1
|
Samani RK, Mehrgardi MA, Maghsoudinia F, Najafi M, Mehradnia F. Evaluation of folic acid-targeted gadolinium-loaded perfluorohexane nanodroplets on the megavoltage X-ray treatment efficiency of liver cancer. Eur J Pharm Sci 2025; 209:107059. [PMID: 40049297 DOI: 10.1016/j.ejps.2025.107059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 02/02/2025] [Accepted: 03/03/2025] [Indexed: 03/24/2025]
Abstract
The efficacy of radiation therapy can decrease due to the inherent radioresistance of different tumor cells. Gadolinium shows significant potential as a radiosensitivity enhancer due to its high atomic number. In this study, a novel theranostic nanoprobe based on folic acid-conjugated gadolinium-loaded nanodroplets (FA-Gd-NDs) has been introduced for ultrasound imaging (USI)-guided radiation therapy of hepatocellular carcinoma. The ultrasound echogenicity evaluation of NDs, Gd release studies, biocompatibility test of Gd-NDs, colony assay, cellular uptake of NDs via fluorescence microscopy, and flow cytometry analysis were performed on Hepa1-6 cancer and L929 normal cell lines. Our results showed that synthesized NDs significantly enhanced ultrasound signal intensity in PBS solution and agarose gel phantom. MTT and clonogenic assays indicated that Gd-NDs substantially reduced the cell viability and also surviving fraction of Hepa1-6 cancer cells under US and X-ray exposure. Additionally, FA-Gd-NDs exhibited sensitization enhancement factor (SER) of 1.8 after concurrent exposure to US and X-ray. Fluorescence imaging demonstrated more internalization of FA-Gd-NDs into cancer cells in comparison with normal cells. According to flow cytometry results, the Gd-NDs and FA-Gd-NDs uptake by L929 cell line were 20 % and 28 %, respectively, while their uptake by Hepa1-6 cells was 60 % and 94 %, respectively. In conclusion, the synthesized novel theranostic nanoprobe shows great potential for enhancing the efficacy of radiation therapy and enabling ultrasound image-guided radiation therapy of cancers.
Collapse
Affiliation(s)
- Roghayeh Kamran Samani
- Department of Medical Physics and Radiology, School of Allied Medical Sciences, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Masoud A Mehrgardi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Fatemeh Maghsoudinia
- Department of Medical Imaging and Radiation Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Nanotechnology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohammad Najafi
- Department of Medical Imaging and Radiation Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Mehradnia
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| |
Collapse
|
2
|
Su Y, Huang L, Zhang D, Zeng Z, Hong S, Lin X. Recent Advancements in Ultrasound Contrast Agents Based on Nanomaterials for Imaging. ACS Biomater Sci Eng 2024; 10:5496-5512. [PMID: 39246058 DOI: 10.1021/acsbiomaterials.4c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Ultrasound (US) is a type of mechanical wave that is capable of transmitting energy through biological tissues. By utilization of various frequencies and intensities, it can elicit specific biological effects. US imaging (USI) technology has been continuously developed with the advantages of safety and the absence of radiation. The advancement of nanotechnology has led to the utilization of various nanomaterials composed of both organic and inorganic compounds as ultrasound contrast agents (UCAs). These UCAs enhance USI, enabling real-time monitoring, diagnosis, and treatment of diseases, thereby facilitating the widespread adoption of UCAs in precision medicine. In this review, we introduce various UCAs based on nanomaterials for USI. Their principles can be roughly divided into the following categories: carrying and transporting gases, endogenous gas production, and the structural characteristics of the nanomaterial itself. Furthermore, the synergistic benefits of US in conjunction with various imaging modalities and their combined application in disease monitoring and diagnosis are introduced. In addition, the challenges and prospects for the development of UCAs are also discussed.
Collapse
Affiliation(s)
- Yina Su
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Linjie Huang
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Dongdong Zhang
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Zheng Zeng
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Shanni Hong
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| | - Xiahui Lin
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, Fujian, P. R. China
| |
Collapse
|
3
|
Vidallon MLP, Teo BM, Bishop AI, Tabor RF. Next-Generation Colloidal Materials for Ultrasound Imaging Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1373-1396. [PMID: 35641393 DOI: 10.1016/j.ultrasmedbio.2022.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
Ultrasound has important applications, predominantly in the field of diagnostic imaging. Presently, colloidal systems such as microbubbles, phase-change emulsion droplets and particle systems with acoustic properties and multiresponsiveness are being developed to address typical issues faced when using commercial ultrasound contrast agents, and to extend the utility of such systems to targeted drug delivery and multimodal imaging. Current technologies and increasing research data on the chemistry, physics and materials science of new colloidal systems are also leading to the development of more complex, novel and application-specific colloidal assemblies with ultrasound contrast enhancement and other properties, which could be beneficial for multiple biomedical applications, especially imaging-guided treatments. In this article, we review recent developments in new colloids with applications that use ultrasound contrast enhancement. This work also highlights the emergence of colloidal materials fabricated from or modified with biologically derived and bio-inspired materials, particularly in the form of biopolymers and biomembranes. Challenges, limitations, potential developments and future directions of these next-generation colloidal systems are also presented and discussed.
Collapse
Affiliation(s)
| | - Boon Mian Teo
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Alexis I Bishop
- School of Physics and Astronomy, Monash University, Clayton, Victoria, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
4
|
Zhang W, Shi Y, Abd Shukor S, Vijayakumaran A, Vlatakis S, Wright M, Thanou M. Phase-shift nanodroplets as an emerging sonoresponsive nanomaterial for imaging and drug delivery applications. NANOSCALE 2022; 14:2943-2965. [PMID: 35166273 DOI: 10.1039/d1nr07882h] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanodroplets - emerging phase-changing sonoresponsive materials - have attracted substantial attention in biomedical applications for both tumour imaging and therapeutic purposes due to their unique response to ultrasound. As ultrasound is applied at different frequencies and powers, nanodroplets have been shown to cavitate by the process of acoustic droplet vapourisation (ADV), causing the development of mechanical forces which promote sonoporation through cellular membranes. This allows drugs to be delivered efficiently into deeper tissues where tumours are located. Recent reviews on nanodroplets are mostly focused on the mechanism of cavitation and their applications in biomedical fields. However, the chemistry of the nanodroplet components has not been discussed or reviewed yet. In this review, the commonly used materials and preparation methods of nanodroplets are summarised. More importantly, this review provides examples of variable chemistry components in nanodroplets which link them to their efficiency as ultrasound-multimodal imaging agents to image and monitor drug delivery. Finally, the drawbacks of current research, future development, and future direction of nanodroplets are discussed.
Collapse
Affiliation(s)
- Weiqi Zhang
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| | - Yuhong Shi
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| | | | | | - Stavros Vlatakis
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| | - Michael Wright
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| | - Maya Thanou
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| |
Collapse
|
5
|
Li M, Bian X, Chen X, Fan N, Zou H, Bao Y, Zhou Y. Multifunctional liposome for photoacoustic/ultrasound imaging-guided chemo/photothermal retinoblastoma therapy. Drug Deliv 2022; 29:519-533. [PMID: 35156504 PMCID: PMC8863383 DOI: 10.1080/10717544.2022.2032876] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Retinoblastoma (RB) is a malignant intraocular neoplasm that occurs in children. Diagnosis and therapy are frequently delayed, often leading to metastasis, which necessitates effective imaging and treatment. In recent years, the use of nanoplatforms allowing both imaging and targeted treatment has attracted much attention. Herein, we report a novel nanoplatform folate-receptor (FR) targeted laser-activatable liposome termed FA-DOX-ICG-PFP@Lip, which is loaded with doxorubicin (DOX)/indocyanine green (ICG) and liquid perfluoropentane (PFP) for photoacoustic/ultrasound (PA/US) dual-modal imaging-guided chemo/photothermal RB therapy. The dual-modal imaging capability, photothermal conversion under laser irradiation, biocompatibility, and antitumor ability of these liposomes were appraised. The multifunctional liposome showed a good tumor targeting ability and was efficacious as a dual-modality contrast agent both in vivo and in vitro. When laser-irradiated, the liposome converted light energy to heat. This action caused immediate destruction of tumor cells, while simultaneously initiating PFP phase transformation to release DOX, resulting in both photothermal and chemotherapeutic antitumor effects. Notably, the FA-DOX-ICG-PFP@Lip showed good biocompatibility and no systemic toxicity was observed after laser irradiation in RB tumor-bearing mice. Hence, the FA-DOX-ICG-PFP@Lip shows great promise for dual-modal imaging-guided chemo/photothermal therapy, and may have significant value for diagnosing and treating RB.
Collapse
Affiliation(s)
- Meng Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.,Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, PR China
| | - Xintong Bian
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.,Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, PR China
| | - Xu Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.,Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, PR China
| | - Ningke Fan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, PR China
| | - Hongmi Zou
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yixi Bao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yu Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
6
|
Brito B, Price TW, Gallo J, Bañobre-López M, Stasiuk GJ. Smart magnetic resonance imaging-based theranostics for cancer. Theranostics 2021; 11:8706-8737. [PMID: 34522208 PMCID: PMC8419031 DOI: 10.7150/thno.57004] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Smart theranostics are dynamic platforms that integrate multiple functions, including at least imaging, therapy, and responsiveness, in a single agent. This review showcases a variety of responsive theranostic agents developed specifically for magnetic resonance imaging (MRI), due to the privileged position this non-invasive, non-ionising imaging modality continues to hold within the clinical imaging field. Different MRI smart theranostic designs have been devised in the search for more efficient cancer therapy, and improved diagnostic efficiency, through the increase of the local concentration of therapeutic effectors and MRI signal intensity in pathological tissues. This review explores novel small-molecule and nanosized MRI theranostic agents for cancer that exhibit responsiveness to endogenous (change in pH, redox environment, or enzymes) or exogenous (temperature, ultrasound, or light) stimuli. The challenges and obstacles in the design and in vivo application of responsive theranostics are also discussed to guide future research in this interdisciplinary field towards more controllable, efficient, and diagnostically relevant smart theranostics agents.
Collapse
Affiliation(s)
- Beatriz Brito
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, London, UK, SE1 7EH
- School of Life Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, Hull, UK, HU6 7RX
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga
| | - Thomas W. Price
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, London, UK, SE1 7EH
| | - Juan Gallo
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga
| | - Manuel Bañobre-López
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga
| | - Graeme J. Stasiuk
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, London, UK, SE1 7EH
| |
Collapse
|
7
|
Folic acid-functionalized gadolinium-loaded phase transition nanodroplets for dual-modal ultrasound/magnetic resonance imaging of hepatocellular carcinoma. Talanta 2021; 228:122245. [PMID: 33773745 DOI: 10.1016/j.talanta.2021.122245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 01/23/2023]
Abstract
Dual-modal molecular imaging by combining two imaging techniques can provide complementary information for early cancer diagnosis and therapeutic monitoring. In the present manuscript, folic acid (FA)-functionalized gadolinium-loaded nanodroplets (NDs) are introduced as dual-modal ultrasound (US)/magnetic resonance (MR) imaging contrast agents. These phase-change contrast agents (PCCAs) with alginate (Alg) stabilizing shell and a liquid perfluorohexane (PFH) core were successfully synthesized via the nano-emulsion method and characterized. In this regard, mouse hepatocellular carcinoma (Hepa1-6) as target cancer cells and mouse fibroblast (L929) as control cells were used. The in vitro and in vivo cytotoxicity assessments indicated that Gd/PFH@Alg and Gd/PFH@Alg-FA nanodroplets are highly biocompatible. Gd-loaded NDs do not induce organ toxicity, and no significant hemolytic activity in human red blood cells is observed. Additionally, nanodroplets exhibited strong ultrasound signal intensities as well as T1-weighted MRI signal enhancement with a high relaxivity value of 6.40 mM-1 s-1, which is significantly higher than that of the clinical Gadovist contrast agent (r1 = 4.01 mM-1 s-1). Cellular uptake of Gd-NDs-FA by Hepa1-6 cancer cells was approximately 2.5-fold higher than that of Gd-NDs after 12 h incubation. Furthermore, in vivo results confirmed that the Gd-NDs-FA bound selectively to cancer cells and were accumulated in the tumor region. In conclusion, Gd/PFH@Alg-FA nanodroplets have great potential as US/MR dual-modal imaging nanoprobes for the early diagnosis of cancer.
Collapse
|
8
|
Chen Z, Krishnamachary B, Pachecho-Torres J, Penet MF, Bhujwalla ZM. Theranostic small interfering RNA nanoparticles in cancer precision nanomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1595. [PMID: 31642207 DOI: 10.1002/wnan.1595] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022]
Abstract
Due to their ability to effectively downregulate the expression of target genes, small interfering RNA (siRNA) have emerged as promising candidates for precision medicine in cancer. Although some siRNA-based treatments have advanced to clinical trials, challenges such as poor stability during circulation, and less than optimal pharmacokinetics and biodistribution of siRNA in vivo present barriers to the systemic delivery of siRNA. In recent years, theranostic nanomedicine integrating siRNA delivery has attracted significant attention for precision medicine. Theranostic nanomedicine takes advantage of the high capacity of nanoplatforms to ferry cargo with imaging and therapeutic capabilities. These theranostic nanoplatforms have the potential to play a major role in gene specific treatments. Here we have reviewed recent advances in the use of theranostic nanoplatforms to deliver siRNA, and discussed the opportunities as well as challenges associated with this exciting technology. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Zhihang Chen
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jesus Pachecho-Torres
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marie-France Penet
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
9
|
Hu Y, Li Z, Shi W, Yin Y, Mei H, Wang H, Guo T, Deng J, Yan H, Lu X. Early diagnosis of cerebral thrombosis by EGFP–EGF1 protein conjugated ferroferric oxide magnetic nanoparticles. J Biomater Appl 2019; 33:1195-1201. [PMID: 30646803 DOI: 10.1177/0885328218823475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cerebral thrombosis disease is a worldwide problem, with high rates of morbidity, disability, and mortality. Magnetic resonance imaging diffusion-weighted imaging was used as an important early diagnostic method for cerebral thrombotic diseases; however, its diagnosis time is 2 h after onset. In this study, we designed EGFP–EGF1–NP–Fe3O4 for earlier diagnosis of cerebral thrombosis by taking advantage of EGFP–EGF1 fusion protein, in which EGF1 can bind with tissue factor and enhanced green fluorescent protein has previously been widely used as a fluorescent protein marker. EGFP–EGF1–NP–Fe3O4 or NP–Fe3O4 reaches the highest concentration in the infarction areas in 1 h. To evaluate the targeting ability of EGFP–EGF1–NP–Fe3O4, a fluorochrome dye, Dir, was loaded into the nanoparticle. As shown by the in vivo organ multispectral fluorescence imaging, Dir-loaded EGFP–EGF1–NP–Fe3O4 exhibited higher fluorescence than those of model rats treated with Dir-loaded NP–Fe3O4. Coronal frozen sections and transmission electron microscope further showed that EGFP–EGF1–NP–Fe3O4 was mainly accumulated in the tissue factor exposure region of brain. The data indicated that the EGFP–EGF1–NP–Fe3O4 targeted cerebral thrombosis and might be applied in the early diagnosis of intracranial thrombosis.
Collapse
Affiliation(s)
- Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, China
| | - Ziying Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, China
| | - Wei Shi
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, China
| | - Yanxue Yin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, China
| | - Huafang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, China
| | - Tao Guo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, China
| | - Jun Deng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, China
| | - Han Yan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, China
| | - Xuan Lu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, China
| |
Collapse
|
10
|
Li Y, Huang W, Li C, Huang X. Indocyanine green conjugated lipid microbubbles as an ultrasound-responsive drug delivery system for dual-imaging guided tumor-targeted therapy. RSC Adv 2018; 8:33198-33207. [PMID: 35548112 PMCID: PMC9086377 DOI: 10.1039/c8ra03193b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/07/2018] [Indexed: 12/25/2022] Open
Abstract
Herein, a multifunctional traceable and ultrasound-responsive drug targeted delivery system based on indocyanine green (ICG) and folic acid (FA) covalently conjugated lipid microbubbles (ILMBs–FA) is proposed. After encapsulation of the anticancer drug resveratrol (RV), the composite (RILMBs–FA) with fluorescence and ultrasound imaging capacity was studied for highly sensitive dual-imaging guided tumor targeted therapy. The resulting RILMBs–FA with an average particle size of 1.32 ± 0.14 μm exhibited good stability and biocompatibility characteristics. The RILMBs–FA featured a high RV loading ratio and the encapsulated RV has been demonstrated to be released from the microbubbles triggered by ultrasound (US) waves. In addition, it was found that the linked FA could facilitate a high cellular uptake of RILMBs–FA via the FA receptor-mediated endocytosis pathway. Compared to free RV and RILMBs, RILMBs–FA with US irradiation demonstrated a more significant tumor cell-killing efficacy mediated by apoptosis in vitro. Eight hours post intravenous injection of RILMBs–FA, the composites showed maximum accumulation in tumorous tissues according to in vivo fluorescence and US images. This ultimately led to the best tumor inhibition effect among all tested drugs under US irradiation. In vivo biosafety evaluations showed that RILMBs–FA featured high biocompatibility characteristics and no significant systemic toxicity over the course of one month. Taken in concert, these results demonstrate the versatility of this drug delivery system with dual-imaging and ultrasound-triggered drug release characteristics for potential future applications in cancer theranostics. Schematic representation of the synthesis of RILMBs–FA and application in tumor therapy.![]()
Collapse
Affiliation(s)
- Yan Li
- Department of Ultrasound
- The First People's Hospital of Shangqiu City
- Shangqiu
- China
| | - Wenqi Huang
- Medical Imaging Center
- The First People's Hospital of Shangqiu City
- Shangqiu
- China
| | - Chunyan Li
- Department of Neurology
- The First People's Hospital of Shangqiu City
- Shangqiu
- China
| | | |
Collapse
|
11
|
Tang J, Li J, Li G, Zhang H, Wang L, Li D, Ding J. Spermidine-mediated poly(lactic- co-glycolic acid) nanoparticles containing fluorofenidone for the treatment of idiopathic pulmonary fibrosis. Int J Nanomedicine 2017; 12:6687-6704. [PMID: 28932114 PMCID: PMC5598552 DOI: 10.2147/ijn.s140569] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive, fatal lung disease with poor survival. The advances made in deciphering this disease have led to the approval of different antifibrotic molecules, such as pirfenidone and nintedanib. An increasing number of studies with particles (liposomes, nanoparticles [NPs], microspheres, nanopolymersomes, and nanoliposomes) modified with different functional groups have demonstrated improvement in lung-targeted drug delivery. In the present study, we prepared, characterized, and evaluated spermidine (Spd)-modified poly(lactic-co-glycolic acid) (PLGA) NPs as carriers for fluorofenidone (AKF) to improve the antifibrotic efficacy of this drug in the lung. Spd-AKF-PLGA NPs were prepared and functionalized by modified solvent evaporation with Spd and polyethylene glycol (PEG)-PLGA groups. The size of Spd-AKF-PLGA NPs was 172.5±4.3 nm. AKF release from NPs was shown to fit the Higuchi model. A549 cellular uptake of an Spd-coumarin (Cou)-6-PLGA NP group was found to be almost twice as high as that of the Cou-6-PLGA NP group. Free Spd and difluoromethylornithine (DFMO) were preincubated in A549 cells to prove uptake of Spd-Cou-6-PLGA NPs via a polyamine-transport system. As a result, the uptake of Spd-Cou-6-PLGA NPs significantly decreased with increased Spd concentrations in incubation. At higher Spd concentrations of 50 and 500 µM, uptake of Spd-Cou-6-PLGA NPs reduced 0.34- and 0.49-fold from that without Spd pretreatment. After pretreatment with DFMO for 36 hours, cellular uptake of Spd-Cou-6-PLGA NPs reached 1.26-fold compared to the untreated DFMO group. In a biodistribution study, the drug-targeting index of Spd-AKF-PLGA NPs in the lung was 3.62- and 4.66-fold that of AKF-PLGA NPs and AKF solution, respectively. This suggested that Spd-AKF-PLGA NPs accumulated effectively in the lung. Lung-histopathology changes and collagen deposition were observed by H&E staining and Masson staining in an efficacy study. In the Spd-AKF-PLGA NP group, damage was further improved compared to the AKF-PLGA NP group and AKF-solution group. The results indicated that Spd-AKF-PLGA NPs are able to be effective nanocarriers for anti-pulmonary fibrosis therapy.
Collapse
Affiliation(s)
- Jing Tang
- School of Pharmaceutical Sciences, Changsha Medical University
| | - Jianming Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha
| | - Guo Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha
| | - Haitao Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha
| | - Ling Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu
| | - Dai Li
- Xiangya Hospital, Central South University, Changsha, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha
| |
Collapse
|
12
|
Methachan B, Thanapprapasr K. Polymer-Based Materials in Cancer Treatment: From Therapeutic Carrier and Ultrasound Contrast Agent to Theranostic Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:69-82. [PMID: 27751594 DOI: 10.1016/j.ultrasmedbio.2016.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 06/06/2023]
Abstract
The emergence of theranostics with ultrasound technology is a promising development, as it opens pathways to providing more effective treatments for cancer. Advancements in ultrasound imaging would give a more detailed and accurate image for better diagnosis and treatment planning. Polymeric ultrasound contrast agents (UCAs) are appealing because they are stable and easily modified for active targeting. In addition, a better therapy could be achieved in conjunction with advancements in UCAs. The active targeting not only makes the precise imaging possible, but also leads to targeted delivery of active components to specific local treatment sites. A polymeric nanocarrier with surface bioconjugation is the key to prolonging the bioavailability of the encapsulated drugs or genes and the capacity to target the specific tumor site. Using ultrasound with other imaging modalities will open more precise and better ways for diagnosis and therapy and bring us a step closer to personalized medicine. This review focuses on polymer-based materials of UCAs, multimodal imaging agents and therapeutic carriers that have been currently explored for their theranostic applications involving ultrasound for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Boriphat Methachan
- Biomedical Engineering Research Unit, National Metal and Materials Technology Center, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Kamolrat Thanapprapasr
- Biomedical Engineering Research Unit, National Metal and Materials Technology Center, National Science and Technology Development Agency, Pathumthani, Thailand.
| |
Collapse
|
13
|
Crake C, Owen J, Smart S, Coviello C, Coussios CC, Carlisle R, Stride E. Enhancement and Passive Acoustic Mapping of Cavitation from Fluorescently Tagged Magnetic Resonance-Visible Magnetic Microbubbles In Vivo. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:3022-3036. [PMID: 27666788 DOI: 10.1016/j.ultrasmedbio.2016.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/24/2016] [Accepted: 08/01/2016] [Indexed: 05/05/2023]
Abstract
Previous work has indicated the potential of magnetically functionalized microbubbles to localize and enhance cavitation activity under focused ultrasound exposure in vitro. The aim of this study was to investigate magnetic targeting of microbubbles for promotion of cavitation in vivo. Fluorescently labelled magnetic microbubbles were administered intravenously in a murine xenograft model. Cavitation was induced using a 0.5-MHz focused ultrasound transducer at peak negative focal pressures of 1.2-2.0 MPa and monitored in real-time using B-mode imaging and passive acoustic mapping. Magnetic targeting was found to increase the amplitude of the cavitation signal by approximately 50% compared with untargeted bubbles. Post-exposure magnetic resonance imaging indicated deposition of magnetic nanoparticles in tumours. Magnetic targeting was similarly associated with increased fluorescence intensity in the tumours after the experiments. These results suggest that magnetic targeting could potentially be used to improve delivery of cavitation-mediated therapy and that passive acoustic mapping could be used for real-time monitoring of this process.
Collapse
Affiliation(s)
- Calum Crake
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Joshua Owen
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Sean Smart
- Gray Institute for Radiation Oncology and Biology, Radiobiology Research Institute, Churchill Hospital, Oxford, UK
| | - Christian Coviello
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Constantin-C Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Robert Carlisle
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK.
| |
Collapse
|
14
|
Luo B, Wang S, Rao R, Liu X, Xu H, Wu Y, Yang X, Liu W. Conjugation Magnetic PAEEP-PLLA Nanoparticles with Lactoferrin as a Specific Targeting MRI Contrast Agent for Detection of Brain Glioma in Rats. NANOSCALE RESEARCH LETTERS 2016; 11:227. [PMID: 27119155 PMCID: PMC4848283 DOI: 10.1186/s11671-016-1421-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/12/2016] [Indexed: 05/09/2023]
Abstract
The diagnosis of malignant brain gliomas is largely based on magnetic resonance imaging (MRI) with contrast agents. In recent years, nano-sized contrast agents have been developed for improved MRI diagnosis. In this study, oleylamine-coated Fe3O4 magnetic nanoparticles (OAM-MNPs) were synthesized with thermal decomposition method and encapsulated in novel amphiphilic poly(aminoethyl ethylene phosphate)/poly(L-lactide) (PAEEP-PLLA) copolymer nanoparticles. The OAM-MNP-loaded PAEEP-PLLA nanoparticles (M-PAEEP-PLLA-NPs) were further conjugated with lactoferrin (Lf) for glioma tumor targeting. The Lf-conjugated M-PAEEP-PLLA-NPs (Lf-M-PAEEP-PLLA-NPs) were characterized by photon correlation spectroscopy (PCS), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermo-gravimetric analysis (TGA), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The average size of OAM-MNPs, M-PAEEP-PLLA-NPs, and Lf-M-PAEEP-PLLA-NPs were 8.6 ± 0.3, 165.7 ± 0.6, and 218.2 ± 0.4 nm, with polydispersity index (PDI) of 0.185 ± 0.023, 0.192 ± 0.021, and 0.224 ± 0.036, respectively. TEM imaging showed that OAM-MNPs were monodisperse and encapsulated in Lf-M-PAEEP-PLLA-NPs. TGA analysis showed that the content of iron oxide nanoparticles was 92.8 % in OAM-MNPs and 45.2 % in Lf-M-PAEEP-PLLA-NPs. VSM results indicated that both OAM-MNPs and Lf-M-PAEEP-PLLA-NPs were superparamagnetic, and the saturated magnetic intensity were 77.1 and 74.8 emu/g Fe. Lf-M-PAEEP-PLLA-NPs exhibited good biocompatibility in cytotoxicity assay. The high cellular uptake of Lf-M-PAEEP-PLLA-NPs in C6 cells indicated that Lf provided effective targeting for the brain tumor cells. The T 2 relaxation rate (r 2) of M-PAEEP-PLLA-NPs and Lf-M-PAEEP-PLLA-NPs were calculated to be 167.2 and 151.3 mM(-1) s(-1). In MRI on Wistar rat-bearing glioma tumor, significant contrast enhancement could clearly appear at 4 h after injection and last 48 h. Prussian blue staining of the section clearly showed the retention of Lf-M-PAEEP-PLLA-NPs in tumor tissues. The results from the in vitro and in vivo MRI indicated that Lf-M-PAEEP-PLLA-NPs possessed strong, long-lasting, tumor targeting, and enhanced tumor MRI contrast ability. Lf-M-PAEEP-PLLA-NPs represent a promising nano-sized MRI contrast agent for brain glioma targeting MRI.
Collapse
Affiliation(s)
- Binhua Luo
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
- College of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Siqi Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Rong Rao
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xuhan Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, USA
| | - Xiangliang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China.
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Wang J, Mi P, Lin G, Wáng YXJ, Liu G, Chen X. Imaging-guided delivery of RNAi for anticancer treatment. Adv Drug Deliv Rev 2016; 104:44-60. [PMID: 26805788 PMCID: PMC5226392 DOI: 10.1016/j.addr.2016.01.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 11/27/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022]
Abstract
The RNA interference (RNAi) technique is a new modality for cancer therapy, and several candidates are being tested clinically. In the development of RNAi-based therapeutics, imaging methods can provide a visible and quantitative way to investigate the therapeutic effect at anatomical, cellular, and molecular level; to noninvasively trace the distribution; to and study the biological processes in preclinical and clinical stages. Their abilities are important not only for therapeutic optimization and evaluation but also for shortening of the time of drug development to market. Typically, imaging-functionalized RNAi therapeutics delivery that combines nanovehicles and imaging techniques to study and improve their biodistribution and accumulation in tumor site has been progressively integrated into anticancer drug discovery and development processes. This review presents an overview of the current status of translating the RNAi cancer therapeutics in the clinic, a brief description of the biological barriers in drug delivery, and the roles of imaging in aspects of administration route, systemic circulation, and cellular barriers for the clinical translation of RNAi cancer therapeutics, and with partial content for discussing the safety concerns. Finally, we focus on imaging-guided delivery of RNAi therapeutics in preclinical development, including the basic principles of different imaging modalities, and their advantages and limitations for biological imaging. With growing number of RNAi therapeutics entering the clinic, various imaging methods will play an important role in facilitating the translation of RNAi cancer therapeutics from bench to bedside.
Collapse
Affiliation(s)
- Junqing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; Department of Imaging and Interventional Radiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Peng Mi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; Chemical Resources Laboratory, Polymer Chemistry Division, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Gan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yì Xiáng J Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China; The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Sciallero C, Balbi L, Paradossi G, Trucco A. Magnetic resonance and ultrasound contrast imaging of polymer-shelled microbubbles loaded with iron oxide nanoparticles. ROYAL SOCIETY OPEN SCIENCE 2016. [PMID: 27853587 DOI: 10.5061/dryad.8bp16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Dual-mode contrast agents (CAs) have great potential for improving diagnostics. However, the effectiveness of CAs is strictly related to both the solution adopted to merge the two agents into a single probe unit, and the ratio between the two agents. In this study, two dual-mode CAs for simultaneous magnetic resonance imaging (MRI) and ultrasound imaging (UI) were assessed. For this purpose, different densities of superparamagnetic iron oxide nanoparticles (SPIONs) were anchored to the external surface of polymer-shelled microbubbles (MBs) or were physically entrapped into the shell. In vitro static and dynamic experiments were carried out with a limited concentration of modified MBs (106 bubbles ml-1) by avoiding destruction during UI (performed at a peak pressure lower than 320 kPa) and by using a low-field MRI system (with a magnetic flux density equal to 0.25 T). Under these conditions, different imaging techniques, set-up parameters and SPION densities were used to achieve satisfactory detection of the CAs by using both UI and MRI. However, when the SPION density was increased, the MRI contrast improved, whereas the UI contrast worsened due to the reduced elasticity of the MB shell. For both UI and MRI, MBs with externally anchored SPIONs provided better performance than MBs with SPIONs entrapped into the shell. In particular, a SPION density of 29% with respect to the mass of the MBs was successfully tested.
Collapse
Affiliation(s)
- Claudia Sciallero
- Department of Electrical, Electronic, Telecommunications Engineering, and Naval Architecture , University of Genoa , Genoa , Italy
| | | | - Gaio Paradossi
- Department of Chemistry , University of Rome Tor Vergata , Roma , Italy
| | - Andrea Trucco
- Department of Electrical, Electronic, Telecommunications Engineering, and Naval Architecture, University of Genoa, Genoa, Italy; Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
17
|
Sciallero C, Balbi L, Paradossi G, Trucco A. Magnetic resonance and ultrasound contrast imaging of polymer-shelled microbubbles loaded with iron oxide nanoparticles. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160063. [PMID: 27853587 PMCID: PMC5108937 DOI: 10.1098/rsos.160063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/01/2016] [Indexed: 05/17/2023]
Abstract
Dual-mode contrast agents (CAs) have great potential for improving diagnostics. However, the effectiveness of CAs is strictly related to both the solution adopted to merge the two agents into a single probe unit, and the ratio between the two agents. In this study, two dual-mode CAs for simultaneous magnetic resonance imaging (MRI) and ultrasound imaging (UI) were assessed. For this purpose, different densities of superparamagnetic iron oxide nanoparticles (SPIONs) were anchored to the external surface of polymer-shelled microbubbles (MBs) or were physically entrapped into the shell. In vitro static and dynamic experiments were carried out with a limited concentration of modified MBs (106 bubbles ml-1) by avoiding destruction during UI (performed at a peak pressure lower than 320 kPa) and by using a low-field MRI system (with a magnetic flux density equal to 0.25 T). Under these conditions, different imaging techniques, set-up parameters and SPION densities were used to achieve satisfactory detection of the CAs by using both UI and MRI. However, when the SPION density was increased, the MRI contrast improved, whereas the UI contrast worsened due to the reduced elasticity of the MB shell. For both UI and MRI, MBs with externally anchored SPIONs provided better performance than MBs with SPIONs entrapped into the shell. In particular, a SPION density of 29% with respect to the mass of the MBs was successfully tested.
Collapse
Affiliation(s)
- Claudia Sciallero
- Department of Electrical, Electronic, Telecommunications Engineering, and Naval Architecture, University of Genoa, Genoa, Italy
- Author for correspondence: Claudia Sciallero e-mail:
| | | | - Gaio Paradossi
- Department of Chemistry, University of Rome Tor Vergata, Roma, Italy
| | - Andrea Trucco
- Department of Electrical, Electronic, Telecommunications Engineering, and Naval Architecture, University of Genoa, Genoa, Italy
- Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
18
|
Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin MR. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 2016; 45:1457-501. [PMID: 26776487 PMCID: PMC4775468 DOI: 10.1039/c5cs00798d] [Citation(s) in RCA: 959] [Impact Index Per Article: 106.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
New achievements in the realm of nanoscience and innovative techniques of nanomedicine have moved micro/nanoparticles (MNPs) to the point of becoming actually useful for practical applications in the near future. Various differences between the extracellular and intracellular environments of cancerous and normal cells and the particular characteristics of tumors such as physicochemical properties, neovasculature, elasticity, surface electrical charge, and pH have motivated the design and fabrication of inventive "smart" MNPs for stimulus-responsive controlled drug release. These novel MNPs can be tailored to be responsive to pH variations, redox potential, enzymatic activation, thermal gradients, magnetic fields, light, and ultrasound (US), or can even be responsive to dual or multi-combinations of different stimuli. This unparalleled capability has increased their importance as site-specific controlled drug delivery systems (DDSs) and has encouraged their rapid development in recent years. An in-depth understanding of the underlying mechanisms of these DDS approaches is expected to further contribute to this groundbreaking field of nanomedicine. Smart nanocarriers in the form of MNPs that can be triggered by internal or external stimulus are summarized and discussed in the present review, including pH-sensitive peptides and polymers, redox-responsive micelles and nanogels, thermo- or magnetic-responsive nanoparticles (NPs), mechanical- or electrical-responsive MNPs, light or ultrasound-sensitive particles, and multi-responsive MNPs including dual stimuli-sensitive nanosheets of graphene. This review highlights the recent advances of smart MNPs categorized according to their activation stimulus (physical, chemical, or biological) and looks forward to future pharmaceutical applications.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Parham Sahandi Zangabad
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Reza Rahighi
- Department of Research and Development, Sharif Ultrahigh Nanotechnologists (SUN) Company, P.O. Box: 13488-96394, Tehran, Iran and Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, P.O. Box: 14857-33111, Tehran, Iran
| | - S Masoud Moosavi Basri
- Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran and Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - H Mirshekari
- Department of Biotechnology, University of Kerala, Trivandrum, India
| | - M Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Z Shafaei Pishabad
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - A Aslani
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - M Bozorgomid
- Department of Applied Chemistry, Central Branch of Islamic Azad University of Tehran, Tehran, Iran
| | - D Ghosh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran
| | - A Beyzavi
- School of Mechanical Engineering, Boston University, Boston, MA, USA
| | - A Vaseghi
- Department of Biotechnology, Faculty of Advanced Science and Technologies of Isfahan, Isfahan, Iran
| | - A R Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - L Haghani
- School of Medicine, International Campus of Tehran University of Medical Science, Tehran, Iran
| | - S Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
19
|
Hu J, Tang Y, Elmenoufy AH, Xu H, Cheng Z, Yang X. Nanocomposite-Based Photodynamic Therapy Strategies for Deep Tumor Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5860-87. [PMID: 26398119 DOI: 10.1002/smll.201501923] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/03/2015] [Indexed: 05/22/2023]
Abstract
Photodynamic therapy (PDT), as an emerging clinically approved modality, has been used for treatment of various cancer diseases. Conventional PDT strategies are mainly focused on superficial lesions because the wavelength of illumination light of most clinically approved photosensitizers (PSs) is located in the UV/VIS range that possesses limited tissue penetration ability, leading to ineffective therapeutic response for deep-seated tumors. The combination of PDT and nanotechnology is becoming a promising approach to fight against deep tumors. Here, the rapid development of new PDT modalities based on various smartly designed nanocomposites integrating with conventionally used PSs for deep tumor treatments is introduced. Until now many types of multifunctional nanoparticles have been studied, and according to the source of excitation energy they can be classified into three major groups: near infrared (NIR) light excited nanomaterials, X-ray excited scintillating/afterglow nanoparticles, and internal light emission excited nanocarriers. The in vitro and in vivo applications of these newly developed PDT modalities are further summarized here, which highlights their potential use as promising nano-agents for deep tumor therapy.
Collapse
Affiliation(s)
- Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yong'an Tang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ahmed H Elmenoufy
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Department of Pharmaceutical Chemistry, College of Pharmacy, Misr University for Science and Technology, Al-Motamayez District, 6th of October City, P.O. Box: 77, Egypt
| | - Huibi Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, School of Medicine, Stanford University Stanford, California, USA
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
20
|
Luo B, Liang H, Zhang S, Qin X, Liu X, Liu W, Zeng F, Wu Y, Yang X. Novel lactoferrin-conjugated amphiphilic poly(aminoethyl ethylene phosphate)/poly(L-lactide) copolymer nanobubbles for tumor-targeting ultrasonic imaging. Int J Nanomedicine 2015; 10:5805-17. [PMID: 26396514 PMCID: PMC4577262 DOI: 10.2147/ijn.s83582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In the study reported here, a novel amphiphilic poly(aminoethyl ethylene phosphate)/poly(L-lactide) (PAEEP-PLLA) copolymer was synthesized by ring-opening polymerization reaction. The perfluoropentane-filled PAEEP-PLLA nanobubbles (NBs) were prepared using the O1/O2/W double-emulsion and solvent-evaporation method, with the copolymer as the shell and liquid perfluoropentane as the core of NBs. The prepared NBs were further conjugated with lactoferrin (Lf) for tumor-cell targeting. The resulting Lf-conjugated amphiphilic poly(aminoethyl ethylene phosphate)/poly(L-lactide) nanobubbles (Lf-PAEEP-PLLA NBs) were characterized by photon correlation spectroscopy, polyacrylamide gel electrophoresis, Fourier transform infrared spectroscopy, and transmission electron microscopy. The average size of the Lf-PAEEP-PLLA NBs was 328.4±5.1 nm, with polydispersity index of 0.167±0.020, and zeta potential of −12.6±0.3 mV. Transmission electron microscopy imaging showed that the Lf-PAEEP-PLLA NBs had a near-spherical structure, were quite monodisperse, and there was a clear interface between the copolymer shell and the liquid core inside the NBs. The Lf-PAEEP-PLLA NBs also exhibited good biocompatibility in cytotoxicity and hemolysis studies and good stability during storage. The high cellular uptake of Lf-PAEEP-PLLA NBs in C6 cells (low-density lipoprotein receptor-related protein 1-positive cells) at concentrations of 0–20 µg/mL indicated that the Lf provided effective targeting for brain-tumor cells. The in vitro acoustic behavior of Lf-PAEEP-PLLA NBs was evaluated using a B-mode clinical ultrasound imaging system. In vivo ultrasound imaging was performed on tumor-bearing BALB/c nude mice, and compared with SonoVue® microbubbles, a commercial ultrasonic contrast agent. Both in vitro and in vivo ultrasound imaging indicated that the Lf-PAEEP-PLLA NBs possessed strong, long-lasting, and tumor-enhanced ultrasonic contrast ability. Taken together, these results indicate that Lf-PAEEP-PLLA NBs represent a promising nano-sized ultrasonic contrast agent for tumor-targeting ultrasonic imaging.
Collapse
Affiliation(s)
- Binhua Luo
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China ; College of Pharmacy, Hubei University of Science and Technology, Xianning, People's Republic of China
| | - Huageng Liang
- Department of Urology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shengwei Zhang
- Department of Urology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaojuan Qin
- Department of Medical Ultrasound, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xuhan Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wei Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China ; National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fuqing Zeng
- Department of Urology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Xiangliang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China ; National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
21
|
Ma J, Xu CS, Gao F, Chen M, Li F, Du LF. Diagnostic and therapeutic research on ultrasound microbubble/nanobubble contrast agents (Review). Mol Med Rep 2015; 12:4022-4028. [PMID: 26081968 DOI: 10.3892/mmr.2015.3941] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/12/2014] [Indexed: 11/06/2022] Open
Abstract
The contrast enhanced imaging function of ultrasound contrast agents (UCAs) has been extensively investigated using physical acoustic signatures. It has a number of novel applications, including tissue‑specific molecular imaging and multi‑modal imaging. In addition there are numerous other therapeutic applications of UCAs, for example as vehicles for drug or gene delivery. These uses are discussed, as well as the acoustically‑induced biological effects, including ultrasound targeted microbubble destruction (UTMD). This review also explores the considerations for the safe use of UCA from an acoustic standpoint. The scope of the application of UCA has markedly expanded in recent years, and it is a rapidly growing field of medical research. The current article reviews recent advances in the diagnostic and therapeutic applications of ultrasound microbubble/nanobubble contrast agents.
Collapse
Affiliation(s)
- Jing Ma
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Chang Song Xu
- Department of Ultrasound, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Feng Gao
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Ming Chen
- Department of Cardiovascular Ultrasound, Shanghai East Hospital Affiliated to Tongji University, Shanghai 200120, P.R. China
| | - Fan Li
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Lian Fang Du
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
22
|
Liu H, Wu DC. Advances in research of fluorescence imaging for detection of gastrointestinal tumors. Shijie Huaren Xiaohua Zazhi 2015; 23:2193-2199. [DOI: 10.11569/wcjd.v23.i14.2193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fluorescence imaging, which has a high sensitivity, produces images by capturing fluorescence signal from the inside of organisms. Over the past few years, notable development of fluorescence imaging technique has been made in the field of gastrointestinal cancer. Imaging instruments and fluorescent probes for fluorescence imaging are being improved and innovated, making it a promising technique for broad clinical applications in the near future. Future clinical applications of fluorescence imaging include aiding diagnosis and surgical treatment of gastrointestinal tumors, which are important development directions of this technique. However, increasing the safety and the accuracy for tumor detection is a challenge for fluorescence imaging. Besides, in order to acquire better diagnostic effects, the combination of fluorescence imaging and other imaging modalities which require novel imaging probes for tumor is also an important trend for fluorescence imaging development.
Collapse
|