1
|
Tagirdzhanova G, Scharnagl K, Sahu N, Yan X, Bucknell A, Bentham AR, Jégousse C, Ament-Velásquez SL, Onuț-Brännström I, Johannesson H, MacLean D, Talbot NJ. Complexity of the lichen symbiosis revealed by metagenome and transcriptome analysis of Xanthoria parietina. Curr Biol 2025; 35:799-817.e5. [PMID: 39889699 DOI: 10.1016/j.cub.2024.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/15/2024] [Accepted: 12/17/2024] [Indexed: 02/03/2025]
Abstract
Lichens are composite, symbiotic associations of fungi, algae, and bacteria that result in large, anatomically complex organisms adapted to many of the world's most challenging environments. How such intricate, self-replicating lichen architectures develop from simple microbial components remains unknown because of their recalcitrance to experimental manipulation. Here, we report a metagenomic and metatranscriptomic analysis of the lichen Xanthoria parietina at different developmental stages. We identified 168 genomes of symbionts and lichen-associated microbes across the sampled thalli, including representatives of green algae, three different classes of fungi, and 14 bacterial phyla. By analyzing the occurrence of individual species across lichen thalli from diverse environments, we defined both substrate-specific and core microbial components of the lichen. Metatranscriptomic analysis of the principal fungal symbiont from three different developmental stages of a lichen, compared with axenically grown fungus, revealed differential gene expression profiles indicative of lichen-specific transporter functions, specific cell signaling, transcriptional regulation, and secondary metabolic capacity. Putative immunity-related proteins and lichen-specific structurally conserved secreted proteins resembling fungal pathogen effectors were also identified, consistent with a role for immunity modulation in lichen morphogenesis.
Collapse
Affiliation(s)
- Gulnara Tagirdzhanova
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK
| | - Klara Scharnagl
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK; University & Jepson Herbaria, University of California, Berkeley, Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Neha Sahu
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK
| | - Xia Yan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK
| | - Angus Bucknell
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK
| | - Adam R Bentham
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK
| | - Clara Jégousse
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK
| | | | - Ioana Onuț-Brännström
- Department of Ecology and Genetics, Uppsala University, Norbyv. 18D, Uppsala 752 36, Sweden
| | - Hanna Johannesson
- Department of Ecology, Environmental and Plant Sciences, Stockholm University, Stockholm 106 91, Sweden; The Royal Swedish Academy of Sciences, Lilla Frescativägen 4A, Stockholm 114 18, Sweden
| | - Dan MacLean
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR47UH, UK.
| |
Collapse
|
2
|
Yoon J, Kim Y, Kim S, Jeong H, Park J, Jeong MH, Park S, Jo M, An S, Park J, Jang SH, Goh J, Park SY. Agrobacterium tumefaciens-Mediated Transformation of the Aquatic Fungus Phialemonium inflatum FBCC-F1546. J Fungi (Basel) 2023; 9:1158. [PMID: 38132759 PMCID: PMC10744869 DOI: 10.3390/jof9121158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Phialemonium inflatum is a useful fungus known for its ability to mineralise lignin during primary metabolism and decompose polycyclic aromatic hydrocarbons (PAHs). However, no functional genetic analysis techniques have been developed yet for this fungus, specifically in terms of transformation. In this study, we applied an Agrobacterium tumefaciens-mediated transformation (ATMT) system to P. inflatum for a functional gene analysis. We generated 3689 transformants using the binary vector pSK1044, which carried either the hygromycin B phosphotransferase (hph) gene or the enhanced green fluorescent protein (eGFP) gene to label the transformants. A Southern blot analysis showed that the probability of a single copy of T-DNA insertion was approximately 50% when the co-cultivation of fungal spores and Agrobacterium tumefaciens cells was performed at 24-36 h, whereas at 48 h, it was approximately 35.5%. Therefore, when performing gene knockout using the ATMT system, the co-cultivation time was reduced to ≤36 h. The resulting transformants were mitotically stable, and a PCR analysis confirmed the genes' integration into the transformant genome. Additionally, hph and eGFP gene expressions were confirmed via PCR amplification and fluorescence microscopy. This optimised transformation system will enable functional gene analyses to study genes of interest in P. inflatum.
Collapse
Affiliation(s)
- Jonghan Yoon
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Republic of Korea; (J.Y.); (Y.K.); (S.K.); (H.J.); (J.P.); (M.-H.J.); (M.J.); (S.A.); (J.P.); (S.-H.J.)
| | - Youngjun Kim
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Republic of Korea; (J.Y.); (Y.K.); (S.K.); (H.J.); (J.P.); (M.-H.J.); (M.J.); (S.A.); (J.P.); (S.-H.J.)
| | - Seoyeon Kim
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Republic of Korea; (J.Y.); (Y.K.); (S.K.); (H.J.); (J.P.); (M.-H.J.); (M.J.); (S.A.); (J.P.); (S.-H.J.)
- Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Sunchon National University, Suncheon 57922, Republic of Korea
| | - Haejun Jeong
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Republic of Korea; (J.Y.); (Y.K.); (S.K.); (H.J.); (J.P.); (M.-H.J.); (M.J.); (S.A.); (J.P.); (S.-H.J.)
| | - Jiyoon Park
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Republic of Korea; (J.Y.); (Y.K.); (S.K.); (H.J.); (J.P.); (M.-H.J.); (M.J.); (S.A.); (J.P.); (S.-H.J.)
- Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Sunchon National University, Suncheon 57922, Republic of Korea
| | - Min-Hye Jeong
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Republic of Korea; (J.Y.); (Y.K.); (S.K.); (H.J.); (J.P.); (M.-H.J.); (M.J.); (S.A.); (J.P.); (S.-H.J.)
| | - Sangkyu Park
- Fungi Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources, Donam 2-gil 137, Sangju 37242, Republic of Korea;
| | - Miju Jo
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Republic of Korea; (J.Y.); (Y.K.); (S.K.); (H.J.); (J.P.); (M.-H.J.); (M.J.); (S.A.); (J.P.); (S.-H.J.)
- Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sunmin An
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Republic of Korea; (J.Y.); (Y.K.); (S.K.); (H.J.); (J.P.); (M.-H.J.); (M.J.); (S.A.); (J.P.); (S.-H.J.)
- Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jiwon Park
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Republic of Korea; (J.Y.); (Y.K.); (S.K.); (H.J.); (J.P.); (M.-H.J.); (M.J.); (S.A.); (J.P.); (S.-H.J.)
- Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Sunchon National University, Suncheon 57922, Republic of Korea
| | - Seol-Hwa Jang
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Republic of Korea; (J.Y.); (Y.K.); (S.K.); (H.J.); (J.P.); (M.-H.J.); (M.J.); (S.A.); (J.P.); (S.-H.J.)
| | - Jaeduk Goh
- Fungi Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources, Donam 2-gil 137, Sangju 37242, Republic of Korea;
| | - Sook-Young Park
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Republic of Korea; (J.Y.); (Y.K.); (S.K.); (H.J.); (J.P.); (M.-H.J.); (M.J.); (S.A.); (J.P.); (S.-H.J.)
- Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
3
|
Abstract
Lichens are a diverse group of organisms. They are both commonly observed but also mysterious. It has long been known that lichens are composite symbiotic associations of at least one fungus and an algal or cyanobacterial partner, but recent evidence suggests that they may be much more complex. We now know that there can be many constituent microorganisms in a lichen, organized into reproducible patterns that suggest a sophisticated communication and interplay between symbionts. We feel the time is right for a more concerted effort to understand lichen biology. Rapid advances in comparative genomics and metatranscriptomic approaches, coupled with recent breakthroughs in gene functional studies, suggest that lichens may now be more tractable to detailed analysis. Here we set out some of the big questions in lichen biology, and we speculate about the types of gene functions that may be critical to their development, as well as the molecular events that may lead to initial lichen formation. We define both the challenges and opportunities in lichen biology and offer a call to arms to study this remarkable group of organisms.
Collapse
Affiliation(s)
- Klara Scharnagl
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK; University & Jepson Herbaria, University of California Berkeley, Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Gulnara Tagirdzhanova
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK.
| |
Collapse
|
4
|
Fan D, Liu L, Cao S, Liao R, Liu C, Zhou Q. Transcriptional analysis of the dimorphic fungus Umbilicaria muehlenbergii reveals the molecular mechanism of phenotypic transition. World J Microbiol Biotechnol 2023; 39:170. [PMID: 37185920 DOI: 10.1007/s11274-023-03618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
The lichen-forming fungus Umbilicaria muehlenbergii undergoes a phenotypic transition from a yeast-like to a pseudohyphal form. However, it remains unknown if a common mechanism is involved in the phenotypic switch of U. muehlenbergii at the transcriptional level. Further, investigation of the phenotype switch molecular mechanism in U. muehlenbergii has been hindered by incomplete genomic sequencing data. Here, the phenotypic characteristics of U. muehlenbergii were investigated after cultivation on several carbon sources, revealing that oligotrophic conditions due to nutrient stress (reduced strength PDA (potato dextrose agar) media) exacerbated the pseudohyphal growth of U. muehlenbergii. Further, the addition of sorbitol, ribitol, and mannitol exacerbated the pseudohyphal growth of U. muehlenbergii regardless of PDA medium strength. Transcriptome analysis of U. muehlenbergii grown in normal and nutrient-stress conditions revealed the presence of several biological pathways with altered expression levels during nutrient stress and related to carbohydrate, protein, DNA/RNA and lipid metabolism. Further, the results demonstrated that altered biological pathways can cooperate during pseudohyphal growth, including pathways involved in the production of protectants, acquisition of other carbon sources, or adjustment of energy metabolism. Synergistic changes in the functioning of these pathways likely help U. muehlenbergii cope with dynamic stimuli. These results provide insights into the transcriptional response of U. muehlenbergii during pseudohyphal growth under oligotrophic conditions. Specifically, the transcriptomic analysis indicated that pseudohyphal growth is an adaptive mechanism of U. muehlenbergii that facilitates its use of alternative carbon sources to maintain survival.
Collapse
Affiliation(s)
- Dongjie Fan
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Lushan Liu
- Emergency Department of China Rehabilitation Research Center, Capital medical University, Fengtai District, No. 10 Jiaomen North Street, Beijing, 100068, China
| | - Shunan Cao
- Key Laboratory for Polar Science MNR, Polar Research Institute of China, NO.1000 Xuelong Road, Pudong, Shanghai, China
| | - Rui Liao
- ChosenMed Technology Company Limited, Economic and Technological Development Area, Jinghai Industrial Park, No. 156 Fourth Jinghai Road, Beijing, China
| | - Chuanpeng Liu
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150080, China.
| | - Qiming Zhou
- ChosenMed Technology Company Limited, Economic and Technological Development Area, Jinghai Industrial Park, No. 156 Fourth Jinghai Road, Beijing, China.
| |
Collapse
|
5
|
A comparative genomic analysis of lichen-forming fungi reveals new insights into fungal lifestyles. Sci Rep 2022; 12:10724. [PMID: 35750715 PMCID: PMC9232553 DOI: 10.1038/s41598-022-14340-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
Lichen-forming fungi are mutualistic symbionts of green algae or cyanobacteria. We report the comparative analysis of six genomes of lichen-forming fungi in classes Eurotiomycetes and Lecanoromycetes to identify genomic information related to their symbiotic lifestyle. The lichen-forming fungi exhibited genome reduction via the loss of dispensable genes encoding plant-cell-wall-degrading enzymes, sugar transporters, and transcription factors. The loss of these genes reflects the symbiotic biology of lichens, such as the absence of pectin in the algal cell wall and obtaining specific sugars from photosynthetic partners. The lichens also gained many lineage- and species-specific genes, including those encoding small secreted proteins. These genes are primarily induced during the early stage of lichen symbiosis, indicating their significant roles in the establishment of lichen symbiosis.Our findings provide comprehensive genomic information for six lichen-forming fungi and novel insights into lichen biology and the evolution of symbiosis.
Collapse
|
6
|
Spribille T, Resl P, Stanton DE, Tagirdzhanova G. Evolutionary biology of lichen symbioses. THE NEW PHYTOLOGIST 2022; 234:1566-1582. [PMID: 35302240 DOI: 10.1111/nph.18048] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/21/2021] [Indexed: 05/28/2023]
Abstract
Lichens are the symbiotic outcomes of open, interspecies relationships, central to which are a fungus and a phototroph, typically an alga and/or cyanobacterium. The evolutionary processes that led to the global success of lichens are poorly understood. In this review, we explore the goods and services exchange between fungus and phototroph and how this propelled the success of both symbiont and symbiosis. Lichen fungal symbionts count among the only filamentous fungi that expose most of their mycelium to an aerial environment. Phototrophs export carbohydrates to the fungus, which converts them to specific polyols. Experimental evidence suggests that polyols are not only growth and respiratory substrates but also play a role in anhydrobiosis, the capacity to survive desiccation. We propose that this dual functionality is pivotal to the evolution of fungal symbionts, enabling persistence in environments otherwise hostile to fungi while simultaneously imposing costs on growth. Phototrophs, in turn, benefit from fungal protection from herbivory and light stress, while appearing to exert leverage over fungal sex and morphogenesis. Combined with the recently recognized habit of symbionts to occur in multiple symbioses, this creates the conditions for a multiplayer marketplace of rewards and penalties that could drive symbiont selection and lichen diversification.
Collapse
Affiliation(s)
- Toby Spribille
- Department of Biological Sciences CW405, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Philipp Resl
- Institute of Biology, University of Graz, Universitätsplatz 3, Graz, 8010, Austria
| | - Daniel E Stanton
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Gulnara Tagirdzhanova
- Department of Biological Sciences CW405, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
7
|
Jeong MH, Kim JA, Kang S, Choi ED, Kim Y, Lee Y, Jeon MJ, Yu NH, Park AR, Kim JC, Kim S, Park SY. Optimization of Agrobacterium tumefaciens-Mediated Transformation of Xylaria grammica EL000614, an Endolichenic Fungus Producing Grammicin. MYCOBIOLOGY 2021; 49:491-497. [PMID: 34803437 PMCID: PMC8583754 DOI: 10.1080/12298093.2021.1961431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
An endolichenic fungus Xylaria grammica EL000614 produces grammicin, a potent nematicidal pyrone derivative that can serve as a new control option for root-knot nematodes. We optimized an Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for X. grammica to support genetic studies. Transformants were successfully generated after co-cultivation of homogenized young mycelia of X. grammica with A. tumefaciens strain AGL-1 carrying a binary vector that contains the bacterial hygromycin B phosphotransferase (hph) gene and the eGFP gene in T-DNA. The resulting transformants were mitotically stable, and PCR analysis showed the integratin of both genes in the genome of transformants. Expression of eGFP was confirmed via fluorescence microscopy. Southern analysis showed that 131 (78.9%) out of 166 transformants contained a single T-DNA insertion. Crucial factors for producing predominantly single T-DNA transformants include 48 h of co-cultivation, pre-treatment of A. tumefaciens cells with acetosyringone before co-cultivation, and using freshly prepared mycelia. The established ATMT protocol offers an efficient tool for random insertional mutagenesis and gene transfer in studying the biology and ecology of X. grammica.
Collapse
Affiliation(s)
- Min-Hye Jeong
- Department of Plant Medicine, Sunchon National University, Suncheon, Korea
| | - Jung A. Kim
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, Korea
| | - Seogchan Kang
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA
| | - Eu Ddeum Choi
- Department of Plant Medicine, Sunchon National University, Suncheon, Korea
| | - Youngmin Kim
- Department of Plant Medicine, Sunchon National University, Suncheon, Korea
| | - Yerim Lee
- Department of Plant Medicine, Sunchon National University, Suncheon, Korea
| | - Mi Jin Jeon
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, Korea
| | - Nan Hee Yu
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, Korea
| | - Ae Ran Park
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, Korea
| | - Soonok Kim
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, Korea
| | - Sook-Young Park
- Department of Plant Medicine, Sunchon National University, Suncheon, Korea
| |
Collapse
|
8
|
Kim YJ, Duraisamy K, Jeong MH, Park SY, Kim S, Lee Y, Nguyen VT, Yu NH, Park AR, Kim JC. Nematicidal Activity of Grammicin Biosynthesis Pathway Intermediates in Xylaria grammica KCTC 13121BP against Meloidogyne incognita. Molecules 2021; 26:4675. [PMID: 34361827 PMCID: PMC8348278 DOI: 10.3390/molecules26154675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Grammicin, a polyketide metabolite produced by the endolichenic fungus Xylaria grammica KCTC 13121BP, shows strong nematicidal activity against Meloidogyne incognita. This study was performed to elucidate the grammicin biosynthesis pathway of X. grammica KCTC 13121BP and to examine the nematicidal activity of the biosynthesis intermediates and derivatives against M. incognita. Two grammicin biosynthesis intermediates were isolated from a T-DNA insertion transformant (strain TR-74) of X. grammica KCTC 13121BP and identified as 2-(hydroxymethyl)cyclohexa-2,5-diene-1,4-dione (compound 1) and 2,5-dihydroxybenzaldehyde (compound 2), which were also reported to be intermediates in the biosynthesis pathway of patulin, an isomer of grammicin. This indicates that the grammicin biosynthesis pathway overlaps almost with that of patulin, except for the last few steps. Among 13 grammicin biosynthesis intermediates and their derivatives (except grammicin), toluquinol caused the highest M. incognita J2 mortality, with an LC50/72 h value of 11.13 µg/mL, which is similar to grammicin with an LC50/72 h value of 15.95 µg/mL. In tomato pot experiments, the wettable powder type formulations (WP) of toluquinol (17.78 µg/mL) and grammicin (17.78 µg/mL) also effectively reduced gall formation on the roots of tomato plants with control values of 72.22% and 77.76%, respectively, which are much higher than abamectin (16.67%), but lower than fosthiazate (100%). The results suggest that toluquinol can be used directly as a biochemical nematicide or as a lead molecule for the development of new synthetic nematicides for the control of root-knot nematode diseases.
Collapse
Affiliation(s)
- Yoon Jee Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea; (Y.J.K.); (K.D.); (Y.L.); (V.T.N.); (N.H.Y.); (A.R.P.)
| | - Kalaiselvi Duraisamy
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea; (Y.J.K.); (K.D.); (Y.L.); (V.T.N.); (N.H.Y.); (A.R.P.)
| | - Min-Hye Jeong
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Korea; (M.-H.J.); (S.-Y.P.)
| | - Sook-Young Park
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Korea; (M.-H.J.); (S.-Y.P.)
| | - Soonok Kim
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, 42 Hwangyeong-ro, Incheon 22689, Korea;
| | - Yookyung Lee
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea; (Y.J.K.); (K.D.); (Y.L.); (V.T.N.); (N.H.Y.); (A.R.P.)
| | - Van Thi Nguyen
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea; (Y.J.K.); (K.D.); (Y.L.); (V.T.N.); (N.H.Y.); (A.R.P.)
| | - Nan Hee Yu
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea; (Y.J.K.); (K.D.); (Y.L.); (V.T.N.); (N.H.Y.); (A.R.P.)
| | - Ae Ran Park
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea; (Y.J.K.); (K.D.); (Y.L.); (V.T.N.); (N.H.Y.); (A.R.P.)
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea; (Y.J.K.); (K.D.); (Y.L.); (V.T.N.); (N.H.Y.); (A.R.P.)
| |
Collapse
|
9
|
Liu R, Kim W, Paguirigan JA, Jeong MH, Hur JS. Establishment of Agrobacterium tumefaciens-Mediated Transformation of Cladonia macilenta, a Model Lichen-Forming Fungus. J Fungi (Basel) 2021; 7:252. [PMID: 33810561 PMCID: PMC8065847 DOI: 10.3390/jof7040252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 01/11/2023] Open
Abstract
Despite the fascinating biology of lichens, such as the symbiotic association of lichen-forming fungi (mycobiont) with their photosynthetic partners and their ability to grow in harsh habitats, lack of genetic tools manipulating mycobiont has hindered studies on genetic mechanisms underpinning lichen biology. Thus, we established an Agrobacterium tumefaciens-mediated transformation (ATMT) system for genetic transformation of a mycobiont isolated from Cladonia macilenta. A set of combinations of ATMT conditions, such as input biomass of mycobiont, co-cultivation period with Agrobacterium cells, and incubation temperature, were tested to identify an optimized ATMT condition for the C. macilenta mycobiont. As a result, more than 10 days of co-cultivation period and at least 2 mg of input biomass of the mycobiont were recommended for an efficient ATMT, owing to extremely slow growth rate of mycobionts in general. Moreover, we examined T-DNA copy number variation in a total of 180 transformants and found that 88% of the transformants had a single copy T-DNA insertion. To identify precise T-DNA insertion sites that interrupt gene function in C. macilenta, we performed TAIL-PCR analyses for selected transformants. A hypothetical gene encoding ankyrin repeats at its C-terminus was interrupted by T-DNA insertion in a transformant producing dark-brown colored pigment. Although the identification of the pigment awaits further investigation, this proof-of-concept study demonstrated the feasibility of use of ATMT in construction of a random T-DNA insertion mutant library in mycobionts for studying genetic mechanisms behind the lichen symbiosis, stress tolerance, and secondary metabolite biosynthesis.
Collapse
Affiliation(s)
- Rundong Liu
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea; (R.L.); (J.A.P.); (M.-H.J.)
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea; (R.L.); (J.A.P.); (M.-H.J.)
| | - Jaycee Augusto Paguirigan
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea; (R.L.); (J.A.P.); (M.-H.J.)
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Boulevard, Manila 1008, Philippines
| | - Min-Hye Jeong
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea; (R.L.); (J.A.P.); (M.-H.J.)
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Korea; (R.L.); (J.A.P.); (M.-H.J.)
| |
Collapse
|
10
|
Tagirdzhanova G, Saary P, Tingley JP, Díaz-Escandón D, Abbott DW, Finn RD, Spribille T. Predicted Input of Uncultured Fungal Symbionts to a Lichen Symbiosis from Metagenome-Assembled Genomes. Genome Biol Evol 2021; 13:6163286. [PMID: 33693712 PMCID: PMC8355462 DOI: 10.1093/gbe/evab047] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Basidiomycete yeasts have recently been reported as stably associated secondary
fungal symbionts of many lichens, but their role in the symbiosis remains
unknown. Attempts to sequence their genomes have been hampered both by the
inability to culture them and their low abundance in the lichen thallus
alongside two dominant eukaryotes (an ascomycete fungus and chlorophyte alga).
Using the lichen Alectoria sarmentosa, we selectively dissolved
the cortex layer in which secondary fungal symbionts are embedded to enrich
yeast cell abundance and sequenced DNA from the resulting slurries as well as
bulk lichen thallus. In addition to yielding a near-complete genome of the
filamentous ascomycete using both methods, metagenomes from cortex slurries
yielded a 36- to 84-fold increase in coverage and near-complete genomes for two
basidiomycete species, members of the classes Cystobasidiomycetes and
Tremellomycetes. The ascomycete possesses the largest gene repertoire of the
three. It is enriched in proteases often associated with pathogenicity and
harbors the majority of predicted secondary metabolite clusters. The
basidiomycete genomes possess ∼35% fewer predicted genes than the
ascomycete and have reduced secretomes even compared with close relatives, while
exhibiting signs of nutrient limitation and scavenging. Furthermore, both
basidiomycetes are enriched in genes coding for enzymes producing secreted
acidic polysaccharides, representing a potential contribution to the shared
extracellular matrix. All three fungi retain genes involved in dimorphic
switching, despite the ascomycete not being known to possess a yeast stage. The
basidiomycete genomes are an important new resource for exploration of lifestyle
and function in fungal–fungal interactions in lichen symbioses.
Collapse
Affiliation(s)
- Gulnara Tagirdzhanova
- Department of Biological Sciences CW405, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Saary
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Jeffrey P Tingley
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - David Díaz-Escandón
- Department of Biological Sciences CW405, University of Alberta, Edmonton, Alberta, Canada
| | - D Wade Abbott
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Toby Spribille
- Department of Biological Sciences CW405, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Wang Y, Wei X, Bian Z, Wei J, Xu JR. Coregulation of dimorphism and symbiosis by cyclic AMP signaling in the lichenized fungus Umbilicaria muhlenbergii. Proc Natl Acad Sci U S A 2020; 117:23847-23858. [PMID: 32873646 PMCID: PMC7519320 DOI: 10.1073/pnas.2005109117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Umbilicaria muhlenbergii is the only known dimorphic lichenized fungus that grows in the hyphal form in lichen thalli but as yeast cells in axenic cultures. However, the regulation of yeast-to-hypha transition and its relationship to the establishment of symbiosis are not clear. In this study, we show that nutrient limitation and hyperosmotic stress trigger the dimorphic change in U. muhlenbergii Contact with algal cells of its photobiont Trebouxia jamesii induced pseudohyphal growth. Treatments with the cAMP diphosphoesterase inhibitor IBMX (3-isobutyl-1-methylxanthine) induced pseudohyphal/hyphal growth and resulted in the differentiation of heavily melanized, lichen cortex-like structures in culture, indicating the role of cAMP signaling in regulating dimorphism. To confirm this observation, we identified and characterized two Gα subunits UmGPA2 and UmGPA3 Whereas deletion of UmGPA2 had only a minor effect on pseudohyphal growth, the ΔUmgpa3 mutant was defective in yeast-to-pseudohypha transition induced by hyperosmotic stress or T. jamesii cells. IBMX treatment suppressed the defect of ΔUmgpa3 in pseudohyphal growth. Transformants expressing the UmGPA3G45V or UmGPA3Q208L dominant active allele were enhanced in the yeast-to-pseudohypha transition and developed pseudohyphae under conditions noninducible to the wild type. Interestingly, T. jamesii cells in close contact with pseudohyphae of UmGPA3G45V and UmGPA3Q208L transformants often collapsed and died after coincubation for over 72 h, indicating that improperly regulated pseudohyphal growth due to dominant active mutations may disrupt the initial establishment of symbiotic interaction between the photobiont and mycobiont. Taken together, these results show that the cAMP-PKA pathway plays a critical role in regulating dimorphism and symbiosis in U. muhlenbergii.
Collapse
Affiliation(s)
- Yanyan Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Xinli Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Zhuyun Bian
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Jiangchun Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
12
|
Wang HH, Wang YB, Yin C, Gao J, Tao R, Sun YL, Wang CY, Wang Z, Li YX, Sung CK. In vivo infection of Bursaphelenchus xylophilus by the fungus Esteya vermicola. PEST MANAGEMENT SCIENCE 2020; 76:2854-2864. [PMID: 32237055 DOI: 10.1002/ps.5839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/29/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND As the causal agent of pine wilt disease, Bursaphelenchus xylophilus, is a serious pathogen of forest pine trees. Esteya vermicola is a nematophagous fungus of B. xylophilus and exhibits great potential as a biological control agent. However, the in vivo infection mechanism of E. vermicola on B. xylophilus is unclear. Experiments were conducted to study the colonization of host plant and infection of B. xylophilus by E. vermicola inside pine tree xylem. RESULTS A green fluorescent protein (GFP)-tagged E. vermicola transformant was constructed as a biomarker to study the in vivo colonization and infection of B. xylophilus in pine trees. The in vitro infection of B. xylophilus by E. vermicola was observed through GFP expression. The bacilloid conidia produced by trophic hyphae in the body of the nematode are described. Additionally, the monitoring of in vivo colonization by GFP-tagged E. vermicola showed the germination and hyphal extension of this fungus after inoculation. Moreover, B. xylophilus infected by this biocontrol agent were extracted from healthy seedlings and observed in the xylem of trees that were wilting due to pine wilt disease. CONCLUSION Evidence of fungal colonization and infection of B. xylophilus by E. vermicola is provided to improve our understanding of the in vivo infection mechanisms used by this nematophagous fungus against B. xylophilus. The infection of B. xylophilus by E. vermicola was inferred to begin with the implantation of propagules, and this inference will require future investigation. The colonization of Esteya vermicola in host pine tree xylem and the in vivo infection of pinewood nematode by E. vermicola were investigated using the green fluorescence protein transformant. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hai-Hua Wang
- Department of Food Science and Technology, College of Agriculture and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Yun-Bo Wang
- Department of Food Science and Technology, College of Agriculture and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Can Yin
- Department of Food Science and Technology, College of Agriculture and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Jie Gao
- Department of Food Science and Technology, College of Agriculture and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Ran Tao
- Department of Food Science and Technology, College of Agriculture and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Yu-Lou Sun
- Department of Biochemistry and Molecular Biology, College of Life Science, Shandong Normal University, Jinan City, China
| | - Chun-Yan Wang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Zhen Wang
- College of pharmacy, Linyi University, Linyi City, China
| | - Yong-Xia Li
- Laboratory of Forest Pathogen Integrated Biology, Research institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, China
| | - Chang-Keun Sung
- Department of Food Science and Technology, College of Agriculture and Biotechnology, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
13
|
Nandakumar M, Malathi P, Sundar AR, Viswanathan R. Use of Green Fluorescent Protein Expressing Colletotrichum falcatum, the Red Rot Pathogen for Precise Host–Pathogen Interaction Studies in Sugarcane. SUGAR TECH 2020; 22:112-121. [DOI: 10.1007/s12355-019-00751-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/10/2019] [Indexed: 02/08/2023]
|
14
|
Min T, Xiong L, Liang Y, Xu R, Fa C, Yang S, Hu H. Disruption of stcA blocks sterigmatocystin biosynthesis and improves echinocandin B production in Aspergillus delacroxii. World J Microbiol Biotechnol 2019; 35:109. [DOI: 10.1007/s11274-019-2687-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/29/2019] [Indexed: 10/26/2022]
|
15
|
Dangol S, Chen Y, Hwang BK, Jwa NS. Iron- and Reactive Oxygen Species-Dependent Ferroptotic Cell Death in Rice- Magnaporthe oryzae Interactions. THE PLANT CELL 2019; 31:189-209. [PMID: 30563847 PMCID: PMC6391706 DOI: 10.1105/tpc.18.00535] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/01/2018] [Accepted: 12/13/2018] [Indexed: 05/20/2023]
Abstract
Hypersensitive response (HR) cell death is the most effective plant immune response restricting fungal pathogen invasion. Here, we report that incompatible rice (Oryza sativa) Magnaporthe oryzae interactions induce iron- and reactive oxygen species (ROS)-dependent ferroptotic cell death in rice cells. Ferric ions and ROS (i.e., H2O2) accumulated in tissues undergoing HR cell death of rice leaf sheath tissues during avirulent M. oryzae infection. By contrast, iron did not accumulate in rice cells during virulent M. oryzae infection or treatment with the fungal elicitor chitin. Avirulent M. oryzae infection in ΔOs-nadp-me2-3 mutant rice did not trigger iron and ROS accumulation and suppressed HR cell death, suggesting that NADP-malic enzyme2 is required for ferroptotic cell death in rice. The small-molecule ferroptosis inhibitors deferoxamine, ferrostatin-1, and cytochalasin E and the NADPH oxidase inhibitor diphenyleneiodonium suppressed iron-dependent ROS accumulation and lipid peroxidation to completely attenuate HR cell death in rice sheaths during avirulent M. oryzae infection. By contrast, the small-molecule inducer erastin triggered iron-dependent ROS accumulation and glutathione depletion, which ultimately led to HR cell death in rice in response to virulent M. oryzae These combined results demonstrate that iron- and ROS-dependent signaling cascades are involved in the ferroptotic cell death pathway in rice to disrupt M. oryzae infection.
Collapse
Affiliation(s)
- Sarmina Dangol
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Yafei Chen
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 06213, Republic of Korea
| | - Nam-Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
16
|
A comprehensive catalogue of polyketide synthase gene clusters in lichenizing fungi. J Ind Microbiol Biotechnol 2018; 45:1067-1081. [PMID: 30206732 DOI: 10.1007/s10295-018-2080-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022]
Abstract
Lichens are fungi that form symbiotic partnerships with algae. Although lichens produce diverse polyketides, difficulties in establishing and maintaining lichen cultures have prohibited detailed studies of their biosynthetic pathways. Creative, albeit non-definitive, methods have been developed to assign function to biosynthetic gene clusters in lieu of techniques such as gene knockout and heterologous expressions that are commonly applied to easily cultivatable organisms. We review a total of 81 completely sequenced polyketide synthase (PKS) genes from lichenizing fungi, comprising to our best efforts all complete and reported PKS genes in lichenizing fungi to date. This review provides an overview of the approaches used to locate and sequence PKS genes in lichen genomes, current approaches to assign function to lichen PKS gene clusters, and what polyketides are proposed to be biosynthesized by these PKS. We conclude with remarks on prospects for genomics-based natural products discovery in lichens. We hope that this review will serve as a guide to ongoing research efforts on polyketide biosynthesis in lichenizing fungi.
Collapse
|
17
|
Dehghani J, Adibkia K, Movafeghi A, Barzegari A, Pourseif MM, Maleki Kakelar H, Golchin A, Omidi Y. Stable transformation of Spirulina (Arthrospira) platensis: a promising microalga for production of edible vaccines. Appl Microbiol Biotechnol 2018; 102:9267-9278. [PMID: 30159589 DOI: 10.1007/s00253-018-9296-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/28/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022]
Abstract
The planktonic blue-green microalga Spirulina (Arthrospira) platensis possesses important features (e.g., high protein and vital lipids contents as well as essential vitamins) and can be consumed by humans and animals. Accordingly, this microalga gained growing attention as a new platform for producing edible-based pharmaceutical proteins. However, there are limited successful strategies for the transformation of S. platensis, in part because of an efficient expression of strong endonucleases in its cytoplasm. In the current work, as a pilot step for the expression of therapeutic proteins, an Agrobacterium-based system was established to transfer gfp:gus and hygromycin resistance (hygr) genes into the genome of S. platensis. The presence of acetosyringone in the transfection medium significantly reduced the transformation efficiency. The PCR and real-time RT-PCR data confirmed the successful integration and transcription of the genes. Flow cytometry and β-glucuronidase (GUS) activity experiments confirmed the successful production of GFP and the enzyme. Moreover, the western blot analysis showed a ~ 90 kDa band in the transformed cells, indicating the successful production of the GFP:GUS protein. Three months after the transformation, the gene expression stability was validated by histochemical, flow cytometry, and hygromycin B resistance analyses.
Collapse
Affiliation(s)
- Jaber Dehghani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Movafeghi
- Department of Plant Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Maleki Kakelar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asal Golchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Cheng C, Qin J, Wu C, Lei M, Wang Y, Zhang L. Suppressing a plant-parasitic nematode with fungivorous behavior by fungal transformation of a Bt cry gene. Microb Cell Fact 2018; 17:116. [PMID: 30037328 PMCID: PMC6055344 DOI: 10.1186/s12934-018-0960-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pine wilt disease, caused by the pinewood nematode Bursaphelenchus xylophilus (PWN), is an important destructive disease of pine forests worldwide. In addition to behaving as a plant-parasitic nematode that feeds on epithelial cells of pines, this pest relies on fungal associates for completing its life cycle inside pine trees. Manipulating microbial symbionts to block pest transmission has exhibited an exciting prospect in recent years; however, transforming the fungal mutualists to toxin delivery agents for suppressing PWN growth has received little attention. RESULTS In the present study, a nematicidal gene cry5Ba3, originally from a soil Bacillus thuringiensis (Bt) strain, was codon-preferred as cry5Ba3Φ and integrated into the genome of a fungus eaten by PWN, Botrytis cinerea, using Agrobacterium tumefaciens-mediated transformation. Supplementing wild-type B. cinerea extract with that from the cry5Ba3Φ transformant significantly suppressed PWN growth; moreover, the nematodes lost fitness significantly when feeding on the mycelia of the cry5Ba3Φ transformant. N-terminal deletion of Cry5Ba3Φ protein weakened the nematicidal activity more dramatically than did the C-terminal deletion, indicating that domain I (endotoxin-N) plays a more important role in its nematicidal function than domain III (endotoxin-C), which is similar to certain insecticidal Cry proteins. CONCLUSIONS Transformation of Bt nematicidal cry genes in fungi can alter the fungivorous performance of B. xylophilus and reduce nematode fitness. This finding provides a new prospect of developing strategies for breaking the life cycle of this pest in pines and controlling pine wilt disease.
Collapse
Affiliation(s)
- Chihang Cheng
- Collaborative Innovation Center of Zhejiang Green Pesticide, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
- School of Life Sciences, Huzhou University, Huzhou, 313000, China
| | - Jialing Qin
- Collaborative Innovation Center of Zhejiang Green Pesticide, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Choufei Wu
- Collaborative Innovation Center of Zhejiang Green Pesticide, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
- School of Life Sciences, Huzhou University, Huzhou, 313000, China
| | - Mengying Lei
- Guangdong Eco-Engineering Polytechnic, Guangdong, 510520, China
| | - Yongjun Wang
- Collaborative Innovation Center of Zhejiang Green Pesticide, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Liqin Zhang
- Collaborative Innovation Center of Zhejiang Green Pesticide, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
- School of Life Sciences, Huzhou University, Huzhou, 313000, China.
| |
Collapse
|
19
|
Wang Y, Geng C, Yuan X, Hua M, Tian F, Li C. Identification of a putative polyketide synthase gene involved in usnic acid biosynthesis in the lichen Nephromopsis pallescens. PLoS One 2018; 13:e0199110. [PMID: 30020937 PMCID: PMC6051580 DOI: 10.1371/journal.pone.0199110] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/31/2018] [Indexed: 11/30/2022] Open
Abstract
Usnic acid is a unique polyketide produced by lichens. To characterize usnic acid biosynthesis, the transcriptome of the usnic-acid-producing lichen-forming fungus Nephromopsis pallescens was sequenced using Illumina NextSeq technology. Seven complete non-reducing polyketide synthase genes and nine highly-reducing polyketide synthase genes were obtained through transcriptome analysis. Gene expression results obtained by qPCR and usnic acid detection with LCMS-IT-TOF showed that Nppks7 is probably involved in usnic acid biosynthesis in N. pallescens. Nppks7 is a non-reducing polyketide synthase with a MeT domain that also possesses beta-ketoacyl-ACP synthase, acyl transferase, product template, acyl carrier protein, C-methyltransferase, and Claisen cyclase domains. Phylogenetic analysis shows that Nppks7and other polyketide synthases from lichens form a unique monophyletic clade. Taken together, our data indicate that Nppks7 is a novel PKS in N. pallescens that is likely involved in usnic acid biosynthesis.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry, Kunming Yunnan, China
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Changan Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiaolong Yuan
- Key Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry, Kunming Yunnan, China
| | - Mei Hua
- Key Laboratory of Forest Plant Cultivation and Utilization, Yunnan Academy of Forestry, Kunming Yunnan, China
| | - Fenghua Tian
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Changtian Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| |
Collapse
|
20
|
Zhang T, Ren P, De Jesus M, Chaturvedi V, Chaturvedi S. Green Fluorescent Protein Expression in Pseudogymnoascus destructans to Study Its Abiotic and Biotic Lifestyles. Mycopathologia 2018; 183:805-814. [PMID: 29987576 DOI: 10.1007/s11046-018-0285-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
Abstract
Pseudogymnoascus destructans (Pd) is the etiologic agent of bat White-nose syndrome, a disease that has caused the unprecedented reduction in the hibernating bat populations across eastern North America. The Pd pathogenesis appears to be a complex adaptation of fungus in its abiotic (caves and mines) and biotic (bats) environments. There is a general lack of experimental tools for the study of Pd biology. We described the successful expression of codon-optimized synthetic green fluorescent protein sGFP in Pd. The sGFP(S65T) gene was first fused in frame with the Aspergillus nidulans promoter in the tumor-inducing plasmid pRF-HUE, and the resulting plasmid pHUE-sGFP(S65T) was transformed into Pd by Agrobacterium tumefaciens-mediated transformation system. The integration of sGFP(S65T) in Pd genome was analyzed by PCR, and single integration frequency of approximately 66% was confirmed by Southern hybridization. Fluorescent microscopy and flow cytometric analyses of two randomly selected transformants with single integration revealed high expression of sGFP in both spores and hyphal structures. The biology of mutants as judged by sporulation, growth rate, and urease production was not altered indicating sGFP is not toxic to Pd. Thus, we have generated a valuable tool that will facilitate the elucidation of Pd biology, ecology, and pathogenicity in real time.
Collapse
Affiliation(s)
- Tao Zhang
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, People's Republic of China
| | - Ping Ren
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Magdia De Jesus
- Immunology and Infectious Disease Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA.
| | - Sudha Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA.
| |
Collapse
|
21
|
Highly efficient transformation of a (hemi-)cellulases-producing fungus Eupenicillium parvum 4–14 by Agrobacterium tumefaciens. J Microbiol Methods 2018; 146:40-45. [DOI: 10.1016/j.mimet.2018.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 11/20/2022]
|
22
|
Hooykaas PJJ, van Heusden GPH, Niu X, Reza Roushan M, Soltani J, Zhang X, van der Zaal BJ. Agrobacterium-Mediated Transformation of Yeast and Fungi. Curr Top Microbiol Immunol 2018; 418:349-374. [PMID: 29770864 DOI: 10.1007/82_2018_90] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two decades ago, it was discovered that the well-known plant vector Agrobacterium tumefaciens can also transform yeasts and fungi when these microorganisms are co-cultivated on a solid substrate in the presence of a phenolic inducer such as acetosyringone. It is important that the medium has a low pH (5-6) and that the temperature is kept at room temperature (20-25 °C) during co-cultivation. Nowadays, Agrobacterium-mediated transformation (AMT) is the method of choice for the transformation of many fungal species; as the method is simple, the transformation efficiencies are much higher than with other methods, and AMT leads to single-copy integration much more frequently than do other methods. Integration of T-DNA in fungi occurs by non-homologous end-joining (NHEJ), but also targeted integration of the T-DNA by homologous recombination (HR) is possible. In contrast to AMT of plants, which relies on the assistance of a number of translocated virulence (effector) proteins, none of these (VirE2, VirE3, VirD5, VirF) are necessary for AMT of yeast or fungi. This is in line with the idea that some of these proteins help to overcome plant defense. Importantly, it also showed that VirE2 is not necessary for the transport of the T-strand into the nucleus. The yeast Saccharomyces cerevisiae is a fast-growing organism with a relatively simple genome with reduced genetic redundancy. This yeast species has therefore been used to unravel basic molecular processes in eukaryotic cells as well as to elucidate the function of virulence factors of pathogenic microorganisms acting in plants or animals. Translocation of Agrobacterium virulence proteins into yeast was recently visualized in real time by confocal microscopy. In addition, the yeast 2-hybrid system, one of many tools that have been developed for use in this yeast, was used to identify plant and yeast proteins interacting with the translocated Agrobacterium virulence proteins. Dedicated mutant libraries, containing for each gene a mutant with a precise deletion, have been used to unravel the mode of action of some of the Agrobacterium virulence proteins. Yeast deletion mutant collections were also helpful in identifying host factors promoting or inhibiting AMT, including factors involved in T-DNA integration. Thus, the homologous recombination (HR) factor Rad52 was found to be essential for targeted integration of T-DNA by HR in yeast. Proteins mediating double-strand break (DSB) repair by end-joining (Ku70, Ku80, Lig4) turned out to be essential for non-homologous integration. Inactivation of any one of the genes encoding these end-joining factors in other yeasts and fungi was employed to reduce or totally eliminate non-homologous integration and promote efficient targeted integration at the homologous locus by HR. In plants, however, their inactivation did not prevent non-homologous integration, indicating that T-DNA is captured by different DNA repair pathways in plants and fungi.
Collapse
Affiliation(s)
- Paul J J Hooykaas
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| | - G Paul H van Heusden
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Xiaolei Niu
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - M Reza Roushan
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Jalal Soltani
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Xiaorong Zhang
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Bert J van der Zaal
- Sylvius Lab, Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| |
Collapse
|
23
|
Transformation of the endochitinase gene Chi67-1 in Clonostachys rosea 67-1 increases its biocontrol activity against Sclerotinia sclerotiorum. AMB Express 2017; 7:1. [PMID: 28050842 PMCID: PMC5209325 DOI: 10.1186/s13568-016-0313-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 12/19/2016] [Indexed: 01/26/2023] Open
Abstract
Clonostachys rosea is a promising biocontrol fungus active against various plant fungal pathogens. In this study, the endochitinase-encoding gene Chi67-1, the expression of which is sharply upregulated in C. rosea 67-1 when induced by sclerotia, was transformed into the original isolate by protoplast transformation, and transformants were screened against Sclerotinia rot of soybean. The transformation efficiency was approximately 50 transformants per 1 × 107 protoplasts, and 68 stably heritable recombinants were assayed. The parasitic rates of 32.4% of the tested strains increased by more than 50% compared to 43.3% of the wild type strain in 16 h, and the Rc4-4 transformant showed a parasitic rate of 100% in 16 h. The control efficiencies of the selected efficient transformants to soybean Sclerotinia stem rot were evaluated in pots in the greenhouse, and the results revealed that Rc4-4 achieved the highest efficiency of 81.4%, which was 31.7% and 28.7% higher than the control achieved by the wide type and the pesticide carbendazim, respectively. Furthermore, the expression level of Chi67-1 was 107-fold higher in Rc4-4 than in the wild type, and accordingly, the chitinase activity of the recombinant increased by 140%. The results lay a foundation for the development of efficient genetically engineered strains of C. rosea.
Collapse
|
24
|
Wang PY, Lian YS, Chang R, Liao WH, Chen WS, Tsai WB. Modulation of PEI-Mediated Gene Transfection through Controlling Cytoskeleton Organization and Nuclear Morphology via Nanogrooved Topographies. ACS Biomater Sci Eng 2017; 3:3283-3291. [PMID: 33445370 DOI: 10.1021/acsbiomaterials.7b00617] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of nanotopographies on cell adhesion, migration, proliferation, differentiation, and/or apoptosis have been studied over the last two decades. However, the effect of nanotopography on gene transfection of adhered cells is far from understood. One key phenomenon of using nanotopography is mimicry of native cell morphology in vitro such as in alignment of skeletal myoblasts on nanogrooves. The formation of focal adhesions, the cytoskeleton, and the morphology of cell nuclei are altered by underlying nanogrooves, but the role of these changes in gene transfection are not well understood. In this study, C2C12 skeletal myoblasts were transfected using polyethylenimine (PEI)/DNA complexes on nanogrooved patterns of two groove widths (400 and 800 nm) at three depths (50 nm and 400 or 500 nm). The results showed that the deep nanogrooved surfaces (i.e., 400/400 and 800/500) induced formation of aligned, parallel F-actin and elongated nucleus morphology. Gene transfection was also reduced on the deep nanogrooved surfaces. Disruption of F-actin organization using Cytochalasin D (Cyto-D) restored the nuclear morphology accompanied by higher transfection efficiency, demonstrating that the reduction in gene expression on deep nanogrooves was due to cytoskeletal stretching and nucleus elongation. Spatiotemporal images of fluorescent-labeled PEI/DNA complexes showed that endocytosis of PEI/DNA complexes was retarded and DNA trafficking into the cell nucleus was reduced. This study demonstrates for the first time the important role of cytoskeletal organization and nuclear morphology in PEI-mediated gene transfection to skeletal myoblasts using nanogrooved patterns. These findings are informative for in vitro studies and could potentially be useful in in vivo intramuscular (IM) administration.
Collapse
Affiliation(s)
- Peng-Yuan Wang
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia.,Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yen-Shiang Lian
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ray Chang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Wei-Hao Liao
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Bor Tsai
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
25
|
|
26
|
Nai Y, Lee M, Kim S, Lee S, Kim J, Yang Y, Kim J. Relationship between expression level of hygromycin B-resistant gene andAgrobacterium tumefaciens-mediated transformation efficiency inBeauveria bassianaJEF-007. J Appl Microbiol 2017; 123:724-731. [DOI: 10.1111/jam.13529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Y.S. Nai
- Department of Agricultural Biology; College of Agriculture & Life Sciences; Chonbuk National University; Jeonju Korea
- Department of Biotechnology and Animal Science; College of Bioresources; National Ilan University; I-Lan Taiwan, ROC
| | - M.R. Lee
- Department of Agricultural Biology; College of Agriculture & Life Sciences; Chonbuk National University; Jeonju Korea
| | - S. Kim
- Department of Agricultural Biology; College of Agriculture & Life Sciences; Chonbuk National University; Jeonju Korea
| | - S.J. Lee
- Department of Agricultural Biology; College of Agriculture & Life Sciences; Chonbuk National University; Jeonju Korea
| | - J.C. Kim
- Department of Agricultural Biology; College of Agriculture & Life Sciences; Chonbuk National University; Jeonju Korea
| | - Y.T. Yang
- Department of Agricultural Biology; College of Agriculture & Life Sciences; Chonbuk National University; Jeonju Korea
| | - J.S. Kim
- Department of Agricultural Biology; College of Agriculture & Life Sciences; Chonbuk National University; Jeonju Korea
- Plant Medical Research Center; College of Agricultural and Life Sciences; Chonbuk National University; Jenoju Korea
| |
Collapse
|
27
|
Abstract
ABSTRACT
Lichen symbioses comprise a fascinating relationship between algae and fungi. The lichen symbiotic lifestyle evolved early in the evolution of ascomycetes and is also known from a few basidiomycetes. The ascomycete lineages have diversified in the lichenized stage to give rise to a tremendous variety of morphologies. Their thalli are often internally complex and stratified for optimized integration of algal and fungal metabolisms. Thalli are frequently colonized by specific nonlichenized fungi and occasionally also by other lichens. Microscopy has revealed various ways these fungi interact with their hosts. Besides the morphologically recognizable diversity of the lichen mycobionts and lichenicolous (lichen-inhabiting) fungi, many other microorganisms including other fungi and bacterial communities are now detected in lichens by culture-dependent and culture-independent approaches. The application of multi-omics approaches, refined microscopic techniques, and physiological studies has added to our knowledge of lichens, not only about the taxa involved in the lichen interactions, but also about their functions.
Collapse
|
28
|
Andargie M, Yang C, Li J. Generation of β-glucuronidase reporter-tagged strain to monitor Ustilaginoidea virens infection in rice. J Microbiol Methods 2016; 131:148-155. [DOI: 10.1016/j.mimet.2016.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/21/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
|
29
|
Wu L, Conner RL, Wang X, Xu R, Li H. Variation in Growth, Colonization of Maize, and Metabolic Parameters of GFP- and DsRed-Labeled Fusarium verticillioides Strains. PHYTOPATHOLOGY 2016; 106:890-899. [PMID: 27088391 DOI: 10.1094/phyto-09-15-0236-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Autofluorescent proteins are frequently applied as visual markers in the labeling of filamentous fungi. Genes gfp and DsRed were transformed into the genome of Fusarium verticillioides via the Agrobacterium tumefaciens-mediated transformation method. The selected transformants displayed a bright green or red fluorescence in all the organelles of the growing fungal mycelia and spores (except for the vacuoles) both in cultures and in the maize (Zea mays) roots they colonized. The results of gene-specific polymerase chain reaction (PCR) analysis and the thermal asymmetrical interlaced (TAIL)-PCR analysis demonstrated that gfp and DsRed were integrated on different chromosomes of the fungus. Reductions in the colony growth on the plates at pH 4.0 and 5.5 was observed for the green fluorescent protein (GFP)-transformant G3 and the DsRed-transformant R4, but transformants G4 and R1 grew as well as the wild-type strain at pH 4.0. The speed of growth of all the transformants was similar to the wild-type strain at pH ≥ 7. The insertion of gfp and DsRed did not alter the production of extracellular enzymes and fumonisin B by F. verticillioides. The transformants expressing GFP and DsRed proteins were able to colonize maize roots. However, the four transformants examined produced fewer CFU in the root samples than the wild-type strain during a sampling period of 7 to 28 days after inoculation.
Collapse
Affiliation(s)
- Lei Wu
- First, third, and fifth authors: The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081; second author: Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Manitoba R6M 1Y5, Canada; and fourth author: Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing
| | - R L Conner
- First, third, and fifth authors: The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081; second author: Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Manitoba R6M 1Y5, Canada; and fourth author: Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing
| | - Xiaoming Wang
- First, third, and fifth authors: The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081; second author: Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Manitoba R6M 1Y5, Canada; and fourth author: Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing
| | - Rongqi Xu
- First, third, and fifth authors: The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081; second author: Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Manitoba R6M 1Y5, Canada; and fourth author: Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing
| | - Hongjie Li
- First, third, and fifth authors: The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081; second author: Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Manitoba R6M 1Y5, Canada; and fourth author: Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing
| |
Collapse
|
30
|
Li H, Wei JC. Functional analysis of thioredoxin from the desert lichen-forming fungus, Endocarpon pusillum Hedwig, reveals its role in stress tolerance. Sci Rep 2016; 6:27184. [PMID: 27251605 PMCID: PMC4890037 DOI: 10.1038/srep27184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/13/2016] [Indexed: 01/05/2023] Open
Abstract
Endocarpon pusillum is a lichen-forming fungus with an outstanding stress resistance property closely related to its antioxidant system. In this study, thioredoxin (Trx), one of the main components of antioxidant defense systems in E. pusillum (EpTrx), was characterized and analyzed both in transgenic yeasts and in vitro. Our analyses identified that the heterologous expression of EpTrx in the yeast Pichia pastoris significantly enhanced its resistance to osmotic and oxidative stresses. Assays in vitro showed EpTrx acted as a disulfide reductase as well as a molecular chaperone by assembling into various polymeric structures. Upon exposure to heat-shock stress, EpTrx exhibited weaker disulfide reductase activity but stronger chaperone activity, which coincided with the switching of the protein complexes from low molecular weight forms to high molecular weight complexes. Specifically, we found that Cys31 near but not at the active site was crucial in promoting the structural and functional transitions, most likely by accelerating the formation of intermolecular disulfide bond. Transgenic Saccharomyces cerevisiae harboring the native EpTrx exhibited stronger tolerance to oxidative, osmotic and high temperature stresses than the corresponding yeast strain containing the mutant EpTrx (C31S). Our results provide the first molecular evidence on how Trx influences stress response in lichen-forming fungi.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang-Chun Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Singh R, Dangol S, Chen Y, Choi J, Cho YS, Lee JE, Choi MO, Jwa NS. Magnaporthe oryzae Effector AVR-Pii Helps to Establish Compatibility by Inhibition of the Rice NADP-Malic Enzyme Resulting in Disruption of Oxidative Burst and Host Innate Immunity. Mol Cells 2016; 39:426-38. [PMID: 27126515 PMCID: PMC4870191 DOI: 10.14348/molcells.2016.0094] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/14/2016] [Indexed: 11/27/2022] Open
Abstract
Plant disease resistance occurs as a hypersensitive response (HR) at the site of attempted pathogen invasion. This specific event is initiated in response to recognition of pathogen-associated molecular pattern (PAMP) and subsequent PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). Both PTI and ETI mechanisms are tightly connected with reactive oxygen species (ROS) production and disease resistance that involves distinct biphasic ROS production as one of its pivotal plant immune responses. This unique oxidative burst is strongly dependent on the resistant cultivars because a monophasic ROS burst is a hallmark of the susceptible cultivars. However, the cause of the differential ROS burst remains unknown. In the study here, we revealed the plausible underlying mechanism of the differential ROS burst through functional understanding of the Magnaporthe oryzae (M. oryzae) AVR effector, AVR-Pii. We performed yeast two-hybrid (Y2H) screening using AVR-Pii as bait and isolated rice NADP-malic enzyme2 (Os-NADP-ME2) as the rice target protein. To our surprise, deletion of the rice Os-NADP-ME2 gene in a resistant rice cultivar disrupted innate immunity against the rice blast fungus. Malic enzyme activity and inhibition studies demonstrated that AVR-Pii proteins specifically inhibit in vitro NADP-ME activity. Overall, we demonstrate that rice blast fungus, M. oryzae attenuates the host ROS burst via AVR-Pii-mediated inhibition of Os-NADP-ME2, which is indispensable in ROS metabolism for the innate immunity of rice. This characterization of the regulation of the host oxidative burst will help to elucidate how the products of AVR genes function associated with virulence of the pathogen.
Collapse
Affiliation(s)
- Raksha Singh
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 143-747,
Korea
| | - Sarmina Dangol
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 143-747,
Korea
| | - Yafei Chen
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 143-747,
Korea
| | - Jihyun Choi
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 143-747,
Korea
| | - Yoon-Seong Cho
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 143-747,
Korea
| | - Jea-Eun Lee
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 143-747,
Korea
| | - Mi-Ok Choi
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 143-747,
Korea
| | - Nam-Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 143-747,
Korea
| |
Collapse
|
32
|
Chambers K, Lowe RG, Howlett BJ, Zander M, Batley J, Van de Wouw AP, Elliott CE. Next-generation genome sequencing can be used to rapidly characterise sequences flanking T-DNA insertions in random insertional mutants of Leptosphaeria maculans. Fungal Biol Biotechnol 2014; 1:10. [PMID: 28955452 PMCID: PMC5611616 DOI: 10.1186/s40694-014-0010-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/14/2014] [Indexed: 12/05/2022] Open
Abstract
Background Banks of mutants with random insertions of T-DNA from Agrobacterium tumefaciens are often used in forward genetics approaches to identify phenotypes of interest. Upon identification of mutants of interest, the flanking sequences of the inserted T-DNA must be identified so that the mutated gene can be characterised. However, for many fungi, this task is not trivial as widely used PCR-based methods such as thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR) are not successful. Findings Next-generation Illumina sequencing was used to locate T-DNA insertion sites in four mutants of Leptosphaeria maculans, a fungal plant pathogen. Sequence reads of up to 150 bp and coverage ranging from 6 to 24 times, were sufficient for identification of insertion sites in all mutants. All T-DNA border sequences were truncated to different extents. Additionally, next-generation sequencing revealed chromosomal rearrangements associated with the insertion in one of the mutants. Conclusions Next-generation sequencing is a cost-effective and rapid method of identifying sites of T-DNA insertions, and associated genomic rearrangements in Leptosphaeria maculans and potentially in other fungal species.
Collapse
Affiliation(s)
- Kylie Chambers
- School of Botany, the University of Melbourne, Parkville, 3010 Victoria Australia
| | - Rohan Gt Lowe
- School of Botany, the University of Melbourne, Parkville, 3010 Victoria Australia.,Department of Biochemistry, La Trobe University, Bundoora, 3086 Victoria Australia
| | - Barbara J Howlett
- School of Botany, the University of Melbourne, Parkville, 3010 Victoria Australia
| | - Manuel Zander
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, Brisbane, 4072 Queensland Australia
| | - Jacqueline Batley
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, Brisbane, 4072 Queensland Australia.,School of Plant Biology, University of Western Australia, Crawley, 6009 Western Australia Australia
| | - Angela P Van de Wouw
- School of Botany, the University of Melbourne, Parkville, 3010 Victoria Australia
| | - Candace E Elliott
- School of Botany, the University of Melbourne, Parkville, 3010 Victoria Australia
| |
Collapse
|
33
|
Draft Genome Sequence of Umbilicaria muehlenbergii KoLRILF000956, a Lichen-Forming Fungus Amenable to Genetic Manipulation. GENOME ANNOUNCEMENTS 2014; 2:2/2/e00357-14. [PMID: 24762942 PMCID: PMC3999499 DOI: 10.1128/genomea.00357-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Umbilicaria muehlenbergii strain KoLRILF000956 is amenable to Agrobacterium tumefaciens-mediated transformation (ATMT), making it the only known genetically tractable lichen-forming fungus to date. We report another advancement in lichen genetics, a draft genome assembly for U. muehlenbergii with a size of 34,812,353 bp and a GC content of 47.12%, consisting of seven scaffolds.
Collapse
|