1
|
Morales-Sanchez A, Shissler SC, Cowan JE, Bhandoola A. Revelations in Thymic Epithelial Cell Biology and Heterogeneity from Single-Cell RNA Sequencing and Lineage Tracing Methodologies. Methods Mol Biol 2023; 2580:25-49. [PMID: 36374449 PMCID: PMC10802793 DOI: 10.1007/978-1-0716-2740-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Thymic epithelial cells (TECs) make up the thymic microenvironments that support the generation of a functionally competent and self-tolerant T-cell repertoire. Cortical (c)TECs, present in the cortex, are essential for early thymocyte development including selection of thymocytes expressing functional TCRs (positive selection). Medullary (m)TECs, located in the medulla, play a key role in late thymocyte development, including depletion of self-reactive T cells (negative selection) and selection of regulatory T cells. In recent years, transcriptomic analysis by single-cell (sc)RNA sequencing (Seq) has revealed TEC heterogeneity previously masked by population-level RNA-Seq or phenotypic studies. We summarize the discoveries made possible by scRNA-Seq, including the identification of novel mTEC subsets, advances in understanding mTEC promiscuous gene expression, and TEC alterations from embryonic to adult stages. Whereas pseudotime analyses of scRNA-Seq data can suggest relationships between TEC subsets, experimental methods such as lineage tracing and reaggregate thymic organ culture (RTOC) are required to test these hypotheses. Lineage tracing - namely, of β5t or Aire expressing cells - has exposed progenitor and parent-daughter cellular relationships within TEC.
Collapse
Affiliation(s)
- Abigail Morales-Sanchez
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- Children's Hospital of Mexico Federico Gomez, Mexico City, Mexico.
| | - Susannah C Shissler
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer E Cowan
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Chakrabarti S, Hoque M, Jamil NZ, Singh VJ, Pollacksmith D, Meer N, Pezzano MT. Bone Marrow-Derived Cells Contribute to the Maintenance of Thymic Stroma including TECs. J Immunol Res 2022; 2022:6061746. [PMID: 35528618 PMCID: PMC9076333 DOI: 10.1155/2022/6061746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/24/2022] [Indexed: 12/29/2022] Open
Abstract
In paradox to critical functions for T-cell selection and self-tolerance, the thymus undergoes profound age-associated atrophy and loss of T-cell function, further enhanced by cancer therapies. Identifying thymic epithelial progenitor populations capable of forming functional thymic tissue will be critical in understanding thymic epithelial cell (TEC) ontogeny and designing strategies to reverse involution. We identified a new population of progenitor cells, present in both the thymus and bone marrow (BM) of mice, that coexpress the hematopoietic marker CD45 and the definitive thymic epithelial marker EpCAM and maintain the capacity to form functional thymic tissue. Confocal analysis and qRT-PCR of sorted cells from both BM and thymus confirmed coexpression of CD45 and EpCAM. Grafting of C57BL/6 fetal thymi under the kidney capsule of H2BGFP transgenic mice revealed that peripheral CD45+ EpCAM+ GFP-expressing cells migrate into the developing thymus and contribute to both TECs and FSP1-expressing thymic stroma. Sorted BM-derived CD45+ EpCAM+ cells contribute to reaggregate thymic organ cultures (RTOCs) and differentiate into keratin and FoxN1-expressing TECs, demonstrating that BM cells can contribute to the maintenance of TEC microenvironments previously thought to be derived solely from endoderm. BM-derived CD45+ EpCAM+ cells represent a new source of progenitor cells that contribute to thymic homeostasis. Future studies will characterize the contribution of BM-derived CD45+ EpCAM+ TEC progenitors to distinct functional TEC microenvironments in both the steady-state thymus and under conditions of demand. Cell therapies utilizing this population may help counteract thymic involution in cancer patients.
Collapse
Affiliation(s)
- Shami Chakrabarti
- Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
| | - Mohammed Hoque
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
| | - Nawshin Zara Jamil
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
| | - Varan J. Singh
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
| | - Daniel Pollacksmith
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
| | - Neelab Meer
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
| | - Mark T. Pezzano
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
- Program in Biology, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
3
|
Olechnowicz A, Oleksiewicz U, Machnik M. KRAB-ZFPs and cancer stem cells identity. Genes Dis 2022. [PMID: 37492743 PMCID: PMC10363567 DOI: 10.1016/j.gendis.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Studies on carcinogenesis continue to provide new information about different disease-related processes. Among others, much research has focused on the involvement of cancer stem cells (CSCs) in tumor initiation and progression. Studying the similarities and differences between CSCs and physiological stem cells (SCs) allows for a better understanding of cancer biology. Recently, it was shown that stem cell identity is partially governed by the Krϋppel-associated box domain zinc finger proteins (KRAB-ZFPs), the biggest family of transcription regulators. Several KRAB-ZFP factors exert a known effect in tumor cells, acting as tumor suppressor genes (TSGs) or oncogenes, yet their role in CSCs is still poorly characterized. Here, we review recent studies regarding the influence of KRAB-ZFPs and their cofactor protein TRIM28 on CSCs phenotype, stemness features, migration and invasion potential, metastasis, and expression of parental markers.
Collapse
|
4
|
Bortolomai I, Sandri M, Draghici E, Fontana E, Campodoni E, Marcovecchio GE, Ferrua F, Perani L, Spinelli A, Canu T, Catucci M, Di Tomaso T, Sergi Sergi L, Esposito A, Lombardo A, Naldini L, Tampieri A, Hollander GA, Villa A, Bosticardo M. Gene Modification and Three-Dimensional Scaffolds as Novel Tools to Allow the Use of Postnatal Thymic Epithelial Cells for Thymus Regeneration Approaches. Stem Cells Transl Med 2019; 8:1107-1122. [PMID: 31140762 PMCID: PMC6766605 DOI: 10.1002/sctm.18-0218] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
Defective functionality of thymic epithelial cells (TECs), due to genetic mutations or injuring causes, results in altered T-cell development, leading to immunodeficiency or autoimmunity. These defects cannot be corrected by hematopoietic stem cell transplantation (HSCT), and thymus transplantation has not yet been demonstrated to be fully curative. Here, we provide proof of principle of a novel approach toward thymic regeneration, involving the generation of thymic organoids obtained by seeding gene-modified postnatal murine TECs into three-dimensional (3D) collagen type I scaffolds mimicking the thymic ultrastructure. To this end, freshly isolated TECs were transduced with a lentiviral vector system, allowing for doxycycline-induced Oct4 expression. Transient Oct4 expression promoted TECs expansion without drastically changing the cell lineage identity of adult TECs, which retain the expression of important molecules for thymus functionality such as Foxn1, Dll4, Dll1, and AIRE. Oct4-expressing TECs (iOCT4 TEC) were able to grow into 3D collagen type I scaffolds both in vitro and in vivo, demonstrating that the collagen structure reproduced a 3D environment similar to the thymic extracellular matrix, perfectly recognized by TECs. In vivo results showed that thymic organoids transplanted subcutaneously in athymic nude mice were vascularized but failed to support thymopoiesis because of their limited in vivo persistence. These findings provide evidence that gene modification, in combination with the usage of 3D biomimetic scaffolds, may represent a novel approach allowing the use of postnatal TECs for thymic regeneration. Stem Cells Translational Medicine 2019;8:1107-1122.
Collapse
Affiliation(s)
- Ileana Bortolomai
- Telethon Institute for Gene Therapy (SR‐Tiget), Division of Regenerative Medicine, Stem Cells, and Gene TherapyIRCCS San Raffaele Scientific InstituteMilanItaly
- UOS MilanoIRGB CNRMilanItaly
| | - Monica Sandri
- Laboratory of Bioceramics and Bio‐Hybrid CompositesInstitute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR)FaenzaItaly
| | - Elena Draghici
- Telethon Institute for Gene Therapy (SR‐Tiget), Division of Regenerative Medicine, Stem Cells, and Gene TherapyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Elena Fontana
- UOS MilanoIRGB CNRMilanItaly
- Humanitas Clinical and Research CenterRozzanoMilanItaly
| | - Elisabetta Campodoni
- Laboratory of Bioceramics and Bio‐Hybrid CompositesInstitute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR)FaenzaItaly
| | - Genni Enza Marcovecchio
- Telethon Institute for Gene Therapy (SR‐Tiget), Division of Regenerative Medicine, Stem Cells, and Gene TherapyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Francesca Ferrua
- Telethon Institute for Gene Therapy (SR‐Tiget), Division of Regenerative Medicine, Stem Cells, and Gene TherapyIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
- Paediatric Immunohematology and Bone Marrow Transplantation UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Laura Perani
- Preclinical Imaging Facility, Experimental Imaging CenterIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Antonello Spinelli
- Preclinical Imaging Facility, Experimental Imaging CenterIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Tamara Canu
- Preclinical Imaging Facility, Experimental Imaging CenterIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Marco Catucci
- Paediatric Immunology, Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Tiziano Di Tomaso
- Telethon Institute for Gene Therapy (SR‐Tiget), Division of Regenerative Medicine, Stem Cells, and Gene TherapyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Lucia Sergi Sergi
- Telethon Institute for Gene Therapy (SR‐Tiget), Division of Regenerative Medicine, Stem Cells, and Gene TherapyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Antonio Esposito
- Vita‐Salute San Raffaele UniversityMilanItaly
- Preclinical Imaging Facility, Experimental Imaging CenterIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Angelo Lombardo
- Telethon Institute for Gene Therapy (SR‐Tiget), Division of Regenerative Medicine, Stem Cells, and Gene TherapyIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - Luigi Naldini
- Telethon Institute for Gene Therapy (SR‐Tiget), Division of Regenerative Medicine, Stem Cells, and Gene TherapyIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - Anna Tampieri
- Laboratory of Bioceramics and Bio‐Hybrid CompositesInstitute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR)FaenzaItaly
| | - Georg A. Hollander
- Paediatric Immunology, Department of BiomedicineUniversity of BaselBaselSwitzerland
- Developmental Immunology, Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Anna Villa
- Telethon Institute for Gene Therapy (SR‐Tiget), Division of Regenerative Medicine, Stem Cells, and Gene TherapyIRCCS San Raffaele Scientific InstituteMilanItaly
- UOS MilanoIRGB CNRMilanItaly
| | - Marita Bosticardo
- Telethon Institute for Gene Therapy (SR‐Tiget), Division of Regenerative Medicine, Stem Cells, and Gene TherapyIRCCS San Raffaele Scientific InstituteMilanItaly
| |
Collapse
|
5
|
Abstract
About two decades ago, cloning of the autoimmune regulator (AIRE) gene materialized one of the most important actors on the scene of self-tolerance. Thymic transcription of genes encoding tissue-specific antigens (ts-ags) is activated by AIRE protein and embodies the essence of thymic self-representation. Pathogenic AIRE variants cause the autoimmune polyglandular syndrome type 1, which is a rare and complex disease that is gaining attention in research on autoimmunity. The animal models of disease, although not identically reproducing the human picture, supply fundamental information on mechanisms and extent of AIRE action: thanks to its multidomain structure, AIRE localizes to chromatin enclosing the target genes, binds to histones, and offers an anchorage to multimolecular complexes involved in initiation and post-initiation events of gene transcription. In addition, AIRE enhances mRNA diversity by favoring alternative mRNA splicing. Once synthesized, ts-ags are presented to, and cause deletion of the self-reactive thymocyte clones. However, AIRE function is not restricted to the activation of gene transcription. AIRE would control presentation and transfer of self-antigens for thymic cellular interplay: such mechanism is aimed at increasing the likelihood of engagement of the thymocytes that carry the corresponding T-cell receptors. Another fundamental role of AIRE in promoting self-tolerance is related to the development of thymocyte anergy, as thymic self-representation shapes at the same time the repertoire of regulatory T cells. Finally, AIRE seems to replicate its action in the secondary lymphoid organs, albeit the cell lineage detaining such property has not been fully characterized. Delineation of AIRE functions adds interesting data to the knowledge of the mechanisms of self-tolerance and introduces exciting perspectives of therapeutic interventions against the related diseases.
Collapse
Affiliation(s)
- Roberto Perniola
- Department of Pediatrics, Neonatal Intensive Care, Vito Fazzi Regional Hospital, Lecce, Italy
| |
Collapse
|
6
|
Sheridan JM, Keown A, Policheni A, Roesley SN, Rivlin N, Kadouri N, Ritchie ME, Jain R, Abramson J, Heng TS, Gray DH. Thymospheres Are Formed by Mesenchymal Cells with the Potential to Generate Adipocytes, but Not Epithelial Cells. Cell Rep 2017; 21:934-942. [DOI: 10.1016/j.celrep.2017.09.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/28/2017] [Accepted: 09/26/2017] [Indexed: 11/28/2022] Open
|
7
|
Krebsbach PH, Villa-Diaz LG. The Role of Integrin α6 (CD49f) in Stem Cells: More than a Conserved Biomarker. Stem Cells Dev 2017; 26:1090-1099. [PMID: 28494695 DOI: 10.1089/scd.2016.0319] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stem cells have the capacity for self-renewal and differentiation into specialized cells that form and repopulated all tissues and organs, from conception to adult life. Depending on their capacity for differentiation, stem cells are classified as totipotent (ie, zygote), pluripotent (ie, embryonic stem cells), multipotent (ie, neuronal stem cells, hematopoietic stem cells, epithelial stem cells, etc.), and unipotent (ie, spermatogonial stem cells). Adult or tissue-specific stem cells reside in specific niches located in, or nearby, their organ or tissue of origin. There, they have microenvironmental support to remain quiescent, to proliferate as undifferentiated cells (self-renewal), and to differentiate into progenitors or terminally differentiated cells that migrate from the niche to perform specialized functions. The presence of proteins at the cell surface is often used to identify, classify, and isolate stem cells. Among the diverse groups of cell surface proteins used for these purposes, integrin α6, also known as CD49f, may be the only biomarker commonly found in more than 30 different populations of stem cells, including some cancer stem cells. This broad expression among stem cell populations indicates that integrin α6 may play an important and conserved role in stem cell biology, which is reaffirmed by recent demonstrations of its role maintaining self-renewal of pluripotent stem cells and breast and glioblastoma cancer stem cells. Therefore, this review intends to highlight and synthesize new findings on the importance of integrin α6 in stem cell biology.
Collapse
Affiliation(s)
- Paul H Krebsbach
- 1 School of Dentistry, University of California , Los Angeles, California
| | - Luis G Villa-Diaz
- 2 Department of Biological Sciences, Oakland University , Rochester, Michigan
| |
Collapse
|
8
|
Hamazaki Y, Sekai M, Minato N. Medullary thymic epithelial stem cells: role in thymic epithelial cell maintenance and thymic involution. Immunol Rev 2016; 271:38-55. [PMID: 27088906 DOI: 10.1111/imr.12412] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thymus consists of two distinct anatomical regions, the cortex and the medulla; medullary thymic epithelial cells (mTECs) play a crucial role in establishing central T-cell tolerance for self-antigens. Although the understanding of mTEC development in thymic organogenesis as well as the regulation of their differentiation and maturation has improved, the mechanisms of postnatal maintenance remain poorly understood. This issue has a central importance in immune homeostasis and physiological thymic involution as well as autoimmune disorders in various clinicopathological settings. Recently, several reports have demonstrated the existence of TEC stem or progenitor cells in the postnatal thymus, which are either bipotent or unipotent. We identified stem cells specified for mTEC-lineage that are generated in the thymic ontogeny and may sustain mTEC regeneration and lifelong central T-cell self-tolerance. This finding suggested that the thymic medulla is maintained autonomously by its own stem cells. Although several issues, including the relationship with other putative TEC stem/progenitors, remain unclear, further examination of mTEC stem cells (mTECSCs) and their regulatory mechanisms may contribute to the understanding of postnatal immune homeostasis. Possible relationships between decline of mTECSC activity and early thymic involution as well as various autoimmune disorders are discussed.
Collapse
Affiliation(s)
- Yoko Hamazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Miho Sekai
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Tajima A, Pradhan I, Trucco M, Fan Y. Restoration of Thymus Function with Bioengineered Thymus Organoids. CURRENT STEM CELL REPORTS 2016; 2:128-139. [PMID: 27529056 PMCID: PMC4982700 DOI: 10.1007/s40778-016-0040-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The thymus is the primary site for the generation of a diverse repertoire of T-cells that are essential to the efficient function of adaptive immunity. Numerous factors varying from aging, chemotherapy, radiation exposure, virus infection and inflammation contribute to thymus involution, a phenomenon manifested as loss of thymus cellularity, increased stromal fibrosis and diminished naïve T-cell output. Rejuvenating thymus function is a challenging task since it has limited regenerative capability and we still do not know how to successfully propagate thymic epithelial cells (TECs), the predominant population of the thymic stromal cells making up the thymic microenvironment. Here, we will discuss recent advances in thymus regeneration and the prospects of applying bioengineered artificial thymus organoids in regenerative medicine and solid organ transplantation.
Collapse
Affiliation(s)
- Asako Tajima
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA 15212
| | - Isha Pradhan
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA 15212
| | - Massimo Trucco
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA 15212
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19104
| | - Yong Fan
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA 15212
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19104
| |
Collapse
|
10
|
Hamazaki Y. Adult thymic epithelial cell (TEC) progenitors and TEC stem cells: Models and mechanisms for TEC development and maintenance. Eur J Immunol 2015; 45:2985-93. [PMID: 26362014 DOI: 10.1002/eji.201545844] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/06/2015] [Accepted: 09/10/2015] [Indexed: 01/06/2023]
Abstract
The thymus is the primary lymphoid organ for generating self-restricted and self-tolerant functional T cells. Its two distinct anatomical regions, the cortex and the medulla, are involved in positive and negative selection, respectively. Thymic epithelial cells (TECs) constitute the framework of this tissue and function as major stromal components. Extensive studies for more than a decade have revealed how TECs are generated during organogenesis; progenitors specific for medullary TECs (mTECs) and cortical TECs (cTECs) as well as bipotent progenitors for both lineages have been identified, and the signaling pathways required for the development and maturation of mTECs have been elucidated. However, little is known about the initial commitment of mTECs and cTECs during ontogeny, and how regeneration of both lineages is sustained in the postnatal/adult thymus. Recently, stem cell activities in TECs have been demonstrated, and TEC progenitors have been identified in the postnatal thymus. In this review, recent advances in studying the development and maintenance of TECs are summarized, and the possible mechanisms of thymic regeneration and involution are discussed.
Collapse
Affiliation(s)
- Yoko Hamazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
11
|
Khan IS, Park CY, Mavropoulos A, Shariat N, Pollack JL, Barczak AJ, Erle DJ, McManus MT, Anderson MS, Jeker LT. Identification of MiR-205 As a MicroRNA That Is Highly Expressed in Medullary Thymic Epithelial Cells. PLoS One 2015; 10:e0135440. [PMID: 26270036 PMCID: PMC4535774 DOI: 10.1371/journal.pone.0135440] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/22/2015] [Indexed: 11/30/2022] Open
Abstract
Thymic epithelial cells (TECs) support T cell development in the thymus. Cortical thymic epithelial cells (cTECs) facilitate positive selection of developing thymocytes whereas medullary thymic epithelial cells (mTECs) facilitate the deletion of self-reactive thymocytes in order to prevent autoimmunity. The mTEC compartment is highly dynamic with continuous maturation and turnover, but the genetic regulation of these processes remains poorly understood. MicroRNAs (miRNAs) are important regulators of TEC genetic programs since miRNA-deficient TECs are severely defective. However, the individual miRNAs important for TEC maintenance and function and their mechanisms of action remain unknown. Here, we demonstrate that miR-205 is highly and preferentially expressed in mTECs during both thymic ontogeny and in the postnatal thymus. This distinct expression is suggestive of functional importance for TEC biology. Genetic ablation of miR-205 in TECs, however, neither revealed a role for miR-205 in TEC function during homeostatic conditions nor during recovery from thymic stress conditions. Thus, despite its distinct expression, miR-205 on its own is largely dispensable for mTEC biology.
Collapse
Affiliation(s)
- Imran S. Khan
- UCSF Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Chong Y. Park
- UCSF Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- WM Keck Center for Noncoding RNAs, University of California San Francisco, San Francisco, California, United States of America
| | - Anastasia Mavropoulos
- UCSF Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Nikki Shariat
- UCSF Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- WM Keck Center for Noncoding RNAs, University of California San Francisco, San Francisco, California, United States of America
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Joshua L. Pollack
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Andrea J. Barczak
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - David J. Erle
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Michael T. McManus
- UCSF Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- WM Keck Center for Noncoding RNAs, University of California San Francisco, San Francisco, California, United States of America
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Mark S. Anderson
- UCSF Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (MSA); (LTJ)
| | - Lukas T. Jeker
- UCSF Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (MSA); (LTJ)
| |
Collapse
|
12
|
Platelet-Derived Growth Factor Receptor Alpha as a Marker of Mesenchymal Stem Cells in Development and Stem Cell Biology. Stem Cells Int 2015; 2015:362753. [PMID: 26257789 PMCID: PMC4519552 DOI: 10.1155/2015/362753] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 05/24/2015] [Accepted: 06/17/2015] [Indexed: 11/17/2022] Open
Abstract
Three decades on, the mesenchymal stem cells (MSCs) have been intensively researched on the bench top and used clinically. However, ambiguity still exists in regard to their anatomical locations, identities, functions, and extent of their differentiative abilities. One of the major impediments in the quest of the MSC research has been lack of appropriate in vivo markers. In recent years, this obstacle has been resolved to some degree as PDGFRα emerges as an important mesenchymal stem cell marker. Accumulating lines of evidence are showing that the PDGFRα (+) cells reside in the perivascular locations of many adult interstitium and fulfil the classic concepts of MSCs in vitro and in vivo. PDGFRα has long been recognised for its roles in the mesoderm formation and connective tissue development during the embryogenesis. Current review describes the lines of evidence regarding the role of PDGFRα in morphogenesis and differentiation and its implications for MSC biology.
Collapse
|
13
|
Humphreys BD. Cutting to the chase: taking the pulse of label-retaining cells in kidney. Am J Physiol Renal Physiol 2014; 308:F29-30. [PMID: 25298529 DOI: 10.1152/ajprenal.00538.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Benjamin D Humphreys
- Brigham and Women's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; and Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|