1
|
Elsaid R, Mikdache A, Diabangouaya P, Gros G, Hernández PP. A noninvasive photoactivatable split-Cre recombinase system for genome engineering in zebrafish. iScience 2024; 27:110476. [PMID: 39129833 PMCID: PMC11315165 DOI: 10.1016/j.isci.2024.110476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
The cyclic recombinase (Cre)/loxP recombination system is a powerful technique for in vivo cell labeling and tracking. However, achieving high spatiotemporal precision in cell tracking using this system is challenging due to the requirement for reliable tissue-specific promoters. In contrast, light-inducible systems offer superior regional confinement, tunability, and non-invasiveness compared to conventional lineage-tracing methods. Here, we took advantage of the unique strengths of the zebrafish to develop an easy-to-use highly efficient, genetically encoded, magnets-based, light-inducible transgenic Cre/loxP system. We demonstrate that our system does not exhibit phototoxicity or leakiness in the dark, and it enables efficient and robust Cre/loxP recombination in various tissues and cell types at different developmental stages through noninvasive illumination with blue light. Our newly developed tool is expected to open novel opportunities for light-controlled tracking of cell fate and migration in vivo.
Collapse
Affiliation(s)
- Ramy Elsaid
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Aya Mikdache
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Patricia Diabangouaya
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Gwendoline Gros
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Pedro P. Hernández
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
2
|
Ahlback A, Gentek R. Fate-Mapping Macrophages: From Ontogeny to Functions. Methods Mol Biol 2024; 2713:11-43. [PMID: 37639113 DOI: 10.1007/978-1-0716-3437-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Macrophages are vital to the physiological function of most tissues, but also contribute to disease through a multitude of pathological roles. They are thus highly plastic and heterogeneous. It is now well recognized that macrophages develop from several distinct progenitors from embryogenesis onwards and extending throughout life. Tissue-resident macrophages largely originate from embryonic sources and in many cases self-maintain independently without monocyte input. However, in certain tissues, monocyte-derived macrophages replace these over time or as a result of tissue injury and inflammation. This additional layer of heterogeneity has introduced many questions regarding the influence of origin on fate and function of macrophages in health and disease. To comprehensively address these questions, appropriate methods of tracing macrophage ontogeny are required. This chapter explores why ontogeny is of vital importance in macrophage biology and how to delineate macrophage populations by origin through genetic fate mapping. First, we summarize the current view of macrophage ontogeny and briefly discuss how origin may influence macrophage function in homeostasis and pathology. We go on to make the case for genetic fate mapping as the gold standard and briefly review different fate-mapping models. We then put forward our recommendations for fate-mapping strategies best suited to answer specific research questions and finally discuss the strengths and limitations of currently available models.
Collapse
Affiliation(s)
- Anna Ahlback
- The University of Edinburgh, Institute for Regeneration and Repair, Centre for Reproductive Health & Centre for Inflammation Research, Edinburgh, UK
| | - Rebecca Gentek
- The University of Edinburgh, Institute for Regeneration and Repair, Centre for Reproductive Health & Centre for Inflammation Research, Edinburgh, UK.
| |
Collapse
|
3
|
Zhang Y, Zeng J, Xu B. Phenotypic analysis with trans-recombination-based genetic mosaic models. J Biol Chem 2023; 299:105265. [PMID: 37734556 PMCID: PMC10587715 DOI: 10.1016/j.jbc.2023.105265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Mosaicism refers to the presence of genetically distinct cell populations in an individual derived from a single zygote, which occurs during the process of development, aging, and genetic diseases. To date, a variety of genetically engineered mosaic analysis models have been established and widely used in studying gene function at exceptional cellular and spatiotemporal resolution, leading to many ground-breaking discoveries. Mosaic analysis with a repressible cellular marker and mosaic analysis with double markers are genetic mosaic analysis models based on trans-recombination. These models can generate sibling cells of distinct genotypes in the same animal and simultaneously label them with different colors. As a result, they offer a powerful approach for lineage tracing and studying the behavior of individual mutant cells in a wildtype environment, which is particularly useful for determining whether gene function is cell autonomous or nonautonomous. Here, we present a comprehensive review on the establishment and applications of mosaic analysis with a repressible cellular marker and mosaic analysis with double marker systems. Leveraging the capabilities of these mosaic models for phenotypic analysis will facilitate new discoveries on the cellular and molecular mechanisms of development and disease.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Jianhao Zeng
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Bing Xu
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
4
|
Henke K, Farmer DT, Niu X, Kraus JM, Galloway JL, Youngstrom DW. Genetically engineered zebrafish as models of skeletal development and regeneration. Bone 2023; 167:116611. [PMID: 36395960 PMCID: PMC11080330 DOI: 10.1016/j.bone.2022.116611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Zebrafish (Danio rerio) are aquatic vertebrates with significant homology to their terrestrial counterparts. While zebrafish have a centuries-long track record in developmental and regenerative biology, their utility has grown exponentially with the onset of modern genetics. This is exemplified in studies focused on skeletal development and repair. Herein, the numerous contributions of zebrafish to our understanding of the basic science of cartilage, bone, tendon/ligament, and other skeletal tissues are described, with a particular focus on applications to development and regeneration. We summarize the genetic strengths that have made the zebrafish a powerful model to understand skeletal biology. We also highlight the large body of existing tools and techniques available to understand skeletal development and repair in the zebrafish and introduce emerging methods that will aid in novel discoveries in skeletal biology. Finally, we review the unique contributions of zebrafish to our understanding of regeneration and highlight diverse routes of repair in different contexts of injury. We conclude that zebrafish will continue to fill a niche of increasing breadth and depth in the study of basic cellular mechanisms of skeletal biology.
Collapse
Affiliation(s)
- Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - D'Juan T Farmer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA.
| | - Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jessica M Kraus
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
5
|
Basheer F, Dhar P, Samarasinghe RM. Zebrafish Models of Paediatric Brain Tumours. Int J Mol Sci 2022; 23:9920. [PMID: 36077320 PMCID: PMC9456103 DOI: 10.3390/ijms23179920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Paediatric brain cancer is the second most common childhood cancer and is the leading cause of cancer-related deaths in children. Despite significant advancements in the treatment modalities and improvements in the 5-year survival rate, it leaves long-term therapy-associated side effects in paediatric patients. Addressing these impairments demands further understanding of the molecularity and heterogeneity of these brain tumours, which can be demonstrated using different animal models of paediatric brain cancer. Here we review the use of zebrafish as potential in vivo models for paediatric brain tumour modelling, as well as catalogue the currently available zebrafish models used to study paediatric brain cancer pathophysiology, and discuss key findings, the unique attributes that these models add, current challenges and therapeutic significance.
Collapse
Affiliation(s)
- Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3220, Australia
| | - Poshmaal Dhar
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3220, Australia
| | - Rasika M. Samarasinghe
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
6
|
Li R, Cai Y, Lin H, Dong L, Tang M, Lang Y, Qi Y, Peng Y, Zhou B, Yang G, Teng Y, Yang X. Generation of an Ihh-mKate2-Dre knock-in mouse line. Genesis 2022; 60:e23488. [PMID: 35765931 DOI: 10.1002/dvg.23488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 11/06/2022]
Abstract
Indian hedgehog (Ihh), a member of the Hh family, plays important roles in vertebrate development and homeostasis. To improve our understanding of the function of Ihh-expressing cells and their progeny as well, we generate an Ihh-mKate2tomm20 -Dre knock-in mouse line that can label Ihh-positive cells with a fluorescence protein mKate2 and trace Ihh-positive cells and their progeny via Dre-mediated recombination. Consistent with previous reports, we verified Ihh expression in hypertrophic chondrocytes of growth plate and granulosa cells of ovarian follicles by mKate2 immunostaining, and meanwhile confirmed Dre activity in these cells via a Dre reporter mouse line Rosa26-confetti2. We also found, for the first time, that Ihh can mark some cell types, including retinal ganglion cells, Purkinje cells, and gallbladder epithelial cells. Taken together, the Ihh-mKate2tomm20 -Dre mouse is a genetic tool for examining the precise expression profile of Ihh and tracing Ihh-expressing cells and their progeny.
Collapse
Affiliation(s)
- Rongyu Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yunting Cai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Huisang Lin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Lei Dong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Mingchuan Tang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yiming Lang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yini Qi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yanli Peng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Guan Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
7
|
Liu F, Kambakam S, Almeida MP, Ming Z, Welker JM, Wierson WA, Schultz-Rogers LE, Ekker SC, Clark KJ, Essner JJ, McGrail M. Cre/ lox regulated conditional rescue and inactivation with zebrafish UFlip alleles generated by CRISPR-Cas9 targeted integration. eLife 2022; 11:71478. [PMID: 35713402 PMCID: PMC9270027 DOI: 10.7554/elife.71478] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The ability to regulate gene activity spatially and temporally is essential to investigate cell type-specific gene function during development and in postembryonic processes and disease models. The Cre/lox system has been widely used for performing cell and tissue-specific conditional analysis of gene function in zebrafish. However, simple and efficient methods for isolation of stable, Cre/lox regulated zebrafish alleles are lacking. Here we applied our GeneWeld CRISPR-Cas9 targeted integration strategy to generate floxed alleles that provide robust conditional inactivation and rescue. A universal targeting vector, UFlip, with sites for cloning short homology arms flanking a floxed 2A-mRFP gene trap, was integrated into an intron in rbbp4 and rb1. rbbp4off and rb1off integration alleles resulted in strong mRFP expression, >99% reduction of endogenous gene expression, and recapitulated known indel loss of function phenotypes. Introduction of Cre led to stable inversion of the floxed cassette, loss of mRFP expression, and phenotypic rescue. rbbp4on and rb1on integration alleles did not cause phenotypes in combination with a loss of function mutation. Addition of Cre led to conditional inactivation by stable inversion of the cassette, gene trapping and mRFP expression, and the expected mutant phenotype. Neural progenitor Cre drivers were used for conditional inactivation and phenotypic rescue to showcase how this approach can be used in specific cell populations. Together these results validate a simplified approach for efficient isolation of Cre/lox responsive conditional alleles in zebrafish. Our strategy provides a new toolkit for generating genetic mosaics and represents a significant advance in zebrafish genetics.
Collapse
Affiliation(s)
- Fang Liu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Sekhar Kambakam
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Maira P Almeida
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Zhitao Ming
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Jordan M Welker
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Wesley A Wierson
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Laura E Schultz-Rogers
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Maura McGrail
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| |
Collapse
|
8
|
Thorsen AS, Khamis D, Kemp R, Colombé M, Lourenço FC, Morrissey E, Winton D. Heterogeneity in clone dynamics within and adjacent to intestinal tumours identified by Dre-mediated lineage tracing. Dis Model Mech 2021; 14:dmm046706. [PMID: 33093165 PMCID: PMC7823168 DOI: 10.1242/dmm.046706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/12/2020] [Indexed: 11/20/2022] Open
Abstract
Somatic models of tissue pathology commonly use induction of gene-specific mutations in mice mediated by spatiotemporal regulation of Cre recombinase. Subsequent investigation of the onset and development of disease can be limited by the inability to track changing cellular behaviours over time. Here, a lineage-tracing approach based on ligand-dependent activation of Dre recombinase that can be employed independently of Cre is described. The clonal biology of the intestinal epithelium following Cre-mediated stabilisation of β-catenin reveals that, within tumours, many new clones rapidly become extinct. Surviving clones show accelerated population of tumour glands compared to normal intestinal crypts but in a non-uniform manner, indicating that intra-tumour glands follow heterogeneous dynamics. In tumour-adjacent epithelia, clone sizes are smaller than in the background epithelia, as a whole. This suggests a zone of ∼seven crypt diameters within which clone expansion is inhibited by tumours and that may facilitate their growth.
Collapse
Affiliation(s)
- Ann-Sofie Thorsen
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Doran Khamis
- University of Oxford, Center for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Richard Kemp
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Mathilde Colombé
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Filipe C. Lourenço
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Edward Morrissey
- University of Oxford, Center for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Douglas Winton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
9
|
Li W, Zhang Y, Han B, Li L, Li M, Lu X, Chen C, Lu M, Zhang Y, Jia X, Zhu Z, Tong X, Zhang B. One-step efficient generation of dual-function conditional knockout and geno-tagging alleles in zebrafish. eLife 2019; 8:48081. [PMID: 31663848 PMCID: PMC6845224 DOI: 10.7554/elife.48081] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
CRISPR/Cas systems are widely used to knock out genes by inducing indel mutations, which are prone to genetic compensation. Complex genome modifications such as knockin (KI) might bypass compensation, though difficult to practice due to low efficiency. Moreover, no ‘two-in-one’ KI strategy combining conditional knockout (CKO) with fluorescent gene-labeling or further allele-labeling has been reported. Here, we developed a dual-cassette-donor strategy and achieved one-step and efficient generation of dual-function KI alleles at tbx5a and kctd10 loci in zebrafish via targeted insertion. These alleles display fluorescent gene-tagging and CKO effects before and after Cre induction, respectively. By introducing a second fluorescent reporter, geno-tagging effects were achieved at tbx5a and sox10 loci, exhibiting CKO coupled with fluorescent reporter switch upon Cre induction, enabling tracing of three distinct genotypes. We found that LiCl purification of gRNA is critical for highly efficient KI, and preselection of founders allows the efficient germline recovery of KI events.
Collapse
Affiliation(s)
- Wenyuan Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Yage Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Bingzhou Han
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Lianyan Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Muhang Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Xiaochan Lu
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Cheng Chen
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Mengjia Lu
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yujie Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Xuefeng Jia
- Gcrispr (Tianjin) Genetic Technology, Tianjin, China
| | - Zuoyan Zhu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Xiangjun Tong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
10
|
Horton C, Liu Y, Yu C, Xie Q, Wang ZA. Luminal-contact-inhibition of epithelial basal stem cell multipotency in prostate organogenesis and homeostasis. Biol Open 2019; 8:bio.045724. [PMID: 31540905 PMCID: PMC6826291 DOI: 10.1242/bio.045724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prostate epithelial basal cells are highly plastic in their luminal differentiation capability. Basal stem cells actively produce luminal cells during organogenesis, but become restricted in the adult prostate unless receiving oncogenic or inflammatory stimuli. Given that the number of luminal cells increases relative to basal cells through development and that equilibrium is reached in the adulthood, we hypothesize that a negative-feedback mechanism exists to inhibit basal-to-luminal differentiation. We provide evidence supporting this hypothesis by comparing murine prostatic growth in a tissue reconstitution assay with cell recombinants of different basal-to-luminal ratios. Additionally, in organoid culture, hybrid organoids derived from adjacent basal and luminal cells showed reduced basal stem cell activities, suggesting contact inhibition. Importantly, removal of adult luminal cells in vivo via either an inducible Cre/loxP-Dre/rox dual-lineage-tracing system or orthotopic trypsin injection led to robust reactivation of basal stem cell activities, which acts independent of androgen. These data illustrate the prostate organ as a distinctive paradigm where cell contact from differentiated daughter cells restricts adult stem cell multipotency to maintain the steady-state epithelial architecture.
Collapse
Affiliation(s)
- Corrigan Horton
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Yueli Liu
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Chuan Yu
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Qing Xie
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Zhu A Wang
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
11
|
Letrado P, de Miguel I, Lamberto I, Díez-Martínez R, Oyarzabal J. Zebrafish: Speeding Up the Cancer Drug Discovery Process. Cancer Res 2018; 78:6048-6058. [PMID: 30327381 DOI: 10.1158/0008-5472.can-18-1029] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/29/2018] [Accepted: 08/23/2018] [Indexed: 11/16/2022]
Abstract
Zebrafish (Danio rerio) is an ideal in vivo model to study a wide variety of human cancer types. In this review, we provide a comprehensive overview of zebrafish in the cancer drug discovery process, from (i) approaches to induce malignant tumors, (ii) techniques to monitor cancer progression, and (iii) strategies for compound administration to (iv) a compilation of the 355 existing case studies showing the impact of zebrafish models on cancer drug discovery, which cover a broad scope of scenarios. Finally, based on the current state-of-the-art analysis, this review presents some highlights about future directions using zebrafish in cancer drug discovery and the potential of this model as a prognostic tool in prospective clinical studies. Cancer Res; 78(21); 6048-58. ©2018 AACR.
Collapse
Affiliation(s)
- Patricia Letrado
- Ikan Biotech SL, The Zebrafish Lab Department, Centro Europeo de Empresas e Innovación de Navarra (CEIN), Noain, Spain.,Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Irene de Miguel
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Iranzu Lamberto
- Ikan Biotech SL, The Zebrafish Lab Department, Centro Europeo de Empresas e Innovación de Navarra (CEIN), Noain, Spain
| | - Roberto Díez-Martínez
- Ikan Biotech SL, The Zebrafish Lab Department, Centro Europeo de Empresas e Innovación de Navarra (CEIN), Noain, Spain.
| | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
| |
Collapse
|
12
|
A single reporter mouse line for Vika, Flp, Dre, and Cre-recombination. Sci Rep 2018; 8:14453. [PMID: 30262904 PMCID: PMC6160450 DOI: 10.1038/s41598-018-32802-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/13/2018] [Indexed: 11/28/2022] Open
Abstract
Site-specific recombinases (SSR) are utilized as important genome engineering tools to precisely modify the genome of mice and other model organisms. Reporter mice that mark cells that at any given time had expressed the enzyme are frequently used for lineage tracing and to characterize newly generated mice expressing a recombinase from a chosen promoter. With increasing sophistication of genome alteration strategies, the demand for novel SSR systems that efficiently and specifically recombine their targets is rising and several SSR-systems are now used in combination to address complex biological questions in vivo. Generation of reporter mice for each one of these recombinases is cumbersome and increases the number of mouse lines that need to be maintained in animal facilities. Here we present a multi-reporter mouse line for loci-of-recombination (X) (MuX) that streamlines the characterization of mice expressing prominent recombinases. MuX mice constitutively express nuclear green fluorescent protein after recombination by either Cre, Flp, Dre or Vika recombinase, rationalizing the number of animal lines that need to be maintained. We also pioneer the use of the Vika/vox system in mice, illustrating its high efficacy and specificity, thereby facilitating future designs of sophisticated recombinase-based in vivo genome engineering strategies.
Collapse
|
13
|
Carney TJ, Mosimann C. Switch and Trace: Recombinase Genetics in Zebrafish. Trends Genet 2018; 34:362-378. [PMID: 29429760 DOI: 10.1016/j.tig.2018.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 01/04/2023]
Abstract
Transgenic approaches are instrumental for labeling and manipulating cells and cellular machineries in vivo. Transgenes have traditionally been static entities that remained unaltered following genome integration, limiting their versatility. The development of DNA recombinase-based methods to modify, excise, or rearrange transgene cassettes has introduced versatile control of transgene activity and function. In particular, recombinase-controlled transgenes enable regulation of exogenous gene expression, conditional mutagenesis, and genetic lineage tracing. In zebrafish, transgenesis-based recombinase genetics using Cre/lox, Flp/FRT, and ΦC31 are increasingly applied to study development and homeostasis, and to generate disease models. Intersected with the versatile imaging capacity of the zebrafish model and recent breakthroughs in genome editing, we review and discuss past, current, and potential future approaches and resources for recombinase-based techniques in zebrafish.
Collapse
Affiliation(s)
- Tom J Carney
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore.
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
14
|
Abstract
In the last 30 years, the zebrafish has become a widely used model organism for research on vertebrate development and disease. Through a powerful combination of genetics and experimental embryology, significant inroads have been made into the regulation of embryonic axis formation, organogenesis, and the development of neural networks. Research with this model has also expanded into other areas, including the genetic regulation of aging, regeneration, and animal behavior. Zebrafish are a popular model because of the ease with which they can be maintained, their small size and low cost, the ability to obtain hundreds of embryos on a daily basis, and the accessibility, translucency, and rapidity of early developmental stages. This primer describes the swift progress of genetic approaches in zebrafish and highlights recent advances that have led to new insights into vertebrate biology.
Collapse
|
15
|
Plummer NW, de Marchena J, Jensen P. A knock-in allele of En1 expressing dre recombinase. Genesis 2016; 54:447-54. [PMID: 27313055 DOI: 10.1002/dvg.22954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 12/12/2022]
Abstract
Engrailed 1 (En1) is a homeobox-containing transcription factor expressed during development in diverse tissues, including the embryonic midbrain and anterior hindbrain. To facilitate investigation of genetic and developmental heterogeneity among cells with a history of En1 expression, we have generated En1(Dre) , a knock-in allele expressing Dre recombinase. En1(Dre) can be used with existing Cre and Flp recombinase lines for genetic intersectional labeling, fate mapping, and functional manipulation of subpopulations of cells characterized by transient expression of En1. To avoid disrupting En1 function, the Dre cDNA is inserted at the 3' end of the En1 coding sequence, together with a viral 2A peptide to mediate translation of separate EN1 and Dre proteins. Consequently, viable and fertile En1(Dre) homozygotes can be used to increase the proportion of useful genotypes produced in complex crosses. The pattern of Dre expression from En1(Dre) is indistinguishable from wild-type En1 expression in mid-gestation mouse embryos, and En1(Dre) controls Dre-responsive indicator alleles by efficiently recombining rox sites in vivo. Through the application of genetic tools that allow manipulation of cells based on combinatorial expression of multiple distinct recombinases, En1(Dre) will significantly extend the ability to target important subpopulations of neurons and other cells within the broader En1 expression domain. genesis 54:447-454, 2016. Published 2016. This article is a US Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Nicholas W Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, 27709
| | - Jacqueline de Marchena
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, 27709
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, 27709
| |
Collapse
|
16
|
Meinke G, Bohm A, Hauber J, Pisabarro MT, Buchholz F. Cre Recombinase and Other Tyrosine Recombinases. Chem Rev 2016; 116:12785-12820. [PMID: 27163859 DOI: 10.1021/acs.chemrev.6b00077] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tyrosine-type site-specific recombinases (T-SSRs) have opened new avenues for the predictable modification of genomes as they enable precise genome editing in heterologous hosts. These enzymes are ubiquitous in eubacteria, prevalent in archaea and temperate phages, present in certain yeast strains, but barely found in higher eukaryotes. As tools they find increasing use for the generation and systematic modification of genomes in a plethora of organisms. If applied in host organisms, they enable precise DNA cleavage and ligation without the gain or loss of nucleotides. Criteria directing the choice of the most appropriate T-SSR system for genetic engineering include that, whenever possible, the recombinase should act independent of cofactors and that the target sequences should be long enough to be unique in a given genome. This review is focused on recent advancements in our mechanistic understanding of simple T-SSRs and their application in developmental and synthetic biology, as well as in biomedical research.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Andrew Bohm
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology , 20251 Hamburg, Germany
| | | | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus TU Dresden , 01307 Dresden, Germany
| |
Collapse
|
17
|
Felker A, Mosimann C. Contemporary zebrafish transgenesis with Tol2 and application for Cre/lox recombination experiments. Methods Cell Biol 2016; 135:219-44. [PMID: 27443928 DOI: 10.1016/bs.mcb.2016.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Spatiotemporal transgene regulation by transgenic DNA recombinases is a central tool for reverse genetics in multicellular organisms, with excellent applications for misexpression and lineage tracing experiments. One of the most widespread technologies for this purpose is Cre recombinase-controlled lox site recombination that is attracting increasing interest in the zebrafish field. Tol2-mediated zebrafish transgenesis provides a stable platform to integrate lox cassette transgenes, while the amenability of the zebrafish embryo to drug treatments makes the model an ideal candidate for tamoxifen-inducible CreERT2 experiments. In addition, advanced transgenesis technologies such as phiC31 or CRISPR-Cas9-based knock-ins are even further promoting zebrafish transgenesis for Cre/lox applications. In this chapter, we will first introduce the basics of Cre/lox methodology, CreERT2 regulation by tamoxifen, as well as the utility of Tol2 and other contemporary transgenesis techniques for Cre/lox experiments. We will then outline in detail practical experimental steps for efficient transgenesis toward the creation of single-insertion transgenes and will introduce protocols for 4-hydroxytamoxifen-mediated CreERT2 induction to perform spatiotemporal lox transgene regulation experiments in zebrafish embryos. Last, we will discuss advanced experimental applications of Cre/lox beyond traditional lineage tracing approaches.
Collapse
Affiliation(s)
- A Felker
- University of Zürich, Zürich, Switzerland
| | - C Mosimann
- University of Zürich, Zürich, Switzerland
| |
Collapse
|
18
|
Ceol CJ, Houvras Y. Uncharted Waters: Zebrafish Cancer Models Navigate a Course for Oncogene Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:3-19. [PMID: 27165347 DOI: 10.1007/978-3-319-30654-4_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over a decade has elapsed since the first genetically-engineered zebrafish cancer model was described. During this time remarkable progress has been made. Sophisticated genetic tools have been built to generate oncogene expressing cancers and characterize multiple models of solid and blood tumors. These models have led to unique insights into mechanisms of tumor initiation and progression. New drug targets have been identified, particularly through the functional analysis of cancer genomes. Now in the second decade, zebrafish cancer models are poised for even faster growth as they are used in high-throughput genetic analyses to elucidate key mechanisms underlying critical cancer phenotypes.
Collapse
Affiliation(s)
- Craig J Ceol
- Program in Molecular Medicine and Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.
| | - Yariv Houvras
- Departments of Surgery and Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
19
|
Mayrhofer M, Mione M. The Toolbox for Conditional Zebrafish Cancer Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:21-59. [PMID: 27165348 DOI: 10.1007/978-3-319-30654-4_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here we describe the conditional zebrafish cancer toolbox, which allows for fine control of the expression of oncogenes or downregulation of tumor suppressors at the spatial and temporal level. Methods such as the Gal4/UAS or the Cre/lox systems paved the way to the development of elegant tumor models, which are now being used to study cancer cell biology, clonal evolution, identification of cancer stem cells and anti-cancer drug screening. Combination of these tools, as well as novel developments such as the promising genome editing system through CRISPR/Cas9 and clever application of light reactive proteins will enable the development of even more sophisticated zebrafish cancer models. Here, we introduce this growing toolbox of conditional transgenic approaches, discuss its current application in zebrafish cancer models and provide an outlook on future perspectives.
Collapse
Affiliation(s)
- Marie Mayrhofer
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Marina Mione
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
20
|
Abstract
Site-specific recombinases (SSRs) such as Cre are widely used in gene targeting and genetic approaches for cell labeling and manipulation. They mediate DNA strand exchange between two DNA molecules at dedicated recognition sites. Precise understanding of the Cre recombination mechanism, including the role of individual base pairs in its loxP target site, guided the generation of mutant lox sites that specifically recombine with themselves but not with the wild type loxP. This has led to the development of a variety of combinatorial Cre-dependent genetic strategies, such as multicolor reporters, irreversible inversions, or recombination-mediated cassette exchange. Dre, a Cre-related phage integrase that recognizes roxP sites, does not cross-react with the Cre-loxP system, but has similar recombination efficiency. We have previously described intersectional genetic strategies combining Dre and Cre. We now report a mutagenesis screen aimed at identifying roxP base pairs critical for self-recognition. We describe several rox variant sites that are incompatible with roxP, but are able to efficiently recombine with themselves in either purified systems or bacterial and eukaryotic tissue culture systems. These newly identified rox sites are not recognized by Cre, thus enabling potential combinatorial strategies involving Cre, Dre, and target loci including multiple loxP and roxP variants.
Collapse
|
21
|
Horstick EJ, Jordan DC, Bergeron SA, Tabor KM, Serpe M, Feldman B, Burgess HA. Increased functional protein expression using nucleotide sequence features enriched in highly expressed genes in zebrafish. Nucleic Acids Res 2015; 43:e48. [PMID: 25628360 PMCID: PMC4402511 DOI: 10.1093/nar/gkv035] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/12/2015] [Indexed: 12/18/2022] Open
Abstract
Many genetic manipulations are limited by difficulty in obtaining adequate levels of protein expression. Bioinformatic and experimental studies have identified nucleotide sequence features that may increase expression, however it is difficult to assess the relative influence of these features. Zebrafish embryos are rapidly injected with calibrated doses of mRNA, enabling the effects of multiple sequence changes to be compared in vivo. Using RNAseq and microarray data, we identified a set of genes that are highly expressed in zebrafish embryos and systematically analyzed for enrichment of sequence features correlated with levels of protein expression. We then tested enriched features by embryo microinjection and functional tests of multiple protein reporters. Codon selection, releasing factor recognition sequence and specific introns and 3′ untranslated regions each increased protein expression between 1.5- and 3-fold. These results suggested principles for increasing protein yield in zebrafish through biomolecular engineering. We implemented these principles for rational gene design in software for codon selection (CodonZ) and plasmid vectors incorporating the most active non-coding elements. Rational gene design thus significantly boosts expression in zebrafish, and a similar approach will likely elevate expression in other animal models.
Collapse
Affiliation(s)
- Eric J Horstick
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Diana C Jordan
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Sadie A Bergeron
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Kathryn M Tabor
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Mihaela Serpe
- Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Benjamin Feldman
- Zebrafish Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Harold A Burgess
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|