SARS-CoV-1 3CLpro, indicating that it may have the potential to be used as an anti-COVID-19 clinical drug. The mechanism behind the increased binding affinity of HIV protease inhibitors toward SARS-CoV-2 3CLpro (as compared to SARS-CoV-1) was investigated by MD simulations. Our study provides insight into the possible role of structural flexibility during interactions between SARS HCoV 3CLpro and inhibitors and sheds light on structure-based design of anti-COVID-19 drugs targeting SARS-CoV-2 3CLpro.
Collapse
Affiliation(s)
- Peng Sang
- College of Agriculture and Biological Science, Dali University Dali P. R. China
| | - Shu-Hui Tian
- College of Agriculture and Biological Science, Dali University Dali P. R. China
| | - Zhao-Hui Meng
- NHC Key Laboratory of Drug Addiction Medicine, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University Kunming P. R. China
| | - Li-Quan Yang
- College of Agriculture and Biological Science, Dali University Dali P. R. China
| |
Collapse
|
14
|
Shi C, Bao J, Sun Y, Kang X, Lao X, Zheng H. Discovery of Baicalin as NDM-1 inhibitor: Virtual screening, biological evaluation and molecular simulation. Bioorg Chem 2019; 88:102953. [DOI: 10.1016/j.bioorg.2019.102953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 11/29/2022]
|
15
|
Kinetic Profile and Molecular Dynamic Studies Show that Y229W Substitution in an NDM-1/L209F Variant Restores the Hydrolytic Activity of the Enzyme toward Penicillins, Cephalosporins, and Carbapenems. Antimicrob Agents Chemother 2019; 63:AAC.02270-18. [PMID: 30917978 DOI: 10.1128/aac.02270-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/23/2019] [Indexed: 01/01/2023] Open
Abstract
The New Delhi metallo-β-lactamase-1 (NDM-1) enzyme is the most common metallo-β-lactamase identified in many Gram-negative bacteria causing severe nosocomial infections. The aim of this study was to focus the attention on non-active-site residues L209 and Y229 of NDM-1 and to investigate their role in the catalytic mechanism. Specifically, the effect of the Y229W substitution in the L209F variant was evaluated by antimicrobial susceptibility testing, kinetic, and molecular dynamic (MD) studies. The Y229W single mutant and L209F-Y229W double mutant were generated by site-directed mutagenesis. The Km , k cat, and k cat/Km kinetic constants, calculated for the two mutants, were compared with those of (wild-type) NDM-1 and the L209F variant. Compared to the L209F single mutant, the L209F-Y229W double mutant showed a remarkable increase in k cat values of 100-, 240-, 250-, and 420-fold for imipenem, meropenem, benzylpenicillin, and cefepime, respectively. In the L209F-Y229W enzyme, we observed a remarkable increase in k cat/Km of 370-, 140-, and 80-fold for cefepime, meropenem, and cefazolin, respectively. The same behavior was noted using the antimicrobial susceptibility test. MD simulations were carried out on both L209F and L209F-Y229W enzymes complexed with benzylpenicillin, focusing attention on the overall mechanical features and on the differences between the two systems. With respect to the L209F variant, the L209F-Y229W double mutant showed mechanical stabilization of loop 10 and the N-terminal region. In addition, Y229W substitution destabilized both the C-terminal region and the region from residues 149 to 154. The epistatic effect of the Y229W mutation jointly with the stabilization of loop 10 led to a better catalytic efficiency of β-lactams. NDM numbering is used in order to facilitate the comparison with other NDM-1 studies.
Collapse
|
16
|
Active-Site Conformational Fluctuations Promote the Enzymatic Activity of NDM-1. Antimicrob Agents Chemother 2018; 62:AAC.01579-18. [PMID: 30150473 DOI: 10.1128/aac.01579-18] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 01/05/2023] Open
Abstract
β-Lactam antibiotics are the mainstay for the treatment of bacterial infections. However, elevated resistance to these antibiotics mediated by metallo-β-lactamases (MBLs) has become a global concern. New Delhi metallo-β-lactamase-1 (NDM-1), a newly added member of the MBL family that can hydrolyze almost all β-lactam antibiotics, has rapidly spread all over the world and poses serious clinical threats. Broad-spectrum and mechanism-based inhibitors against all MBLs are highly desired, but the differential mechanisms of MBLs toward different antibiotics pose a great challenge. To facilitate the design of mechanism-based inhibitors, we investigated the active-site conformational changes of NDM-1 through the determination of a series of 15 high-resolution crystal structures in native form and in complex with products and by using biochemical and biophysical studies, site-directed mutagenesis, and molecular dynamics computation. The structural studies reveal the consistency of the active-site conformations in NDM-1/product complexes and the fluctuation in native NDM-1 structures. The enzymatic measurements indicate a correlation between enzymatic activity and the active-site fluctuation, with more fluctuation favoring higher activity. This correlation is further validated by structural and enzymatic studies of the Q123G mutant. Our combinational studies suggest that active-site conformational fluctuation promotes the enzymatic activity of NDM-1, which may guide further mechanism studies and inhibitor design.
Collapse
|
17
|
Marcoccia F, Leiros HKS, Aschi M, Amicosante G, Perilli M. Exploring the role of L209 residue in the active site of NDM-1 a metallo-β-lactamase. PLoS One 2018; 13:e0189686. [PMID: 29293526 PMCID: PMC5749715 DOI: 10.1371/journal.pone.0189686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/30/2017] [Indexed: 11/28/2022] Open
Abstract
Background New Delhi Metallo-β-Lactamase (NDM-1) is one of the most recent additions to the β-lactamases family. Since its discovery in 2009, NDM-1 producing Enterobacteriaceae have disseminated globally. With few effective antibiotics against NDM-1 producers, there is an urgent need to design new drug inhibitors through the help of structural and mechanistic information available from mutagenic studies. Results/Conclusions In our study we focus the attention on the non-catalytic residue Leucine 209 by changing it into a Phenylalanine. The L209F laboratory variant of NDM-1 displays a drastic reduction of catalytic efficiency (due to low kcat values) towards penicillins, cephalosporins and carbapenems. Thermofluor-based assay demonstrated that NDM-1 and L209F are stable to the temperature and the zinc content is the same in both enzymes as demonstrated by experiments with PAR in the presence of GdnHCL. Molecular Dynamics (MDs) simulations, carried out on NDM-1 and L209F both complexed and uncomplexed with Benzylpenicillin indicate that the point mutation produces a significant mechanical destabilization of the enzyme and also an increase of water content. These observations clearly show that the single mutation induces drastic changes in the enzyme properties which can be related to the observed different catalytic behavior.
Collapse
Affiliation(s)
- Francesca Marcoccia
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università degli Studi dell’Aquila, L’Aquila, Italy
| | - Hanna-Kirsti S. Leiros
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Massimiliano Aschi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, L’Aquila, Italy
| | - Gianfranco Amicosante
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università degli Studi dell’Aquila, L’Aquila, Italy
| | - Mariagrazia Perilli
- Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università degli Studi dell’Aquila, L’Aquila, Italy
- * E-mail:
| |
Collapse
|
18
|
Structural and functional insight of New Delhi Metallo β-lactamase-1 variants. Future Med Chem 2018; 10:221-229. [DOI: 10.4155/fmc-2017-0143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
New Delhi Metallo β-lactamase-1 (NDM-1) is a member of the Metallo-β-lactamase family, capable of catalyzing the hydrolysis of all β-lactam antibiotics. The rapid dissemination of NDM producers, ‘superbugs’, has become a worldwide concern to health workers. Seventeen different variants of NDM have been reported so far, across the world. These variants varied in their sequences either by single or multiple amino acid substitutions. This review summarizes the crystal structure of NDM and provides a comparative analysis of all variants. Moreover, we have for the first time highlighted the role of α-helix, β-sheet and loop structures of NDM enzyme, having different mutations occurred in these regions. The effect of these substitutions on its structure and functional aspect has to be thoroughly understood to design effective inhibitors in future.
Collapse
|
19
|
Sang P, Hu W, Ye YJ, Li LH, Zhang C, Xie YH, Meng ZH. In silico screening, molecular docking, and molecular dynamics studies of SNP-derived human P5CR mutants. J Biomol Struct Dyn 2017; 35:2441-2453. [PMID: 27677826 DOI: 10.1080/07391102.2016.1222967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 08/07/2016] [Indexed: 01/13/2023]
Abstract
Pyrroline-5-carboxylate reductase (P5CR) encoded by PYCR1 gene is a housekeeping enzyme that catalyzes the reduction of P5C to proline using NAD(P)H as the cofactor. In this study, we used in silico approaches to examine the role of nonsynonymous single-nucleotide polymorphisms in the PYCR1 gene and their putative functions in the pathogenesis of Cutis Laxa. Among the 348 identified SNPs, 15 were predicted to be potentially damaging by both SIFT and PolyPhen tools; of them two SNP-derived mutations, R119G and G206W, have been previously reported to correlate with Cutis Laxa. These two mutations were therefore selected to be mapped to the wild-type (WT) P5CR structure for further structural and functional analyses. The results of comparative computational analyses using I-Mutant and Autodock reveal reductions in both stability and cofactor binding affinity of these two mutants. Comparative molecular dynamics (MD) simulations were performed to evaluate the changes in dynamic properties of P5CR upon mutations. The results reveal that the two mutations enhance the rigidity of P5CR structure, especially that of cofactor binding site, which could result in decreased kinetics of cofactor entrance and egress. Comparison between the structural properties of the WT and mutants during MD simulations shows that the enhanced rigidity of mutants results most likely from the increased number of inter-atomic interactions and the decreased number of dynamic hydrogen bonds. Our study provides novel insight into the deleterious effects of the R119G and G206W mutations on P5CR, and sheds light on the mechanisms by which these mutations mediate Cutis Laxa.
Collapse
Affiliation(s)
- Peng Sang
- a Laboratory of Molecular Cardiology, Department of Cardiology , The First Affiliated Hospital of Kunming Medical University , Kunming , P.R. China
| | - Wei Hu
- a Laboratory of Molecular Cardiology, Department of Cardiology , The First Affiliated Hospital of Kunming Medical University , Kunming , P.R. China
| | - Yu-Jia Ye
- a Laboratory of Molecular Cardiology, Department of Cardiology , The First Affiliated Hospital of Kunming Medical University , Kunming , P.R. China
| | - Lin-Hua Li
- a Laboratory of Molecular Cardiology, Department of Cardiology , The First Affiliated Hospital of Kunming Medical University , Kunming , P.R. China
| | - Chao Zhang
- a Laboratory of Molecular Cardiology, Department of Cardiology , The First Affiliated Hospital of Kunming Medical University , Kunming , P.R. China
| | - Yue-Hui Xie
- b Department of Computer Science, The Faculty of Basic Medicine , Kunming Medical University , Kunming , P.R China
| | - Zhao-Hui Meng
- a Laboratory of Molecular Cardiology, Department of Cardiology , The First Affiliated Hospital of Kunming Medical University , Kunming , P.R. China
| |
Collapse
|
20
|
Shen B, Zhu C, Gao X, Liu G, Song J, Yu Y. Oligopeptides as full-length New Delhi metallo-β-lactamase-1 (NDM-1) inhibitors. PLoS One 2017; 12:e0177293. [PMID: 28542279 PMCID: PMC5441612 DOI: 10.1371/journal.pone.0177293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 04/25/2017] [Indexed: 01/10/2023] Open
Abstract
‘Superbug’ bacteria producing NDM-1 enzyme causing wide public concern were first detected in a patient who visited India in 2008. It's an effective approach to combining β-lactam antibiotics with NDM-1 inhibitor for treating NDM-1 producing strain infection. In our research, we designed ten oligopeptides, tested IC50 values against NDM-1 enzyme, determined the MIC values of synergistic antibacterial effect and explored the binding model. We found that the oligopeptides 2 (Cys-Phe) and 5 (Cys-Asp) respectively presented IC50 values of 113 μM and 68 μM and also displayed favorable synergistic effects of the inhibitors in combination with ertapenem against genetic engineering-host E. coli BL21 (DE3)/pET30a-NDM-1 and a clinical isolate of P. aeruginosa with blaNDM-1. Flexible docking and partial charge study suggested the interaction between oligopeptide and NDM-1. Three types of action effects, hydrogen bond, electrostatic effect and π-π interaction, contributed to the inhibitory activities.
Collapse
Affiliation(s)
- Bingzheng Shen
- Department of Pharmacy, Renmin Hospital, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, Wuhan, China
| | - Xiang Gao
- Central Laboratory, Renmin Hospital, Wuhan University, Wuhan, China
| | - Gang Liu
- Department of Pharmacy, Renmin Hospital, Wuhan University, Wuhan, China
| | - Jinchun Song
- Department of Pharmacy, Renmin Hospital, Wuhan University, Wuhan, China
- * E-mail: (JS); (YY)
| | - Yan Yu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (JS); (YY)
| |
Collapse
|
21
|
Sang P, Xie YH, Li LH, Ye YJ, Hu W, Wang J, Wan W, Li R, Li LJ, Ma LL, Li Z, Liu SQ, Meng ZH. Effect of the R119G mutation on human P5CR structure and its interactions with NAD: Insights derived from molecular dynamics simulation and free energy analysis. Comput Biol Chem 2017; 67:141-149. [PMID: 28095341 DOI: 10.1016/j.compbiolchem.2016.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/09/2016] [Accepted: 12/30/2016] [Indexed: 11/21/2022]
Abstract
Pyrroline-5-carboxylate reductase (P5CR), an enzyme with conserved housekeeping roles, is involved in the etiology of cutis laxa. While previous work has shown that the R119G point mutation in the P5CR protein is involved, the structural mechanism behind the pathology remains to be elucidated. In order to probe the role of the R119G mutation in cutis laxa, we performed molecular dynamics (MD) simulations, essential dynamics (ED) analysis, and Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations on wild type (WT) and mutant P5CR-NAD complex. These MD simulations and ED analyses suggest that the R119G mutation decreases the flexibility of P5CR, specifically in the substrate binding pocket, which could decrease the kinetics of the cofactor entrance and egress. Furthermore, the MM-PBSA calculations suggest the R119G mutant has a lower cofactor binding affinity for NAD than WT. Our study provides insight into the possible role of the R119G mutation during interactions between P5CR and NAD, thus bettering our understanding of how the mutation promotes cutis laxa.
Collapse
Affiliation(s)
- Peng Sang
- Laboratory of Molecular Cardiology, Department of Cardiology,The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Yue-Hui Xie
- Department of Computer Science, The Faculty of Basic Medicine, Kunming Medical University, Kunming, PR China
| | - Lin-Hua Li
- Laboratory of Molecular Cardiology, Department of Cardiology,The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Yu-Jia Ye
- Laboratory of Molecular Cardiology, Department of Cardiology,The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Wei Hu
- Laboratory of Molecular Cardiology, Department of Cardiology,The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Jing Wang
- Laboratory of Molecular Cardiology, Department of Cardiology,The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Wen Wan
- Laboratory of Molecular Cardiology, Department of Cardiology,The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Rui Li
- Laboratory of Molecular Cardiology, Department of Cardiology,The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Long-Jun Li
- Laboratory of Molecular Cardiology, Department of Cardiology,The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Lin-Ling Ma
- Laboratory of Molecular Cardiology, Department of Cardiology,The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Zhi Li
- Laboratory of Molecular Cardiology, Department of Cardiology,The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Shu-Qun Liu
- Laboratory of Molecular Cardiology, Department of Cardiology,The First Affiliated Hospital of Kunming Medical University, Kunming, PR China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, PR China.
| | - Zhao-Hui Meng
- Laboratory of Molecular Cardiology, Department of Cardiology,The First Affiliated Hospital of Kunming Medical University, Kunming, PR China.
| |
Collapse
|
22
|
Modified Deacetylcephalosporin C Synthase for the Biotransformation of Semisynthetic Cephalosporins. Appl Environ Microbiol 2016; 82:3711-3720. [PMID: 27084018 DOI: 10.1128/aem.00174-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/06/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Deacetylcephalosporin C synthase (DACS), a 2-oxoglutarate-dependent oxygenase synthesized by Streptomyces clavuligerus, transforms an inert methyl group of deacetoxycephalosporin C (DAOC) into an active hydroxyl group of deacetylcephalosporin C (DAC) during the biosynthesis of cephalosporin. It is a step which is chemically difficult to accomplish, but its development by use of an enzymatic method with DACS can facilitate a cost-effective technology for the manufacture of semisynthetic cephalosporin intermediates such as 7-amino-cephalosporanic acid (7ACA) and hydroxymethyl-7-amino-cephalosporanic acid (HACA) from cephalosporin G. As the native enzyme showed negligible activity toward cephalosporin G, an unnatural and less expensive substrate analogue, directed-evolution strategies such as random, semirational, rational, and computational methods were used for systematic engineering of DACS for improved activity. In comparison to the native enzyme, several variants with improved catalytic efficiency were found. The enzyme was stable for several days and is expressed in soluble form at high levels with significantly higher kcat/Km values. The efficacy and industrial scalability of one of the selected variants, CefFGOS, were demonstrated in a process showing complete bioconversion of 18 g/liter of cephalosporin G into deacetylcephalosporin G (DAG) in about 80 min and showed reproducible results at higher substrate concentrations as well. DAG could be converted completely into HACA in about 30 min by a subsequent reaction, thus facilitating scalability toward commercialization. The experimental findings with several mutants were also used to rationalize the functional conformation deduced from homology modeling, and this led to the disclosure of critical regions involved in the catalysis of DACS. IMPORTANCE 7ACA and HACA serve as core intermediates for the manufacture of several semisynthetic cephalosporins. As they are expensive, a cost-effective enzyme technology for the manufacture of these intermediates is required. Deacetylcephalosporin C synthase (DACS) was identified as a candidate enzyme for the development of technology from cephalosporin G in this study. Directed-evolution strategies were employed to enhance the catalytic efficiency of deacetylcephalosporin C synthase. One of the selected mutants of deacetylcephalosporin C synthase could convert high concentrations of cephalosporin G into DAG, which subsequently could be converted into HACA completely. As cephalosporin G is inexpensive and readily available, the technology would lead to a substantial reduction in the cost for these intermediates upon commercialization.
Collapse
|
23
|
Wang YT, Cheng TL. Refined models of New Delhi metallo-beta-lactamase-1 with inhibitors: an QM/MM modeling study. J Biomol Struct Dyn 2016; 34:2214-23. [DOI: 10.1080/07391102.2015.1110834] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yeng-Tseng Wang
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan, P.R. China
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan, P.R. China
| | - Tian-Lu Cheng
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan, P.R. China
| |
Collapse
|
24
|
Role of Non-Active-Site Residue Trp-93 in the Function and Stability of New Delhi Metallo-β-Lactamase 1. Antimicrob Agents Chemother 2015; 60:356-60. [PMID: 26525789 DOI: 10.1128/aac.01194-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/18/2015] [Indexed: 01/25/2023] Open
Abstract
New Delhi metallo-β-lactamase-1 (NDM-1) is expressed by various members of Enterobacteriaceae as a defense mechanism to hydrolyze β-lactam antibiotics. Despite various studies showing the significance of active-site residues in the catalytic mechanism, there is a paucity of reports addressing the role of non-active-site residues in the structure and function of NDM-1. In this study, we investigated the significance of non-active-site residue Trp-93 in the structure and function of NDM-1. We cloned blaNDM-1 from an Enterobacter cloacae clinical strain (EC-15) and introduced the mutation of Trp-93 to Ala (yielding the Trp93Ala mutant) by PCR-based site-directed mutagenesis. Proteins were expressed and purified to homogeneity by affinity chromatography. The MICs of the Trp93Ala mutant were reduced 4- to 8-fold for ampicillin, cefotaxime, ceftazidime, cefoxitin, imipenem, and meropenem. The poor hydrolytic activity of the Trp93Ala mutant was also reflected by its reduced catalytic efficiency. The overall catalytic efficiency of the Trp93Ala mutant was reduced by 40 to 55% (the Km was reduced, while the kcat was similar to that of wild-type NDM-1 [wtNDM-1]). Heat-induced denaturation showed that the ΔGD (o) and Tm of Trp93Ala mutant were reduced by 1.8 kcal/mol and 4.8°C, respectively. Far-UV circular dichroism (CD) analysis showed that the α-helical content of the Trp93Ala mutant was reduced by 2.9%. The decrease in stability and catalytic efficiency of the Trp93Ala mutant was due to the loss of two hydrogen bonds with Ser-63 and Val-73 and hydrophobic interactions with Leu-65, Val-73, Gln-123, and Asp-124. The study provided insight into the role of non-active-site amino acid residues in the hydrolytic mechanism of NDM-1.
Collapse
|
25
|
Sha H, Zou Z, Xin K, Bian X, Cai X, Lu W, Chen J, Chen G, Huang L, Blair AM, Cao P, Liu B. Tumor-penetrating peptide fused EGFR single-domain antibody enhances cancer drug penetration into 3D multicellular spheroids and facilitates effective gastric cancer therapy. J Control Release 2014; 200:188-200. [PMID: 25553823 DOI: 10.1016/j.jconrel.2014.12.039] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/02/2014] [Accepted: 12/25/2014] [Indexed: 12/23/2022]
Abstract
Human tumors, including gastric cancer, frequently express high levels of epidermal growth factor receptors (EGFRs), which are associated with a poor prognosis. Targeted delivery of anticancer drugs to cancerous tissues shows potential in sparing unaffected tissues. However, it has been a major challenge for drug penetration in solid tumor tissues due to the complicated tumor microenvironment. We have constructed a recombinant protein named anti-EGFR-iRGD consisting of an anti-EGFR VHH (the variable domain from the heavy chain of the antibody) fused to iRGD, a tumor-specific binding peptide with high permeability. Anti-EGFR-iRGD, which targets EGFR and αvβ3, spreads extensively throughout both the multicellular spheroids and the tumor mass. The recombinant protein anti-EGFR-iRGD also exhibited antitumor activity in tumor cell lines, multicellular spheroids, and mice. Moreover, anti-EGFR-iRGD could improve anticancer drugs, such as doxorubicin (DOX), bevacizumab, nanoparticle permeability and efficacy in multicellular spheroids. This study draws attention to the importance of iRGD peptide in the therapeutic approach of anti-EGFR-iRGD. As a consequence, anti-EGFR-iRGD could be a drug candidate for cancer treatment and a useful adjunct of other anticancer drugs.
Collapse
Affiliation(s)
- Huizi Sha
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Zhengyun Zou
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Kai Xin
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xinyu Bian
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xueting Cai
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Chinese Medicine, Nanjing, China; Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wuguang Lu
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Chinese Medicine, Nanjing, China; Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiao Chen
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Chinese Medicine, Nanjing, China; Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Gang Chen
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Leaf Huang
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Andrew M Blair
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Peng Cao
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Chinese Medicine, Nanjing, China; Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China.
| |
Collapse
|
26
|
Structure-function correlation analysis of connexin50 missense mutations causing congenital cataract: electrostatic potential alteration could determine intracellular trafficking fate of mutants. BIOMED RESEARCH INTERNATIONAL 2014; 2014:673895. [PMID: 25003127 PMCID: PMC4066682 DOI: 10.1155/2014/673895] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/02/2014] [Indexed: 12/13/2022]
Abstract
Connexin50 (Cx50) mutations are reported to cause congenital cataract probably through the disruption of intercellular transport in the lens. Cx50 mutants that undergo mistrafficking have generally been associated with failure to form functional gap junction channels; however, sometimes even properly trafficked mutants were found to undergo similar consequences. We hereby wanted to elucidate any structural bases of the varied functional consequences of Cx50 missense mutations through in silico approach. Computational studies have been done based on a Cx50 homology model to assess conservation, solvent accessibility, and 3-dimensional localization of mutated residues as well as mutation-induced changes in surface electrostatic potential, H-bonding, and steric clash. This was supplemented with meta-analysis of published literature on the functional properties of connexin missense mutations. Analyses revealed that the mutation-induced critical alterations of surface electrostatic potential in Cx50 mutants could determine their fate in intracellular trafficking. A similar pattern was observed in case of mutations involving corresponding conserved residues in other connexins also. Based on these results the trafficking fates of 10 uncharacterized Cx50 mutations have been predicted. Further experimental analyses are needed to validate the observed correlation.
Collapse
|
27
|
Chen J, Chen H, Zhu T, Zhou D, Zhang F, Lao X, Zheng H. Asp120Asn mutation impairs the catalytic activity of NDM-1 metallo-β-lactamase: experimental and computational study. Phys Chem Chem Phys 2014; 16:6709-16. [PMID: 24584846 DOI: 10.1039/c3cp55069a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New Delhi metallo-β-lactamase-1 (NDM-1) has attracted extensive attention in recent years for its high activity for hydrolyzing almost all β-lactam antibiotics. Like other metallo-β-lactamases (MβLs), NDM-1 features an invariant Asp120 that ligates the zinc ion (ZN2) in the active site. Previous studies showed that substitutions of Asp120 with residues such as Ala, Ser, Asn and Glu dramatically impaired the MβL (BcII, IMP-1, L1) activity, but no consensus about the exact role of Asp120 has reached. Here we constructed D120N mutant of NDM-1 by site-directed mutagenesis. The replacement of Asp120 with Asn, which has much weaker metal ligating capabilities than Asp, severely impaired the lactamase activity without abolishing the ZN2 site. Molecular dynamics simulations suggested that the ZN1-ZN2 distance increased because of mutation, leading to a rearrangement of the active site, including the bridging OH(-). Thereby, the Mulliken charges of ZN1 and ZN2 redistributed, especially for ZN2, which might be the major cause of the impaired activity. Reducing the point charges of Asp120 carboxyl oxygens weakened the ionic interactions between Asp120 and ZN2, and the positions of the zinc ions were also changed as a result. It is proposed that Asp120 acts as a strong ZN2 ligand, positioning ZN2 for catalytically important interactions with the substrate, stabilizing the negatively charged amide nitrogen of the hydrolyzed intermediate, and more importantly, orienting the ZN-bound OH(-) for nucleophilic attacks and protonation. These functions are of general importance for catalyzing β-lactam antibiotics by NDM-1 as well as other MβLs.
Collapse
Affiliation(s)
- Jiao Chen
- School of Life Science and Technology, China Pharmaceutical University, China.
| | | | | | | | | | | | | |
Collapse
|