1
|
Tóth A, Balogh E, Jeney V. In Vitro Models of Cardiovascular Calcification. Biomedicines 2024; 12:2155. [PMID: 39335668 PMCID: PMC11429067 DOI: 10.3390/biomedicines12092155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/15/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiovascular calcification, characterized by hydroxyapatite deposition in the arterial wall and heart valves, is associated with high cardiovascular morbidity and mortality. Cardiovascular calcification is a hallmark of aging but is frequently seen in association with chronic diseases, such as chronic kidney disease (CKD), diabetes, dyslipidemia, and hypertension in the younger population as well. Currently, there is no therapeutic approach to prevent or cure cardiovascular calcification. The pathophysiology of cardiovascular calcification is highly complex and involves osteogenic differentiation of various cell types of the cardiovascular system, such as vascular smooth muscle cells and valve interstitial cells. In vitro cellular and ex vivo tissue culture models are simple and useful tools in cardiovascular calcification research. These models contributed largely to the discoveries of the numerous calcification inducers, inhibitors, and molecular mechanisms. In this review, we provide an overview of the in vitro cell culture and the ex vivo tissue culture models applied in the research of cardiovascular calcification.
Collapse
Affiliation(s)
- Andrea Tóth
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Enikő Balogh
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Viktória Jeney
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
2
|
Chen J, Kuang S, Cen J, Zhang Y, Shen Z, Qin W, Huang Q, Wang Z, Gao X, Huang F, Lin Z. Multiomics profiling reveals VDR as a central regulator of mesenchymal stem cell senescence with a known association with osteoporosis after high-fat diet exposure. Int J Oral Sci 2024; 16:41. [PMID: 38777841 PMCID: PMC11111693 DOI: 10.1038/s41368-024-00309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
The consumption of a high-fat diet (HFD) has been linked to osteoporosis and an increased risk of fragility fractures. However, the specific mechanisms of HFD-induced osteoporosis are not fully understood. Our study shows that exposure to an HFD induces premature senescence in bone marrow mesenchymal stem cells (BMSCs), diminishing their proliferation and osteogenic capability, and thereby contributes to osteoporosis. Transcriptomic and chromatin accessibility analyses revealed the decreased chromatin accessibility of vitamin D receptor (VDR)-binding sequences and decreased VDR signaling in BMSCs from HFD-fed mice, suggesting that VDR is a key regulator of BMSC senescence. Notably, the administration of a VDR activator to HFD-fed mice rescued BMSC senescence and significantly improved osteogenesis, bone mass, and other bone parameters. Mechanistically, VDR activation reduced BMSC senescence by decreasing intracellular reactive oxygen species (ROS) levels and preserving mitochondrial function. Our findings not only elucidate the mechanisms by which an HFD induces BMSC senescence and associated osteoporosis but also offer new insights into treating HFD-induced osteoporosis by targeting the VDR-superoxide dismutase 2 (SOD2)-ROS axis.
Collapse
Affiliation(s)
- Jiayao Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shuhong Kuang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jietao Cen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yong Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zongshan Shen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wei Qin
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qiting Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zifeng Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xianling Gao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Zhengmei Lin
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Jo Y, Majumdar U, Bose S. Vitamin D3 Release from MgO Doped 3D Printed TCP Scaffolds for Bone Regeneration. ACS Biomater Sci Eng 2024; 10:1676-1685. [PMID: 38386843 PMCID: PMC11186521 DOI: 10.1021/acsbiomaterials.3c01779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Regenerating bone tissue in critical-sized craniofacial bone defects remains challenging and requires the implementation of innovative bone implants with early stage osteogenesis and blood vessel formation. Vitamin D3 is incorporated into MgO-doped 3D-printed scaffolds for defect-specific and patient-specific implants in low load-bearing areas. This novel bone implant also promotes early stage osteogenesis and blood vessel development. Our results show that vitamin D3-loaded MgO-doped 3D-printed scaffolds enhance osteoblast cell proliferation 1.3-fold after being cultured for 7 days. Coculture studies on osteoblasts derived from human mesenchymal stem cells (hMSCs) and osteoclasts derived from monocytes show the upregulation of genes related to osteoblastogenesis and the downregulation of RANK-L, which is essential for osteoclastogenesis. Release of vitamin D3 also inhibits osteoclast differentiation by 1.9-fold after a 21-day culture. After 6 weeks, vitamin D3 release from MgO-doped 3D-printed scaffolds enhances the new bone formation, mineralization, and angiogenic potential. The multifunctional 3D-printed scaffolds can improve early stage osteogenesis and blood vessel formation in craniofacial bone defects.
Collapse
Affiliation(s)
- Yongdeok Jo
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Ujjayan Majumdar
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
4
|
Bae JH, Choe HJ, Holick MF, Lim S. Association of vitamin D status with COVID-19 and its severity : Vitamin D and COVID-19: a narrative review. Rev Endocr Metab Disord 2022; 23:579-599. [PMID: 34982377 PMCID: PMC8724612 DOI: 10.1007/s11154-021-09705-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 01/08/2023]
Abstract
Vitamin D is associated with biological activities of the innate and adaptive immune systems, as well as inflammation. In observational studies, an inverse relationship has been found between serum 25-hydroxyvitamin D (25(OH)D) concentrations and the risk or severity of coronavirus disease 2019 (COVID-19). Several mechanisms have been proposed for the role of vitamin D in COVID-19, including modulation of immune and inflammatory responses, regulation of the renin-angiotensin-aldosterone system, and involvement in glucose metabolism and cardiovascular system. Low 25(OH)D concentrations might predispose patients with COVID-19 to severe outcomes not only via the associated hyperinflammatory syndrome but also by worsening preexisting impaired glucose metabolism and cardiovascular diseases. Some randomized controlled trials have shown that vitamin D supplementation is beneficial for reducing severe acute respiratory syndrome coronavirus 2 RNA positivity but not for reducing intensive care unit admission or all-cause mortality in patients with moderate-to-severe COVID-19. Current evidence suggests that taking a vitamin D supplement to maintain a serum concentration of 25(OH)D of at least 30 ng/mL (preferred range 40-60 ng/mL), can help reduce the risk of COVID-19 and its severe outcomes, including mortality. Although further well designed studies are warranted, it is prudent to recommend vitamin D supplements to people with vitamin D deficiency/insufficiency during the COVID-19 pandemic according to international guidelines.
Collapse
Affiliation(s)
- Jae Hyun Bae
- grid.411134.20000 0004 0474 0479Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Hun Jee Choe
- grid.412484.f0000 0001 0302 820XDepartment of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Michael F. Holick
- grid.189504.10000 0004 1936 7558Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University Medical Campus, 715 Albany St #437, Boston, MA 02118 USA
| | - Soo Lim
- grid.412480.b0000 0004 0647 3378Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam, 13620 South Korea
| |
Collapse
|
5
|
Wang P, Wu B, You S, Lu S, Xiong S, Zou Y, Jia P, Guo X, Zhang Y, Cao L, Sun Y, Zhang N. DNA Polymerase Gamma Recovers Mitochondrial Function and Inhibits Vascular Calcification by Interacted with p53. Int J Biol Sci 2022; 18:409-425. [PMID: 34975341 PMCID: PMC8692132 DOI: 10.7150/ijbs.65030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
DNA polymerase gamma (PolG) is the major polymerase of mitochondrial DNA (mtDNA) and essential for stabilizing mitochondrial function. Vascular calcification (VC) is common senescence related degenerative pathology phenomenon in the end-stage of multiple chronic diseases. Mitochondrial dysfunction was often observed in calcified vessels, but the function and mechanism of PolG in the calcification process was still unknown. The present study found PolGD257A/D257A mice presented more severe calcification of aortas than wild type (WT) mice with vitamin D3 (Vit D3) treatment, and this phenomenon was also confirmed in vitro. Mechanistically, PolG could enhance the recruitment and interaction of p53 in calcification condition to recover mitochondrial function and eventually to resist calcification. Meanwhile, we found the mutant PolG (D257A) failed to achieve the same rescue effects, suggesting the 3'-5' exonuclease activity guarantee the enhanced interaction of p53 and PolG in response to calcification stimulation. Thus, we believed that it was PolG, not mutant PolG, could maintain mitochondrial function and attenuate calcification in vitro and in vivo. And PolG could be a novel potential therapeutic target against calcification, providing a novel insight to clinical treatment.
Collapse
Affiliation(s)
- Pengbo Wang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Boquan Wu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Shilong You
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Saien Lu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Shengjun Xiong
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Yuanming Zou
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Pengyu Jia
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Xiaofan Guo
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Liu Cao
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, 110122, Liaoning Province, People Republic of China
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People Republic of China
| |
Collapse
|
6
|
Lin Y, Sun Z. Klotho deficiency-induced arterial calcification involves osteoblastic transition of VSMCs and activation of BMP signaling. J Cell Physiol 2022; 237:720-729. [PMID: 34368951 PMCID: PMC8810603 DOI: 10.1002/jcp.30541] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/07/2021] [Accepted: 07/24/2021] [Indexed: 01/03/2023]
Abstract
Klotho is an aging-suppressor gene. The purpose of this study was to investigate whether Klotho deficiency affects arterial structure. We found that Klotho-deficient (kl/kl) mice developed severe arterial calcification and elastin fragmentation. Klotho-deficient mice demonstrated higher levels of bone morphogenetic proteins (BMP2, BMP4) and runt-related transcription factor 2 (RUNX2) in aortas, indicating that Klotho deficiency upregulates expression of BMP2 and RUNX2 (a key transcription factor in osteoblasts). To exclude the potential involvement of hyperphosphatemia in arterial calcification, Klotho-deficient mice were given a low phosphate diet (0.2%). The low phosphate diet normalized blood phosphate levels and abolished calcification in the lungs and kidneys, but it did not prevent calcification in the aortas in Klotho-deficient mice. Thus, Klotho deficiency per se might play a causal role in the pathogenesis of arterial calcification, which is independent of hyperphosphatemia. In cultured mouse aortic smooth muscle cells (ASMCs), Klotho-deficient serum-induced transition of ASMCs to osteoblasts. Klotho-deficient serum promoted BMP2/vitamin D3-induced protein expression of PIT2 and RUNX2, phosphorylation of SMAD1/5/8 and SMAD2/3, and extracellular matrix calcification. Interestingly, treatments with recombinant Klotho protein abolished BMP2/vitamin D3-induced osteoblastic transition and morphogenesis and calcification. Therefore, Klotho is a critical regulator in the maintenance of normal arterial homeostasis. Klotho deficiency-induced arterial calcification is an active process that involves the osteoblastic transition of SMCs and activation of the BMP2-RUNX2 signaling.
Collapse
Affiliation(s)
- Yi Lin
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104, USA
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN 73136, USA,Address Correspondence to: Zhongjie Sun, MD, PhD, FAHA, Professor and Chair, Department of Physiology, University of Tennessee HSC, C302B Coleman Bldg., 956 Court Ave., Memphis, TN 38163-2116, USA, Tel. 901-448-2679,
| |
Collapse
|
7
|
Hyperphosphatemia-induced degradation of transcription factor EB exacerbates vascular calcification. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166323. [PMID: 34921974 DOI: 10.1016/j.bbadis.2021.166323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022]
Abstract
AIMS Chronic kidney disease (CKD) and subsequent hyperphosphatemia causes vascular calcification (VC), a strong predictor of mortality. Dysregulation of the autophagy-lysosomal pathway in vascular smooth muscle cells (VSMCs) mediates hyperphosphatemia-dependent VC. However, the process through which lysosomes become dysfunctional remains unknown. Transcription factor EB (TFEB) is a master regulator of lysosome biogenesis. The present study examined the hypothesis that TFEB dysfunction causes VC progression. METHODS AND RESULTS Inorganic phosphate (Pi) dose-dependently promoted VC in mouse aorta ex vivo, in rat VSMCs in vitro, and in human aortic smooth muscle cells in vitro, all accompanied by a decrease in TFEB protein. Lysosomal inhibitors or TFEB knockdown using small interfering RNA exacerbated Pi-induced VC in VSMCs. Conversely, TFEB downregulation was not observed in the hypercalcemia-sensitive VC model induced by excessive vitamin D dosages. Feeding rats an adenine-containing diet caused CKD and hyperphosphatemia. VC occurred in the adenine-fed rat aorta and regressed after adenine cessation. In this CKD model, aortic TFEB expression decreased at VC onset but recovered to average levels during recovery from VC after adenine cessation. The calcified area of the CKD rat aorta exhibited lysosomal damage and enhanced TFEB ubiquitination. Hyperphosphatemia in vitro increased insoluble TFEB and decreased soluble TFEB in VSMCs, both of which were abrogated by the proteasome inhibitor, MG-132. CONCLUSION Hyperphosphatemia caused VC via TFEB downregulation in VSMCs. Under hyperphosphatemia, TFEB was insolubilized and degraded via the ubiquitin-proteasome system. Our results suggest a new mechanism for the pathogenesis of VC under CKD and hyperphosphatemia.
Collapse
|
8
|
Tintut Y, Demer LL. Potential impact of the steroid hormone, vitamin D, on the vasculature. Am Heart J 2021; 239:147-153. [PMID: 34051171 DOI: 10.1016/j.ahj.2021.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
The role of vitamin D in the cardiovascular system is complex because it regulates expression of genes involved in diverse metabolic processes. Although referred to as a vitamin, it is more accurately considered a steroid hormone, because it is produced endogenously in the presence of ultraviolet light. It occurs as a series of sequentially activated forms, here referred to as vitamin D-hormones. A little-known phenomenon, based on pre-clinical data, is that its biodistribution and potential effects on vascular disease likely depend on whether it is derived from diet or sunlight. Diet-derived vitamin D-hormones are carried in the blood, at least in part, in chylomicrons and lipoprotein particles, including low-density lipoprotein. Since low-density lipoprotein is known to accumulate in the artery wall and atherosclerotic plaque, diet-derived vitamin D-hormones may also collect there, and possibly promote the osteochondrogenic mineralization associated with plaque. Also, little known is the fact that the body stores vitamin D-hormones in adipose tissue with a half-life on the order of months, raising doubts about whether the use of the term "daily requirement" is appropriate. Cardiovascular effects of vitamin D-hormones are controversial, and risk appears to increase with both low and high blood levels. Since low serum vitamin D-hormone concentration is reportedly associated with increased cardiovascular and orthopedic risk, oral supplementation is widely used, often together with calcium supplements. However, meta-analyses show that oral vitamin D-hormone supplementation does not protect against cardiovascular events, findings that are also supported by a randomized controlled trial. These considerations suggest that prevalent recommendations for vitamin D-hormone supplementation for the purpose of cardiovascular protection should be carefully reconsidered.
Collapse
Affiliation(s)
- Yin Tintut
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA; Department of Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA; Department of Orthopaedic Surgery, University of California, Los Angeles (UCLA), Los Angeles, CA
| | - Linda L Demer
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA; Department of Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA; Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA; VA Greater Los Angeles Healthcare System, Los Angeles, Los Angeles, CA.
| |
Collapse
|
9
|
Yang X, Chen A, Liang Q, Dong Q, Fu M, Liu X, Wang S, Li Y, Ye Y, Lan Z, Ou JS, Lu L, Yan J. Up-regulation of heme oxygenase-1 by celastrol alleviates oxidative stress and vascular calcification in chronic kidney disease. Free Radic Biol Med 2021; 172:530-540. [PMID: 34174395 DOI: 10.1016/j.freeradbiomed.2021.06.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022]
Abstract
Vascular calcification is very commonly observed in patients with chronic kidney disease (CKD), but there is no efficient therapy available. Oxidative stress plays critical roles in the progression of vascular calcification. Celastrol (Cel), a natural constituent derived from Chinese herbals, exhibits anti-oxidative stress activity. Here, we investigated the effect of celastrol on vascular calcification using vascular smooth muscle cells (VSMCs), arterial rings and CKD rats. Alizarin red staining and gene expression analysis showed that Cel dose-dependently inhibited rat VSMC calcification and osteogenic differentiation. Similarly, ex vivo study revealed that Cel inhibited calcification of rat and human arterial rings. In addition, micro-computed tomography, alizarin red staining and calcium content analysis confirmed that Cel inhibited aortic calcification in CKD rats. Interestingly, Cel treatment increased the mRNA and protein levels of heme oxygenase-1 (HMOX-1), and reduced the levels of reactive oxygen species (ROS) in VSMCs. Furthermore, both pharmacological inhibition of HMOX-1 and knockdown of HMOX-1 by siRNA independently counteracted the inhibitory effect of Cel on vascular calcification. Moreover, knockdown of HMOX-1 prevented Cel treatment-mediated reduction in ROS levels. Finally, Cel treatment reduced Vitamin D3-induced aortic calcification in mice and this effect was blocked by HMOX-1 inhibitor ZnPP9. Collectively, our results suggest that up-regulation of HMOX-1 is required for the inhibitory effect of Cel on vascular calcification. Modulation of HMOX-1 may provide a novel strategy for the treatment of vascular calcification in CKD.
Collapse
Affiliation(s)
- Xiulin Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - An Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Qingchun Liang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, China
| | - Qianqian Dong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Mingwei Fu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Xiaoyu Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Siyi Wang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Yining Li
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Yuanzhi Ye
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Zirong Lan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China
| | - Jing-Song Ou
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lihe Lu
- Department of Pathophysiolgy, Zhongshan Medical School, Sun Yat-Sen University, China.
| | - Jianyun Yan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China.
| |
Collapse
|
10
|
Amer AE, Shehatou GSG, El-Kashef HA, Nader MA, El-Sheakh AR. Flavocoxid Ameliorates Aortic Calcification Induced by Hypervitaminosis D 3 and Nicotine in Rats Via Targeting TNF-α, IL-1β, iNOS, and Osteogenic Runx2. Cardiovasc Drugs Ther 2021; 36:1047-1059. [PMID: 34309798 DOI: 10.1007/s10557-021-07227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE This research was designed to investigate the effects and mechanisms of flavocoxid (FCX) on vascular calcification (VC) in rats. METHODS Vitamin D3 and nicotine were administered to Wistar rats, which then received FCX (VC-FCX group) or its vehicle (VC group) for 4 weeks. Control and FCX groups served as controls. Systolic (SBP) and diastolic (DBP) blood pressures, heart rate (HR), and left ventricular weight (LVW)/BW were measured. Serum concentrations of calcium, phosphate, creatinine, uric acid, and alkaline phosphatase were determined. Moreover, aortic calcium content and aortic expression of runt-related transcription factor (Runx2), osteopontin (OPN), Il-1β, α-smooth muscle actin (α-SMA), matrix metalloproteinase-9 (MMP-9), inducible nitric oxide synthase (iNOS), and tumor necrosis factor-α (TNF-α) were assessed. Oxidative status in aortic homogenates was investigated. RESULTS Compared to untreated VC rats, FCX treatment prevented body weight loss, reduced aortic calcium deposition, restored normal values of SBP, DBP, and HR, and attenuated LV hypertrophy. FCX also improved renal function and ameliorated serum levels of phosphorus, calcium, and ALP in rats with VC. FCX abolished aortic lipid peroxidation in VC rats. Moreover, VC-FCX rats showed marked reductions in aortic levels of Il-1β and osteogenic marker (Runx2) and attenuated aortic expression of TNF-α, iNOS, and MMP-9 proteins compared to untreated VC rats. The expression of the smooth muscle lineage marker α-SMA was greatly enhanced in aortas from VC rats upon FCX treatment. CONCLUSION These findings demonstrate FCX ability to attenuate VDN-induced aortic calcinosis in rats, suggesting its potential for preventing arteiocalcinosis in diabetic patients and those with chronic kidney disease.
Collapse
Affiliation(s)
- Ahmed E Amer
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| | - George S G Shehatou
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, Egypt.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt.
| | - Hassan A El-Kashef
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| |
Collapse
|
11
|
Chinetti G, Neels JG. Roles of Nuclear Receptors in Vascular Calcification. Int J Mol Sci 2021; 22:6491. [PMID: 34204304 PMCID: PMC8235358 DOI: 10.3390/ijms22126491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
Vascular calcification is defined as an inappropriate accumulation of calcium depots occurring in soft tissues, including the vascular wall. Growing evidence suggests that vascular calcification is an actively regulated process, sharing similar mechanisms with bone formation, implicating both inhibitory and inducible factors, mediated by osteoclast-like and osteoblast-like cells, respectively. This process, which occurs in nearly all the arterial beds and in both the medial and intimal layers, mainly involves vascular smooth muscle cells. In the vascular wall, calcification can have different clinical consequences, depending on the pattern, localization and nature of calcium deposition. Nuclear receptors are transcription factors widely expressed, activated by specific ligands that control the expression of target genes involved in a multitude of pathophysiological processes, including metabolism, cancer, inflammation and cell differentiation. Some of them act as drug targets. In this review we describe and discuss the role of different nuclear receptors in the control of vascular calcification.
Collapse
Affiliation(s)
- Giulia Chinetti
- Université Côte d’Azur, CHU, INSERM, C3M, 06204 Nice, France;
| | - Jaap G. Neels
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France
| |
Collapse
|
12
|
Pierce JL, Perrien DS. Do Interactions of Vitamin D 3 and BMP Signaling Hold Implications in the Pathogenesis of Fibrodysplasia Ossificans Progressiva? Curr Osteoporos Rep 2021; 19:358-367. [PMID: 33851285 PMCID: PMC8515998 DOI: 10.1007/s11914-021-00673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW Fibrodysplasia ossificans progressiva (FOP) is a debilitating rare disease known for episodic endochondral heterotopic ossification (HO) caused by gain-of-function mutations in ACVR1/ALK2. However, disease severity varies among patients with identical mutations suggesting disease-modifying factors, including diet, may have therapeutic implications. The roles of vitamin D3 in calcium metabolism and chondrogenesis are known, but its effects on BMP signaling and chondrogenesis are less studied. This review attempts to assess the possibility of vitamin D's effects in FOP by exploring relevant intersections of VD3 with mechanisms of FOP flares. RECENT FINDINGS In vitro and in vivo studies suggest vitamin D suppresses inflammation, while clinical studies suggest that vitamin D3 protects against arteriosclerosis and inversely correlates with non-genetic intramuscular HO. However, the enhancement of chondrogenesis, BMP signaling, and possibly Activin A expression by vitamin D may be more relevant in FOP. There appears to be little potential for vitamin D to reduce HO in FOP, but testing the potential for excess vitamin D to promote HO may be warranted.
Collapse
Affiliation(s)
- Jessica L Pierce
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, WMRB 1027, Atlanta, GA, 30232, USA
| | - Daniel S Perrien
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, WMRB 1027, Atlanta, GA, 30232, USA.
| |
Collapse
|
13
|
Kutikhin AG, Feenstra L, Kostyunin AE, Yuzhalin AE, Hillebrands JL, Krenning G. Calciprotein Particles: Balancing Mineral Homeostasis and Vascular Pathology. Arterioscler Thromb Vasc Biol 2021; 41:1607-1624. [PMID: 33691479 PMCID: PMC8057528 DOI: 10.1161/atvbaha.120.315697] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Anton G. Kutikhin
- Laboratory for Vascular Biology, Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., A.E.K., A.E.Y.)
| | - Lian Feenstra
- Department of Pathology and Medical Biology, Division of Pathology (L.F., J.-L.H.), University Medical Center Groningen, University of Groningen, the Netherlands
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology (L.F., G.K.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Alexander E. Kostyunin
- Laboratory for Vascular Biology, Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., A.E.K., A.E.Y.)
| | - Arseniy E. Yuzhalin
- Laboratory for Vascular Biology, Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., A.E.K., A.E.Y.)
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology (L.F., J.-L.H.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology (L.F., G.K.), University Medical Center Groningen, University of Groningen, the Netherlands
- Sulfateq B.V., Admiraal de Ruyterlaan 5, 9726 GN, Groningen, the Netherlands (G.K.)
| |
Collapse
|
14
|
Billington EO, Burt LA, Plett R, Rose MS, Boyd SK, Hanley DA. Effect of high-dose vitamin D supplementation on peripheral arterial calcification: secondary analysis of a randomized controlled trial. Osteoporos Int 2020; 31:2141-2150. [PMID: 32556518 DOI: 10.1007/s00198-020-05500-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
UNLABELLED Although high-dose vitamin D supplementation is common, effects on arterial calcification remain unexplored. Tibial artery calcification was identified and quantified over 3 years in participants randomized to 400, 4000, or 10,000 IU vitamin D3 daily. High-dose vitamin D supplementation did not affect the development or progression of arterial calcification. INTRODUCTION To determine whether vitamin D supplementation has a dose-dependent effect on development and progression of arterial calcification. METHODS This was a secondary analysis of the Calgary Vitamin D Study, a 3-year, double-blind, randomized controlled trial conducted at a single-center in Calgary, Canada. Participants were community-dwelling adults aged 55-70 years with serum 25-hydroxyvitamin D 30-125 nmol/L. Participants were randomized 1:1:1 to receive vitamin D3 400, 4000, or 10,000 IU/day for 3 years. Tibial artery calcification was identified and quantified (in milligrams of hydroxyapatite, mgHA) using high-resolution peripheral quantitative computed tomography (HR-pQCT) at baseline and 6, 12, 24, and 36 months. Changes in calcification over time and treatment group interaction were evaluated using a constrained linear mixed effects model. RESULTS Of 311 randomized participants, 302 (400: 105, 4000: 96, 10,000: 101) were eligible for analysis of arterial calcification (54% male, mean (SD) age 62 (4) years, mean (SD) 25-hydroxyvitamin D 78.9 (19.9) nmol/L). At baseline, 85 (28%) had tibial artery calcification, and mean (95% CI) calcification quantity was 2.8 mgHA (95% CI 1.7-3.9). In these 85 participants, calcification quantity increased linearly by 0.020 mgHA/month (95% CI 0.012-0.029) throughout the study, with no evidence of a treatment-group effect (p = 0.645 for interaction). No participants developed new arterial calcifications during the study. CONCLUSIONS In this population of community-dwelling adults who were vitamin D replete at baseline, supplementation with vitamin D 400, 4000, or 10,000 IU/day did not have differential effects on the development or progression of arterial calcification over 3 years. TRIAL REGISTRATION clinicaltrials.gov (NCT01900860).
Collapse
Affiliation(s)
- E O Billington
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada.
- Division of Endocrinology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
- Dr. David Hanley Osteoporosis Clinic, 1820 Richmond Road SW, Calgary, Alberta, T2T 3C5, Canada.
| | - L A Burt
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - R Plett
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - M S Rose
- Research Facilitation, Alberta Health Services, Calgary, Canada
| | - S K Boyd
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - D A Hanley
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Division of Endocrinology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
15
|
Song H, Hwang YJ, Ha JW, Boo YC. Screening of an Epigenetic Drug Library Identifies 4-((hydroxyamino)carbonyl)- N-(2-hydroxyethyl)- N-Phenyl-Benzeneacetamide that Reduces Melanin Synthesis by Inhibiting Tyrosinase Activity Independently of Epigenetic Mechanisms. Int J Mol Sci 2020; 21:ijms21134589. [PMID: 32605171 PMCID: PMC7370187 DOI: 10.3390/ijms21134589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to identify novel antimelanogenic drugs from an epigenetic screening library containing various modulators targeting DNA methyltransferases, histone deacetylases, and other related enzymes/proteins. Of 141 drugs tested, K8 (4-((hydroxyamino)carbonyl)-N-(2-hydroxyethyl)-N-phenyl-benzeneacetamide; HPOB) was found to effectively inhibit the α-melanocyte-stimulating hormone (α-MSH)-induced melanin synthesis in B16-F10 murine melanoma cells without accompanying cytotoxicity. Additional experiments showed that K8 did not significantly reduce the mRNA and protein level of tyrosinase (TYR) or microphthalmia-associated transcription factor (MITF) in cells, but it potently inhibited the catalytic activity TYR in vitro (IC50, 1.1-1.5 µM) as compared to β-arbutin (IC50, 500-700 µM) or kojic acid (IC50, 63 µM). K8 showed copper chelating activity similar to kojic acid. Therefore, these data suggest that K8 inhibits cellular melanin synthesis not by downregulation of TYR protein expression through an epigenetic mechanism, but by direct inhibition of TYR catalytic activity through copper chelation. Metal chelating activity of K8 is not surprising because it is known to inhibit histone deacetylase (HDAC) 6 through zinc chelation. This study identified K8 as a potent inhibitor of cellular melanin synthesis, which may be useful for the treatment of hyperpigmentation disorders.
Collapse
Affiliation(s)
- Hyerim Song
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.S.); (Y.J.H.); (J.W.H.)
- Brain Korea (BK) 21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
| | - Yun Jeong Hwang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.S.); (Y.J.H.); (J.W.H.)
- Brain Korea (BK) 21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
| | - Jae Won Ha
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.S.); (Y.J.H.); (J.W.H.)
- Brain Korea (BK) 21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
| | - Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.S.); (Y.J.H.); (J.W.H.)
- Brain Korea (BK) 21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-53-420-4946
| |
Collapse
|
16
|
Fang N, Hu C, Sun W, Xu Y, Gu Y, Wu L, Peng Q, Reiter RJ, Liu L. Identification of a novel melatonin-binding nuclear receptor: Vitamin D receptor. J Pineal Res 2020; 68:e12618. [PMID: 31631405 DOI: 10.1111/jpi.12618] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
Previous studies confirmed that melatonin regulates Runx2 expression but the mechanism is unclear. There is a direct interaction between Runx2 and the vitamin D receptor (VDR). Herein, we observed a direct interaction between melatonin and the VDR but not Runx2 using isothermal titration calorimetry. Furthermore, this direct binding was detected only in the C-terminal ligand binding domain (LBD) of the VDR but not in the N-terminal DNA-binding domain (DBD) or the hinge region. Spectrophotometry indicated that melatonin and vitamin D3 (VD3) had similar uptake rates, but melatonin's uptake was significantly inhibited by VD3 until the concentration of melatonin was obviously higher than that of VD3 in a preosteoblastic cell line MC3T3-E1. GST pull-down and yeast two-hybrid assay showed that the interactive smallest fragments were on the 319-379 position of Runx2 and the N-terminus 110-amino acid DBD of the VDR. Electrophoretic mobility shift assay (EMSA) demonstrated that Runx2 facilitated the affinity between the VDR and its specific DNA substrate, which was further documented by a fluorescent EMSA assay where Cy3 labeled Runx2 co-localized with the VDR-DNA complex. Another fluorescent EMSA assay confirmed that the binding of the VDR to Runx2 was significantly enhanced with an increasing concentrations of the VDR, especially in the presence of melatonin; it was further documented using a co-immunoprecipitation assay that this direct interaction was markedly enhanced by melatonin treatment in the MC3T3-E1 cells. Thus, the VDR is a novel melatonin-binding nuclear receptor, and melatonin indirectly regulates Runx2 when it directly binds to the LBD and the DBD of the VDR, respectively.
Collapse
Affiliation(s)
- Nan Fang
- Department of Trauma Orthopaedics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunyi Hu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenqi Sun
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ying Xu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yeqi Gu
- Department of Trauma Orthopaedics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Le Wu
- Department of Trauma Orthopaedics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Peng
- Department of Trauma Orthopaedics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Russel J Reiter
- Department of Cellular & Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Lifeng Liu
- Department of Trauma Orthopaedics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Sapkota M, Shrestha SK, Yang M, Park YR, Soh Y. Aloe-emodin inhibits osteogenic differentiation and calcification of mouse vascular smooth muscle cells. Eur J Pharmacol 2019; 865:172772. [PMID: 31697934 DOI: 10.1016/j.ejphar.2019.172772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/23/2019] [Accepted: 11/01/2019] [Indexed: 02/01/2023]
Abstract
Vascular calcification increases the risk of morbidity and mortality in patients with cardiovascular diseases, chronic kidney diseases, and diabetes. However, viable therapeutic methods to target vascular calcification are limited. Aloe-emodin (AE), an anthraquinone is a natural compound found in the leaves of Aloe-vera. In this study, we investigated the underlying mechanism of AE in the calcification of vascular smooth muscle cells (VSMCs) and murine thoracic aorta. We demonstrate that AE repressed not only the phenotypes of Ca2+ induced calcification but also level of calcium in VSMCs. AE has no effect on cell viability in VSMC cells. Alizarin red, von Kossa stainings and calcium quantification showed that Ca2+ induced vascular calcification is significantly decreased by AE in a concentration-dependent manner. In contrast, AE attenuated Ca2+ induced calcification through inhibiting osteoblast differentiation genes such as SMAD4, collagen 1α, osteopontin (OPN), Runt-related transcription factor (RUNX-2) and Osterix. AE also suppressed Ca2+ induced osteoblast-related protein expression including collagen 1α, bone morphogenic protein 2 (BMP-2), RUNX-2 and smooth muscle actin (SMA). Furthermore, Alizarin red, von Kossa stainings and calcium quantification showed that AE significantly inhibited the calcification of ex vivo ring formation in murine thoracic aorta, and markedly inhibited vitamin D3 induced medial aorta calcification in vivo. Taken together, our findings suggest that AE may have therapeutic potential for the prevention of vascular calcification program.
Collapse
Affiliation(s)
- Mahesh Sapkota
- Department of Dental Pharmacology, School of Dentistry, Chonbuk National University, Jeon-Ju, 561-756, Republic of Korea
| | - Saroj Kumar Shrestha
- Department of Dental Pharmacology, School of Dentistry, Chonbuk National University, Jeon-Ju, 561-756, Republic of Korea
| | - Ming Yang
- Department of Dental Pharmacology, School of Dentistry, Chonbuk National University, Jeon-Ju, 561-756, Republic of Korea
| | - Young Ran Park
- Department of Dental Pharmacology, School of Dentistry, Chonbuk National University, Jeon-Ju, 561-756, Republic of Korea
| | - Yunjo Soh
- Department of Dental Pharmacology, School of Dentistry, Chonbuk National University, Jeon-Ju, 561-756, Republic of Korea.
| |
Collapse
|
18
|
Abstract
Vitamin D is necessary for bone health but may also have many extra-skeletal effects. The vitamin D endocrine system has major effects on gene and protein expression in many cells and tissues related to the cardiovascular system. In addition, many preclinical studies in animals with vitamin D deficiency or genetically silenced expression of the vitamin D receptor or vitamin D metabolizing enzymes suggest that the absence of vitamin D action may result in cardiovascular events. This includes dysfunctions of endothelial cells, thereby accelerating the process of atherosclerosis, hypertension or abnormal coagulation, ultimately resulting in higher risks for all major cardiovascular or cerebrovascular events. A wealth of observational studies in different parts of the world have fairly consistently found a strong association between a poor vitamin D status and surrogate markers or hard cardiovascular events. A few Mendelian randomization studies did, however, not find a link between genetically lower serum 25OHD concentrations and cardiovascular events. Finally, many RCTs could not demonstrate a consistent effect on surrogate markers, and a limited number of RCTs did so far not find whatever effect on hard cardiovascular endpoints such as myocardial ischemia or infarction, stroke, or cardiovascular death. In conclusion, preclinical data generated a plausible hypothesis of a link between vitamin D status and extra-skeletal events, including cardiovascular endpoints. Whether the vitamin D endocrine system is redundant for the human vascular system or whether the RCTs have not been optimally designed to answer the research question is thus not yet settled.
Collapse
Affiliation(s)
- R Bouillon
- Clinical & Experimental Endocrinology, Department Chronic Diseases, Metabolism and Ageing, KU Leuven, Herestraat 49 ON1 box 902, 3000, Leuven, Belgium.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW This review addresses recent developments in studies of lipid regulation of calcific disease of arteries and cardiac valves, including the role of nuclear receptors. The role of lipid-soluble signals and their receptors is timely given the recent evidence and concerns that lipid-lowering treatment may increase the rate of progression of coronary artery calcification, which has been long associated with increased cardiovascular risk. Understanding the mechanisms will be important for interpreting such clinical information. RECENT FINDINGS New findings support regulation of calcific vascular and valvular disease by nuclear receptors, including the vitamin D receptor, glucocorticoid receptor, nutrient-sensing nuclear receptors (liver X receptor, farnesoid X receptor, and peroxisome proliferator-activated receptors), and sex hormone (estrogen and androgen) receptors. There were two major unexpected findings: first, vitamin D supplementation, which was previously believed to prevent or reduce vascular calcification, showed no cardiovascular benefit in large randomized, controlled trials. Second, both epidemiological studies and coronary intravascular ultrasound studies suggest that treatment with HMG-CoA reductase inhibitors increases progression of coronary artery calcification, raising a question of whether there are mechanically stable and unstable forms of coronary calcification. SUMMARY For clinical practice and research, these new findings offer new fundamental mechanisms for vascular calcification and provide new cautionary insights for therapeutic avenues.
Collapse
Affiliation(s)
- Tamer Sallam
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1679
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095-1679
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1679
| | - Yin Tintut
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1679
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095-1679
- Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA 90095-1679
| | - Linda L. Demer
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1679
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095-1679
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095-1679
| |
Collapse
|
20
|
Bouillon R, Marcocci C, Carmeliet G, Bikle D, White JH, Dawson-Hughes B, Lips P, Munns CF, Lazaretti-Castro M, Giustina A, Bilezikian J. Skeletal and Extraskeletal Actions of Vitamin D: Current Evidence and Outstanding Questions. Endocr Rev 2019; 40:1109-1151. [PMID: 30321335 PMCID: PMC6626501 DOI: 10.1210/er.2018-00126] [Citation(s) in RCA: 648] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023]
Abstract
The etiology of endemic rickets was discovered a century ago. Vitamin D is the precursor of 25-hydroxyvitamin D and other metabolites, including 1,25(OH)2D, the ligand for the vitamin D receptor (VDR). The effects of the vitamin D endocrine system on bone and its growth plate are primarily indirect and mediated by its effect on intestinal calcium transport and serum calcium and phosphate homeostasis. Rickets and osteomalacia can be prevented by daily supplements of 400 IU of vitamin D. Vitamin D deficiency (serum 25-hydroxyvitamin D <50 nmol/L) accelerates bone turnover, bone loss, and osteoporotic fractures. These risks can be reduced by 800 IU of vitamin D together with an appropriate calcium intake, given to institutionalized or vitamin D-deficient elderly subjects. VDR and vitamin D metabolic enzymes are widely expressed. Numerous genetic, molecular, cellular, and animal studies strongly suggest that vitamin D signaling has many extraskeletal effects. These include regulation of cell proliferation, immune and muscle function, skin differentiation, and reproduction, as well as vascular and metabolic properties. From observational studies in human subjects, poor vitamin D status is associated with nearly all diseases predicted by these extraskeletal actions. Results of randomized controlled trials and Mendelian randomization studies are supportive of vitamin D supplementation in reducing the incidence of some diseases, but, globally, conclusions are mixed. These findings point to a need for continued ongoing and future basic and clinical studies to better define whether vitamin D status can be optimized to improve many aspects of human health. Vitamin D deficiency enhances the risk of osteoporotic fractures and is associated with many diseases. We review what is established and what is plausible regarding the health effects of vitamin D.
Collapse
Affiliation(s)
- Roger Bouillon
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Belgium
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Belgium
| | - Daniel Bikle
- Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California
| | - John H White
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Bess Dawson-Hughes
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Paul Lips
- Department of Internal Medicine, Endocrine Section, VU University Medical Center, HV Amsterdam, Netherlands
| | - Craig F Munns
- Children’s Hospital at Westmead, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Marise Lazaretti-Castro
- Division of Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Andrea Giustina
- Chair of Endocrinology, Vita-Salute San Raffaele University, Milan, Italy
| | - John Bilezikian
- Department of Endocrinology, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
21
|
Badi I, Mancinelli L, Polizzotto A, Ferri D, Zeni F, Burba I, Milano G, Brambilla F, Saccu C, Bianchi ME, Pompilio G, Capogrossi MC, Raucci A. miR-34a Promotes Vascular Smooth Muscle Cell Calcification by Downregulating SIRT1 (Sirtuin 1) and Axl (AXL Receptor Tyrosine Kinase). Arterioscler Thromb Vasc Biol 2019; 38:2079-2090. [PMID: 30026277 DOI: 10.1161/atvbaha.118.311298] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective- Vascular calcification (VC) is age dependent and a risk factor for cardiovascular and all-cause mortality. VC involves the senescence-induced transdifferentiation of vascular smooth muscle cells (SMCs) toward an osteochondrogenic lineage resulting in arterial wall mineralization. miR-34a increases with age in aortas and induces vascular SMC senescence through the modulation of its target SIRT1 (sirtuin 1). In this study, we aimed to investigate whether miR-34a regulates VC. Approach and Results- We found that miR-34a and Runx2 (Runt-related transcription factor 2) expression correlates in young and old mice. Mir34a+/+ and Mir34a-/- mice were treated with vitamin D, and calcium quantification revealed that Mir34a deficiency reduces soft tissue and aorta medial calcification and the upregulation of the VC Sox9 (SRY [sex-determining region Y]-box 9) and Runx2 and the senescence p16 and p21 markers. In this model, miR-34a upregulation was transient and preceded aorta mineralization. Mir34a-/- SMCs were less prone to undergo senescence and under osteogenic conditions deposited less calcium compared with Mir34a+/+ cells. Furthermore, unlike in Mir34a+/+ SMC, the known VC inhibitors SIRT1 and Axl (AXL receptor tyrosine kinase) were only partially downregulated in calcifying Mir34a-/- SMC. Strikingly, constitutive miR-34a overexpression to senescence-like levels in human aortic SMCs increased calcium deposition and enhanced Axl and SIRT1 decrease during calcification. Notably, we also showed that miR-34a directly decreased Axl expression in human aortic SMC, and restoration of its levels partially rescued miR-34a-dependent growth arrest. Conclusions- miR-34a promotes VC via vascular SMC mineralization by inhibiting cell proliferation and inducing senescence through direct Axl and SIRT1 downregulation, respectively. This miRNA could be a good therapeutic target for the treatment of VC.
Collapse
Affiliation(s)
- Ileana Badi
- From the Experimental Cardio-Oncology and Cardiovascular Aging Unit (I.Ba., L.M., A.P., D.F., F.Z., A.R.)
| | - Luigi Mancinelli
- From the Experimental Cardio-Oncology and Cardiovascular Aging Unit (I.Ba., L.M., A.P., D.F., F.Z., A.R.)
| | - Andrea Polizzotto
- From the Experimental Cardio-Oncology and Cardiovascular Aging Unit (I.Ba., L.M., A.P., D.F., F.Z., A.R.)
| | - Debora Ferri
- From the Experimental Cardio-Oncology and Cardiovascular Aging Unit (I.Ba., L.M., A.P., D.F., F.Z., A.R.)
| | - Filippo Zeni
- From the Experimental Cardio-Oncology and Cardiovascular Aging Unit (I.Ba., L.M., A.P., D.F., F.Z., A.R.)
| | - Ilaria Burba
- Vascular Biology and Regenerative Medicine Unit (I.Bu., G.M., G.P.)
| | - Giuseppina Milano
- Vascular Biology and Regenerative Medicine Unit (I.Bu., G.M., G.P.).,Department of Heart and Vessels, Laboratory of Cardiovascular Research, University Hospital of Lausanne, Switzerland (G.M.)
| | - Francesca Brambilla
- Chromatin Dynamics Unit, San Raffaele University, Milan, Italy (F.B., M.E.B.)
| | - Claudio Saccu
- Vascular and Endovascular Surgery Unit (C.S.), Centro Cardiologico Monzino Istituto di ricovero e cura a carattere scientifico (IRCCS), Milan, Italy
| | - Marco E Bianchi
- Chromatin Dynamics Unit, San Raffaele University, Milan, Italy (F.B., M.E.B.)
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit (I.Bu., G.M., G.P.)
| | | | - Angela Raucci
- From the Experimental Cardio-Oncology and Cardiovascular Aging Unit (I.Ba., L.M., A.P., D.F., F.Z., A.R.)
| |
Collapse
|
22
|
Schanstra JP, Luong TT, Makridakis M, Van Linthout S, Lygirou V, Latosinska A, Alesutan I, Boehme B, Schelski N, Von Lewinski D, Mullen W, Nicklin S, Delles C, Feuillet G, Denis C, Lang F, Pieske B, Bascands JL, Mischak H, Saulnier-Blache JS, Voelkl J, Vlahou A, Klein J. Systems biology identifies cytosolic PLA2 as a target in vascular calcification treatment. JCI Insight 2019; 4:125638. [PMID: 31092728 DOI: 10.1172/jci.insight.125638] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/17/2019] [Indexed: 01/15/2023] Open
Abstract
Although cardiovascular disease (CVD) is the leading cause of morbimortality worldwide, promising new drug candidates are lacking. We compared the arterial high-resolution proteome of patients with advanced versus early-stage CVD to predict, from a library of small bioactive molecules, drug candidates able to reverse this disease signature. Of the approximately 4000 identified proteins, 100 proteins were upregulated and 52 were downregulated in advanced-stage CVD. Arachidonyl trifluoromethyl ketone (AACOCF3), a cytosolic phospholipase A2 (cPLA2) inhibitor was predicted as the top drug able to reverse the advanced-stage CVD signature. Vascular cPLA2 expression was increased in patients with advanced-stage CVD. Treatment with AACOCF3 significantly reduced vascular calcification in a cholecalciferol-overload mouse model and inhibited osteoinductive signaling in vivo and in vitro in human aortic smooth muscle cells. In conclusion, using a systems biology approach, we have identified a potentially new compound that prevented typical vascular calcification in CVD in vivo. Apart from the clear effect of this approach in CVD, such strategy should also be able to generate novel drug candidates in other complex diseases.
Collapse
Affiliation(s)
- Joost P Schanstra
- Institute of Cardiovascular and Metabolic Disease, INSERM, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Trang Td Luong
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Manousos Makridakis
- Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Sophie Van Linthout
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Vasiliki Lygirou
- Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Ioana Alesutan
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Beate Boehme
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Nadeshda Schelski
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | | | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Stuart Nicklin
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Guylène Feuillet
- Institute of Cardiovascular and Metabolic Disease, INSERM, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Colette Denis
- Institute of Cardiovascular and Metabolic Disease, INSERM, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Florian Lang
- Department of Physiology I, University of Tubingen, Tubingen, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Jean-Loup Bascands
- INSERM, U1188, Université de La Réunion, Sainte-Clotilde, La Réunion, France
| | | | - Jean-Sebastien Saulnier-Blache
- Institute of Cardiovascular and Metabolic Disease, INSERM, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Jakob Voelkl
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany.,Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Antonia Vlahou
- Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Julie Klein
- Institute of Cardiovascular and Metabolic Disease, INSERM, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| |
Collapse
|
23
|
Jamali N, Song YS, Sorenson CM, Sheibani N. 1,25(OH) 2D 3 regulates the proangiogenic activity of pericyte through VDR-mediated modulation of VEGF production and signaling of VEGF and PDGF receptors. FASEB Bioadv 2019; 1:415-434. [PMID: 31396585 PMCID: PMC6687334 DOI: 10.1096/fba.2018-00067] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We have previously demonstrated that the active form of vitamin D (calcitriol; 1,25(OH)2D3) is a potent inhibitor of retinal neovascularization. However, the underlying molecular and cellular mechanisms involved remained poorly understood. Perivascular supporting cells including pericytes (PC) play important roles during angiogenesis, vascular maturation, and stabilization of blood vessels. How 1,25(OH)2D3 affects retinal PC proliferation and migration, and whether these effects are mediated through vitamin D receptor (VDR), are unknown. Here, we determined the impact of 1,25(OH)2D3 on retinal PC prepared from wild‐type (Vdr+/+) and VDR‐deficient (Vdr−/−) mice. Retinal PC expressed significantly higher VDR levels compared to retinal endothelial cells (EC). Unlike retinal EC, 1,25(OH)2D3 significantly decreased PC proliferation and migration and resulted in a G0/G1 cell cycle arrest. Although 1,25(OH)2D3 did not inhibit the proliferation of Vdr−/− PC, it did inhibit their migration. PC adhesion to various extracellular matrix (ECM) proteins and ECM production were also affected by incubation of PC with 1,25(OH)2D3. Vdr−/− PC were more adherent compared with Vdr+/+ cells. Mechanistically, incubation of Vdr+/+ PC with 1,25(OH)2D3 resulted in an increased expression of vascular endothelial growth factor (VEGF) and attenuation of signaling through VEGF‐R2 and platelet‐derived growth factor receptor‐beta. Incubation with soluble VEGF‐R1 (sFlt‐1) partially reversed the effect of VEGF on Vdr+/+ PC. In addition, incubation of Vdr+/+ PC with VEGF or inhibition of VEGF‐R2 increased VDR expression. Together, these results suggest an important role for retinal PC as a target for vitamin D and VDR action for attenuation of angiogenesis.
Collapse
Affiliation(s)
- Nasim Jamali
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Christine M Sorenson
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
24
|
Lee SW, Kim JH, Song H, Seok JK, Hong SS, Boo YC. Luteolin 7-Sulfate Attenuates Melanin Synthesis through Inhibition of CREB- and MITF-Mediated Tyrosinase Expression. Antioxidants (Basel) 2019; 8:antiox8040087. [PMID: 30987288 PMCID: PMC6523068 DOI: 10.3390/antiox8040087] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 01/01/2023] Open
Abstract
Antioxidants with antimelanogenic activity are potentially useful for the attenuation of skin hyperpigmentation disorders. In a previous study, luteolin 7-sulfate isolated from Phyllospadix iwatensis Makino, a marine plant, was shown to inhibit cellular melanin synthesis. The aim of the present study was to examine its action mechanism, focusing on the regulation of tyrosinase (TYR) expression in cells. Cell-based assay was undertaken using murine melanoma B16-F10 cells and primary human epidermal melanocytes (HEMs). Luteolin 7-sulfate showed lower toxicity compared to luteolin in B16-F10 cells. At the non-toxic concentration ranges, luteolin 7-sulfate attenuated melanin synthesis, stimulated by α-melanocyte-stimulating hormone or forskolin. Luteolin 7-sulfate attenuated forskolin-induced microphthalmia-associated transcription factor (MITF) and TYR expressions at the mRNA and protein levels in B16-F10 cells. It also attenuated the phosphorylation of cAMP-responsive element binding protein (CREB) stimulated by forskolin. Luteolin 7-sulfate also attenuated melanin synthesis in primary HEMs. This study demonstrates that luteolin 7-sulfate attenuates TYR gene expression through the intervention of a CREB- and MITF-mediated signaling pathway, leading to the decreased melanin synthesis.
Collapse
Affiliation(s)
- Seok Won Lee
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 680, Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea.
| | - Jae Heon Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 680, Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea.
| | - Hyerim Song
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 680, Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea.
| | - Jin Kyung Seok
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 680, Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea.
| | - Seong Su Hong
- Bio-Center, Gyeonggido Business & Science Accelerator (GBSA), Suwon 16229, Korea.
| | - Yong Chool Boo
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 680, Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea.
| |
Collapse
|
25
|
Lai J, Akindavyi G, Fu Q, Li ZL, Wang HM, Wen LH. Research Progress on the Relationship between Coronary Artery Calcification and Chronic Renal Failure. Chin Med J (Engl) 2018; 131:608-614. [PMID: 29483398 PMCID: PMC5850680 DOI: 10.4103/0366-6999.226066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective: Coronary artery calcification (CAC) is thought to be a controlled metabolic process that is very similar to the formation of new bone. In patients with chronic renal failure (CRF), CAC is very common, and CAC severity correlates with the deterioration of renal function. We summarized the current understanding and emerging findings of the relationship between CAC and CRF. Data Sources: All studies were identified by systematically searching PubMed, Embase, and CNKI databases for the terms “coronary calcification”, “chronic renal failure”, “vascular smooth muscle cell”, and their synonyms until September 2017. Study Selection: We examined the titles and abstracts of all studies that met our search strategy thoroughly. The full text of relevant studies was evaluated. Reference lists of retrieved articles were also scrutinized for the additional relevant studies. Results: CRF can accelerate CAC progression. CRF increases the expression of pro-inflammatory factors, electrolyte imbalance (e.g., of calcium, phosphorus), parathyroid hormone, and uremic toxins and their ability to promote calcification. These factors, through the relevant signaling pathways, trigger vascular smooth muscle cells to transform into osteoblast-like cells while inhibiting the reduction of vascular calcification factors, thus inducing further CAC. Conclusions: Coronary heart disease in patients with CRF is due to multiple factors. Understanding the mechanism of CAC can help interventionists to protect the myocardium and reduce the prevalence of coronary heart disease and mortality.
Collapse
Affiliation(s)
- Jun Lai
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Gael Akindavyi
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Qiang Fu
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zhi-Liang Li
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Hui-Min Wang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Li-Hua Wen
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| |
Collapse
|
26
|
Tuffaha R, Voelkl J, Pieske B, Lang F, Alesutan I. Role of PKB/SGK-dependent phosphorylation of GSK-3α/β in vascular calcification during cholecalciferol overload in mice. Biochem Biophys Res Commun 2018; 503:2068-2074. [PMID: 30119888 DOI: 10.1016/j.bbrc.2018.07.161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022]
Abstract
Medial vascular calcification is a highly regulated process involving osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells. Both, protein kinase B (PKB) and serum- and glucocorticoid-inducible kinase 1 (SGK1) are involved in the intracellular signaling of vascular calcification and both phosphorylate and inactivate glycogen synthase kinase 3 (GSK-3). The present study explored whether PKB/SGK-dependent phosphorylation of GSK-3α/β is involved in vascular calcification. Experiments were performed in Gsk-3α/β double knockin mice lacking functional PKB/SGK phosphorylation sites (gsk-3KI) and corresponding wild-type mice (gsk-3WT) following high-dosed cholecalciferol treatment as well as ex vivo in aortic ring explants from gsk-3KI and gsk-3WT mice treated without and with phosphate. In gsk-3WT mice, high-dosed cholecalciferol induced vascular calcification and aortic osteo-/chondrogenic signaling, shown by increased expression of osteogenic markers Msx2, Cbfa1 and tissue-nonspecific alkaline phosphatase (Alpl). All these effects were suppressed in aortic tissue from gsk-3KI mice. Cholecalciferol decreased aortic Gsk-3α/β phosphorylation (Ser21/9) in gsk-3WT mice, while no phosphorylation was observed in gsk-3KI mice. Moreover, the mRNA expression of type III sodium-dependent phosphate transporter (Pit1) and plasminogen activator inhibitor 1 (Pai1) was increased following cholecalciferol treatment in aortic tissue of gsk-3WT mice, effects again blunted in gsk-3KI mice. In addition, phosphate treatment induced mineral deposition and osteogenic markers expression in aortic ring explants from gsk-3WT mice, effects reduced in aortic ring explants from gsk-3KI mice. In conclusion, vascular PKB/SGK-dependent phosphorylation of GSK-3α/β contributes to the osteoinductive signaling leading to vascular calcification.
Collapse
Affiliation(s)
- Rashad Tuffaha
- Department of Physiology I, Eberhard-Karls University, Wilhelmstr. 56, 72076 Tübingen, Germany
| | - Jakob Voelkl
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Hessische Str. 3-4, 10115 Berlin, Germany.
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Hessische Str. 3-4, 10115 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch Str. 2, 10178 Berlin, Germany; Department of Internal Medicine and Cardiology, German Heart Center Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Florian Lang
- Department of Physiology I, Eberhard-Karls University, Wilhelmstr. 56, 72076 Tübingen, Germany
| | - Ioana Alesutan
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Hessische Str. 3-4, 10115 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch Str. 2, 10178 Berlin, Germany
| |
Collapse
|
27
|
Lee JH, Jeon SA, Kim BG, Takeda M, Cho JJ, Kim DI, Kawabe H, Cho JY. Nedd4 Deficiency in Vascular Smooth Muscle Promotes Vascular Calcification by Stabilizing pSmad1. J Bone Miner Res 2017; 32:927-938. [PMID: 28029182 DOI: 10.1002/jbmr.3073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 12/16/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022]
Abstract
The nonosseous calcification process such as atherosclerosis is one of the major complications in several types of metabolic diseases. In a previous study, we uncovered that aberrant activity of transforming growth factor β (TGF-β) signaling pathway could contribute to the vascular smooth muscle cells' (VSMCs) calcification process. Also, we identified NEDD4 E3 ligase as a key suppressor of bone morphogenetic protein (BMP)/Smad pathway via a polyubiquitination-dependent selective degradation of C-terminal phosphorylated Smad1 (pSmad1) activated by TGF-β. Here, we further validated and confirmed the role of Nedd4 in in vivo vascular calcification progression. First, Nedd4 deletion in SM22α-positive mouse tissues (Nedd4fl/fl ;SM22α-Cre) showed deformed aortic structures with disarranged elastin fibers at 24 weeks after birth. Second, vitamin D-induced aorta vascular calcification rate in Nedd4fl/fl ;SM22α-Cre mice was significantly higher than their wild-type littermates. Nedd4fl/fl ;SM22α-Cre mice showed a development of vascular calcification even at very low-level injection of vitamin D, but this was not exhibited in wild-type littermates. Third, we confirmed that TGF-β1-induced pSmad1 levels were elevated in Nedd4-deficient primary VSMCs isolated from Nedd4fl/fl ;SM22α-Cre mice. Fourth, we further found that Nedd4fl/fl ;SM22α-Cre mVSMCs gained mesenchymal cell properties toward osteoblast-like differentiation by a stable isotope labeling in cell culture (SILAC)-based proteomics analysis. Finally, epigenetic analysis revealed that methylation levels of human NEDD4 gene promoter were significantly increased in atherosclerosis patients. Collectively, abnormal expression or dysfunction of Nedd4 E3 ligase could be involved in vascular calcification of VSMCs by activating bone-forming signals during atherosclerosis progression. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Seon-Ae Jeon
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Byung-Gyu Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul, Korea
| | - Michiko Takeda
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Jae-Jin Cho
- Department of Dental Regenerative Technology, School of Dentistry, Seoul National University, Dental Research, Institute, Seoul, Korea
| | - Dong-Ik Kim
- Division of Vascular Surgery, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Korea
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
28
|
Shamsuzzaman S, Onal M, St John HC, Jeffery JJ, Pike JW. Absence of the Vitamin D Receptor Inhibits Atherosclerotic Plaque Calcification in Female Hypercholesterolemic Mice. J Cell Biochem 2017; 118:1050-1064. [PMID: 27567005 DOI: 10.1002/jcb.25679] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 01/06/2023]
Abstract
Epidemiological and clinical data suggest adverse cardiovascular outcomes with respect to vitamin D deficiency. Here, we explored the effects of vitamin D in atherosclerotic plaque calcification in vivo by utilizing vitamin D receptor (Vdr)-deficient mice in an Apoe-/- background. Animals were fed a high-fat diet (HFD) for either 12 or 18 weeks and then examined for atherosclerotic plaque development. In order to prevent calcium deficiency, Vdr-/- and Apoe-/- ;Vdr-/- animals were fed a high-calcium rescue diet prior to initiation of the HFD feeding and supplemented with high-calcium water during HFD feeding. Although calcium supplementation improved bone mass in Vdr-/- and Apoe-/- ;Vdr-/- mice, neither strain was fully rescued. Systemic inflammatory responses observed in the absence of VDR were exaggerated in Apoe-/- mice. Whereas, hyperlipidemic profiles seen in Apoe-/- mice were ameliorated in the absence of VDR. Micro-computed tomography (µCT) analysis revealed that six out of eight Apoe-/- animals developed atherosclerotic plaque calcification following 12 weeks of HFD feeding and 100% of the mice developed plaque calcification after 18 weeks. In contrast, although atherosclerotic lesions were evident in Apoe-/- ;Vdr-/- mice at 12 and 18 weeks of HFD challenge, none of these animals developed plaque calcification at either time point. The active vitamin D hormone, 1,25(OH)2 D3 likely increased calcification in aortic smooth muscle cells perhaps by directly modulating expression of Alpl, Rankl, and Opg. Our data suggest that the absence of VDR inhibits atherosclerotic plaque calcification in hypercholesterolemic Apoe-/- mice, providing additional insight into the role of vitamin D in atherosclerotic plaque calcification. J. Cell. Biochem. 118: 1050-1064, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sohel Shamsuzzaman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Melda Onal
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Hillary C St John
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Justin J Jeffery
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - John W Pike
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| |
Collapse
|
29
|
Theofanopoulou C. Implications of Oxytocin in Human Linguistic Cognition: From Genome to Phenome. Front Neurosci 2016; 10:271. [PMID: 27378840 PMCID: PMC4906233 DOI: 10.3389/fnins.2016.00271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/31/2016] [Indexed: 11/18/2022] Open
Abstract
The neurohormone oxytocin (OXT) has been found to mediate the regulation of complex socioemotional cognition in multiple ways both in humans and other animals. Recent studies have investigated the effects of OXT in different levels of analysis (from genetic to behavioral) chiefly targeting its impact on the social component and only indirectly indicating its implications in other components of our socio-interactive abilities. This article aims at shedding light onto how OXT might be modulating the multimodality that characterizes our higher-order linguistic abilities (vocal-auditory-attentional-memory-social systems). Based on evidence coming from genetic, EEG, fMRI, and behavioral studies, I attempt to establish the promises of this perspective with the goal of stressing the need for neuropeptide treatments to enter clinical practice.
Collapse
|
30
|
Alesutan I, Feger M, Tuffaha R, Castor T, Musculus K, Buehling SS, Heine CL, Kuro-O M, Pieske B, Schmidt K, Tomaschitz A, Maerz W, Pilz S, Meinitzer A, Voelkl J, Lang F. Augmentation of phosphate-induced osteo-/chondrogenic transformation of vascular smooth muscle cells by homoarginine. Cardiovasc Res 2016; 110:408-418. [DOI: 10.1093/cvr/cvw062] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
31
|
Downregulation of Runx2 by 1,25-Dihydroxyvitamin D₃ Induces the Transdifferentiation of Osteoblasts to Adipocytes. Int J Mol Sci 2016; 17:ijms17050770. [PMID: 27213351 PMCID: PMC4881589 DOI: 10.3390/ijms17050770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/27/2016] [Accepted: 05/16/2016] [Indexed: 11/19/2022] Open
Abstract
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) indirectly stimulates bone formation, but little is known about its direct effect on bone formation. In this study, we observed that 1,25(OH)2D3 enhances adipocyte differentiation, but inhibits osteoblast differentiation during osteogenesis. The positive role of 1,25(OH)2D3 in adipocyte differentiation was confirmed when murine osteoblasts were cultured in adipogenic medium. Additionally, 1,25(OH)2D3 enhanced the expression of adipocyte marker genes, but inhibited the expression of osteoblast marker genes in osteoblasts. The inhibition of osteoblast differentiation and promotion of adipocyte differentiation mediated by 1,25(OH)2D3 were compensated by Runx2 overexpression. Our results suggest that 1,25(OH)2D3 induces the transdifferentiation of osteoblasts to adipocytes via Runx2 downregulation in osteoblasts.
Collapse
|
32
|
Wang XZ, Sun XY, Zhang CY, Yang X, Yan WJ, Ge LH, Zheng SG. RUNX2 Mutation Impairs 1α,25-Dihydroxyvitamin D3 mediated Osteoclastogenesis in Dental Follicle Cells. Sci Rep 2016; 6:24225. [PMID: 27068678 PMCID: PMC4828645 DOI: 10.1038/srep24225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/22/2016] [Indexed: 12/23/2022] Open
Abstract
Cleidocranial dysplasia (CCD), a skeletal disorder characterized by delayed permanent tooth eruption and other dental abnormalities, is caused by heterozygous RUNX2 mutations. As an osteoblast-specific transcription factor, RUNX2 plays a role in bone remodeling, tooth formation and tooth eruption. To investigate the crosstalk between RUNX2 and 1α,25-dihydroxyvitamin D3 (1α,25-(OH)2D3) in human dental follicle cells (hDFCs) during osteoclast formation, we established a co-culture system of hDFCs from CCD patient and healthy donors with peripheral blood mononuclear cells (PBMCs). Expression of the osteoclast-associated genes and the number of TRAP+ cells were reduced in CCD hDFCs, indicating its suppressed osteoclast-inductive ability, which was reflected by the downregulated RANKL/OPG ratio. In addition, 1α,25-(OH)2D3-stimulation elevated the expression of osteoclast-related genes, as well as RANKL mRNA levels and RANKL/OPG ratios in control hDFCs. Conversely, RUNX2 mutation abolished this 1α,25-(OH)2D3-induced RANKL gene activation and osteoclast formation in CCD hDFCs. Therefore, RUNX2 haploinsufficiency impairs dental follicle-induced osteoclast formation capacity through RANKL/OPG signaling, which may be partially responsible for delayed permanent tooth eruption in CCD patients. Furthermore, this abnormality was not rescued by 1α,25-(OH)2D3 application because 1α,25-(OH)2D3-induced RANKL activation in hDFCs is mediated principally via the RUNX2-dependent pathway.
Collapse
Affiliation(s)
- X Z Wang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - X Y Sun
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - C Y Zhang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - X Yang
- Department of Stomatology, Dongzhimen Hospital Beijing University of Chinese Medicine, 5 Haiyuncang Alley, Dongcheng District, Beijing 100700, PR China
| | - W J Yan
- Outpatient Center, Peking University School and Hospital of Stomatology, 37A Xishiku Street, Xicheng District, Beijing 100034, PR China
| | - L H Ge
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - S G Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| |
Collapse
|
33
|
Lee SJ, Jeong JY, Oh CJ, Park S, Kim JY, Kim HJ, Doo Kim N, Choi YK, Do JY, Go Y, Ha CM, Ha CM, Choi JY, Huh S, Ho Jeoung N, Lee KU, Choi HS, Wang Y, Park KG, Harris RA, Lee IK. Pyruvate Dehydrogenase Kinase 4 Promotes Vascular Calcification via SMAD1/5/8 Phosphorylation. Sci Rep 2015; 5:16577. [PMID: 26560812 PMCID: PMC4642318 DOI: 10.1038/srep16577] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/12/2015] [Indexed: 01/07/2023] Open
Abstract
Vascular calcification, a pathologic response to defective calcium and phosphate homeostasis, is strongly associated with cardiovascular mortality and morbidity. In this study, we have observed that pyruvate dehydrogenase kinase 4 (PDK4) is upregulated and pyruvate dehydrogenase complex phosphorylation is increased in calcifying vascular smooth muscle cells (VSMCs) and in calcified vessels of patients with atherosclerosis, suggesting that PDK4 plays an important role in vascular calcification. Both genetic and pharmacological inhibition of PDK4 ameliorated the calcification in phosphate-treated VSMCs and aortic rings and in vitamin D3-treated mice. PDK4 augmented the osteogenic differentiation of VSMCs by phosphorylating SMAD1/5/8 via direct interaction, which enhances BMP2 signaling. Furthermore, increased expression of PDK4 in phosphate-treated VSMCs induced mitochondrial dysfunction followed by apoptosis. Taken together, our results show that upregulation of PDK4 promotes vascular calcification by increasing osteogenic markers with no adverse effect on bone formation, demonstrating that PDK4 is a therapeutic target for vascular calcification.
Collapse
Affiliation(s)
- Sun Joo Lee
- Department of Biomedical Science, Graduate School of Medicine, Kyungpook National University
| | - Ji Yun Jeong
- Department of Internal Medicine, Kyungpook National University.,Department of Internal Medicine, Soonchunhyang University Gumi Hospital, Gumi, Republic of Korea
| | - Chang Joo Oh
- Department of Internal Medicine, Kyungpook National University
| | - Sungmi Park
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University
| | - Joon-Young Kim
- Department of Internal Medicine, Kyungpook National University.,GIST College, Gwangju Institute of Science and Technology
| | - Han-Jong Kim
- Department of Internal Medicine, Kyungpook National University.,Research Institute of Clinical Medicine, Chonnam National University Hwasun Hospital, Gwangju, Republic of Korea
| | - Nam Doo Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation
| | - Young-Keun Choi
- Department of Internal Medicine, Kyungpook National University
| | - Ji-Yeon Do
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University
| | - Younghoon Go
- Department of Internal Medicine, Kyungpook National University
| | | | - Chae-Myung Ha
- Department of Internal Medicine, Kyungpook National University
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, Kyungpook National University.,BK21 plus KNU Biomedical Convergence Programs at Kyungpook National University, Daegu, Republic of Korea
| | - Seung Huh
- Department of Surgery, Kyungpook National University, Daegu, Republic of Korea
| | - Nam Ho Jeoung
- Department of Fundamental Medical and Pharmaceutical Sciences, Catholic University of Daegu, Gyeongsan, Republic of Korea
| | - Ki-Up Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Keun-Gyu Park
- Department of Internal Medicine, Kyungpook National University.,Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University
| | - Robert A Harris
- Roudebush VA Medical Center and the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University.,Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University.,BK21 plus KNU Biomedical Convergence Programs at Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
34
|
Stephens AS, Morrison NA. Novel target genes of RUNX2 transcription factor and 1,25-dihydroxyvitamin D3. J Cell Biochem 2015; 115:1594-608. [PMID: 24756753 DOI: 10.1002/jcb.24823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 01/15/2023]
Abstract
The RUNX2 transcription factor is indispensable for skeletal development and controls bone formation by acting as a signaling hub and transcriptional regulator to coordinate target gene expression. A signaling partner of RUNX2 is the nuclear vitamin D receptor (VDR) that becomes active when bound by its ligand 1,25-dihydroxyvitamin D3 (VD3). RUNX2 and VDR unite to cooperatively regulate the expression of numerous genes. In this study, we overexpressed RUNX2 in NIH3T3 fibroblasts concomitantly treated with VD3 and show that RUNX2 alone, or in combination with VD3, failed to promote an osteoblastic phenotype in NIH3T3 cells. However, the expression of numerous osteoblast-related genes was up-regulated by RUNX2 and large-scale gene expression profiling using microarrays identified over 800 transcripts that displayed a twofold of greater change in expression in response to RUNX2 overexpression or VD3 treatment. Functional analysis using gene ontology (GO) revealed GO terms for ossification, cellular motility, biological adhesion, and chromosome organization were enriched in the pool of genes regulated by RUNX2. For the set of genes whose expression was modulated by VD3, the GO terms response to hormone stimulus, chemotaxis, and metalloendopeptidase activity where overrepresented. Our study provides a functional insight into the consequences of RUNX2 overexpression and VD3 treatment in NIH3T3 cells in addition to identifying candidate genes whose expression is controlled by either factor individually or through their functional cooperation.
Collapse
Affiliation(s)
- Alexandre S Stephens
- School of Medical Science, Griffith University Gold Coast Campus, Southport, Queensland 4215, Australia
| | | |
Collapse
|
35
|
Acetazolamide sensitive tissue calcification and aging of klotho-hypomorphic mice. J Mol Med (Berl) 2015; 94:95-106. [PMID: 26307633 DOI: 10.1007/s00109-015-1331-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 07/07/2015] [Accepted: 07/31/2015] [Indexed: 12/25/2022]
Abstract
UNLABELLED Klotho, a protein expressed mainly in the kidney, is required for the inhibitory effect of FGF23 on renal 1,25(OH)2D3 formation. Klotho counteracts vascular calcification and diverse age-related disorders. Klotho-hypomorphic mice (kl/kl) suffer from severe vascular calcification and rapid aging. The calcification is at least in part caused by excessive 1,25(OH)2D3, Ca(2+), and phosphate concentrations in blood, which trigger osteogenic signaling including upregulation of alkaline phosphatase (Alpl). As precipitation of calcium and phosphate is fostered by alkaline pH, extracellular acidosis could counteract tissue calcification. In order to induce acidosis, acetazolamide was added to drinking water (0.8 g/l) of kl/kl and wild-type mice. As a result, acetazolamide treatment of kl/kl mice partially reversed the growth deficit, tripled the life span, almost completely reversed the calcifications in trachea, lung, kidney, stomach, intestine, and vascular tissues, the excessive aortic alkaline phosphatase mRNA levels and the plasma concentrations of osteoprotegerin, osteopontin as well as fetuin-A, without significantly decreasing FGF23, 1,25(OH)2D3, Ca(2+), and phosphate plasma concentrations. In primary human aortic smooth muscle cells, acidotic environment prevented phosphate-induced alkaline phosphatase mRNA expression. The present study reveals a completely novel effect of acetazolamide, i.e., interference with osteoinductive signaling and tissue calcification in kl/kl mice. KEY MESSAGES Klotho deficient (kl/kl) mice suffer from hyperphosphatemia with dramatic tissue calcification. Acetazolamide (ACM) treatment partially reversed the growth deficit of kl/kl mice. In kl/kl mice, ACM reversed tissue calcification despite continued hyperphosphatemia. ACM tripled the life span of kl/kl mice. In human aortic smooth muscle cells, low extracellular pH prevented osteogenic signaling.
Collapse
|
36
|
Runx2 Expression in Smooth Muscle Cells Is Required for Arterial Medial Calcification in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1958-69. [PMID: 25987250 DOI: 10.1016/j.ajpath.2015.03.020] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/05/2015] [Accepted: 03/10/2015] [Indexed: 01/01/2023]
Abstract
Arterial medial calcification (AMC) is a hallmark of aging, diabetes, and chronic kidney disease. Smooth muscle cell (SMC) transition to an osteogenic phenotype is a common feature of AMC, and is preceded by expression of runt-related transcription factor 2 (Runx2), a master regulator of bone development. Whether SMC-specific Runx2 expression is required for osteogenic phenotype change and AMC remains unknown. We therefore created an improved targeting construct to generate mice with floxed Runx2 alleles (Runx2(f/f)) that do not produce truncated Runx2 proteins after Cre recombination, thereby preventing potential off-target effects. SMC-specific deletion using SM22-recombinase transgenic allele mice (Runx2(ΔSM)) led to viable mice with normal bone and arterial morphology. After vitamin D overload, arterial SMCs in Runx2(f/f) mice expressed Runx2, underwent osteogenic phenotype change, and developed severe AMC. In contrast, vitamin D-treated Runx2(ΔSM) mice had no Runx2 in blood vessels, maintained SMC phenotype, and did not develop AMC. Runx2 deletion did not affect serum calcium, phosphate, fibroblast growth factor-23, or alkaline phosphatase levels. In vitro, Runx2(f/f) SMCs calcified to a much greater extent than those derived from Runx2(ΔSM) mice. These data indicate a critical role of Runx2 in SMC osteogenic phenotype change and mineral deposition in a mouse model of AMC, suggesting that Runx2 and downstream osteogenic pathways in SMCs may be useful therapeutic targets for treating or preventing AMC in high-risk patients.
Collapse
|
37
|
Ha CM, Park S, Choi YK, Jeong JY, Oh CJ, Bae KH, Lee SJ, Kim JH, Park KG, Jun DY, Lee IK. Activation of Nrf2 by dimethyl fumarate improves vascular calcification. Vascul Pharmacol 2014; 63:29-36. [DOI: 10.1016/j.vph.2014.06.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/26/2014] [Indexed: 11/15/2022]
|