1
|
López-Fernández AM, Neto JC, de Llanos R, Miravet JF, Galindo F. Minimalistic bis-triarylpyridinium cations: effective antimicrobials against bacterial and fungal pathogens. RSC Med Chem 2025:d4md00902a. [PMID: 40190417 PMCID: PMC11969996 DOI: 10.1039/d4md00902a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/17/2025] [Indexed: 04/09/2025] Open
Abstract
A series of twelve compounds from the family of 2,4,6-triarylpyridinium cations have been synthesized, chemically characterized (1H, 13C NMR, HRMS), and microbiologically evaluated (MIC determination against S. aureus, E. faecalis, E. coli, P. aeruginosa, and C. albicans). These compounds are quaternary ammonium cations (QACs), classified as either mono-QACs or bis-QACs. The mono-QACs are further divided into those with short (three-carbon) and long (twelve-carbon) pendant chains. An additional structural variable is the number of bromine atoms attached to the aromatic rings, ranging from zero to three. The major findings of this study are: (a) bis-QACs exhibit notably higher antimicrobial activity than mono-QACs; (b) an increased number of bromine atoms on the structure appears to diminish antimicrobial properties and (c) one of the compounds (1a) shows particularly promising properties as a broad spectrum antimicrobial, given its low MICs across all five pathogenic microorganisms studied. Preliminary assays with C. albicans show that 1a has a strong mitochondrial activity, causing a remarkable mitochondrial membrane depolarization in this organelle. Taken together, this study positions triarylpyridinium cations-previously unexplored as antimicrobials-as promising candidates for future drug development, especially in light of the growing concern over drug-resistant microorganisms.
Collapse
Affiliation(s)
- Ana M López-Fernández
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I Av. V. Sos Baynat s/n 12071 Castellón Spain
| | - Jean C Neto
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I Av. V. Sos Baynat s/n 12071 Castellón Spain
| | - Rosa de Llanos
- Unidad Predepartamental de Medicina, Universitat Jaume I Av. V. Sos Baynat s/n 12071 Castellón Spain
| | - Juan F Miravet
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I Av. V. Sos Baynat s/n 12071 Castellón Spain
| | - Francisco Galindo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I Av. V. Sos Baynat s/n 12071 Castellón Spain
| |
Collapse
|
2
|
Mu R, Yang L, Wang X, Yang B, Li J, Wang A, Zhang G, Sun C, Wu Y, Yu B, Li B. Mechanically Stable and Biocompatible Polymer Brush Coated Dental Materials with Lubricious and Antifouling Properties. Macromol Biosci 2024; 24:e2400194. [PMID: 39073313 DOI: 10.1002/mabi.202400194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Indexed: 07/30/2024]
Abstract
Surface modification plays a crucial role in enhancing the functionality of implanted interventional medical devices, offering added advantages to patients, particularly in terms of lubrication and prevention of undesired adsorption of biomolecules and microorganisms, such as proteins and bacteria, on the material surfaces. Utilizing polymer brushes for surface modification is currently a promising approach to maintaining the inherent properties of materials while introducing new functionalities to surfaces. Here, surface-initiated atom transfer radical polymerization (SI-ATRP) technology to effectively graft anionic, cationic, and neutral polymer brushes from a mixed silane initiating layer is employed. The presence of a polymer brush layer significantly enhances the lubrication performance of the substrates and ensures a consistently low coefficient of friction over thousands of friction cycles in aqueous environments. The antimicrobial efficacy of polymer brushes is evaluated against gram-positive Staphylococcus aureus (S. aureus) and gram-negative Escherichia coli (E. coli). It is observed that polym er brushes grafted to diverse substrate surfaces displays notable antibacterial properties, effectively inhibiting bacterial attachment. Furthermore, the polymer brush layer shows favorable biocompatibility and anti-inflammatory characteristics, which shows potential applications in dental materials, and other fields such as catheters and food packaging.
Collapse
Affiliation(s)
- Rong Mu
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, 730000, China
| | - Ling Yang
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Xinyue Wang
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Binrui Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jia Li
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, 730000, China
| | - Aijun Wang
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, 730000, China
| | - Guorui Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Chufeng Sun
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, 730000, China
| | - Yang Wu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264000, China
| | - Bo Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Bin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264000, China
| |
Collapse
|
3
|
Sun C, Li Y, Kidd JM, Han J, Ding L, May AE, Zhou L, Liu Q. Characterization of a New Hsp110 Inhibitor as a Potential Antifungal. J Fungi (Basel) 2024; 10:732. [PMID: 39590652 PMCID: PMC11595998 DOI: 10.3390/jof10110732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/13/2024] [Indexed: 11/28/2024] Open
Abstract
Fungal infections present a significant global health challenge, prompting ongoing research to discover innovative antifungal agents. The 110 kDa heat shock proteins (Hsp110s) are molecular chaperones essential for maintaining cellular protein homeostasis in eukaryotes. Fungal Hsp110s have emerged as a promising target for innovative antifungal strategies. Notably, 2H stands out as a promising candidate in the endeavor to target Hsp110s and combat fungal infections. Our study reveals that 2H exhibits broad-spectrum antifungal activity, effectively disrupting the in vitro chaperone activity of Hsp110 from Candida auris and inhibiting the growth of Cryptococcus neoformans. Pharmacokinetic analysis indicates that oral administration of 2H may offer enhanced efficacy compared to intravenous delivery, emphasizing the importance of optimizing the AUC/MIC ratio for advancing its clinical therapy.
Collapse
Affiliation(s)
- Cancan Sun
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yi Li
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Justin M. Kidd
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jizhong Han
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Liangliang Ding
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Aaron E. May
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lei Zhou
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
4
|
Sugio CYC, Cestari TM, Garcia AAMN, Moraes GS, Albach T, de Oliveira TM, Garlet GP, Urban VM, Neppelenbroek KH. Tissue response in a rat model of denture stomatitis treated with tissue conditioner containing antifungal complexed with β-cyclodextrin. J Med Microbiol 2024; 73. [PMID: 39392377 DOI: 10.1099/jmm.0.001899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Introduction. Tissue conditioners modified with antifungals are a potential alternative to denture stomatitis (DS) treatment.Gap Statement. Information on tissue response to this treatment before its clinical application is lacking.Aim. This study aimed to evaluate the tissue response of a tissue conditioner modified with antifungals in a rat model of DS.Methodology. After DS induction for 4 days under antibiotic therapy, Wistar rats had their intraoral devices (IODs) relined with the tissue conditioner Softone without (Soft) or with the MICs against Candida albicans of nystatin (Nys) or chlorhexidine (Chx) complexed or not with β-cyclodextrin (Nys:βCD and Chx:βCD). Three controls were included: healthy rats [negative control (Nc)], rats using a sterile IOD [sterile device (Sd)] and rats with DS that did not receive treatment (DS). After 4 days of treatment, the palatal mucosa under the IODs underwent histological processing for morphohistopathological and histometric analyses, morphology of collagen fibres (birefringence), immunohistochemistry for the expression of cell proliferation (proliferating cell nuclear antigen) and cytokine (IL-1β).Results. The Nc and Sd groups were similar (P>0.05), displaying epithelial and connective tissues without any discernible changes in the parameters assessed. The DS and Soft groups exhibited pronounced epithelial alterations, cell proliferation and expression of the cytokine IL-1β. In groups treated with drug incorporation (Nys, Chx, Nys:βCD and Chx:βCD), all samples demonstrated a reduction in tissue inflammation or complete tissue recovery, with an epithelium compatible with health. For the immunohistochemical parameters, the Chx, Nys:βCD and Chx:βCD groups were comparable with Nc (P>0.05).Conclusion. The proposed treatment could be promising for DS, as it led to the tissue recovery of the palatal mucosa. Nevertheless, much lower concentrations of complexed antifungals were required to achieve a similar or higher degree of tissue response compared with uncomplexed drugs in a modified tissue conditioner formulation.
Collapse
Affiliation(s)
- Carolina Yoshi Campos Sugio
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Tânia Mary Cestari
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | | | - Gustavo Simão Moraes
- Department of Dentistry, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Thaís Albach
- Department of Dentistry, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Thais Marchini de Oliveira
- Department of Pediatric Dentistry Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | | | - Karin Hermana Neppelenbroek
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| |
Collapse
|
5
|
Fernandes LDS, Ogasawara LS, Medina-Alarcón KP, dos Santos KS, de Matos Silva S, de Assis LR, Regasini LO, de Oliveira AG, Mendes Giannini MJS, Scarpa MV, Fusco Almeida AM. Bioprospecting, Synergistic Antifungal and Toxicological Aspects of the Hydroxychalcones and Their Association with Azole Derivates against Candida spp. for Treating Vulvovaginal Candidiasis. Pharmaceutics 2024; 16:843. [PMID: 39065540 PMCID: PMC11279727 DOI: 10.3390/pharmaceutics16070843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Vulvovaginal candidiasis (VVC) remains a prevalent fungal disease, characterized by challenges, such as increased fungal resistance, side effects of current treatments, and the rising prevalence of non-albicans Candida spp. naturally more resistant. This study aimed to propose a novel therapeutic approach by investigating the antifungal properties and toxicity of 2-hydroxychalcone (2-HC) and 3'-hydroxychalcone (3'-HC), both alone and in combination with fluconazole (FCZ) and clotrimazole (CTZ). A lipid carrier (LC) was also developed to deliver these molecules. The study evaluated in vitro anti-Candida activity against five Candida species and assessed cytotoxicity in the C33-A cell line. The safety and therapeutic efficacy of in vivo were tested using an alternative animal model, Galleria mellonella. The results showed antifungal activity of 2-HC and 3'-HC, ranging from 7.8 to 31.2 as fungistatic and 15.6 to 125.0 mg/L as fungicide effect, with cell viability above 80% from a concentration of 9.3 mg/L (2-HC). Synergistic and partially synergistic interactions of these chalcones with FCZ and CTZ demonstrated significant improvement in antifungal activity, with MIC values ranging from 0.06 to 62.5 mg/L. Some combinations reduced cytotoxicity, achieving 100% cell viability in many interactions. Additionally, two LCs with suitable properties for intravaginal application were developed. These formulations demonstrated promising therapeutic efficacy and low toxicity in Galleria mellonella assays. These results suggest the potential of this approach in developing new therapies for VVC.
Collapse
Affiliation(s)
- Lígia de Souza Fernandes
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (A.G.d.O.); (M.V.S.)
| | - Letícia Sayuri Ogasawara
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
| | - Kaila Petronila Medina-Alarcón
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
| | - Kelvin Sousa dos Santos
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
| | - Samanta de Matos Silva
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
| | - Letícia Ribeiro de Assis
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), St. Quirino de Andrade, 215, São José do Rio Preto 01049-010, SP, Brazil; (L.R.d.A.); (L.O.R.)
| | - Luís Octavio Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), St. Quirino de Andrade, 215, São José do Rio Preto 01049-010, SP, Brazil; (L.R.d.A.); (L.O.R.)
| | - Anselmo Gomes de Oliveira
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (A.G.d.O.); (M.V.S.)
| | - Maria José Soares Mendes Giannini
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
| | - Maria Virginia Scarpa
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (A.G.d.O.); (M.V.S.)
| | - Ana Marisa Fusco Almeida
- Laboratory of Clinical Mycology, Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Road Araraquara Jaú, Km 01, S/N, Araraquara 14800-903, SP, Brazil; (L.d.S.F.); (L.S.O.); (K.P.M.-A.); (K.S.d.S.); (S.d.M.S.); (M.J.S.M.G.)
| |
Collapse
|
6
|
Nabawy A, Makabenta JM, Park J, Huang R, Nayar V, Patel R, Rotello VM. Nature-Derived Gelatin-Based Antifungal Nanotherapeutics for combatting Candida albicans Biofilms. ENVIRONMENTAL SCIENCE. NANO 2024; 11:637-644. [PMID: 38841652 PMCID: PMC11149111 DOI: 10.1039/d3en00372h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Infections caused by fungi are emerging global health challenges that are exacerbated by the formation of fungal biofilms. Further challenges arise from environmental contamination with antifungal agents, which promotes environmental acquisition of antifungal resistance. We report the generation of an efficient, sustainable, all-natural antifungal nanotherapeutic based on the integration of an antimicrobial natural essential oil into a gelatin-based nanoemulsion platform. Carvacrol-loaded gelatin nanoemulsions penetrated Candida albicans biofilms, resulting in death of C. albicans cells in biofilms, and displayed selective biofilm elimination without harmful effects on fibroblast cells in a fungal biofilm-mammalian fibroblast co-culture model. Furthermore, the nanoemulsions degraded in the presence of physiologically relevant biomolecules, reducing the potential for environmental pollution and ecotoxicity. Overall, the sustainability, and efficacy of the described gelatin nanoemulsion formulation provides an environmentally friendly strategy for treating biofilm-associated fungal infections, including those caused by drug-resistant fungi.
Collapse
Affiliation(s)
- Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003
| | - Jessa Marie Makabenta
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003
| | - Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003
| | - Varun Nayar
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, and Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003
| |
Collapse
|
7
|
Qin Y, Wang J, Lv Q, Han B. Recent Progress in Research on Mitochondrion-Targeted Antifungal Drugs: a Review. Antimicrob Agents Chemother 2023; 67:e0000323. [PMID: 37195189 PMCID: PMC10269089 DOI: 10.1128/aac.00003-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Fungal infections, which commonly occur in immunocompromised patients, can cause high morbidity and mortality. Antifungal agents act by disrupting the cell membrane, inhibiting nucleic acid synthesis and function, or inhibiting β-1,3-glucan synthase. Because the incidences of life-threatening fungal infections and antifungal drug resistance are continuously increasing, there is an urgent need for the development of new antifungal agents with novel mechanisms of action. Recent studies have focused on mitochondrial components as potential therapeutic drug targets, owing to their important roles in fungal viability and pathogenesis. In this review, we discuss novel antifungal drugs targeting mitochondrial components and highlight the unique fungal proteins involved in the electron transport chain, which is useful for investigating selective antifungal targets. Finally, we comprehensively summarize the efficacy and safety of lead compounds in clinical and preclinical development. Although fungus-specific proteins in the mitochondrion are involved in various processes, the majority of the antifungal agents target dysfunction of mitochondria, including mitochondrial respiration disturbance, increased intracellular ATP, reactive oxygen species generation, and others. Moreover, only a few drugs are under clinical trials, necessitating further exploration of possible targets and development of effective antifungal agents. The unique chemical structures and targets of these compounds will provide valuable hints for further exploiting new antifungals.
Collapse
Affiliation(s)
- Yulin Qin
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Jinxin Wang
- School of Pharmacy, Naval Medical University, Shanghai, People’s Republic of China
| | - Quanzhen Lv
- School of Pharmacy, Naval Medical University, Shanghai, People’s Republic of China
| | - Bing Han
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Lv Q, Yan L, Wang J, Feng J, Gao L, Qiu L, Chao W, Qin YL, Jiang Y. Combined Transcriptome and Metabolome Analysis Reveals That the Potent Antifungal Pyrylium Salt Inhibits Mitochondrial Complex I in Candida albicans. Microbiol Spectr 2023; 11:e0320922. [PMID: 36790175 PMCID: PMC10100848 DOI: 10.1128/spectrum.03209-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/06/2023] [Indexed: 02/16/2023] Open
Abstract
Based on the structural modification of SM21, xy12, a new pyrylium salt derivative with enhanced antifungal activities, was synthesized. The MICs (MIC90) of xy12 against Candida albicans ranged from 0.125 to 0.25 μg/mL, about 2-fold lower than those of SM21. In addition, xy12 inhibited hypha and biofilm formation in C. albicans in a dose-dependent manner. A total of 3,454 differentially expressed genes and 260 differential metabolites were identified in the xy12-treated C. albicans by RNA-seq and non-targeted metabolomics. By integrating KEGG pathway enrichment analysis, we found that inhibition of oxidative phosphorylation was the important antifungal mechanism of action of xy12. Electron transport through mitochondrial respiratory complexes I to IV is the common process of oxidative phosphorylation. Compared with the sensitivity of the wild-type SC5314 to xy12, decreased sensitivities in mitochondrial complex I (CI)-deficient mutants and increased sensitivities in mitochondrial complex III- and IV-deficient mutants suggested that the antifungal effects of xy12 were dependent on CI. Consistently, xy12 exhibited antagonism with rotenone, an inhibitor of CI, and significantly inhibited the expression and activity of CI. Meanwhile, the phenotypes in the xy12-treated C. albicans were similar to those in the CI-deficient mutants, such as decreased ATP production, reduced mitochondrial membrane potential, loss of mitochondrial DNA, inability to utilize nonfermentative carbon sources, and decreased cell wall N-linked mannoproteins. Collectively, our results revealed that the pyrylium salt xy12 could constrain oxidative phosphorylation by inhibiting mitochondrial complex I in C. albicans, providing a novel lead compound for the development of mitochondria-targeted antifungal drugs. IMPORTANCE The development of new antifungal drugs is critical for solving the problem of antifungal resistance and expanding the limited variety of clinical antifungal drugs. Based on the modification of the pyrylium salt SM21, a new lead compound, xy12, was synthesized which was effective against Candida species both in vitro and in vivo. In this study, conjoined analysis of the transcriptome and metabolome elucidated the antifungal mechanism of action of xy12, which inhibited the activity of mitochondrial complex I in C. albicans. Targeting fungi-specific mitochondrial complex proteins has been reported as a promising antifungal strategy. Our study provided a new lead compound for targeting C. albicans mitochondrial complex I, which could be beneficial for discovering novel antifungal drugs.
Collapse
Affiliation(s)
- Quanzhen Lv
- School of Pharmacy, Naval Medical University, Shanghai, People’s Republic of China
| | - Lan Yan
- School of Pharmacy, Naval Medical University, Shanghai, People’s Republic of China
| | - Jinxin Wang
- School of Pharmacy, Naval Medical University, Shanghai, People’s Republic of China
| | - Jia Feng
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Lu Gao
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Lijuan Qiu
- School of Pharmacy, Naval Medical University, Shanghai, People’s Republic of China
| | - Wen Chao
- School of Pharmacy, Naval Medical University, Shanghai, People’s Republic of China
| | - Yu-Lin Qin
- Fudan University Minhang Hospital, Shanghai, People’s Republic of China
| | - Yuanying Jiang
- School of Pharmacy, Naval Medical University, Shanghai, People’s Republic of China
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
9
|
Handayani S, Nurdiana N, Winarsih S, Tri Endharti A. The Effects of Holothurin and Caspofungin on the Vaginal Cell Inflammation Parameters of the Rattus norvegicus Strain Post Induction of Candida albicans. Infect Drug Resist 2023; 16:2501-2509. [PMID: 37138836 PMCID: PMC10150739 DOI: 10.2147/idr.s400314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/01/2023] [Indexed: 05/05/2023] Open
Abstract
Purpose Candida albicans (C. albicans) is a fungus that causes superficial and invasive candidiasis in its host. Caspofungin, has been widely used as a synthetic antifungal, whereas holothurin has been shown to have potential as a natural antifungal. The purpose of this study was to see how holothurin and caspofungin affected the number of C. albicans's colonies, LDH levels, and the number of inflammatory cells in vagina of Rattus norvegicus. Patients and Methods Design of this research is using posttest only with control group design with 48 Rattus norvegicus Wistar strains used in this study were divided into six treatment groups. Each group was divided into three-time intervals of 12, 24, and 48 hours. LDH markers were tested using ELISA, inflammatory cells were counted manually, and the number of colonies was calculated using colonymetry before being diluted with NaCl 0.9% and planted in sabouraud dextrose agar (SDA). Results According to the findings, inflammatory cells in the treatment of holothurin (48-hours) had an OR of 1.68 CI (-0.79-4.16) P = 0.09 and caspofungin had an OR of 4.18 CI (1.26-9.63) P = 0.09. Meanwhile, LDH in the holothurin (48-hour) treatment obtained OR 348, CI (286-410), P=0.03, and Caspofungin OR 393, CI (277-508), P=0.03. Colonies were obtained with zero numbers in the holothurin treatment (48 hours) and with Caspofungin OR 393, CI (273-508) P=0.00. Conclusion Holothurin and caspofungin administration reduced the number of C. albicans colonies and the number of inflammatory cells (P 0.05), implying that holothurin and caspofungin could prevent C. albicans infection.
Collapse
Affiliation(s)
- Sri Handayani
- Doctoral Program of Medical Science Department, Faculty of Medicine, Brawijaya University, Malang, Indonesia
- Department of Midwifery of Aisyiyah, Institution of Surakarta University, Surakarta, Province of Middle Java, Indonesia
- Correspondence: Sri Handayani, Department of Midwifery of Aisyiyah, Institution of Surakarta University, Surakarta, Middle Java State, 57146, Indonesia, Tel +62 816-4252-588, Email
| | - Nurdiana Nurdiana
- Department of Pharmacology, Faculty of Medicine, Brawijaya University, Malang, Province of East Java, Indonesia
| | - Sri Winarsih
- Department of Pharmacy, Faculty of Medicine, Brawijaya University, Malang, Province of East Java, Indonesia
| | - Agustina Tri Endharti
- Department of Parasitology, Faculty of Medicine, Brawijaya University, Malang, Province of East Java, Indonesia
| |
Collapse
|
10
|
Moraes GS, Albach T, Sugio CYC, Cachoeira VS, Kiratcz F, Claudino M, Campagnoli EB, Pochapski MT, Dos Santos FA, Neppelenbroek KH, Urban VM. A novel rat model of denture stomatitis and the role of antibiotics in the development of the disease. Med Mycol 2022; 60:myac092. [PMID: 36441017 DOI: 10.1093/mmy/myac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/29/2022] [Accepted: 11/25/2022] [Indexed: 01/03/2024] Open
Abstract
This study compared different conditions to establish a rat model of denture stomatitis. Immunocompetent Wistar rats were divided into two groups (n = 35): Tetracycline = administration of 0.83 mg/ml of tetracycline hydrochloride 7 days before induction of denture stomatitis and amoxicillin = administration of 0.156 mg/ml of amoxicillin with clavulanic acid 4 days before induction of denture stomatitis. A suspension of Candida albicans was inoculated on the palate followed by the use of a palatal device contaminated with C. albicans inoculum for 4 days to induce denture stomatitis. As controls, some rats were not submitted to any procedure or used a sterile palatal device for 4 days. The development of denture stomatitis was confirmed by visual analysis, colony-forming units per milliliter (CFU/ml) count, histopathological and immunohistochemical analyses, and through myeloperoxidase (MPO) and N-acetylglucosaminidase (NAG) assays. Rats were euthanized right after device removal (T0), 4 (T4), or 6 (T6) days after device removal. Tetracycline improved the development of the disease, with more severe clinical signs at T0. Similar results were observed in the CFU/ml count and in the histometric and immunohistochemical analyses. Higher MPO expression was detected in the palates of the tetracycline group (P = .006). Despite the subtle differences between antibiotics, tetracycline showed better results in inducing and maintaining denture stomatitis for at least 4 days after device removal.
Collapse
Affiliation(s)
| | - Thaís Albach
- Department of Dentistry, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Carolina Yoshi Campos Sugio
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | - Falyne Kiratcz
- Department of Dentistry, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Marcela Claudino
- Department of Dentistry, State University of Ponta Grossa, Ponta Grossa, Brazil
| | | | | | | | - Karin Hermana Neppelenbroek
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | |
Collapse
|
11
|
Brankiewicz W, Okońska J, Serbakowska K, Lica J, Drab M, Ptaszyńska N, Łęgowska A, Rolka K, Szweda P. New Peptide Based Fluconazole Conjugates with Expanded Molecular Targets. Pharmaceutics 2022; 14:pharmaceutics14040693. [PMID: 35456526 PMCID: PMC9026428 DOI: 10.3390/pharmaceutics14040693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Infections of Candida spp. etiology are frequently treated with azole drugs. Among azoles, the most widely used in the clinical scenario remains fluconazole (FLC). Promising results in treatment of dangerous, systemic Candida infections demonstrate the advantages of combined therapies carried out with combinations of at least two different antifungal agents. Here, we report five conjugates composed of covalently linked FLC and cell penetrating or antimicrobial peptide: TP10-7-NH2, TP10-NH2, LFcinB(2-11)-NH2, LFcinB[Nle1,11]-NH2, and HLopt2-NH2, with aspects of design, chemical synthesis and their biological activities. Two of these compounds, namely FLCpOH-TP10-NH2 and FLCpOH-TP10-7-NH2, exhibit high activity against reference strains and fluconazole-resistant clinical isolates of C. albicans, including strains overproducing drug transporters. Moreover, both of them demonstrate higher fungicidal effects compared to fluconazole. Analysis performed with fluorescence and scanning electron microscopy as well as flow cytometry indicated the cell membrane as a molecular target of synthesized conjugates. An important advantage of FLCpOH-TP10-NH2 and FLCpOH-TP10-7-NH2 is their low cytotoxicity. The IC90 value for the human cells after 72 h treatment was comparable to the MIC50 value after 24 h treatment for most strains of C. albicans. In reported conjugates, FLC was linked to the peptide by its hydroxyl group. It is worth noting that conjugation of FLC by the nitrogen atom of the triazole ring led to practically inactive compounds. Two compounds produced by us and reported herein appear to be potential candidates for novel antifungal agents.
Collapse
Affiliation(s)
- Wioletta Brankiewicz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (W.B.); (K.S.)
| | - Joanna Okońska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (J.O.); (J.L.); (A.Ł.); (K.R.)
| | - Katarzyna Serbakowska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (W.B.); (K.S.)
| | - Jan Lica
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (J.O.); (J.L.); (A.Ł.); (K.R.)
| | - Marek Drab
- Unit of Nanostructural Bio-Interactions, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla-Street, 53-114 Wrocław, Poland;
| | - Natalia Ptaszyńska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (J.O.); (J.L.); (A.Ł.); (K.R.)
- Correspondence: (N.P.); (P.S.); Tel.: +48-58-523-5092 (N.P.); +48-58-347-2440 (P.S.); Fax: +48-58-523-5012 (N.P.)
| | - Anna Łęgowska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (J.O.); (J.L.); (A.Ł.); (K.R.)
| | - Krzysztof Rolka
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (J.O.); (J.L.); (A.Ł.); (K.R.)
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (W.B.); (K.S.)
- Correspondence: (N.P.); (P.S.); Tel.: +48-58-523-5092 (N.P.); +48-58-347-2440 (P.S.); Fax: +48-58-523-5012 (N.P.)
| |
Collapse
|
12
|
Handayani S, Nurdiana N, Winarsih S, Endharti AT. Holothurin Compound from Sea Cucumber (Holothuria sp.) as Antifungal Alternative against Candida Infections. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: The previous studies have identified chemical compounds in sea cucumbers that have antifungal properties. However, further information on the underlying antifungal needed to be updated.
AIM: This study aimed to discover efficient antifungal treatments against candidiasis disease.
MATERIALS AND METHODS: This study analyzed the antifungal activity from Holothurin against Candida albicans in silico using molecular docking and minimum inhibitory concentration (MIC).
RESULTS: The results revealed that holothurin has a binding affinity of −7.9 kcal/mol and MIC value of 1.5 mg/ml.
CONCLUSION: Holothurin may inhibit the infection of C. albicans. Furthermore, additional research is required to validate the activity of this compound.
Collapse
|
13
|
Kalimuthu S, Alshanta OA, Krishnamoorthy AL, Pudipeddi A, Solomon AP, McLean W, Leung YY, Ramage G, Neelakantan P. Small molecule based anti-virulence approaches against Candida albicans infections. Crit Rev Microbiol 2022; 48:743-769. [PMID: 35232325 DOI: 10.1080/1040841x.2021.2025337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fungi are considered "silent killers" due to the difficulty of, and delays in diagnosis of infections and lack of effective antifungals. This challenge is compounded by the fact that being eukaryotes, fungi share several similarities with human cellular targets, creating obstacles to drug discovery. Candida albicans, a ubiquitous microbe in the human body is well-known for its role as an opportunistic pathogen in immunosuppressed people. Significantly, C. albicans is resistant to all the three classes of antifungals that are currently clinically available. Over the past few years, a paradigm shift has been recommended in the management of C. albicans infections, wherein anti-virulence strategies are considered an alternative to the discovery of new antimycotics. Small molecules, with a molecular weight <900 Daltons, can easily permeate the cell membrane and modulate the signal transduction pathways to elicit desired virulence inhibitory actions against pathogens. This review dissects in-depth, the discoveries that have been made with small-molecule anti-virulence approaches to tackle C. albicans infections.
Collapse
Affiliation(s)
| | - Om Alkhir Alshanta
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | - Akshaya Lakshmi Krishnamoorthy
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.,Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Akhila Pudipeddi
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - William McLean
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | - Yiu Yan Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Gordon Ramage
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | | |
Collapse
|
14
|
Das R, Kotra K, Singh P, Loh B, Leptihn S, Bajpai U. Alternative Treatment Strategies for Secondary Bacterial and Fungal Infections Associated with COVID-19. Infect Dis Ther 2022; 11:53-78. [PMID: 34807451 PMCID: PMC8607056 DOI: 10.1007/s40121-021-00559-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023] Open
Abstract
Antimicrobials are essential for combating infectious diseases. However, an increase in resistance to them is a major cause of concern. The empirical use of drugs in managing COVID-19 and the associated secondary infections have further exacerbated the problem of antimicrobial resistance. Hence, the situation mandates exploring and developing efficient alternatives for the treatment of bacterial and fungal infections in patients suffering from COVID-19 or other viral infections. In this review, we have described the alternatives to conventional antimicrobials that have shown promising results and are at various stages of development. An acceleration of efforts to investigate their potential as therapeutics can provide more treatment options for clinical management of drug-resistant secondary bacterial and fungal infections in the current pandemic and similar potential outbreaks in the future. The alternatives include bacteriophages and their lytic enzymes, anti-fungal enzymes, antimicrobial peptides, nanoparticles and small molecule inhibitors among others. What is required at this stage is to critically examine the challenges in developing the listed compounds and biomolecules as therapeutics and to establish guidelines for their safe and effective application within a suitable time frame. In this review, we have attempted to highlight the importance of rational use of antimicrobials in patients suffering from COVID-19 and boost the deployment of alternative therapeutics.
Collapse
Affiliation(s)
- Ritam Das
- Department of Life Science, Acharya Narendra Dev College, University of Delhi, New Delhi, 110019 India
| | - Komal Kotra
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, New Delhi, 110019 India
| | - Pulkit Singh
- Department of Zoology, Acharya Narendra Dev College, University of Delhi, New Delhi, 110019 India
| | - Belinda Loh
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 314400 People’s Republic of China
| | - Sebastian Leptihn
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 314400 People’s Republic of China
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi, 110019 India
| |
Collapse
|
15
|
Badr AN, El-Attar MM, Ali HS, Elkhadragy MF, Yehia HM, Farouk A. Spent Coffee Grounds Valorization as Bioactive Phenolic Source Acquired Antifungal, Anti-Mycotoxigenic, and Anti-Cytotoxic Activities. Toxins (Basel) 2022; 14:toxins14020109. [PMID: 35202136 PMCID: PMC8876227 DOI: 10.3390/toxins14020109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Spent coffee grounds (SCGs), which constitute 75% of original coffee beans, represent an integral part of sustainability. Contamination by toxigenic fungi and their mycotoxins is a hazard that threatens food production. This investigation aimed to examine SCGs extract as antimycotic and anti-ochratoxigenic material. The SCGs were extracted in an eco-friendly way using isopropanol. Bioactive molecules of the extract were determined using the UPLC apparatus. The cytotoxicity on liver cancer cells (Hep-G2) showed moderate activity with selectivity compared with human healthy oral epithelial (OEC) cell lines but still lower than the positive control (Cisplatin). The antibacterial properties were examined against pathogenic strains, and the antifungal was examined against toxigenic fungi using two diffusion assays. Extract potency was investigated by two simulated models, a liquid medium and a food model. The results of the extract showed 15 phenolic acids and 8 flavonoids. Rosmarinic and syringic acids were the most abundant phenolic acids, while apigenin-7-glucoside, naringin, epicatechin, and catechin were the predominant flavonoids in the SCGs extract. The results reflected the degradation efficiency of the extract against the growth of Aspergillus strains. The SCGs recorded detoxification in liquid media for aflatoxins (AFs) and ochratoxin A (OCA). The incubation time of the extract within dough spiked with OCA was affected up to 2 h, where cooking was not affected. Therefore, SCGs in food products could be applied to reduce the mycotoxin contamination of raw materials to the acceptable regulated limits.
Collapse
Affiliation(s)
- Ahmed Noah Badr
- Food Toxicology and Contaminants Department, National Research Centre, Cairo 12622, Egypt
- Correspondence: (A.N.B.); (H.S.A.); Tel.: +20-1000327640 (H.S.A.)
| | - Marwa M. El-Attar
- Radioisotopes Department, Nuclear Research Center, Atomic Energy Authority, Cairo 11787, Egypt;
| | - Hatem S. Ali
- Food Technology Department, National Research Center, Cairo 12622, Egypt
- Correspondence: (A.N.B.); (H.S.A.); Tel.: +20-1000327640 (H.S.A.)
| | - Manal F. Elkhadragy
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Hany M. Yehia
- Food Science and Nutrition Department, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
- Food Science and Nutrition Department, Faculty of Home Economics, Helwan University, Cairo 11221, Egypt
| | - Amr Farouk
- Flavour and Aroma Chemistry Department, National Research Centre, Cairo 12622, Egypt;
| |
Collapse
|
16
|
Moraes GS, Albach T, Sugio CY, de Oliveira FB, Neppelenbroek KH, Urban VM. Experimental animal models for denture stomatitis: A methodological review. Lab Anim 2022; 56:331-343. [PMID: 35072576 DOI: 10.1177/00236772211069249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Denture stomatitis is the most prevalent form of oral candidiasis and the most frequent oral lesion in removable prosthesis wearers. It is characterized by an inflammatory response of the denture-bearing mucosa, especially the palatal mucosa, and its clinical signs include chronic edema and erythema, and papillary hyperplasia. Despite having a multifactorial etiology, its main etiological agent is the infection by Candida albicans. Given its high treatment failure rates, an in vivo model of denture stomatitis should be established to test alternative treatments. The aim of this study is to review the existing denture stomatitis models and to provide an overview of the main methodological differences between them. Over the last 40 years, different animal models were developed in order to study denture stomatitis etiopathogenesis and to assess novel therapies. Many approaches, including the use of antibiotics and immunosuppressors, have to be further investigated in order to establish which protocol is more appropriate and effective for the development of an animal model of denture stomatitis.
Collapse
Affiliation(s)
- Gustavo S Moraes
- Department of Dentistry, 67883State University of Ponta Grossa, State University of Ponta Grossa, Brazil
| | - Thaís Albach
- Department of Dentistry, 67883State University of Ponta Grossa, State University of Ponta Grossa, Brazil
| | - Carolina Yc Sugio
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Brazil
| | - Fabio B de Oliveira
- Department of Dentistry, 67883State University of Ponta Grossa, State University of Ponta Grossa, Brazil
| | - Karin H Neppelenbroek
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Brazil
| | - Vanessa M Urban
- Department of Dentistry, 67883State University of Ponta Grossa, State University of Ponta Grossa, Brazil
| |
Collapse
|
17
|
Maia CMDA, Pasetto S, Nonaka CFW, Costa EMMDB, Murata RM. Yeast-Host Interactions: Anadenanthera colubrina Modulates Virulence Factors of C. albicans and Inflammatory Response In Vitro. Front Pharmacol 2021; 12:629778. [PMID: 34168555 PMCID: PMC8217765 DOI: 10.3389/fphar.2021.629778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/25/2021] [Indexed: 01/08/2023] Open
Abstract
Oral candidiasis is one of the most common fungal infections in humans. Its incidence has increased widely, as well as the antifungal resistance, demanding for the search for novel antifungal therapeutic agents. Anadenanthera colubrina (Vell.) Brenan is a plant species that has been proven to possess pharmacological effects, including antifungal and anti-inflammatory activities. This study evaluated in vitro the effects of standardized A. colubrina extract on virulence factors of Candida albicans and its regulation on immune response through C. albicans-host interaction. Antifungal activity was evaluated by Broth Microdilution Method against reference Candida strains (C. albicans, C. glabrata, C. tropicalis; C. dubliniensis). Anti-biofilm effect was performed on C. albicans mature biofilm and quantified by CFU/mL/g of biofilm dry weight. Proleotlytic enzymatic activities of proteinase and phospholipase were assessed by Azocasein and Phosphatidylcholine assays, respectively. Cytotoxicity effect was determined by Cell Titer Blue Viability Assay on Human Gingival Fibroblasts. Co-cultured model was used to analyze C. albicans coexisting with HGF by Scanning Electron Microscopy and fluorescence microscopies; gene expression was assessed by RT-PCR of C. albicans enzymes (SAP-1, PLB-1) and of host inflammatory cytokines (IL-6, IL-8, IL-1β, IL-10). Cytokines secretion was analysed by Luminex. The extract presented antifungal effect with MIC<15.62 μg/ml against Candida strains. Biofilm and proteolytic activity were significant reduced at 312.4 μg/ml (20 × 15.62 μg/ml) extract concentration. Cell viability was maintained higher than 70% in concentrations up to 250 μg/ml (LD50 = 423.3 μg/ml). Co-culture microscopies demonstrated a substantial decreased in C. albicans growth and minimal toxicity against host cells. Gene expressions of SAP-1/PLB-1 were significantly down-regulated and host immune response was modulated by a significant decreased on IL-6 and IL-8 cytokines secretion. A. colubrina had antifungal activity on Candida strains, antibiofilm, and anti-proteolytic enzyme effects against C. albicans. Presented low cytotoxicity to the host cells and modulatory effects on the host immune response.
Collapse
Affiliation(s)
- Carolina Medeiros de Almeida Maia
- Department of Dentistry, Postgraduate Program in Dentistry, State University of Paraiba, Campina Grande, Brazil
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | - Silvana Pasetto
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | | | | | - Ramiro Mendonça Murata
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
18
|
The Effects of Dehydrozingerone on Growth, Biofilm Formation, and Ergosterol Biosynthesis of Candida albicans. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2021. [DOI: 10.52547/jommid.9.2.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Atriwal T, Azeem K, Husain FM, Hussain A, Khan MN, Alajmi MF, Abid M. Mechanistic Understanding of Candida albicans Biofilm Formation and Approaches for Its Inhibition. Front Microbiol 2021; 12:638609. [PMID: 33995297 PMCID: PMC8121174 DOI: 10.3389/fmicb.2021.638609] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, the demand for novel antifungal therapies has increased several- folds due to its potential to treat severe biofilm-associated infections. Biofilms are made by the sessile microorganisms attached to the abiotic or biotic surfaces, enclosed in a matrix of exopolymeric substances. This results in new phenotypic characteristics and intrinsic resistance from both host immune response and antimicrobial drugs. Candida albicans biofilm is a complex association of hyphal cells that are associated with both abiotic and animal tissues. It is an invasive fungal infection and acts as an important virulent factor. The challenges linked with biofilm-associated diseases have urged scientists to uncover the factors responsible for the formation and maturation of biofilm. Several strategies have been developed that could be adopted to eradicate biofilm-associated infections. This article presents an overview of the role of C. albicans biofilm in its pathogenicity, challenges it poses and threats associated with its formation. Further, it discusses strategies that are currently available or under development targeting prostaglandins, quorum-sensing, changing surface properties of biomedical devices, natural scaffolds, and small molecule-based chemical approaches to combat the threat of C. albicans biofilm. This review also highlights the recent developments in finding ways to increase the penetration of drugs into the extracellular matrix of biofilm using different nanomaterials against C. albicans.
Collapse
Affiliation(s)
- Tanu Atriwal
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Kashish Azeem
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammed Nadeem Khan
- Department of Tashreehul Badan, Faculty of Unani Medicine, Aligarh Muslim University, Aligarh, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
20
|
Sá NPD, Barros PPD, Junqueira JC, Valério AD, Lino CI, Oliveira RBD, Rosa CA, Johann S. Antivirulence activity and in vivo efficacy of a thiazole derivative against candidiasis. J Mycol Med 2021; 31:101134. [PMID: 33862540 DOI: 10.1016/j.mycmed.2021.101134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
Candida albicans is a pathogen equipped with a variety of commensal and virulence traits that help it colonize the microbiota and invade host tissue during infection. In this study, we investigated the potential anticandidal activity of 3-[2-(4-(4-methoxyphenyl)thiazol-2-yl)hydrazino)]butan-1-ol (MT), a thiazolylhydrazone compound synthesized by our group, and identified it as a promising antifungal agent. The activity of MT was evaluated in vitro and in vivo against C. albicans as well as its ability to inhibit virulence factors. For this, the ability of MT to inhibit the adhesion of C. albicans to human buccal epithelial cells and biofilm formation and filamentation was tested. In addition, the potential in vivo activity of MT was evaluated in murine models of oral candidiasis. Our results confirmed the antifungal activity of MT, with a minimal inhibitory concentration range of 0.5-2 µg/mL. Indeed, MT treatment in vitro decreased the expression of C. albicans genes involved in biofilm formation and morphogenesis and encoding hydrolytic enzymes, which was also confirmed through phenotypic observations. In addition, MT promoted a decrease in the colony forming units recovered from the tongues of mice with oral candidiasis. In this work, we present a potent antivirulence compound that shows potential for candidiasis therapy, especially for topical use.
Collapse
Affiliation(s)
- Nívea Pereira de Sá
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, PO Box 486, 31270-901 Belo Horizonte, Minas Gerais, Brazil; Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Patrícia Pimentel de Barros
- Departamento de Biociências e Diagnóstico Bucal, Instituto de Ciência e Tecnologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", São José dos Campos, São Paulo, Brazil; Postgraduate Program in Nursing, University of Guarulhos, São Paulo, Brazil
| | - Juliana Campos Junqueira
- Departamento de Biociências e Diagnóstico Bucal, Instituto de Ciência e Tecnologia, Universidade Estadual Paulista "Júlio de Mesquita Filho", São José dos Campos, São Paulo, Brazil
| | - Aline Dias Valério
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, PO Box 486, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Cleudiomar Inácio Lino
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renata Barbosa de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Augusto Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, PO Box 486, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Susana Johann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, PO Box 486, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
21
|
Faria DR, Melo RC, Arita GS, Sakita KM, Rodrigues-Vendramini FAV, Capoci IRG, Becker TCA, Bonfim-Mendonça PDS, Felipe MSS, Svidzinski TIE, Kioshima ES. Fungicidal Activity of a Safe 1,3,4-Oxadiazole Derivative Against Candida albicans. Pathogens 2021; 10:pathogens10030314. [PMID: 33800117 PMCID: PMC8001722 DOI: 10.3390/pathogens10030314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 12/30/2022] Open
Abstract
Candida albicans is the most common species isolated from nosocomial bloodstream infections. Due to limited therapeutic arsenal and increase of drug resistance, there is an urgent need for new antifungals. Therefore, the antifungal activity against C. albicans and in vivo toxicity of a 1,3,4-oxadiazole compound (LMM6) was evaluated. This compound was selected by in silico approach based on chemical similarity. LMM6 was highly effective against several clinical C. albicans isolates, with minimum inhibitory concentration values ranging from 8 to 32 µg/mL. This compound also showed synergic effect with amphotericin B and caspofungin. In addition, quantitative assay showed that LMM6 exhibited a fungicidal profile and a promising anti-biofilm activity, pointing to its therapeutic potential. The evaluation of acute toxicity indicated that LMM6 is safe for preclinical trials. No mortality and no alterations in the investigated parameters were observed. In addition, no substantial alteration was found in Hippocratic screening, biochemical or hematological analyzes. LMM6 (5 mg/kg twice a day) was able to reduce both spleen and kidneys fungal burden and further, promoted the suppresses of inflammatory cytokines, resulting in infection control. These preclinical findings support future application of LMM6 as potential antifungal in the treatment of invasive candidiasis.
Collapse
Affiliation(s)
- Daniella Renata Faria
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
| | - Raquel Cabral Melo
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
| | - Glaucia Sayuri Arita
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
| | - Karina Mayumi Sakita
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
| | - Franciele Abigail Vilugron Rodrigues-Vendramini
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
| | - Isis Regina Grenier Capoci
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
| | - Tania Cristina Alexandrino Becker
- Laboratory of General Pathology, Department of Basic Health Sciences, State University of Maringá, Maringá (UEM), Maringá, Paraná 87020-900, Brazil;
| | - Patrícia de Souza Bonfim-Mendonça
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
| | - Maria Sueli Soares Felipe
- Program of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasília 70790-160, Brazil;
| | - Terezinha Inez Estivalet Svidzinski
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
| | - Erika Seki Kioshima
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
- Correspondence: or ; Tel.: +55-44-3011-4810
| |
Collapse
|
22
|
Serafini MR, Santos VV, Torres BGS, Johansson Azeredo F, Savi FM, Alves IA. A patent review of antibiofilm fungal drugs (2002-present). Crit Rev Biotechnol 2021; 41:229-248. [PMID: 33530749 DOI: 10.1080/07388551.2021.1874283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Fungal biofilms, such as Candida albicans biofilms, are capable of surviving in hostile environments owing to their remarkable ability to adhere to surfaces and their tolerance to chemical interventions. Currently, therapeutic treatment options are few, making these biofilm-based infections problematic particularly due to their great tolerance to conventional antimicrobial drugs, thus causing serious health and economic problems. Therefore, the development of new drugs and antibiofilm specific therapies for the prevention and treatment of antifungal to eradicate biofilms are needed. This study was aimed at carrying out a patent review analysis to identify the innovation trends, and to explore the latest antifungal drugs and the specific therapeutic strategies available for the treatment of fungal biofilms. The present patent review was carried out using the Espacenet database, using the key words "biofilm and antifungal," from 2002 to December 2019. Through this review, it was possible to identify that most of the patent contents refer to new synthetic drugs derived from natural products and associations thereof with existing antifungal drugs. Methods and biomaterials for the treatment and prevention of fungal biofilms, mainly for C. albicans biofilms, which is the most isolated and studied fungal species, were also disclosed. The lack of scientific and technical information on the biofilm eradication subject is remarkable and further confirmed by the small number of patents identified in this survey.
Collapse
Affiliation(s)
| | | | | | | | - Flávia Medeiros Savi
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | | |
Collapse
|
23
|
Sadeghi G, Mousavi SF, Ebrahimi-Rad M, Mirabzadeh-Ardekani E, Eslamifar A, Shams-Ghahfarokhi M, Jahanshiri Z, Razzaghi-Abyaneh M. In vivo and in vitro Pathogenesis and Virulence Factors of Candida albicans Strains Isolated from Cutaneous Candidiasis. IRANIAN BIOMEDICAL JOURNAL 2020; 24:324-32. [PMID: 32429646 PMCID: PMC7392142 DOI: 10.29252/ibj.24.5.319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
Background The Candida albicans is one of the most important global opportunistic pathogens, and the incidence of candidiasis has increased over the past few decades. Despite the established role of skin in defense against fungal invasion, little has been documented about the pathogenesis of Candida species when changing from normal flora to pathogens of vaginal and gastrointestinal epithelia. This study was carried out to determine the in vivo and in vitro pathogenesis of clinical C. albicans strains isolated from skin lesions. Methods In this study, association of in vivo and in vitro pathogenesis of C. albicans isolates with different evolutionary origins was investigated. Oral and systemic experimental candidiasis was established in BALB/C mice. The expression levels of secreted aspartyl proteinases (SAP1-3 genes), morphological transformation, and biofilm-forming ability of C. albicans were evaluated. Results All the strains showed in vitro and in vivo pathogenicity by various extents. The SAP1, SAP2, and SAP3 genes were expressed in 50%, 100%, and 75% of the strains, respectively. The biofilm formation ability was negative in 12% of the strains, while it was considerable in 38% of the strains. Fifty percent of the strains had no phospholipase activity, and no one demonstrated high level of this pathogenesis factor. Relatively all the strains had very low potency to form pseudohyphae. Conclusion Our findings demonstrated that Candida albicans strains isolated from cutaneous candidiasis were able to cause oral and systemic infections in mice, so they could be considered as the potential agents of life-threatening nosocomial candidiasis in susceptible populations.
Collapse
Affiliation(s)
- Golnar Sadeghi
- Department of Medical Mycology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | | | - Mina Ebrahimi-Rad
- Department of Biochemistry, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | | | - Ali Eslamifar
- Department of Clinical Research, Pasteur Institute of Iran, Tehran 13164, Iran
| | - Masoomeh Shams-Ghahfarokhi
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-331, Iran
| | - Zahra Jahanshiri
- Department of Medical Mycology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | | |
Collapse
|
24
|
Yu Y, Albrecht K, Groll J, Beilhack A. Innovative therapies for invasive fungal infections in preclinical and clinical development. Expert Opin Investig Drugs 2020; 29:961-971. [DOI: 10.1080/13543784.2020.1791819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yidong Yu
- Interdisciplinary Center for Clinical Research Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital of Würzburg , Würzburg, Germany
| | - Krystyna Albrecht
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg , Würzburg, Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg , Würzburg, Germany
| | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital of Würzburg , Würzburg, Germany
- Department of Pediatrics, University Hospital of Würzburg , Würzburg, Germany
| |
Collapse
|
25
|
Barros Cota B, Batista Carneiro de Oliveira D, Carla Borges T, Cristina Catto A, Valverde Serafim C, Rogelis Aquiles Rodrigues A, Kohlhoff M, Leomar Zani C, Assunção Andrade A. Antifungal activity of extracts and purified saponins from the rhizomes of Chamaecostus cuspidatus against Candida and Trichophyton species. J Appl Microbiol 2020; 130:61-75. [PMID: 32654270 DOI: 10.1111/jam.14783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
AIM To evaluate the antifungal activity of extracts of Chamaecostus cuspidatus against Candida and Trichophyton species. METHODS AND RESULTS Crude ethanol extracts of leaves, stems and rhizomes were prepared and evaluated for antimicrobial activity. Only the rhizomes extract (RE) showed antifungal activity but had no inhibitory effect against bacteria (Staphylococcus aureus and Escherichia coli). The RE was then submitted to liquid-liquid partition with hexane (Hex), dichloromethane, chloroform, ethyl acetate and water. The Hex fraction (Hex Fr) from the RE was found to have the best antifungal effect. Three known saponins were isolated from the Hex Fr, of which two (dioscin and aferoside A) showed good antifungal activity. In addition, Hex Fr and the two bioactive compounds had no antibacterial effect, but exhibited fungicidal activity, caused significant changes in the morphology of the fungal cells and showed anti-Candida albicans biofilm activity. Finally, the bioactive plant products presented greater selectivity for fungal cells over normal human cells. CONCLUSIONS The rhizomes of C. cuspidatus have bioactive saponins that function as effective antifungals against Candida and Trichophyton species, and have antibiofilm activity against C. albicans. SIGNIFICANCE AND IMPACT OF THE STUDY Chamaecostus cuspidatus REs may have potential clinical application towards the management of superficial mycoses caused by Candida and Trichophyton species.
Collapse
Affiliation(s)
- B Barros Cota
- Laboratório de Química de Produtos Naturais Bioativos, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | - D Batista Carneiro de Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - T Carla Borges
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - A Cristina Catto
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - C Valverde Serafim
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - A Rogelis Aquiles Rodrigues
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - M Kohlhoff
- Laboratório de Química de Produtos Naturais Bioativos, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | - C Leomar Zani
- Laboratório de Química de Produtos Naturais Bioativos, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | - A Assunção Andrade
- Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
26
|
Abstract
Fungal infections with increasing resistance to conventional therapies are a growing concern. Candida albicans is a major opportunistic yeast responsible for mucosal and invasive infections. Targeting the initial step of the infection process (i.e., C. albicans adhesion to the host cell) is a promising strategy. A wide variety of molecules can interfere with adhesion processes via an assortment of mechanisms. Herein, we focus on how small molecules disrupt biosynthesis of fungal cell wall components and membrane structure, prevent the localization of GPI-anchor proteins, inhibit production of enzymes involved in adhesion, downregulate genes encoding adhesins and competitively inhibit receptor interactions. As a result, adhesion of C. albicans to host cells is reduced, paving the way to new classes of antifungal agents.
Collapse
|
27
|
Sugio CYC, Garcia AAMN, Albach T, Moraes GS, Bonfante EA, Urban VM, Neppelenbroek KH. Candida-Associated Denture Stomatitis and Murine Models: What Is the Importance and Scientific Evidence? J Fungi (Basel) 2020; 6:jof6020070. [PMID: 32456172 PMCID: PMC7344758 DOI: 10.3390/jof6020070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Considering the high prevalence and recurrence of Candida-associated denture stomatitis (CADS), in vivo studies in animal models are necessary before those in humans to evaluate new therapeutic strategies. This study aimed to review the literature on murine models of CADS induction using acrylic intraoral devices simulating dentures. Rats are recommended as experimental animals in these models as well as the adoption of a pasty diet. For maintenance in the proper position during the experiments, intraoral appliances must be obtained by individual impressions, using and retained exclusively by cementation on the molars. The region of interest for histopathological analysis was standardized as that corresponding to the area between the first molars. However, there is no consensus among the studies on the CADS induction rat models in relation to the Candida albicans inoculation and need for immunosuppression and/or administration of antibacterial drugs of animals. The greatest difficulty of the available models refers to maintaining the course of the lesion for a sufficient period to evaluate the effectiveness of the proposed treatment, considering the rapid and efficient murine immune response to candidal colonization. Therefore, future studies are necessary for the development of a robust and reproducible CADS model.
Collapse
Affiliation(s)
- Carolina Yoshi Campos Sugio
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru, SP 17012-901, Brazil; (C.Y.C.S.); (A.A.M.N.G.); (E.A.B.)
| | - Amanda Aparecida Maia Neves Garcia
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru, SP 17012-901, Brazil; (C.Y.C.S.); (A.A.M.N.G.); (E.A.B.)
| | - Thaís Albach
- Department of Dentistry, State University of Ponta Grossa, Avenida General Carlos Cavalcanti, 4748, Uvaranas, Ponta Grossa, PR 84030-900, Brazil; (T.A.); (G.S.M.); (V.M.U.)
| | - Gustavo Simão Moraes
- Department of Dentistry, State University of Ponta Grossa, Avenida General Carlos Cavalcanti, 4748, Uvaranas, Ponta Grossa, PR 84030-900, Brazil; (T.A.); (G.S.M.); (V.M.U.)
| | - Estevam Augusto Bonfante
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru, SP 17012-901, Brazil; (C.Y.C.S.); (A.A.M.N.G.); (E.A.B.)
| | - Vanessa Migliorini Urban
- Department of Dentistry, State University of Ponta Grossa, Avenida General Carlos Cavalcanti, 4748, Uvaranas, Ponta Grossa, PR 84030-900, Brazil; (T.A.); (G.S.M.); (V.M.U.)
| | - Karin Hermana Neppelenbroek
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru, SP 17012-901, Brazil; (C.Y.C.S.); (A.A.M.N.G.); (E.A.B.)
- Correspondence: ; Tel.: +55-14-3235-8245; Fax: +55-14-3235-8277
| |
Collapse
|
28
|
Singh S, Fatima Z, Ahmad K, Hameed S. Repurposing of respiratory drug theophylline against Candida albicans: mechanistic insights unveil alterations in membrane properties and metabolic fitness. J Appl Microbiol 2020; 129:860-875. [PMID: 32320111 DOI: 10.1111/jam.14669] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/01/2020] [Accepted: 04/16/2020] [Indexed: 01/01/2023]
Abstract
AIMS Drug repurposing is an attractive chemotherapeutic strategy that serves to make up for the inadequacy of current antifungal drugs. The present study aims to repurpose theophylline (THP) against Candida albicans. THP is a methylxanthine derived from cocoa beans and tea extracts, generally used as the first-line drug for asthma and other respiratory disorders. METHODS AND RESULTS We investigated the antifungal activity of THP against C. albicans and non-albicans species. Mechanistic insights revealed that THP induces membrane damage. Enhanced ionic disturbances and depleted ergosterol levels with the concomitant rise in membrane fluidity due to elevated flippase activity confirmed the membrane damaging effect. THP impeded the metabolic adaptability of C. albicans by inhibiting malate synthase and isocitrate lyase enzymes of the glyoxylate cycle. In vivo efficacy of THP was depicted by increased survival of C. albicans infected Caenorhabditis elegans model. CONCLUSIONS This study elucidates the antifungal potential of THP with mechanistic insights. SIGNIFICANCE AND IMPACT OF THE STUDY This study unveils the antifungal potential of THP, a known respiratory drug that can be further utilized for a wider range of applications such as combating fungal infections. The effect of THP with the known antifungal drugs can be exploited in the combinatorial drug approach for treating candidiasis.
Collapse
Affiliation(s)
- S Singh
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), India
| | - Z Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), India
| | - K Ahmad
- Department of Pharmaceutical Chemistry, Jamia Hamdard, New Delhi, India
| | - S Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), India
| |
Collapse
|
29
|
Udawatte NS, Kang SW, Wang Y, Arumugam TV, Seneviratne CJ. Predictive Nephrotoxicity Profiling of a Novel Antifungal Small Molecule in Comparison to Amphotericin B and Voriconazole. Front Pharmacol 2020; 11:511. [PMID: 32390849 PMCID: PMC7193989 DOI: 10.3389/fphar.2020.00511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/31/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Candida albicans is the major fungal species associated with superficial mucosal infections such as oral candidiasis as well as systemic mycoses with high morbidity and mortality. On top of the rising drug resistance, currently available antifungal agents have significant adverse effects. Nephrotoxicity is the major treatment complication associated with antifungal agents.Recently, we discovered a novel antifungal small molecule SM21 with promising antifungal activity. The present study aimed to comparatively evaluate the in vivo and in vitro nephrotoxicity of SM21 comparing with Amphotericin B and voriconazole. EXPERIMENTAL APPROACH Nephrotoxicity of SM21 and its analogue were comparatively evaluated with Amphotericin B (AmB) and voriconazole. Immortalized human kidney proximal tubule epithelial cells (HK-2) were used for in vitro analysis of nephrotoxicity using cytotoxicity assays and qPCR gene expression analysis (Kim-1/HAVcr-1, CASP3). Sprague Dawley (SD) rat model was used to evaluate the nephrotoxicity in vivo using classical (SCr and BUN) and next-generation kidney injury urinary biomarkers (Kim-1, CLU, ALB, NGAL, β2M, and Cys C) alongside histopathological and immunohistochemical standards. KEY RESULTS AmB treatment showed a stronger cytotoxic impact on HK-2 viability and gene expression of cell death markers (Kim-1/HAVcr-1, CASP3) compared with SM21 and SM21 analogue in vitro (P < 0.01). In vivo data further demonstrated that SM21 did not significantly increase classical as well as novel nephrotoxic biomarkers, and minimal renal tubular necrosis and abnormalities were observed (15 mg kg-1 BW/day). CONCLUSIONS AND IMPLICATIONS SM21 had a significantly better safety profile in terms of nephrotoxicity with no major tubular epithelial abnormalities observed in kidney cells and no augmentation of kidney injury biomarkers compared to AmB. Kim-1 and CLU were the most sensitive biomarkers for detection of AmB-induced kidney damage. Future clinical trials should consider inclusion of these novel biomarkers as early indicators of acute kidney injury in antifungal-induced nephrotoxicity.
Collapse
Affiliation(s)
- Nadeeka S. Udawatte
- National Dental Centre Singapore, Oral Health ACP, Duke-NUS Medical School, Singapore, Singapore
| | - Sung Wook Kang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yue Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Thiruma V. Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chaminda J. Seneviratne
- National Dental Centre Singapore, Oral Health ACP, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
30
|
Amer RI, El-Osaily GH, Gad SS. Design and optimization of topical terbinafine hydrochloride nanosponges: Application of full factorial design, in vitro and in vivo evaluation. J Adv Pharm Technol Res 2020; 11:13-19. [PMID: 32154153 PMCID: PMC7034181 DOI: 10.4103/japtr.japtr_85_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Terbinafine hydrochloride (THCl) has a broad-spectrum antifungal activity. THCl has oral bioavailability 40%, which increases dosing frequency of the drug, thus leads to some systemic side effects. Sustained release THCl nanosponges hydrogel was fabricated to deliver the drug topically. Pure THCl (drug), polyvinyl alcohol (emulsifier), and ethyl cellulose (EC, polymer to produce nanosponges) were used. THCl nanosponges were produced successfully by the emulsion solvent evaporation method. Based on a 32 full factorial design, different THCl: EC ratios and stirring rates were used as independent variables. The optimized formula selected based on the particle size and entrapment efficiency % (EE) was formulated as topical hydrogel. All formulations were found in the nanosize range except F7and F9. EE was ranged from 33.05% to 90.10%. THCl nanosponges hydrogel released more than 90% of drug after 8 h and showed the highest in vivo skin deposition and antifungal activity. The increase in drug: EC ratio was observed to increase EE and the particle size while higher stirring rate resulted in finer emulsion globules and significant reduction in EE. The drug release profile was slow from dosage form when it was incorporated in entrapped form as nanosponges rather than unentrapped one. The nanosponges hydrogel succeeded to sustain THCl release over 8 h. It showed the highest antifungal activity and skin deposition. THCl nanosponges hydrogel represents an enhanced therapeutic approach for the topical treatment of fungal infection.
Collapse
Affiliation(s)
- Reham I Amer
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Department of Pharmaceutics, October University for Modern Sciences and Arts, Giza, Egypt
| | - Ghada H El-Osaily
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Department of Pharmaceutics, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Sameh S Gad
- Department of Pharmacology, October University for Modern Sciences and Arts, Giza, Egypt
| |
Collapse
|
31
|
Faria DR, Sakita KM, Capoci IRG, Arita GS, Rodrigues-Vendramini FAV, de Oliveira Junior AG, Soares Felipe MS, Bonfim de Mendonça PDS, Svidzinski TIE, Kioshima ES. Promising antifungal activity of new oxadiazole against Candida krusei. PLoS One 2020; 15:e0227876. [PMID: 31935275 PMCID: PMC6959663 DOI: 10.1371/journal.pone.0227876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/31/2019] [Indexed: 02/06/2023] Open
Abstract
Candida krusei is one of the most common agents of invasive candidiasis and candidemia worldwide, leading to high morbidity and mortality rates. This species has become a problem due to its intrinsic resistance and reduced susceptibility to azoles and polyenes. Moreover, the number of antifungal drugs available for candidiasis treatment is limited, demonstrating the urgent need for the discovery of novel alternative therapies. In this work, the in vivo and in vitro activities of a new oxadiazole (LMM11) were evaluated against C. krusei. The minimum inhibitory concentration ranged from 32 to 64 μg/mL with a significant reduction in the colony forming unit (CFU) count (~3 log10). LMM11 showed fungicidal effect, similar to amphotericin, reducing the viable cell number (>99.9%) in the time-kill curve. Yeast cells presented morphological alterations and inactive metabolism when treated with LMM11. This compound was also effective in decreasing C. krusei replication inside and outside macrophages. A synergistic effect between fluconazole and LMM11 was observed. In vivo treatment with the new oxadiazole led to a significant reduction in CFU (0.85 log10). Furthermore, histopathological analysis of the treated group exhibited a reduction in the inflammatory area. Taken together, these results indicate that LMM11 is a promising candidate for the development of a new antifungal agent for the treatment of infections caused by resistant Candida species such as C. krusei.
Collapse
Affiliation(s)
- Daniella Renata Faria
- Department of Clinical Analysis and Biomedicine, Laboratory of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | - Karina Mayumi Sakita
- Department of Clinical Analysis and Biomedicine, Laboratory of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | - Isis Regina Grenier Capoci
- Department of Clinical Analysis and Biomedicine, Laboratory of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | - Glaucia Sayuri Arita
- Department of Clinical Analysis and Biomedicine, Laboratory of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
| | | | | | - Maria Sueli Soares Felipe
- Department of Cell Biology, Laboratory of Molecular Biology, University of Brasília, Brasília, Distrito Federal, Brazil
| | | | | | - Erika Seki Kioshima
- Department of Clinical Analysis and Biomedicine, Laboratory of Medical Mycology, State University of Maringá, Maringá, Paraná, Brazil
- * E-mail:
| |
Collapse
|
32
|
Nejatbakhsh S, Ilkhanizadeh-Qomi M, Razzaghi-Abyaneh M, Jahanshiri Z. The Effects of Ellagic Acid on Growth and Biofilm Formation of Candida albicans. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2020. [DOI: 10.29252/jommid.8.1.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
33
|
Truong T, Zeng G, Lim TK, Cao T, Pang LM, Lee YM, Lin Q, Wang Y, Seneviratne CJ. Proteomics Analysis ofCandida albicans dnm1Haploid Mutant Unraveled the Association between Mitochondrial Fission and Antifungal Susceptibility. Proteomics 2019; 20:e1900240. [DOI: 10.1002/pmic.201900240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/05/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Thuyen Truong
- Oral Sciences, Faculty of DentistryNational University of Singapore 9 Lower Kent Ridge Road Singapore 119085
| | - Guisheng Zeng
- Institute of Molecular and Cell BiologyAgency for Science, Technology and Research 61 Biopolis Drive, Proteos Singapore 138673
| | - Teck Kwang Lim
- Department of Biological SciencesFaculty of Science, National University of Singapore 16 Science Drive 4, S2 Singapore 117558
| | - Tong Cao
- Oral Sciences, Faculty of DentistryNational University of Singapore 9 Lower Kent Ridge Road Singapore 119085
| | - Li Mei Pang
- National Dental Research Institute SingaporeSinghealth Duke NUS, Singapore 5 Second Hospital Ave Singapore 168938
| | - Yew Mun Lee
- Department of Biological SciencesFaculty of Science, National University of Singapore 16 Science Drive 4, S2 Singapore 117558
| | - Qingsong Lin
- Department of Biological SciencesFaculty of Science, National University of Singapore 16 Science Drive 4, S2 Singapore 117558
| | - Yue Wang
- Institute of Molecular and Cell BiologyAgency for Science, Technology and Research 61 Biopolis Drive, Proteos Singapore 138673
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of Singapore 10 Medical Dr Singapore 117597
| | | |
Collapse
|
34
|
Capoci IRG, Sakita KM, Faria DR, Rodrigues-Vendramini FAV, Arita GS, de Oliveira AG, Felipe MS, Maigret B, Bonfim-Mendonça PDS, Kioshima ES, Svidzinski TIE. Two New 1,3,4-Oxadiazoles With Effective Antifungal Activity Against Candida albicans. Front Microbiol 2019; 10:2130. [PMID: 31572335 PMCID: PMC6751290 DOI: 10.3389/fmicb.2019.02130] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/29/2019] [Indexed: 12/29/2022] Open
Abstract
Candida infections have become a serious public health problem with high mortality rates, especially in immunocompromised patients, since Candida albicans is the major opportunistic pathogen responsible for systemic or invasive candidiasis. Commercially available antifungal agents are restricted and fungal resistance to such drugs has increased; therefore, the development of a more specific antifungal agent is necessary. Using assays for antifungal activity, here we report that two new compounds of 1,3,4-oxadiazoles class (LMM5 and LMM11), which were discovered by in silico methodologies as possible thioredoxin reductase inhibitors, were effective against C. albicans. Both compounds had in vitro antifungal activity with MIC 32 μg/ml. Cytotoxicity in vitro demonstrated that LMM5 and LMM11 were non-toxic in the cell lines evaluated. The kinetic of the time-kill curve suggested a fungistatic profile and showed an inhibitory effect of LMM5 and LMM11 in 12 h that remained for 24 and 36 h, which is better than fluconazole. In the murine systemic candidiasis model by C. albicans, the two compounds significantly reduced the renal and spleen fungal burden. According to the SEM and TEM images, we hypothesize that the mechanism of action of LMM5 and LMM11 is directly related to the inhibition of the enzyme thioredoxin reductase and internally affect the fungal cell. In view of all in vitro and in vivo results, LMM5 and LMM11 are effective therapeutic candidates for the development of new antifungal drugs addressing the treatment of human infections caused by C. albicans.
Collapse
Affiliation(s)
| | - Karina Mayumi Sakita
- Department of Clinical Analysis and Biomedicine, The State University of Maringá, Maringá, Brazil
| | - Daniella Renata Faria
- Department of Clinical Analysis and Biomedicine, The State University of Maringá, Maringá, Brazil
| | | | - Glaucia Sayuri Arita
- Department of Clinical Analysis and Biomedicine, The State University of Maringá, Maringá, Brazil
| | | | - Maria Sueli Felipe
- Department of Cellular Biology, The University of Brasília, Brasília, Brazil
| | | | | | - Erika Seki Kioshima
- Department of Clinical Analysis and Biomedicine, The State University of Maringá, Maringá, Brazil
| | | |
Collapse
|
35
|
de Oliveira DBC, Silva LB, da Silva BV, Borges TC, Marques BC, Dos Santos MB, de Oliveira LF, Bolzani VS, Rodrigues ARA, Regasini LO, Andrade AA. A new acridone with antifungal properties against Candida spp. and dermatophytes, and antibiofilm activity against C. albicans. J Appl Microbiol 2019; 127:1362-1372. [PMID: 31297951 DOI: 10.1111/jam.14381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
AIM The increase in the number of fungal infections worldwide, coupled with the limitations of current antifungal chemotherapy, demand the development of safe and effective new antifungals. Here, we presented the synthesis of a novel acridone (M14) and its antifungal properties against Candida and dermatophytes species. METHODS AND RESULTS A series of 17 acridones was designed, synthesized and tested for its antifungal activity. The minimum inhibitory concentration (MIC) was determined by the broth microdilution method. Only the acridone M14 showed growth-inhibitory activity against reference strains and clinical isolates of Candida and dermatophytes, with MIC range of 7·81-31·25 µg ml-1 . Moreover, M14 exhibited fungicidal activity and prevented biofilm formation by C. albicans as well as reduced the viability of preformed biofilms, even at sub-MICs. The confocal laser scanning microscopy analysis revealed that C. albicans hyphal growth was completely inhibited in the presence of M14. Similarly, there was a severe inhibition on hyphal growth of Trichophyton rubrum. We also found that M14 has relatively low toxicity to human fibroblasts. CONCLUSIONS The new acridone M14 has antifungal properties against Candida spp. and dermatophytes, and antibiofilm activity against C. albicans. In addition, M14 is relatively selective to fungal cells compared to human normal cells. SIGNIFICANCE AND IMPACT OF THE STUDY Because of its in vitro antifungal activity, anti-Candida biofilm effect and moderate cytotoxicity towards normal human cell, M14 may serve as a valuable lead compound to develop a new antifungal agent.
Collapse
Affiliation(s)
- D B C de Oliveira
- Discipline of Microbiology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - L B Silva
- Discipline of Microbiology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - B V da Silva
- Discipline of Microbiology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - T C Borges
- Discipline of Microbiology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - B C Marques
- Laboratory of Green and Medicinal Chemistry, Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - M B Dos Santos
- Laboratory of Green and Medicinal Chemistry, Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - L F de Oliveira
- Discipline of Physiology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - V S Bolzani
- Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - A R A Rodrigues
- Discipline of Physiology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - L O Regasini
- Laboratory of Green and Medicinal Chemistry, Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - A A Andrade
- Discipline of Microbiology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| |
Collapse
|
36
|
John CN, Abrantes PMDS, Prusty BK, Ablashi DV, Africa CWJ. K21 Compound, a Potent Antifungal Agent: Implications for the Treatment of Fluconazole-Resistant HIV-Associated Candida Species. Front Microbiol 2019; 10:1021. [PMID: 31231313 PMCID: PMC6558409 DOI: 10.3389/fmicb.2019.01021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/24/2019] [Indexed: 11/13/2022] Open
Abstract
Background/Objectives: With mucocutaneous candidiasis being highly prevalent in HIV patients, the emergence of fluconazole-resistant Candida species forms a major challenge in treating and eradicating these infections. The objective of this study was to establish the antifungal activity of K21, a membrane-rupturing antimicrobial compound derived from a silica quaternary ammonium compound (SiQAC) with tetraethoxysilane (TEOS). Methods: The study sample included 81 Candida species of which 9 were type strains and 72 were clinical isolates. Minimum inhibitory concentrations, synergy, fractional inhibitory concentration index (FICI), and time kill assays were determined by broth microdilution. Electron microscopy (EM) was used to determine the qualitative changes brought about after treatment with K21. Results: K21 inhibited the growth of all fluconazole-resistant and susceptible Candida strains with only 2 h of exposure required to effectively kill 99.9% of the inoculum, and a definite synergistic effect was observed with a combination of K21 and fluconazole. EM demonstrated the presence of two forms of extracellular vesicles indicative of biofilm formation and cell lysis. Conclusion: The study established the efficacy of K21 as an antifungal agent and with fluconazole-resistant candidiasis on the increase, the development of K21 can provide a promising alternative to combat acquired drug resistance.
Collapse
Affiliation(s)
- Cathy N. John
- Maternal Endogenous Infections Studies (MEnIS) Research Laboratories, Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| | - Pedro M. D. S. Abrantes
- Maternal Endogenous Infections Studies (MEnIS) Research Laboratories, Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| | - Bhupesh K. Prusty
- Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Charlene W. J. Africa
- Maternal Endogenous Infections Studies (MEnIS) Research Laboratories, Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
37
|
Lima WG, dos Santos FJ, Cristina Soares A, Macías FA, Molinillo JMG, Maria Siqueira Ferreira J, Máximo de Siqueira J. Synthesis and antimicrobial activity of some benzoxazinoids derivatives of 2-nitrophenol and 3-hydroxy-2-nitropyridine. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2018.1554146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- William Gustavo Lima
- Laboratório de Microbiologia Médica, Campus Centro-oeste Dona Lindu, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Flávio José dos Santos
- Laboratório de Farmacognosia e Química de Produtos Naturais, Campus Centro-oeste Dona Lindu, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Adriana Cristina Soares
- Laboratório de Farmacologia da Dor e Inflamação, Campus Centro-oeste Dona Lindu, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Francisco A. Macías
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), School of Science, University of Cadiz, Puerto Real, Spain
| | - José M. G. Molinillo
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), School of Science, University of Cadiz, Puerto Real, Spain
| | | | - João Máximo de Siqueira
- Laboratório de Farmacognosia e Química de Produtos Naturais, Campus Centro-oeste Dona Lindu, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| |
Collapse
|
38
|
Cruz LIB, Lopes LFF, de Camargo Ribeiro F, de Sá NP, Lino CI, Tharmalingam N, de Oliveira RB, Rosa CA, Mylonakis E, Fuchs BB, Johann S. Anti- Candida albicans Activity of Thiazolylhydrazone Derivatives in Invertebrate and Murine Models. J Fungi (Basel) 2018; 4:jof4040134. [PMID: 30545053 PMCID: PMC6308944 DOI: 10.3390/jof4040134] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 01/28/2023] Open
Abstract
Candidiasis is an opportunistic fungal infection with Candida albicans being the most frequently isolated species. Treatment of these infections is challenging due to resistance that can develop during therapy, and the limited number of available antifungal compounds. Given this situation, the aim of this study was to evaluate the antifungal activity of four thiazolylhydrazone compounds against C. albicans. Thiazolylhydrazone compounds 1, 2, 3, and 4 were found to exert antifungal activity, with MICs of 0.125–16.0 μg/mL against C. albicans. The toxicity of the compounds was evaluated using human erythrocytes and yielded LC50 > 64 μg/mL. The compounds were further evaluated using the greater wax moth Galleria mellonella as an in vivo model. The compounds prolonged larval survival when tested between 5 and 15 mg/kg, performing as well as fluconazole. Compound 2 was evaluated in murine models of oral and systemic candidiasis. In the oral model, compound 2 reduced the fungal load on the mouse tongue; and in the systemic model it reduced the fungal burden found in the kidney when tested at 10 mg/kg. These results show that thiazolylhydrazones are an antifungal towards C. albicans with in vivo efficacy.
Collapse
Affiliation(s)
- Lana Ivone Barreto Cruz
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte-Minas Gerais 31270-901, Brasil.
| | - Larissa Ferreira Finamore Lopes
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte-Minas Gerais 31270-901, Brasil.
| | - Felipe de Camargo Ribeiro
- Departamento de Biociências e Diagnóstico Bucal, Instituto de Ciência e Tecnologia de São José dos Campos-UNESP, Av. Francisco José Longe, 777, Jardim São Dimas, São José dos Campos-São Paulo 12245-000, Brasil.
| | - Nívea Pereira de Sá
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte-Minas Gerais 31270-901, Brasil.
- Department of Molecular Genetics and Microbiology, Division of Infectious Diseases, Stony Brook University, 150 Life Science Building, Stony Brook, NY 11794, USA.
| | - Cleudiomar Inácio Lino
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte-Minas Gerais 31270-901, Brasil.
| | - Nagendran Tharmalingam
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School, and Brown University, Providence, RI 02903, USA.
| | - Renata Barbosa de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte-Minas Gerais 31270-901, Brasil.
| | - Carlos Augusto Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte-Minas Gerais 31270-901, Brasil.
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School, and Brown University, Providence, RI 02903, USA.
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School, and Brown University, Providence, RI 02903, USA.
| | - Susana Johann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte-Minas Gerais 31270-901, Brasil.
| |
Collapse
|
39
|
Chong PP, Chin VK, Wong WF, Madhavan P, Yong VC, Looi CY. Transcriptomic and Genomic Approaches for Unravelling Candida albicans Biofilm Formation and Drug Resistance-An Update. Genes (Basel) 2018; 9:genes9110540. [PMID: 30405082 PMCID: PMC6266447 DOI: 10.3390/genes9110540] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 11/17/2022] Open
Abstract
Candida albicans is an opportunistic fungal pathogen, which causes a plethora of superficial, as well as invasive, infections in humans. The ability of this fungus in switching from commensalism to active infection is attributed to its many virulence traits. Biofilm formation is a key process, which allows the fungus to adhere to and proliferate on medically implanted devices as well as host tissue and cause serious life-threatening infections. Biofilms are complex communities of filamentous and yeast cells surrounded by an extracellular matrix that confers an enhanced degree of resistance to antifungal drugs. Moreover, the extensive plasticity of the C. albicans genome has given this versatile fungus the added advantage of microevolution and adaptation to thrive within the unique environmental niches within the host. To combat these challenges in dealing with C. albicans infections, it is imperative that we target specifically the molecular pathways involved in biofilm formation as well as drug resistance. With the advent of the -omics era and whole genome sequencing platforms, novel pathways and genes involved in the pathogenesis of the fungus have been unraveled. Researchers have used a myriad of strategies including transcriptome analysis for C. albicans cells grown in different environments, whole genome sequencing of different strains, functional genomics approaches to identify critical regulatory genes, as well as comparative genomics analysis between C. albicans and its closely related, much less virulent relative, C. dubliniensis, in the quest to increase our understanding of the mechanisms underlying the success of C. albicans as a major fungal pathogen. This review attempts to summarize the most recent advancements in the field of biofilm and antifungal resistance research and offers suggestions for future directions in therapeutics development.
Collapse
Affiliation(s)
- Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Malaysia, Subang Jaya, 47500 Selangor, Malaysia.
| | - Voon Kin Chin
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Malaysia, Subang Jaya, 47500 Selangor, Malaysia.
| | - Won Fen Wong
- Department of Microbiology, Faculty of Medicine, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Malaysia, Subang Jaya, 47500 Selangor, Malaysia.
| | - Voon Chen Yong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Malaysia, Subang Jaya, 47500 Selangor, Malaysia.
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Malaysia, Subang Jaya, 47500 Selangor, Malaysia.
| |
Collapse
|
40
|
Silva DR, Sardi JDCO, Freires IA, Silva ACB, Rosalen PL. In silico approaches for screening molecular targets in Candida albicans: A proteomic insight into drug discovery and development. Eur J Pharmacol 2018; 842:64-69. [PMID: 30326213 DOI: 10.1016/j.ejphar.2018.10.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/28/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022]
Abstract
Candida species are opportunistic pathogens which can cause conditions ranging from simple mucocutaneous infections to fungemia and death in immunosuppressed and hospitalized patients. Candida albicans is considered to be the species mostly associated with fungal infections in humans and, therefore, the mostly studied yeast. This microorganism has survival and virulence factors which, allied to a decreased host immunity response, make infection more difficult to control. Today, the current limited antifungal arsenal and a dramatic increase in fungal resistance have driven the need for the synthesis of drugs with novel mechanisms of action. However, the development of a new drug from discovery to marketing takes a long time and is highly costly. The objective of this review is to show that with advances in biotechnology and biofinformatics, in silico tools such as molecular docking can optimize such a timeline and reduce costs, while contributing to the design and development of targeted drugs. Here we highlight the most promising protein targets in Candida albicans for the development of drugs with new mechanisms of action.
Collapse
Affiliation(s)
- Diego Romário Silva
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Av. Limeira, 901 - Areião, Piracicaba, SP CEP: 13414-018, Brazil
| | - Janaína de Cássia Orlandi Sardi
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Av. Limeira, 901 - Areião, Piracicaba, SP CEP: 13414-018, Brazil
| | - Irlan Almeida Freires
- Department of Oral Biology, College of Dentistry, University of Florida, 1395 Center Dr., 32610 Gainesville, FL, USA
| | - Andréa Cristina Barbosa Silva
- Department of Dentistry, State University of Paraíba, Av. Cel. Pedro Targino - Centro, Araruna, PB CEP: 58233-000, Brazil
| | - Pedro Luiz Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Av. Limeira, 901 - Areião, Piracicaba, SP CEP: 13414-018, Brazil.
| |
Collapse
|
41
|
Van Dijck P, Sjollema J, Cammue BPA, Lagrou K, Berman J, d’Enfert C, Andes DR, Arendrup MC, Brakhage AA, Calderone R, Cantón E, Coenye T, Cos P, Cowen LE, Edgerton M, Espinel-Ingroff A, Filler SG, Ghannoum M, Gow NA, Haas H, Jabra-Rizk MA, Johnson EM, Lockhart SR, Lopez-Ribot JL, Maertens J, Munro CA, Nett JE, Nobile CJ, Pfaller MA, Ramage G, Sanglard D, Sanguinetti M, Spriet I, Verweij PE, Warris A, Wauters J, Yeaman MR, Zaat SA, Thevissen K. Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:300-326. [PMID: 29992128 PMCID: PMC6035839 DOI: 10.15698/mic2018.07.638] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
Abstract
Unlike superficial fungal infections of the skin and nails, which are the most common fungal diseases in humans, invasive fungal infections carry high morbidity and mortality, particularly those associated with biofilm formation on indwelling medical devices. Therapeutic management of these complex diseases is often complicated by the rise in resistance to the commonly used antifungal agents. Therefore, the availability of accurate susceptibility testing methods for determining antifungal resistance, as well as discovery of novel antifungal and antibiofilm agents, are key priorities in medical mycology research. To direct advancements in this field, here we present an overview of the methods currently available for determining (i) the susceptibility or resistance of fungal isolates or biofilms to antifungal or antibiofilm compounds and compound combinations; (ii) the in vivo efficacy of antifungal and antibiofilm compounds and compound combinations; and (iii) the in vitro and in vivo performance of anti-infective coatings and materials to prevent fungal biofilm-based infections.
Collapse
Affiliation(s)
- Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- KU Leuven Laboratory of Molecular Cell Biology, Leuven, Belgium
| | - Jelmer Sjollema
- University of Groningen, University Medical Center Groningen, Department of BioMedical Engineering, Groningen, The Netherlands
| | - Bruno P. A. Cammue
- Centre for Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Department of Plant Systems Biology, VIB, Ghent, Belgium
| | - Katrien Lagrou
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- Clinical Department of Laboratory Medicine and National Reference Center for Mycosis, UZ Leuven, Belgium
| | - Judith Berman
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Christophe d’Enfert
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - David R. Andes
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Maiken C. Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Axel A. Brakhage
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Dept. Microbiology and Molecular Biology, Friedrich Schiller University Jena, Institute of Microbiology, Jena, Germany
| | - Richard Calderone
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington DC, USA
| | - Emilia Cantón
- Severe Infection Research Group: Medical Research Institute La Fe (IISLaFe), Valencia, Spain
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- ESCMID Study Group for Biofilms, Switzerland
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Belgium
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Mira Edgerton
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY USA
| | | | - Scott G. Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mahmoud Ghannoum
- Center for Medical Mycology, Department of Dermatology, University Hospitals Cleveland Medical Center and Case Western Re-serve University, Cleveland, OH, USA
| | - Neil A.R. Gow
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Hubertus Haas
- Biocenter - Division of Molecular Biology, Medical University Innsbruck, Innsbruck, Austria
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry; Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, USA
| | - Elizabeth M. Johnson
- National Infection Service, Public Health England, Mycology Reference Laboratory, Bristol, UK
| | | | | | - Johan Maertens
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium and Clinical Department of Haematology, UZ Leuven, Leuven, Belgium
| | - Carol A. Munro
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jeniel E. Nett
- University of Wisconsin-Madison, Departments of Medicine and Medical Microbiology & Immunology, Madison, WI, USA
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, USA
| | - Michael A. Pfaller
- Departments of Pathology and Epidemiology, University of Iowa, Iowa, USA
- JMI Laboratories, North Liberty, Iowa, USA
| | - Gordon Ramage
- ESCMID Study Group for Biofilms, Switzerland
- College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne
| | - Maurizio Sanguinetti
- Institute of Microbiology, Università Cattolica del Sacro Cuore, IRCCS-Fondazione Policlinico "Agostino Gemelli", Rome, Italy
| | - Isabel Spriet
- Pharmacy Dpt, University Hospitals Leuven and Clinical Pharmacology and Pharmacotherapy, Dpt. of Pharmaceutical and Pharma-cological Sciences, KU Leuven, Belgium
| | - Paul E. Verweij
- Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Medical Center, Nijmegen, the Netherlands (omit "Nijmegen" in Radboud University Medical Center)
| | - Adilia Warris
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Joost Wauters
- KU Leuven-University of Leuven, University Hospitals Leuven, Department of General Internal Medicine, Herestraat 49, B-3000 Leuven, Belgium
| | - Michael R. Yeaman
- Geffen School of Medicine at the University of California, Los Angeles, Divisions of Molecular Medicine & Infectious Diseases, Har-bor-UCLA Medical Center, LABioMed at Harbor-UCLA Medical Center
| | - Sebastian A.J. Zaat
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Am-sterdam, Netherlands
| | - Karin Thevissen
- Centre for Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
42
|
Truong T, Suriyanarayanan T, Zeng G, Le TD, Liu L, Li J, Tong C, Wang Y, Seneviratne CJ. Use of Haploid Model of Candida albicans to Uncover Mechanism of Action of a Novel Antifungal Agent. Front Cell Infect Microbiol 2018; 8:164. [PMID: 29938200 PMCID: PMC6002804 DOI: 10.3389/fcimb.2018.00164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/01/2018] [Indexed: 11/13/2022] Open
Abstract
Antifungal agents for the treatment of Candida albicans infections are limited. We recently discovered a novel antifungal small molecule, SM21, with promising in vivo activity. Herein, we employed the newly developed C. albicans haploid toolbox to uncover the mechanism of action of SM21. Comprehensive RNA-Seq analyses of the haploid susceptible GZY803 strain revealed significant gene expression changes related to mitochondria when exposed to SM21. Mitochondrial structure visualization and measurement of ATP generation, reactive oxygen species (ROS) levels, and the antioxidant potential of SM21-treated and untreated GZY803, mitochondrial structure defective haploid mutant (dnm1Δ), and wild-type diploid SC5314 strains confirmed defects in mitochondria. Exploiting the advantage of C. albicans haploids as a single ploidy model, we further exposed GZY803 to repetitive treatments of SM21 in order to generate resistant mutants. Three colonies designated S3, S5 and S6, which displayed resistance to SM21, were isolated. All resistant strains exhibited enhanced transcriptomic responses for peptide and protein metabolism and secreted aspartate proteases (SAPs) activity under SM21 treatment compared to the parent strain GZY803. Consistently, supplementing the resistant strains, GZY803, and SC5314 with peptone, a form of digested peptides, decreased susceptibility to SM21. The present study demonstrates the usefulness of haploid C. albicans model in antifungal drug discovery. The findings will be invaluable to develop SM21 as a novel antifungal agent, which will benefit millions of patients suffering from Candida infections.
Collapse
Affiliation(s)
- Thuyen Truong
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | | | - Guisheng Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Thuc D Le
- School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Lin Liu
- School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jiuyong Li
- School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Cao Tong
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Yue Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chaminda J Seneviratne
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
43
|
In Vitro Antifungal Susceptibility of Candida Species Isolated from Iranian Patients with Denture Stomatitis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3086586. [PMID: 29888258 PMCID: PMC5977002 DOI: 10.1155/2018/3086586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/21/2018] [Accepted: 04/15/2018] [Indexed: 11/17/2022]
Abstract
Background Candida-associated denture stomatitis (CADS) is a common fungal infection in people who wear dentures. The main objective of this study was to make molecular identification of causative agents of CADS and in vitro antifungal susceptibility testing (AFST) in the Iranian patients with denture stomatitis. Methods A total of 134 Candida spp. were obtained from patients with denture stomatitis. The Candida spp. were identified using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) involving the universal internal transcribed spacer (ITS1 and ITS4) primers, which were subjected to digestion with MspI and BlnI restriction enzymes. The in vitro antifungal susceptibility of Candida spp. to fluconazole (FLC), terbinafine (TRB), itraconazole (ITC), voriconazole (VRC), posaconazole (POS), ketoconazole (KET), amphotericin B (AMB), and caspofungin (CAS) was evaluated using the Clinical and Laboratory Standards Institute M27-A3 and M27-S4 guidelines. Results Overall, C. albicans was the most commonly isolated species (n = 84; 62.6%), followed by C. glabrata (n = 23; 17.2%), C. tropicalis (n = 16; 12%), and C. parapsilosis (n = 11; 8.2%). Posaconazole had the lowest geometric mean minimum inhibitory concentration (MIC) (0.03 μg/ml), followed by AMB (0.05 μg/ml), ITC (0.08 μg/ml), VRC (0.11 μg/ml), CAS (0.12 μg/ml), KET (0.15 μg/ml), and FLC (0.26 μg/ml). Discussion Our study showed that C. albicans was most prevalent in Iranian patients with CADS and was susceptible to both azoles and amphotericin B. In addition, POS could be an appropriate alternative to the current antifungal agents used for the treatment of CADS, as well as in the treatment of recurrent candidiasis.
Collapse
|
44
|
A phenylthiazole derivative demonstrates efficacy on treatment of the cryptococcosis & candidiasis in animal models. Future Sci OA 2018; 4:FSO305. [PMID: 30057783 PMCID: PMC6060395 DOI: 10.4155/fsoa-2018-0001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/08/2018] [Indexed: 12/16/2022] Open
Abstract
Aim: In this work we test 2-(2-(cyclohexylmethylene)hydrazinyl)-4-phenylthiazole (CHT) against Cryptococcus spp. and Candida albicans. Methods: The ability of CHT to act in biofilm and also to interfere with C. albicans adhesion was evaluated, as well as the efficiency of the CHT in cryptococcosis and candidiasis invertebrate and murine models. Results & conclusion: In the present work we verified that CHT is found to inhibit Cryptococcus and C. albicans affecting biofilm in both and inhibited adhesion of Candida to human buccal cells. When we evaluated in vivo, CHT prolonged survival of Galleria mellonella after infections with Cryptococcusgattii, Cryptococcusneoformans or C. albicans and promoted a reduction in the fungal burden to the organs in the murine models. These results demonstrate CHT therapeutic potential. Candida spp. and Cryptococcus spp. cause thousands of deaths each year. In general, antifungal drugs have several limitations to their use, and there are a limited number of these drugs available to be used in the treatments of fungal diseases. This work contributes to the search for new antifungal drugs for the treatment of candidiasis and cryptococcosis, aiming in the future, after all necessary tests, to serve as a basis for the production of drugs that could be used in the treatment of patients with these fungal diseases.
Collapse
|
45
|
Cavalheiro M, Teixeira MC. Candida Biofilms: Threats, Challenges, and Promising Strategies. Front Med (Lausanne) 2018; 5:28. [PMID: 29487851 PMCID: PMC5816785 DOI: 10.3389/fmed.2018.00028] [Citation(s) in RCA: 418] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/26/2018] [Indexed: 12/19/2022] Open
Abstract
Candida species are fungal pathogens known for their ability to cause superficial and systemic infections in the human host. These pathogens are able to persist inside the host due to the development of pathogenicity and multidrug resistance traits, often leading to the failure of therapeutic strategies. One specific feature of Candida species pathogenicity is their ability to form biofilms, which protects them from external factors such as host immune system defenses and antifungal drugs. This review focuses on the current threats and challenges when dealing with biofilms formed by Candida albicans, Candida glabrata, Candida tropicalis, and Candida parapsilosis, highlighting the differences between the four species. Biofilm characteristics depend on the ability of each species to produce extracellular polymeric substances (EPS) and display dimorphic growth, but also on the biofilm substratum, carbon source availability and other factors. Additionally, the transcriptional control over processes like adhesion, biofilm formation, filamentation, and EPS production displays great complexity and diversity within pathogenic yeasts of the Candida genus. These differences not only have implications in the persistence of colonization and infections but also on antifungal resistance typically found in Candida biofilm cells, potentiated by EPS, that functions as a barrier to drug diffusion, and by the overexpression of drug resistance transporters. The ability to interact with different species in in vivo Candida biofilms is also a key factor to consider when dealing with this problem. Despite many challenges, the most promising strategies that are currently available or under development to limit biofilm formation or to eradicate mature biofilms are discussed.
Collapse
Affiliation(s)
- Mafalda Cavalheiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Miguel Cacho Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
46
|
Liu N, Tu J, Dong G, Wang Y, Sheng C. Emerging New Targets for the Treatment of Resistant Fungal Infections. J Med Chem 2018; 61:5484-5511. [DOI: 10.1021/acs.jmedchem.7b01413] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Na Liu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Jie Tu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Yan Wang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| |
Collapse
|
47
|
Kumari P, Mishra R, Arora N, Chatrath A, Gangwar R, Roy P, Prasad R. Antifungal and Anti-Biofilm Activity of Essential Oil Active Components against Cryptococcus neoformans and Cryptococcus laurentii. Front Microbiol 2017; 8:2161. [PMID: 29163441 PMCID: PMC5681911 DOI: 10.3389/fmicb.2017.02161] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/20/2017] [Indexed: 12/30/2022] Open
Abstract
Cryptococcosis is an emerging and recalcitrant systemic infection occurring in immunocompromised patients. This invasive fungal infection is difficult to treat due to the ability of Cryptococcus neoformans and Cryptococcus laurentii to form biofilms resistant to standard antifungal treatment. The toxicity concern of these drugs has stimulated the search for natural therapeutic alternatives. Essential oil and their active components (EO-ACs) have shown to possess the variety of biological and pharmacological properties. In the present investigation the effect of six (EO-ACs) sourced from Oregano oil (Carvacrol), Cinnamon oil (Cinnamaldehyde), Lemongrass oil (Citral), Clove oil (Eugenol), Peppermint oil (Menthol) and Thyme oil (thymol) against three infectious forms; planktonic cells, biofilm formation and preformed biofilm of C. neoformans and C. laurentii were evaluated as compared to standard drugs. Data showed that antibiofilm activity of the tested EO-ACs were in the order: thymol>carvacrol>citral>eugenol=cinnamaldehyde>menthol respectively. The three most potent EO-ACs, thymol, carvacrol, and citral showed excellent antibiofilm activity at a much lower concentration against C. laurentii in comparison to C. neoformans indicating the resistant nature of the latter. Effect of the potent EO-ACs on the biofilm morphology was visualized using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), which revealed the absence of extracellular polymeric matrix (EPM), reduction in cellular density and alteration in the surface morphology of biofilm cells. Further, to realize the efficacy of the EO-ACs in terms of human safety, cytotoxicity assays and co-culture model were evaluated. Thymol and carvacrol as compared to citral were the most efficient in terms of human safety in keratinocyte- Cryptococcus sp. co-culture infection model suggesting that these two can be further exploited as cost-effective and non-toxic anti-cryptococcal drugs.
Collapse
Affiliation(s)
- Poonam Kumari
- Molecular Biology and Proteomics Laboratory, Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | - Rutusmita Mishra
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | - Neha Arora
- Molecular Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | - Apurva Chatrath
- Molecular Biology and Proteomics Laboratory, Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | - Rashmi Gangwar
- Molecular Biology and Proteomics Laboratory, Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | - Ramasare Prasad
- Molecular Biology and Proteomics Laboratory, Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| |
Collapse
|
48
|
Salci TP, Negri M, R Abadio AK, Bonfim-Mendonça P, Capoci I, Caparroz-Assef SM, Donatti L, S Felipe MS, Kioshima ES, Svidzinski TIE. A new small-molecule KRE2 inhibitor against invasive Candida parapsilosis infection. Future Microbiol 2017; 12:1283-1295. [DOI: 10.2217/fmb-2017-0065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: To investigate the antifungal activity of MOL3, a small molecule that was selected by virtual screening, against Candida spp. Materials & methods: The antifungal activity of MOL3 was evaluated using standard strains and clinical isolates. Activity was evaluated in both in vitro tests and animal models. Results: The minimum fungicidal concentration of MOL3 against Candida spp. ranged from 16 to 128 mg/l. MOL3 at the sub-minimum fungicidal concentration inhibited hyphal elongation. The remaining yeast cells presented morphological changes and were metabolically inactive. MOL3 was toxicologically inert both in vitro and in the animal model. MOL3 also reduced experimental systemic infection by C. parapsilosis in mice. Conclusion: The selection of MOL3 by virtual screening was successful, revealing a promising antifungal candidate.
Collapse
Affiliation(s)
- Tânia P Salci
- Universidade Estadual de Maringá, Medical Mycology, Av Colombo, 5790 – Zona 7, Maringá – PR 87020-900, Brazil
- Faculdade Integrado, Department of Pharmacy – Campo Mourão, Av José C de Oliveira, 1325 – Centro, Campo Mourão, PR 87300-020, Brazil
| | - Melyssa Negri
- Universidade Estadual de Maringá, Medical Mycology, Av Colombo, 5790 – Zona 7, Maringá – PR 87020-900, Brazil
| | - Ana Karina R Abadio
- Universidade do Estado de Mato Grosso, Department of Biology, Av dos Ingás, 3001 – Jardim Imperial, Sinop – MT 78555-000, Brazil
| | - P Bonfim-Mendonça
- Universidade Estadual de Maringá, Medical Mycology, Av Colombo, 5790 – Zona 7, Maringá – PR 87020-900, Brazil
| | - Isis Capoci
- Universidade Estadual de Maringá, Medical Mycology, Av Colombo, 5790 – Zona 7, Maringá – PR 87020-900, Brazil
| | - Silvana M Caparroz-Assef
- Universidade Estadual de Maringá, Department of Pharmacology and Therapeutics, Av Colombo, 5790 – Zona 7, Maringá – PR 87020-900, Brazil
| | - Lucélia Donatti
- Universidade Federal do Paraná, Department of Cellular Biology, Rua XV de Novembro, 1299 – Centro, Curitiba – PR 80060-000, Brazil
| | - Maria Sueli S Felipe
- Universidade de Brasília, Department of Cellular Biology, Campus Universitário Darcy Ribeiro, Brasília – DF 70910-900, Brazil
| | - Erika S Kioshima
- Universidade Estadual de Maringá, Medical Mycology, Av Colombo, 5790 – Zona 7, Maringá – PR 87020-900, Brazil
| | - Terezinha IE Svidzinski
- Universidade Estadual de Maringá, Medical Mycology, Av Colombo, 5790 – Zona 7, Maringá – PR 87020-900, Brazil
| |
Collapse
|
49
|
In Vitro and In Vivo Antifungal Profile of a Novel and Long-Acting Inhaled Azole, PC945, on Aspergillus fumigatus Infection. Antimicrob Agents Chemother 2017; 61:AAC.02280-16. [PMID: 28223388 PMCID: PMC5404542 DOI: 10.1128/aac.02280-16] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/14/2017] [Indexed: 11/25/2022] Open
Abstract
The profile of PC945, a novel triazole antifungal designed for administration via inhalation, was assessed in a range of in vitro and in vivo studies. PC945 was characterized as a potent, tightly binding inhibitor of Aspergillus fumigatus sterol 14α-demethylase (CYP51A and CYP51B) activity (50% inhibitory concentrations [IC50s], 0.23 μM and 0.22 μM, respectively) with characteristic type II azole binding spectra. Against 96 clinically isolated A. fumigatus strains, the MIC values of PC945 ranged from 0.032 to >8 μg/ml, while those of voriconazole ranged from 0.064 to 4 μg/ml. Spectrophotometric analysis of the effects of PC945 against itraconazole-susceptible and -resistant A. fumigatus growth yielded IC50 (determined based on optical density [OD]) values of 0.0012 to 0.034 μg/ml, whereas voriconazole (0.019 to >1 μg/ml) was less effective than PC945. PC945 was effective against a broad spectrum of pathogenic fungi (with MICs ranging from 0.0078 to 2 μg/ml), including Aspergillus terreus, Trichophyton rubrum, Candida albicans, Candida glabrata, Candida krusei, Cryptococcus gattii, Cryptococcus neoformans, and Rhizopus oryzae (1 or 2 isolates each). In addition, when A. fumigatus hyphae or human bronchial cells were treated with PC945 and then washed, PC945 was found to be absorbed quickly into both target and nontarget cells and to produce persistent antifungal effects. Among temporarily neutropenic immunocompromised mice infected with A. fumigatus intranasally, 50% of the animals survived until day 7 when treated intranasally with PC945 at 0.56 μg/mouse, while posaconazole showed similar effects (44%) at 14 μg/mouse. This profile affirms that topical treatment with PC945 should provide potent antifungal activity in the lung.
Collapse
|
50
|
Staniszewska M, Bondaryk M, Kazek M, Gliniewicz A, Braunsdorf C, Schaller M, Mora-Montes HM, Ochal Z. Effect of serine protease KEX2 on Candida albicans virulence under halogenated methyl sulfones. Future Microbiol 2017; 12:285-306. [DOI: 10.2217/fmb-2016-0141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The effect of KEX2 mutations on C. albicans virulence and resistance to halogenated methyl sulfones was assessed. Materials & methods: The mechanism of action of sulfones was studied using flow cytometry and microscopy. Expression of KEX2 and SAP5 was assessed using quantitative Real-Time-PCR. 2,3-Bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide and lactate dehydrogenase assays were elaborated to study, respectively, metabolism of Candida treated with sulfones and their cytotoxicity against tissues. Inflammatory response was detected by ELISA. Results: Lysosome permeabilization and dose-dependent programmed cell death under sulfones were noted. KEX2 induction depended on halogenomethylsulfonyl groups, which affected cell wall biosynthesis and adhesion. Conclusion: Sulfones treatment reduced Candida pathogenicity in Galleria mellonella. Sulfones are an alternative for antifungal therapies due to their safety profile and antibiofilm activity.
Collapse
Affiliation(s)
- Monika Staniszewska
- Independent Laboratory of Streptomyces and Fungi Imperfecti, National Institute of Public Health–National Institute of Hygiene, Chocimska 24, 00–791 Warsaw, Poland
| | - Małgorzata Bondaryk
- Independent Laboratory of Streptomyces and Fungi Imperfecti, National Institute of Public Health–National Institute of Hygiene, Chocimska 24, 00–791 Warsaw, Poland
| | - Michalina Kazek
- Laboratory of Physiology, The Witold Stefański Institute of Parasitology, Polish Academy of Science, Twarda 51/55, 00–818 Warsaw, Poland
| | - Aleksandra Gliniewicz
- Laboratory of Medical Entomology and Pest Control, National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
| | - Christina Braunsdorf
- Department of Dermatology, University Hospital Tübingen, Liebermeisterstr.25, Tübingen, Germany
| | - Martin Schaller
- Department of Dermatology, University Hospital Tübingen, Liebermeisterstr.25, Tübingen, Germany
| | - Hector M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| | - Zbigniew Ochal
- Warsaw University of Technology, Faculty of Chemistry, Institute of Biotechnology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|