1
|
Bu R, Siraj AK, Parvathareddy SK, Iqbal K, Azam S, Qadri Z, Al-Rasheed M, Haqawi W, Diaz M, Alobaisi K, Annaiyappanaidu P, Siraj N, AlHusaini H, Alomar O, Al-Badawi IA, Al-Dayel F, Al-Kuraya KS. Lynch Syndrome Identification in Saudi Cohort of Endometrial Cancer Patients Screened by Universal Approach. Int J Mol Sci 2022; 23:ijms232012299. [PMID: 36293153 PMCID: PMC9603045 DOI: 10.3390/ijms232012299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 12/09/2022] Open
Abstract
Lynch syndrome (LS) is the most common cause of inherited endometrial cancer (EC). The prevalence and molecular characteristic of LS in Middle Eastern women with EC have been underexplored. To evaluate the frequency of LS in a cohort of EC patients from Saudi Arabia, a total of 436 EC cases were screened utilizing immunohistochemistry (IHC), MLH1 promoter methylation analysis and next-generation sequencing technology. A total of 53 of 436 (12.2%) ECs were classified as DNA mismatch repair-deficient (dMMR). MLH1 promoter hypermethylation was detected in 30 ECs (6.9%). Three ECs (0.7%) were found to be LS harboring germline pathogenic variants (PVs)/likely pathogenic variants (LPVs): two in the MSH2 gene and one in the MSH6 gene. Three ECs (0.7%) were Lynch-like syndrome (LLS) carrying double somatic MSH2 PVs/LPVs. Seven cases were found to have variants of uncertain significance in cancer-related genes other than MMR genes. Our results indicate that LS prevalence is low among Saudi EC patients and LLS is as common as LS in this ethnicity. Our findings could help in better understanding of the prevalence and mutational spectrum of this syndrome in Saudi Arabia, which may help in defining best strategies for LS identification, prevention and genetic counseling for EC patients.
Collapse
Affiliation(s)
- Rong Bu
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Abdul K. Siraj
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Sandeep Kumar Parvathareddy
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Kaleem Iqbal
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Saud Azam
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Zeeshan Qadri
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Maha Al-Rasheed
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Wael Haqawi
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Mark Diaz
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Khadija Alobaisi
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Padmanaban Annaiyappanaidu
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Nabil Siraj
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Hamed AlHusaini
- Department of Medical Oncology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Osama Alomar
- Department of Obstetrics-Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Ismail A. Al-Badawi
- Department of Obstetrics-Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Khawla S. Al-Kuraya
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- Correspondence: ; Tel.: +966-1-205-5167
| |
Collapse
|
2
|
Muthamilselvan S, Raghavendran A, Palaniappan A. Stage-differentiated ensemble modeling of DNA methylation landscapes uncovers salient biomarkers and prognostic signatures in colorectal cancer progression. PLoS One 2022; 17:e0249151. [PMID: 35202405 PMCID: PMC8870460 DOI: 10.1371/journal.pone.0249151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Background Aberrant DNA methylation acts epigenetically to skew the gene transcription rate up or down, contributing to cancer etiology. A gap in our understanding concerns the epigenomics of stagewise cancer progression. In this study, we have developed a comprehensive computational framework for the stage-differentiated modelling of DNA methylation landscapes in colorectal cancer (CRC). Methods The methylation β-matrix was derived from the public-domain TCGA data, converted into M-value matrix, annotated with AJCC stages, and analysed for stage-salient genes using an ensemble of approaches involving stage-differentiated modelling of methylation patterns and/or expression patterns. Differentially methylated genes (DMGs) were identified using a contrast against controls (adjusted p-value <0.001 and |log fold-change of M-value| >2), and then filtered using a series of all possible pairwise stage contrasts (p-value <0.05) to obtain stage-salient DMGs. These were then subjected to a consensus analysis, followed by matching with clinical data and performing Kaplan–Meier survival analysis to evaluate the impact of methylation patterns of consensus stage-salient biomarkers on disease prognosis. Results We found significant genome-wide changes in methylation patterns in cancer cases relative to controls agnostic of stage. The stage-differentiated models yielded the following consensus salient genes: one stage-I gene (FBN1), one stage-II gene (FOXG1), one stage-III gene (HCN1) and four stage-IV genes (NELL1, ZNF135, FAM123A, LAMA1). All the biomarkers were significantly hypermethylated in the promoter regions, indicating down-regulation of expression and implying a putative CpG island Methylator Phenotype (CIMP) manifestation. A prognostic signature consisting of FBN1 and FOXG1 survived all the analytical filters, and represents a novel early-stage epigenetic biomarker / target. Conclusions We have designed and executed a workflow for stage-differentiated epigenomic analysis of colorectal cancer progression, and identified several stage-salient diagnostic biomarkers, and an early-stage prognostic biomarker panel. The study has led to the discovery of an alternative CIMP-like signature in colorectal cancer, reinforcing the role of CIMP drivers in tumor pathophysiology.
Collapse
Affiliation(s)
- Sangeetha Muthamilselvan
- Department of Bioinformatics, School of Chemical and BioTechnology, SASTRA Deemed University, Thanjavur, India
| | - Abirami Raghavendran
- Department of Bioinformatics, School of Chemical and BioTechnology, SASTRA Deemed University, Thanjavur, India
| | - Ashok Palaniappan
- Department of Bioinformatics, School of Chemical and BioTechnology, SASTRA Deemed University, Thanjavur, India
- * E-mail:
| |
Collapse
|
3
|
Immunoprofiles and DNA Methylation of Inflammatory Marker Genes in Ulcerative Colitis-Associated Colorectal Tumorigenesis. Biomolecules 2021; 11:biom11101440. [PMID: 34680073 PMCID: PMC8533626 DOI: 10.3390/biom11101440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Immunological and epigenetic changes are interconnected and contribute to tumorigenesis. We determined the immunoprofiles and promoter methylation of inflammation-related genes for colitis-associated colorectal carcinomas (CA-CRC). The results were compared with Lynch syndrome (LS)-associated colorectal tumors, which are characterized by an active immune environment through inherited mismatch repair defects. CA-CRCs (n = 31) were immunohistochemically evaluated for immune cell scores (ICSs) and PDCD1 and CD274 expression. Seven inflammation-associated genes (CD274, NTSR1, PPARG, PTGS2, PYCARD, SOCS1, and SOCS2), the repair gene MGMT, and eight standard marker genes for the CpG Island Methylator Phenotype (CIMP) were investigated for promoter methylation in CA-CRCs, LS tumors (n = 29), and paired normal mucosae by multiplex ligation-dependent probe amplification. All but one CA-CRCs were microsatellite-stable and all LS tumors were microsatellite-unstable. Most CA-CRCs had a high ICS (55%) and a positive CD274 expression in immune cells (52%). NTSR1 revealed frequent tumor-specific hypermethylation in CA-CRC and LS. When compared to LS mucosae, normal mucosae from patients with CA-CRC showed significantly higher methylation of NTSR1 and most CIMP markers. In conclusion, CA-CRCs share a frequent ICShigh/CD274pos expression pattern with LS tumors. Elevated methylation in normal mucosa may indicate field cancerization as a feature of CA-CRC-associated tumorigenesis.
Collapse
|
4
|
Mäki-Nevala S, Ukwattage S, Olkinuora A, Almusa H, Ahtiainen M, Ristimäki A, Seppälä T, Lepistö A, Mecklin JP, Peltomäki P. Somatic mutation profiles as molecular classifiers of ulcerative colitis-associated colorectal cancer. Int J Cancer 2021; 148:2997-3007. [PMID: 33521965 DOI: 10.1002/ijc.33492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/22/2022]
Abstract
Ulcerative colitis increases colorectal cancer risk by mechanisms that remain incompletely understood. We approached this question by determining the genetic and epigenetic profiles of colitis-associated colorectal carcinomas (CA-CRC). The findings were compared to Lynch syndrome (LS), a different form of cancer predisposition that shares the importance of immunological factors in tumorigenesis. CA-CRCs (n = 27) were investigated for microsatellite instability, CpG island methylator phenotype and somatic mutations of 999 cancer-relevant genes ("Pan-cancer" panel). A subpanel of "Pan-cancer" design (578 genes) was used for LS colorectal tumors (n = 28). Mutational loads and signatures stratified CA-CRCs into three subgroups: hypermutated microsatellite-unstable (Group 1, n = 1), hypermutated microsatellite-stable (Group 2, n = 9) and nonhypermutated microsatellite-stable (Group 3, n = 17). The Group 1 tumor was the only one with MLH1 promoter hypermethylation and exhibited the mismatch repair deficiency-associated Signatures 21 and 15. Signatures 30 and 32 characterized Group 2, whereas no prominent single signature existed in Group 3. TP53, the most common mutational target in CA-CRC (16/27, 59%), was similarly affected in Groups 2 and 3, but DNA repair genes and Wnt signaling genes were mutated significantly more often in Group 2. In LS tumors, the degree of hypermutability exceeded that of the hypermutated CA-CRC Groups 1 and 2, and somatic mutational profiles and signatures were different. In conclusion, Groups 1 (4%) and 3 (63%) comply with published studies, whereas Group 2 (33%) is novel. The existence of molecularly distinct subgroups within CA-CRC may guide clinical management, such as therapy options.
Collapse
Affiliation(s)
- Satu Mäki-Nevala
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Sanjeevi Ukwattage
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Alisa Olkinuora
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Henrikki Almusa
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Maarit Ahtiainen
- Department of Education and Research, Central Finland Central Hospital, Jyväskylä, Finland
| | - Ari Ristimäki
- Department of Pathology, HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Toni Seppälä
- Department of Gastrointestinal Surgery, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Anna Lepistö
- Department of Gastrointestinal Surgery, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Jukka-Pekka Mecklin
- Department of Sport and Health Sciences, University of Jyväskylä and Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Barchitta M, Maugeri A, Li Destri G, Basile G, Agodi A. Epigenetic Biomarkers in Colorectal Cancer Patients Receiving Adjuvant or Neoadjuvant Therapy: A Systematic Review of Epidemiological Studies. Int J Mol Sci 2019; 20:ijms20153842. [PMID: 31390840 PMCID: PMC6696286 DOI: 10.3390/ijms20153842] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) represents the third-most common cancer worldwide and one of the main challenges for public health. Despite great strides in the application of neoadjuvant and adjuvant therapies for rectal and colon cancer patients, each of these treatments is still associated with certain adverse effects and different response rates. Thus, there is an urgent need for identifying novel potential biomarkers that might guide personalized treatments for specific subgroups of patients. However, until now, there are no biomarkers to predict the manifestation of adverse effects and the response to treatment in CRC patients. Herein, we provide a systematic review of epidemiological studies investigating epigenetic biomarkers in CRC patients receiving neoadjuvant or adjuvant therapy, and their potential role for the prediction of outcomes and response to treatment. With this aim in mind, we identified several epigenetic markers in CRC patients who received surgery with adjuvant or neoadjuvant therapy. However, none of them currently has the robustness to be translated into the clinical setting. Thus, more efforts and further large-size prospective studies and/or trials should be encouraged to develop epigenetic biomarker panels for personalized prevention and medicine in CRC cancer.
Collapse
Affiliation(s)
- Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy
| | - Giovanni Li Destri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy
| | - Guido Basile
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, via S. Sofia, 78, 95123 Catania, Italy
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy.
| |
Collapse
|
6
|
Drake TM, Søreide K. Cancer epigenetics in solid organ tumours: A primer for surgical oncologists. Eur J Surg Oncol 2019; 45:736-746. [PMID: 30745135 DOI: 10.1016/j.ejso.2019.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer is initiated through both genetic and epigenetic alterations. The end-effect of such changes to the DNA machinery is a set of uncontrolled mechanisms of cell division, invasion and, eventually, metastasis. Epigenetic changes are now increasingly appreciated as an essential driver to the cancer phenotype. The epigenetic regulation of cancer is complex and not yet fully understood, but application of epigenetics to clinical practice and in cancer research has the potential to improve cancer care. Epigenetics changes do not cause changes in the DNA base-pairs (and, hence, does not alter the genetic code per se) but rather occur through methylation of DNA, by histone modifications, and, through changes to chromatin structure to alter genetic expression. Epigenetic regulators are characterized as writers, readers or erasers by their mechanisms of action. The human epigenome is influenced from cradle to grave, with internal and external life-time exposure influencing the epigenetic marks that may act as modifiers or drivers of carcinogenesis. Preventive and public health strategies may follow from better understanding of the life-time influence of the epigenome. Epigenetics may be used to define risk, to investigate mechanisms of carcinogenesis, to identify biomarkers, and to identify novel therapeutic options. Epigenetic alterations are found across many solid cancers and are increasingly making clinical impact to cancer management. Novel epigenetic drugs may be used for a more tailored and specific response to treatment of cancers. We present a primer on epigenetics for surgical oncologists with examples from colorectal cancer, breast cancer, pancreatic cancer and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Thomas M Drake
- Department of Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Kjetil Søreide
- Department of Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK; Gastrointestinal Translational Research Unit, Laboratory for Molecular Biology, Stavanger University Hospital, Stavanger, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway.
| |
Collapse
|
7
|
Porkka N, Lahtinen L, Ahtiainen M, Böhm JP, Kuopio T, Eldfors S, Mecklin JP, Seppälä TT, Peltomäki P. Epidemiological, clinical and molecular characterization of Lynch-like syndrome: A population-based study. Int J Cancer 2019; 145:87-98. [PMID: 30575961 DOI: 10.1002/ijc.32085] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/30/2018] [Accepted: 12/13/2018] [Indexed: 01/05/2023]
Abstract
Colorectal carcinomas that are mismatch repair (MMR)-deficient in the absence of MLH1 promoter methylation or germline mutations represent Lynch-like syndrome (LLS). Double somatic events inactivating MMR genes are involved in the etiology of LLS tumors. Our purpose was to define the clinical and broader molecular hallmarks of LLS tumors and the population incidence of LLS, which remain poorly characterized. We investigated 762 consecutive colorectal carcinomas operated in Central Finland in 2000-2010. LLS cases were identified by a stepwise protocol based on MMR protein expression, MLH1 methylation and MMR gene mutation status. LLS tumors were profiled for CpG Island Methylator Phenotype (CIMP) and somatic mutations in 578 cancer-relevant genes. Among 107 MMR-deficient tumors, 81 (76%) were attributable to MLH1 promoter methylation and 9 (8%) to germline mutations (Lynch syndrome, LS), leaving 14 LLS cases (13%) (3 remained unclassified). LLS carcinomas were diagnosed at a mean age of 65 years (vs. 44 years in LS, p < 0.001), had a proximal to distal ratio of 1:1, and all were BRAF V600E-negative. Two somatic events in MMR genes were identifiable in 11 tumors (79%). As novel findings, the tumors contained an average of 31 nonsynonymous somatic mutations/Mb and 13/14 were CIMP-positive. In conclusion, we establish the epidemiological, clinical and molecular characteristics of LLS in a population-based study design. Significantly more frequent CIMP-positivity and lower rates of somatic mutations make a distinction to LS. The absence of BRAF V600E mutation separates LLS colorectal carcinomas from MLH1-methylated colorectal carcinomas with CIMP-positive phenotype.
Collapse
Affiliation(s)
- Noora Porkka
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Laura Lahtinen
- Department of Pathology, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Maarit Ahtiainen
- Department of Education and Research, Jyväskylä Central Hospital and University of Eastern Finland, Jyväskylä, Finland
| | - Jan P Böhm
- Department of Pathology, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Teijo Kuopio
- Department of Pathology, Jyväskylä Central Hospital, Jyväskylä, Finland.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Samuli Eldfors
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Jukka-Pekka Mecklin
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Department of Surgery, Jyväskylä Central Hospital, Jyväskylä, Finland.,Department of Education & Science, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Toni T Seppälä
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
DNA methylation changes and somatic mutations as tumorigenic events in Lynch syndrome-associated adenomas retaining mismatch repair protein expression. EBioMedicine 2018; 39:280-291. [PMID: 30578081 PMCID: PMC6355728 DOI: 10.1016/j.ebiom.2018.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022] Open
Abstract
Background DNA mismatch repair (MMR) defects are a major factor in colorectal tumorigenesis in Lynch syndrome (LS) and 15% of sporadic cases. Some adenomas from carriers of inherited MMR gene mutations have intact MMR protein expression implying other mechanisms accelerating tumorigenesis. We determined roles of DNA methylation changes and somatic mutations in cancer-associated genes as tumorigenic events in LS-associated colorectal adenomas with intact MMR. Methods We investigated 122 archival colorectal specimens of normal mucosae, adenomas and carcinomas from 57 LS patients. MMR-deficient (MMR-D, n = 49) and MMR-proficient (MMR-P, n = 18) adenomas were of particular interest and were interrogated by methylation-specific multiplex ligation-dependent probe amplification and Ion Torrent sequencing. Findings Promoter methylation of CpG island methylator phenotype (CIMP)-associated marker genes and selected colorectal cancer (CRC)-associated tumor suppressor genes (TSGs) increased and LINE-1 methylation decreased from normal mucosa to MMR-P adenomas to MMR-D adenomas. Methylation differences were statistically significant when either adenoma group was compared with normal mucosa, but not between MMR-P and MMR-D adenomas. Significantly increased methylation was found in multiple CIMP marker genes (IGF2, NEUROG1, CRABP1, and CDKN2A) and TSGs (SFRP1 and SFRP2) in MMR-P adenomas already. Furthermore, certain CRC-associated somatic mutations, such as KRAS, were prevalent in MMR-P adenomas. Interpretation We conclude that DNA methylation changes and somatic mutations of cancer-associated genes might serve as an alternative pathway accelerating LS-associated tumorigenesis in the presence of proficient MMR. Fund Jane and Aatos Erkko Foundation, Academy of Finland, Cancer Foundation Finland, Sigrid Juselius Foundation, and HiLIFE.
Collapse
|
9
|
James de Bony E, Bizet M, Van Grembergen O, Hassabi B, Calonne E, Putmans P, Bontempi G, Fuks F. Comprehensive identification of long noncoding RNAs in colorectal cancer. Oncotarget 2018; 9:27605-27629. [PMID: 29963224 PMCID: PMC6021240 DOI: 10.18632/oncotarget.25218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/06/2018] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers in humans and a leading cause of cancer-related deaths worldwide. As in the case of other cancers, CRC heterogeneity leads to a wide range of clinical outcomes and complicates therapy. Over the years, multiple factors have emerged as markers of CRC heterogeneity, improving tumor classification and selection of therapeutic strategies. Understanding the molecular mechanisms underlying this heterogeneity remains a major challenge. A considerable research effort is therefore devoted to identifying additional features of colorectal tumors, in order to better understand CRC etiology and to multiply therapeutic avenues. Recently, long noncoding RNAs (lncRNAs) have emerged as important players in physiological and pathological processes, including CRC. Here we looked for lncRNAs that might contribute to the various colorectal tumor phenotypes. We thus monitored the expression of 4898 lncRNA genes across 566 CRC samples and identified 282 lncRNAs reflecting CRC heterogeneity. We then inferred potential functions of these lncRNAs. Our results highlight lncRNAs that may participate in the major processes altered in distinct CRC cases, such as WNT/β-catenin and TGF-β signaling, immunity, the epithelial-to-mesenchymal transition (EMT), and angiogenesis. For several candidates, we provide experimental evidence supporting our functional predictions that they may be involved in the cell cycle or the EMT. Overall, our work identifies lncRNAs associated with key CRC characteristics and provides insights into their respective functions. Our findings constitute a further step towards understanding the contribution of lncRNAs to CRC heterogeneity. They may open new therapeutic opportunities.
Collapse
Affiliation(s)
- Eric James de Bony
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Machine Learning Group, Computer Science Department, Université Libre de Bruxelles, 1050 Brussels, Belgium
- Inter-University Institute of Bioinformatics, Brussels, Université Libre de Bruxelles–Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Olivier Van Grembergen
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Bouchra Hassabi
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Pascale Putmans
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Gianluca Bontempi
- Machine Learning Group, Computer Science Department, Université Libre de Bruxelles, 1050 Brussels, Belgium
- Inter-University Institute of Bioinformatics, Brussels, Université Libre de Bruxelles–Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
10
|
Schirripa M, Cohen SA, Battaglin F, Lenz HJ. Biomarker-driven and molecular targeted therapies for colorectal cancers. Semin Oncol 2018; 45:124-132. [PMID: 30262397 PMCID: PMC7496213 DOI: 10.1053/j.seminoncol.2017.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/27/2017] [Indexed: 12/23/2022]
Abstract
Improved clinical selection and identification of new molecules and innovative strategies have widened treatment options and increased overall survival in metastatic colorectal cancer patients in recent years. Biomarker-driven therapies represent an emerging issue in this field and new targeted treatments are under investigation and probably will be soon adopted into daily clinical practice. In the present review, the role RAS, BRAF mutations, Her2 amplification, microsatellite instability, and CpG island methylator phenotype are discussed according to their possible roles as prognostic, predictive markers, as well as possible biomarker-driven treatment options.
Collapse
Affiliation(s)
- Marta Schirripa
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
| | - Stacey A Cohen
- Division of Medical Oncology, University of Washington, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Francesca Battaglin
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
| | - Heinz-Josef Lenz
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Sokratous M, Dardiotis E, Bellou E, Tsouris Z, Michalopoulou A, Dardioti M, Siokas V, Rikos D, Tsatsakis A, Kovatsi L, Bogdanos DP, Hadjigeorgiou GM. CpG Island Methylation Patterns in Relapsing-Remitting Multiple Sclerosis. J Mol Neurosci 2018. [PMID: 29516350 DOI: 10.1007/s12031-018-1046-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA methylation may predispose to multiple sclerosis (MS), as aberrant methylation in the promoter regions across the genome seems to underlie several processes of MS. We have currently determined the methylation status of eight genes in relapsing-remitting MS patients. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) was used to determine the status of 31 CpG islands, located across eight genes, in 33 healthy individuals and 66 MS patients (33 in relapse and 33 in remission). The methylation levels in the examined sites ranged from 0 to 31%. Methylation positivity for RUNX3 and CDKN2A differed significantly between MS patients and healthy controls. Maximum methylation in RUNX3, CDKN2A, SOCS1, and NEUROG1 genes was significantly different between patients and controls. Roc curves demonstrated that the appropriate cut-offs to distinguish patients from healthy controls were 2% for RUNX3 (OR 3.316, CI 1.207-9.107, p = 0.024) and 3% for CDKN2A (OR 3.077, CI 1.281-7.39, p = 0.018). No difference in methylation was observed between patients in relapse and patients in remission, in any of the genes examined. Methylation patterns of RUNX3 and CDKN2A may be able to distinguish between MS patients and healthy controls, but not between MS patients in relapse and in remission. Graphical Abstract Methylation patterns of RUNX3 and CDKN2A may be able to discriminate healthy individuals from MS patients.
Collapse
Affiliation(s)
- Maria Sokratous
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100, Larissa, Greece.
| | - Eleni Bellou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100, Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100, Larissa, Greece
| | - Amalia Michalopoulou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100, Larissa, Greece
| | - Maria Dardioti
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100, Larissa, Greece
| | - Dimitrios Rikos
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100, Larissa, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis, 40500, Larissa, Greece
- Cellular Immunotherapy & Molecular Immunodiagnostics, Biomedical Section, Centre for Research and Technology-Hellas (CERTH)- Institute for Research and Technology-Thessaly (IRETETH), 41222, Larissa, Greece
| | - Georgios M Hadjigeorgiou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100, Larissa, Greece
| |
Collapse
|
12
|
Rigter LS, Snaebjornsson P, Rosenberg EH, Atmodimedjo PN, Aleman BM, Ten Hoeve J, Geurts-Giele WR, van Ravesteyn TW, Hoeksel J, Meijer GA, Te Riele H, van Leeuwen FE, Dinjens WN, van Leerdam ME. Double somatic mutations in mismatch repair genes are frequent in colorectal cancer after Hodgkin's lymphoma treatment. Gut 2018; 67:447-455. [PMID: 29439113 DOI: 10.1136/gutjnl-2016-312608] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/07/2016] [Accepted: 10/18/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Hodgkin's lymphoma survivors who were treated with infradiaphragmatic radiotherapy or procarbazine-containing chemotherapy have a fivefold increased risk of developing colorectal cancer (CRC). This study aims to provide insight into the development of therapy-related CRC (t-CRC) by evaluating histopathological and molecular characteristics. DESIGN 54 t-CRCs diagnosed in a Hodgkin's lymphoma survivor cohort were analysed for mismatch repair (MMR) proteins by immunohistochemistry, microsatellite instability (MSI) and KRAS/BRAF mutations. MSI t-CRCs were evaluated for promoter methylation and mutations in MMR genes. Pathogenicity of MMR gene mutations was evaluated by in silico predictions and functional analyses. Frequencies were compared with a general population cohort of CRC (n=1111). RESULTS KRAS and BRAF mutations were present in 41% and 15% t-CRCs, respectively. Compared with CRCs in the general population, t-CRCs had a higher MSI frequency (24% vs 11%, p=0.003) and more frequent loss of MSH2/MSH6 staining (13% vs 1%, p<0.001). Loss of MLH1/PMS2 staining and MLH1 promoter methylation were equally common in t-CRCs and the general population. In MSI CRCs without MLH1 promoter methylation, double somatic MMR gene mutations (or loss of heterozygosity as second hit) were detected in 7/10 (70%) t-CRCs and 8/36 (22%) CRCs in the general population (p=0.008). These MMR gene mutations in t-CRCs were classified as pathogenic. MSI t-CRC cases could not be ascribed to Lynch syndrome. CONCLUSIONS We have demonstrated a higher frequency of MSI among t-CRCs, which results from somatic MMR gene mutations. This suggests a novel association of somatic MMR gene mutations with prior anticancer treatment.
Collapse
Affiliation(s)
- Lisanne S Rigter
- Department of Gastroenterology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Petur Snaebjornsson
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Efraim H Rosenberg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Peggy N Atmodimedjo
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Berthe M Aleman
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jelle Ten Hoeve
- Division of Computational Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Willemina R Geurts-Giele
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | | | - Thomas W van Ravesteyn
- Division of Biological Stress Response, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Johan Hoeksel
- Division of Biological Stress Response, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gerrit A Meijer
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hein Te Riele
- Division of Biological Stress Response, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Flora E van Leeuwen
- Department of Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Winand N Dinjens
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Monique E van Leerdam
- Department of Gastroenterology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Pinto D, Pinto C, Guerra J, Pinheiro M, Santos R, Vedeld HM, Yohannes Z, Peixoto A, Santos C, Pinto P, Lopes P, Lothe R, Lind GE, Henrique R, Teixeira MR. Contribution of MLH1 constitutional methylation for Lynch syndrome diagnosis in patients with tumor MLH1 downregulation. Cancer Med 2018; 7:433-444. [PMID: 29341452 PMCID: PMC6193414 DOI: 10.1002/cam4.1285] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/23/2022] Open
Abstract
Constitutional epimutation of the two major mismatch repair genes, MLH1 and MSH2, has been identified as an alternative mechanism that predisposes to the development of Lynch syndrome. In the present work, we aimed to investigate the prevalence of MLH1 constitutional methylation in colorectal cancer (CRC) patients with abnormal expression of the MLH1 protein in their tumors. In a series of 38 patients who met clinical criteria for Lynch syndrome genetic testing, with loss of MLH1 expression in the tumor and with no germline mutations in the MLH1 gene (35/38) or with tumors presenting the BRAF p.Val600Glu mutation (3/38), we screened for constitutional methylation of the MLH1 gene promoter using methylation‐specific multiplex ligation‐dependent probe amplification (MS‐MLPA) in various biological samples. We found four (4/38; 10.5%) patients with constitutional methylation in the MLH1 gene promoter. RNA studies demonstrated decreased MLH1 expression in the cases with constitutional methylation when compared with controls. We could infer the mosaic nature of MLH1 constitutional hypermethylation in tissues originated from different embryonic germ layers, and in one family we could show that it occurred de novo. We conclude that constitutional MLH1 methylation occurs in a significant proportion of patients who have loss of MLH1 protein expression in their tumors and no MLH1 pathogenic germline mutation. Furthermore, we provide evidence that MLH1 constitutional hypermethylation is the molecular mechanism behind about 3% of Lynch syndrome families diagnosed in our institution, especially in patients with early onset or multiple primary tumors without significant family history.
Collapse
Affiliation(s)
- Diana Pinto
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Carla Pinto
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Joana Guerra
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Manuela Pinheiro
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Rui Santos
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Hege Marie Vedeld
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norway
| | - Zeremariam Yohannes
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norway
| | - Ana Peixoto
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Catarina Santos
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Pedro Pinto
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Paula Lopes
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Ragnhild Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norway
| | - Guro Elisabeth Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norway
| | - Rui Henrique
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Manuel R Teixeira
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
14
|
Li W, Huang Y, Sargsyan D, Khor TO, Guo Y, Shu L, Yang AY, Zhang C, Paredes-Gonzalez X, Verzi M, Hart RP, Kong AN. Epigenetic alterations in TRAMP mice: epigenome DNA methylation profiling using MeDIP-seq. Cell Biosci 2018; 8:3. [PMID: 29344347 PMCID: PMC5767006 DOI: 10.1186/s13578-018-0201-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/05/2018] [Indexed: 01/15/2023] Open
Abstract
PURPOSE We investigated the genomic DNA methylation profile of prostate cancer in transgenic adenocarcinoma of the mouse prostate (TRAMP) cancer model and to analyze the crosstalk among targeted genes and the related functional pathways. METHODS Prostate DNA samples from 24-week-old TRAMP and C57BL/6 male mice were isolated. The DNA methylation profiles were analyzed by methylated DNA immunoprecipitation (MeDIP) followed by next-generation sequencing (MeDIP-seq). Canonical pathways, diseases and function and network analyses of the different samples were then performed using the Ingenuity® Pathway Analysis (IPA) software. Some target genes with significant difference in methylation were selected for validation using methylation specific primers (MSP) and qPCR. RESULTS TRAMP mice undergo extensive aberrant CpG hyper- and hypo-methylation. There were 2147 genes with a significant (log2-change ≥ 2) change in CpG methylation between the two groups, as mapped by the IPA software. Among these genes, the methylation of 1105 and 1042 genes was significantly decreased and increased, respectively, in TRAMP prostate tumors. The top associated disease identified by IPA was adenocarcinoma; however, the cAMP response element-binding protein (CREB)-, histone deacetylase 2 (HDAC2)-, glutathione S-transferase pi (GSTP1)- and polyubiquitin-C (UBC)-related pathways showed significantly altered methylation profiles based on the canonical pathway and network analyses. MSP and qPCR results of genes of interests corroborated with MeDIP-seq findings. CONCLUSIONS This is the first MeDIP-seq with IPA analysis of the TRAMP model to provide novel insight into the genome-wide methylation profile of prostate cancer. Studies on epigenetics, such as DNA methylation, will potentially provide novel avenues and strategies for further development of biomarkers targeted for treatment and prevention approaches for prostate cancer.
Collapse
Affiliation(s)
- Wenji Li
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, The State University of New Jersey, Piscataway, NJ 08854 USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
| | - Ying Huang
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, The State University of New Jersey, Piscataway, NJ 08854 USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Davit Sargsyan
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, The State University of New Jersey, Piscataway, NJ 08854 USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Tin Oo Khor
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, The State University of New Jersey, Piscataway, NJ 08854 USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
| | - Yue Guo
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, The State University of New Jersey, Piscataway, NJ 08854 USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Limin Shu
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, The State University of New Jersey, Piscataway, NJ 08854 USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
| | - Anne Yuqing Yang
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, The State University of New Jersey, Piscataway, NJ 08854 USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Chengyue Zhang
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, The State University of New Jersey, Piscataway, NJ 08854 USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Ximena Paredes-Gonzalez
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, The State University of New Jersey, Piscataway, NJ 08854 USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Michael Verzi
- Department of Genetics, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Ronald P. Hart
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Ah-Ng Kong
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, The State University of New Jersey, Piscataway, NJ 08854 USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
| |
Collapse
|
15
|
Celestino R, Nome T, Pestana A, Hoff AM, Gonçalves AP, Pereira L, Cavadas B, Eloy C, Bjøro T, Sobrinho-Simões M, Skotheim RI, Soares P. CRABP1, C1QL1 and LCN2 are biomarkers of differentiated thyroid carcinoma, and predict extrathyroidal extension. BMC Cancer 2018; 18:68. [PMID: 29321030 PMCID: PMC5763897 DOI: 10.1186/s12885-017-3948-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 12/20/2017] [Indexed: 01/21/2023] Open
Abstract
Background The prognostic variability of thyroid carcinomas has led to the search for accurate biomarkers at the molecular level. Follicular thyroid carcinoma (FTC) is a typical example of differentiated thyroid carcinomas (DTC) in which challenges are faced in the differential diagnosis. Methods We used high-throughput paired-end RNA sequencing technology to study four cases of FTC with different degree of capsular invasion: two minimally invasive (mFTC) and two widely invasive FTC (wFTC). We searched by genes differentially expressed between mFTC and wFTC, in an attempt to find biomarkers of thyroid cancer diagnosis and/or progression. Selected biomarkers were validated by real-time quantitative PCR in 137 frozen thyroid samples and in an independent dataset (TCGA), evaluating the diagnostic and the prognostic performance of the candidate biomarkers. Results We identified 17 genes significantly differentially expressed between mFTC and wFTC. C1QL1, LCN2, CRABP1 and CILP were differentially expressed in DTC in comparison with normal thyroid tissues. LCN2 and CRABP1 were also differentially expressed in DTC when compared with follicular thyroid adenoma. Additionally, overexpression of LCN2 and C1QL1 were found to be independent predictors of extrathyroidal extension in DTC. Conclusions We conclude that the underexpression of CRABP1 and the overexpression of LCN2 may be useful diagnostic biomarkers in thyroid tumours with questionable malignity, and the overexpression of LCN2 and C1QL1 may be useful for prognostic purposes. Electronic supplementary material The online version of this article (10.1186/s12885-017-3948-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ricardo Celestino
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Department of Molecular Oncology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, P.O.Box 4953 Nydalen, 0424, Oslo, Norway.,School of Allied Health Technologies, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072, Porto, Portugal
| | - Torfinn Nome
- Department of Molecular Oncology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, P.O.Box 4953 Nydalen, 0424, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0424, Oslo, Norway
| | - Ana Pestana
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,ICBAS - Abel Salazar Biomedical Sciences Institute of the University of Porto, 4050-313, Porto, Portugal
| | - Andreas M Hoff
- Department of Molecular Oncology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, P.O.Box 4953 Nydalen, 0424, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0424, Oslo, Norway
| | - A Pedro Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,ICBAS - Abel Salazar Biomedical Sciences Institute of the University of Porto, 4050-313, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Luísa Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Bruno Cavadas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Catarina Eloy
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Trine Bjøro
- Department of Medical Biochemistry, Norwegian Radium Hospital, Oslo University Hospital, 0424, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, 0318, Oslo, Norway
| | - Manuel Sobrinho-Simões
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Department of Pathology, Medical Faculty, University of Porto, 4200-319, Porto, Portugal.,Department of Pathology, Centro Hospitalar de São João, 4200-319, Porto, Portugal
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, P.O.Box 4953 Nydalen, 0424, Oslo, Norway. .,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0424, Oslo, Norway.
| | - Paula Soares
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,Department of Pathology, Medical Faculty, University of Porto, 4200-319, Porto, Portugal.
| |
Collapse
|
16
|
Planello AC, Singhania R, Kron KJ, Bailey SD, Roulois D, Lupien M, Line SRP, de Souza AP, De Carvalho DD. Pre-neoplastic epigenetic disruption of transcriptional enhancers in chronic inflammation. Oncotarget 2017; 7:15772-86. [PMID: 26908456 PMCID: PMC4941276 DOI: 10.18632/oncotarget.7513] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/09/2016] [Indexed: 02/06/2023] Open
Abstract
Chronic periodontitis (CP) is a chronic inflammatory disease independently associated with higher incidence of oral cavity squamous cell carcinoma (OSCC). However, the molecular mechanism responsible for this increased incidence is unknown. Here we profiled the DNA methylome of CP patients and healthy controls and compared to a large set of OSCC samples from TCGA. We observed a significant overlap between the altered DNA methylation patterns in CP and in OSCC, suggesting an emergence of a pre-neoplastic epigenome in CP. Remarkably, the hypermethylated CpGs in CP were significantly enriched for enhancer elements. This aberrant enhancer methylation is functional and able to disrupt enhancer activity by preventing the binding of chromatin looping factors. This study provides new insights on the molecular mechanisms linking chronic inflammation and tumor predisposition, highlighting the role of epigenetic disruption of transcriptional enhancers.
Collapse
Affiliation(s)
- Aline C Planello
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Morphology, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Rajat Singhania
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ken J Kron
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Swneke D Bailey
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - David Roulois
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Sérgio R Peres Line
- Department of Morphology, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Ana Paula de Souza
- Department of Morphology, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Puccini A, Berger MD, Naseem M, Tokunaga R, Battaglin F, Cao S, Hanna DL, McSkane M, Soni S, Zhang W, Lenz HJ. Colorectal cancer: epigenetic alterations and their clinical implications. Biochim Biophys Acta Rev Cancer 2017; 1868:439-448. [PMID: 28939182 DOI: 10.1016/j.bbcan.2017.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/16/2017] [Accepted: 09/17/2017] [Indexed: 12/20/2022]
Abstract
Colorectal cancer (CRC) is a heterogeneous disease with distinct molecular and clinical features, which reflects the wide range of prognostic outcomes and treatment responses observed among CRC patients worldwide. Our understanding of the CRC epigenome has been largely developed over the last decade and it is now believed that among thousands of epigenetic alterations present in each tumor, a small subgroup of these may be considered as a CRC driver event. DNA methylation profiles have been the most widely studied in CRC, which includes a subset of patients with distinct molecular and clinical features now categorized as CpG island methylator phenotype (CIMP). Major advances have been made in our capacity to detect epigenetic alterations, providing us with new potential biomarkers for diagnostic, prognostic and therapeutic purposes. This review aims to summarize our current knowledge about epigenetic alterations occurring in CRC, underlying their potential future clinical implications in terms of diagnosis, prognosis and therapeutic strategies for CRC patients.
Collapse
Affiliation(s)
- Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Martin D Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Madiha Naseem
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ryuma Tokunaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shu Cao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Diana L Hanna
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michelle McSkane
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
18
|
Geißler AL, Geißler M, Kottmann D, Lutz L, Fichter CD, Fritsch R, Weddeling B, Makowiec F, Werner M, Lassmann S. ATM mutations and E-cadherin expression define sensitivity to EGFR-targeted therapy in colorectal cancer. Oncotarget 2017; 8:17164-17190. [PMID: 28199979 PMCID: PMC5370031 DOI: 10.18632/oncotarget.15211] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/16/2017] [Indexed: 12/23/2022] Open
Abstract
EGFR-targeted therapy is a key treatment approach in patients with RAS wildtype metastatic colorectal cancers (CRC). Still, also RAS wildtype CRC may be resistant to EGFR-targeted therapy, with few predictive markers available for improved stratification of patients. Here, we investigated response of 7 CRC cell lines (Caco-2, DLD1, HCT116, HT29, LS174T, RKO, SW480) to Cetuximab and correlated this to NGS-based mutation profiles, EGFR promoter methylation and EGFR expression status as well as to E-cadherin expression. Moreover, tissue specimens of primary and/or recurrent tumors as well as liver and/or lung metastases of 25 CRC patients having received Cetuximab and/or Panitumumab were examined for the same molecular markers. In vitro and in situ analyses showed that EGFR promoter methylation and EGFR expression as well as the MSI and or CIMP-type status did not guide treatment responses. In fact, EGFR-targeted treatment responses were also observed in RAS exon 2 p.G13 mutated CRC cell lines or CRC cases and were further linked to PIK3CA exon 9 mutations. In contrast, non-response to EGFR-targeted treatment was associated with ATM mutations and low E-cadherin expression. Moreover, down-regulation of E-cadherin by siRNA in otherwise Cetuximab responding E-cadherin positive cells abrogated their response. Hence, we here identify ATM and E-cadherin expression as potential novel supportive predictive markers for EGFR-targeted therapy.
Collapse
Affiliation(s)
- Anna-Lena Geißler
- Institute of Surgical Pathology, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Miriam Geißler
- Institute of Surgical Pathology, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Kottmann
- Institute of Surgical Pathology, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Lisa Lutz
- Institute of Surgical Pathology, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Christiane D Fichter
- Institute of Surgical Pathology, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ralph Fritsch
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Department of Internal Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Comprehensive Cancer Center Freiburg, All Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| | - Britta Weddeling
- Institute of Surgical Pathology, University of Freiburg, Freiburg im Breisgau, Germany.,Comprehensive Cancer Center Freiburg, All Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| | - Frank Makowiec
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Department of Surgery, University of Freiburg, Freiburg im Breisgau, Germany.,Comprehensive Cancer Center Freiburg, All Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| | - Martin Werner
- Institute of Surgical Pathology, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg, All Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| | - Silke Lassmann
- Institute of Surgical Pathology, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg, All Medical Center - University of Freiburg, Freiburg im Breisgau, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
19
|
Andres-Franch M, Galiana A, Sanchez-Hellin V, Ochoa E, Hernandez-Illan E, Lopez-Garcia P, Castillejo A, Castillejo MI, Barbera VM, Garcia-Dura J, Gomez-Romero FJ, Royo G, Soto JL. Streptococcus gallolyticus infection in colorectal cancer and association with biological and clinical factors. PLoS One 2017; 12:e0174305. [PMID: 28355283 PMCID: PMC5371321 DOI: 10.1371/journal.pone.0174305] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/07/2017] [Indexed: 01/10/2023] Open
Abstract
There is an unambiguous association of Streptococcus gallolyticus infection with colorectal cancer, although there is limited information about epidemiology or interaction between molecular and environmental factors. We performed an original quantitative analysis of S. gallolyticus in unselected colorectal cancer patients (n = 190) and their association with clinical, pathological tumor molecular profiles (microsatellite instability, hypermethylator phenotype and chromosomal instability pathways), and other biological factors in colorectal tumor and normal tissues (cytomegalovirus and Epstein-Barr virus infection). We developed a new quantitative method to assess bacterial load. Analytical validation was reached with a very high sensitivity and specificity. Our results showed a 3.2% prevalence of S. gallolyticus infection in our unselected cohort of colorectal cancer cases (6/190). The average S. gallolyticus copy number was 7,018 (range 44–34,585). No previous reports relating to S. gallolyticus infection have been published for unselected cohorts of patients. Finally, and despite a low prevalence of S. gallolyticus in this study, we were able to define a specific association with tumor tissue (p = 0.03) and with coinfection with Epstein-Barr virus (p = 0.042; OR: 9.49; 95% IC: 1.1–82.9). The prevalence data provided will be very useful in the design of future studies, and will make it possible to estimate the sample size needed to assess precise objectives. In conclusion, our results show a low prevalence of S. gallolyticus infection in unselected colorectal cancer patients and an association of positive S. gallolyticus infection with tumor tissue and Epstein-Barr virus coinfection. Further studies will be needed to definitively assess the prevalence of S. gallolyticus in colorectal cancer and the associated clinicopathological and molecular profiles.
Collapse
Affiliation(s)
| | - Antonio Galiana
- Microbiology Dept., Hospital General Universitario de Elche, Elche, Spain
| | | | - Enrique Ochoa
- Biopathology Dept., Hospital Provincial de Castellón, Castellón, Spain
| | - Eva Hernandez-Illan
- Research Lab, Hospital General Universitario de Alicante, Alicante, Spain
- Instituto de Investigación Sanitaria y Biómedica de Alicante (ISABIAL)–FISABIO, Alicante, Spain
| | - Pilar Lopez-Garcia
- Microbiology Dept., Hospital General Universitario de Elche, Elche, Spain
| | - Adela Castillejo
- Instituto de Investigación Sanitaria y Biómedica de Alicante (ISABIAL)–FISABIO, Alicante, Spain
- Molecular Genetics Unit, Hospital General Universitario de Elche, Elche, Spain
| | - Maria Isabel Castillejo
- Instituto de Investigación Sanitaria y Biómedica de Alicante (ISABIAL)–FISABIO, Alicante, Spain
- Molecular Genetics Unit, Hospital General Universitario de Elche, Elche, Spain
| | - Victor Manuel Barbera
- Instituto de Investigación Sanitaria y Biómedica de Alicante (ISABIAL)–FISABIO, Alicante, Spain
- Molecular Genetics Unit, Hospital General Universitario de Elche, Elche, Spain
| | - Josefa Garcia-Dura
- Microbiology Dept., Hospital General Universitario de Elche, Elche, Spain
| | | | - Gloria Royo
- Microbiology Dept., Hospital General Universitario de Elche, Elche, Spain
| | - Jose Luis Soto
- Instituto de Investigación Sanitaria y Biómedica de Alicante (ISABIAL)–FISABIO, Alicante, Spain
- Molecular Genetics Unit, Hospital General Universitario de Elche, Elche, Spain
| |
Collapse
|
20
|
Müller MF, Ibrahim AEK, Arends MJ. Molecular pathological classification of colorectal cancer. Virchows Arch 2016; 469:125-134. [PMID: 27325016 PMCID: PMC4978761 DOI: 10.1007/s00428-016-1956-3] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/04/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) shows variable underlying molecular changes with two major mechanisms of genetic instability: chromosomal instability and microsatellite instability. This review aims to delineate the different pathways of colorectal carcinogenesis and provide an overview of the most recent advances in molecular pathological classification systems for colorectal cancer. Two molecular pathological classification systems for CRC have recently been proposed. Integrated molecular analysis by The Cancer Genome Atlas project is based on a wide-ranging genomic and transcriptomic characterisation study of CRC using array-based and sequencing technologies. This approach classified CRC into two major groups consistent with previous classification systems: (1) ∼16 % hypermutated cancers with either microsatellite instability (MSI) due to defective mismatch repair (∼13 %) or ultramutated cancers with DNA polymerase epsilon proofreading mutations (∼3 %); and (2) ∼84 % non-hypermutated, microsatellite stable (MSS) cancers with a high frequency of DNA somatic copy number alterations, which showed common mutations in APC, TP53, KRAS, SMAD4, and PIK3CA. The recent Consensus Molecular Subtypes (CMS) Consortium analysing CRC expression profiling data from multiple studies described four CMS groups: almost all hypermutated MSI cancers fell into the first category CMS1 (MSI-immune, 14 %) with the remaining MSS cancers subcategorised into three groups of CMS2 (canonical, 37 %), CMS3 (metabolic, 13 %) and CMS4 (mesenchymal, 23 %), with a residual unclassified group (mixed features, 13 %). Although further research is required to validate these two systems, they may be useful for clinical trial designs and future post-surgical adjuvant treatment decisions, particularly for tumours with aggressive features or predicted responsiveness to immune checkpoint blockade.
Collapse
Affiliation(s)
- Mike F Müller
- Division of Pathology, Centre for Comparative Pathology, Edinburgh Cancer Research Centre, Institute of Genetics & Molecular Medicine, Western General Hospital, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Ashraf E K Ibrahim
- Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Bedford Hospital NHS Trust, Viapath Cellular Pathology, Kempston Road, Bedford, MK42 9DJ, UK
| | - Mark J Arends
- Division of Pathology, Centre for Comparative Pathology, Edinburgh Cancer Research Centre, Institute of Genetics & Molecular Medicine, Western General Hospital, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK.
| |
Collapse
|
21
|
Søreide K, Watson MM, Lea D, Nordgård O, Søreide JA, Hagland HR. Assessment of clinically related outcomes and biomarker analysis for translational integration in colorectal cancer (ACROBATICC): study protocol for a population-based, consecutive cohort of surgically treated colorectal cancers and resected colorectal liver metastasis. J Transl Med 2016; 14:192. [PMID: 27357108 PMCID: PMC4928276 DOI: 10.1186/s12967-016-0951-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/21/2016] [Indexed: 02/08/2023] Open
Abstract
Background More accurate predictive and prognostic biomarkers for patients with colorectal cancer (CRC) primaries or colorectal liver metastasis (CLM) are needed. Outside clinical trials, the translational integration of emerging pathways and novel techniques should facilitate exploration of biomarkers for improved staging and prognosis. Methods An observational study exploring predictive and prognostic biomarkers in a population-based, consecutive cohort of surgically treated colorectal cancers and resected colorectal liver metastases. Long-term outcomes will be cancer-specific survival, recurrence-free survival and overall survival at 5 years from diagnosis. Beyond routine clinicopathological and anthropometric characteristics and laboratory and biochemistry results, the project allows for additional blood samples and fresh-frozen tumour and normal tissue for investigation of circulating tumour cells (CTCs) and novel biomarkers (e.g. immune cells, microRNAs etc.). Tumour specimens will be investigated by immunohistochemistry in full slides. Extracted DNA/RNA will be analysed for genomic markers using specific PCR techniques and next-generation sequencing (NGS) panels. Flow cytometry will be used to characterise biomarkers in blood. Collaboration is open and welcomed, with particular interest in mutual opportunities for validation studies. Status and perspectives The project is ongoing and recruiting at an expected rate of 120–150 patients per year, since January 2013. A project on circulating tumour cells (CTCs) has commenced, with analysis being prepared. Investigating molecular classes beyond the TNM staging is under way, including characteristics of microsatellite instability (MSI) and elevated microsatellite alterations in selected tetranucleotides (EMAST). Hot spot panels for known mutations in CRC are being investigated using NGS. Immune-cell characteristics are being performed by IHC and flow cytometry in tumour and peripheral blood samples. The project has ethical approval (REK Helse Vest, #2012/742), is financially supported with a Ph.D.-Grant (EMAST project; Folke Hermansen Cancer Fund) and a CTC-project (Norwegian Research Council; O. Nordgård). The ACROBATICC clinical and molecular biobank repository will serve as a long-term source for novel exploratory analysis and invite collaborators for mutual validation of promising biomarker results. The project aims to generate results that can help better discern prognostic groups in stage II/III cancers; explore prognostic and predictive biomarkers, and help detail the biology of colorectal liver metastasis for better patient selection and tailored treatment. The project is registered at http://www.ClinicalTrials.gov NCT01762813.
Collapse
Affiliation(s)
- Kjetil Søreide
- Department of Gastrointestinal Surgery, Stavanger University Hospital, POB 8100, 4068, Stavanger, Norway. .,Gastrointestinal Translational Research Unit, Laboratory for Molecular Biology, Stavanger University Hospital, Stavanger, Norway. .,Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | - Martin M Watson
- Department of Gastrointestinal Surgery, Stavanger University Hospital, POB 8100, 4068, Stavanger, Norway.,Gastrointestinal Translational Research Unit, Laboratory for Molecular Biology, Stavanger University Hospital, Stavanger, Norway
| | - Dordi Lea
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Biology, Stavanger University Hospital, Stavanger, Norway.,Department of Pathology, Stavanger University Hospital, Stavanger, Norway
| | - Oddmund Nordgård
- Department of Haematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Jon Arne Søreide
- Department of Gastrointestinal Surgery, Stavanger University Hospital, POB 8100, 4068, Stavanger, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hanne R Hagland
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Biology, Stavanger University Hospital, Stavanger, Norway.,Centre of Organelle Research (CORE), University of Stavanger, Stavanger, Norway
| | | |
Collapse
|
22
|
Joensuu EI, Nieminen TT, Lotsari JE, Pavicic W, Abdel-Rahman WM, Peltomäki P. Methyltransferase expression and tumor suppressor gene methylation in sporadic and familial colorectal cancer. Genes Chromosomes Cancer 2015; 54:776-787. [PMID: 26305882 DOI: 10.1002/gcc.22289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/01/2015] [Accepted: 07/13/2015] [Indexed: 12/16/2023] Open
Abstract
Molecular mechanisms underlying coordinated hypermethylation of multiple CpG islands in cancer remain unclear and studies of methyltransferase enzymes have arrived at conflicting results. We focused on DNMT1 and DNMT3B, DNA methyltransferases responsible for (de novo) methylation, and EZH2, histone (H3K27) methyltransferase, and examined their roles in tumor suppressor gene (TSG) methylation patterns we have previously established in sporadic and familial cancers. Our investigation comprised 165 tumors, stratified by tissue of origin (117 colorectal and 48 endometrial carcinomas) and sporadic vs. familial disease (57 sporadic vs. 60 familial, mainly Lynch syndrome, colorectal carcinomas). By immunohistochemical evaluation, EZH2 protein expression was associated with a TSG methylator phenotype. DNMT1, DNMT3B, and EZH2 were expressed at significantly higher levels in tumor vs. normal tissues. DNMT1 and EZH2 expression were positively correlated and higher in microsatellite-unstable vs. microsatellite-stable tumors, whether sporadic or hereditary. Ki-67 expression mirrored the same pattern. Promoter methylation of the methyltransferase genes themselves was addressed as a possible cause behind their altered expression. While DNMT1 or EZH2 did not show differential methylation between normal and tumor tissues, DNMT3B analysis corroborated the regulatory role of a distal promoter region. Our study shows that methyltransferase expression in cancer depends on the tissue of origin, microsatellite-instability status, cellular proliferation, and--in the case of DNMT3B--promoter methylation of the respective gene. Translation of methyltransferase expression into DNA methylation appears complex as suggested by the fact that except for EZH2, no clear association between methyltransferase protein expression and TSG methylation was observed.
Collapse
Affiliation(s)
- Emmi I Joensuu
- Department of Medical and Clinical Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Taina T Nieminen
- Department of Medical and Clinical Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Johanna E Lotsari
- Department of Medical and Clinical Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Walter Pavicic
- Department of Medical and Clinical Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Cytogenetics and Mutagenesis Unit, IMBICE-CONICET-CICPBA, La Plata, Argentina
| | - Wael M Abdel-Rahman
- Department of Medical and Clinical Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Levine AJ, Phipps AI, Baron JA, Buchanan DD, Ahnen DJ, Cohen SA, Lindor NM, Newcomb PA, Rosty C, Haile RW, Laird PW, Weisenberger DJ. Clinicopathologic Risk Factor Distributions for MLH1 Promoter Region Methylation in CIMP-Positive Tumors. Cancer Epidemiol Biomarkers Prev 2015; 25:68-75. [PMID: 26512054 DOI: 10.1158/1055-9965.epi-15-0935] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/14/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The CpG island methylator phenotype (CIMP) is a major molecular pathway in colorectal cancer. Approximately 25% to 60% of CIMP tumors are microsatellite unstable (MSI-H) due to DNA hypermethylation of the MLH1 gene promoter. Our aim was to determine if the distributions of clinicopathologic factors in CIMP-positive tumors with MLH1 DNA methylation differed from those in CIMP-positive tumors without DNA methylation of MLH1. METHODS We assessed the associations between age, sex, tumor-site, MSI status BRAF and KRAS mutations, and family colorectal cancer history with MLH1 methylation status in a large population-based sample of CIMP-positive colorectal cancers defined by a 5-marker panel using unconditional logistic regression to assess the odds of MLH1 methylation by study variables. RESULTS Subjects with CIMP-positive tumors without MLH1 methylation were significantly younger, more likely to be male, and more likely to have distal colon or rectal primaries and the MSI-L phenotype. CIMP-positive MLH1-unmethylated tumors were significantly less likely than CIMP-positive MLH1-methylated tumors to harbor a BRAF V600E mutation and significantly more likely to harbor a KRAS mutation. MLH1 methylation was associated with significantly better overall survival (HR, 0.50; 95% confidence interval, 0.31-0.82). CONCLUSIONS These data suggest that MLH1 methylation in CIMP-positive tumors is not a completely random event and implies that there are environmental or genetic determinants that modify the probability that MLH1 will become methylated during CIMP pathogenesis. IMPACT MLH1 DNA methylation status should be taken into account in etiologic studies.
Collapse
Affiliation(s)
- A Joan Levine
- Stanford Cancer Institute, Stanford University, Palo Alto, California.
| | - Amanda I Phipps
- Epidemiology Department, University of Washington, Seattle, Washington. Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - John A Baron
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Centre for Epidemiology and Biostatistics and Department of Pathology, The University of Melbourne, Victoria, Australia
| | - Dennis J Ahnen
- University of Colorado School of Medicine, Denver, Colorado
| | - Stacey A Cohen
- Division of Oncology, University of Washington, Seattle, Washington. Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Noralane M Lindor
- Clinical and Molecular Genetics, Department of Health Science Research, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Polly A Newcomb
- Epidemiology Department, University of Washington, Seattle, Washington. Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Christophe Rosty
- Envoi Pathology, Brisbane, QLD, The University of Melbourne, Melbourne, Australia. Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - Robert W Haile
- Stanford Cancer Institute, Stanford University, Palo Alto, California
| | - Peter W Laird
- Center for Epigenomics, Van Andel Research Institute, Grand Rapids, Michigan
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Biology, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California
| |
Collapse
|
24
|
Review of the development of DNA methylation as a marker of response to neoadjuvant therapy and outcomes in rectal cancer. Clin Epigenetics 2015. [PMID: 26203306 PMCID: PMC4511540 DOI: 10.1186/s13148-015-0111-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
There is much debate around the preoperative treatment of colorectal cancer and, in particular, neoadjuvant chemoradiotherapy in locally advanced rectal cancer. This treatment carries a significant risk of harmful side effects and has a highly variable response rate. Predictive biomarkers have been the subject of a great deal of study with the aim of pretreatment risk stratification in order to more accurately determine which patients will derive the most benefit and least harm from these treatments. The study of epigenetics in colorectal cancer is relatively recent, and distinct patterns of aberrant DNA methylation, in particular the cytosine-phosphate-guanine (CpG) island methylator phenotype (CIMP), have been demonstrated in colorectal cancer, and their characterisation and significance are under debate, particularly in rectal cancer. These patterns of DNA methylation have been associated with differences in response to therapy and treatment outcomes and therefore have the potential to be used as biomarkers in tailored therapy regimes for patients with rectal cancer. This review aims to summarise the current state of the art in rectal cancer, with particular regard to the determination of DNA methylation patterns, the CpG island methylator phenotype and its potential as a novel biomarker in rectal cancer treatment and prediction of outcomes and response after neoadjuvant chemoradiotherapy.
Collapse
|
25
|
Valo S, Kaur S, Ristimäki A, Renkonen-Sinisalo L, Järvinen H, Mecklin JP, Nyström M, Peltomäki P. DNA hypermethylation appears early and shows increased frequency with dysplasia in Lynch syndrome-associated colorectal adenomas and carcinomas. Clin Epigenetics 2015. [PMID: 26203307 PMCID: PMC4511034 DOI: 10.1186/s13148-015-0102-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Lynch syndrome (LS) is associated with germline mutations in DNA mismatch repair (MMR) genes. The first "hit" to inactivate one allele of the predisposing MMR gene is present in every cell, contributing to accelerated tumorigenesis. Less information is available of the nature, timing, and order of other molecular "hits" required for tumor development. To this end, MMR protein expression and coordinated promoter methylation were examined in colorectal specimens prospectively collected from LS mutation carriers (n = 55) during colonoscopy surveillance (10/2011-5/2013), supplemented with retrospective specimens. RESULTS Loss of MMR protein corresponding to the gene mutated in the germline increased with dysplasia, with frequency of 0 % in normal mucosa, 50-68 % in low-grade dysplasia adenomas, and 100 % in high-grade dysplasia adenomas and carcinomas. Promoter methylation as a putative "second hit" occurred in 1/56 (2 %) of tumors with silenced MMR protein. A general hypermethylation tendency was evaluated by two gene sets, eight CpG island methylator phenotype (CIMP) genes, and seven candidate tumor suppressor genes linked to colorectal carcinoma (CRC). Hypermethylation followed the same trend as MMR protein loss and was present in some low-grade dysplasia adenomas that still expressed MMR protein suggesting the absence of a "second hit." To assess prospectively collected normal mucosa for carcinogenic "fields," the specimen donors were stratified according to age at biopsy (50 years or below vs. above 50 years) and further according to the absence vs. presence of a (previous or concurrent) diagnosis of CRC. In mutation carriers over 50 years old, two markers from the candidate gene panel (SFRP1 and SLC5A8) revealed a significantly elevated average degree of methylation in individuals with CRC diagnosis vs. those without. CONCLUSIONS Our findings emphasize the importance and early appearance of epigenetic alterations in LS-associated tumorigenesis. The results serve early detection and assessment of progression of CRC.
Collapse
Affiliation(s)
- Satu Valo
- Division of Genetics, Department of Biosciences, University of Helsinki, Helsinki, Finland ; Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Sippy Kaur
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Ari Ristimäki
- Genome-Scale Biology, Research Programs Unit, University of Helsinki, Helsinki, Finland ; Department of Pathology, HUSLAB, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Laura Renkonen-Sinisalo
- Department of Gastrointestinal and General Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Heikki Järvinen
- Department of Gastrointestinal and General Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Jukka-Pekka Mecklin
- Department of Surgery, Jyväskylä Central Hospital, University of Eastern Finland, Jyväskylä, Finland
| | - Minna Nyström
- Division of Genetics, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Siraj AK, Prabhakaran S, Bavi P, Bu R, Beg S, Hazmi MA, Al-Rasheed M, Al-Assiri M, Sairafi R, Al-Dayel F, Al-Sanea N, Uddin S, Al-Kuraya KS. Prevalence of Lynch syndrome in a Middle Eastern population with colorectal cancer. Cancer 2015; 121:1762-1771. [PMID: 25712738 DOI: 10.1002/cncr.29288] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/30/2014] [Accepted: 01/08/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Lynch syndrome (LS; hereditary nonpolyposis colorectal cancer) is a common cause of hereditary colorectal cancer (CRC). CRC is the most common cancer diagnosed among males in Saudi Arabia but to the authors' knowledge there is a lack of data regarding the prevalence of LS in patients with CRC. There currently are no clear guidelines for the selection criteria for these patients to screen for LS. METHODS A comprehensive molecular characterization was performed in a cohort of 807 CRC cases by immunohistochemical and microsatellite analysis using polymerase chain reaction. BRAF mutation screening, high CpG island methylator phenotype, and analysis for germline mutations were performed in 425 CRC samples. These were all high microsatellite instability (MSI-H) samples (91 cases), all low MSI samples (143 cases), and selected cases from the microsatellite stable group (191 cases) that met revised Bethesda guidelines. RESULTS Polymerase chain reaction identified 91 MSI-H cases (11.3%) and sequencing revealed mismatch repair germline mutations in 8 CRC cases only. Of the total of 807 CRC cases, these 8 cases (0.99%) were MSI-H, met the revised Bethesda guidelines, and did not harbor BRAF mutations. CONCLUSIONS The results of the current study confirmed cases of LS in approximately 1.0% of CRC samples and reflects the efficacy of screening among MSI-H cases that lack BRAF mutations. This comprehensive study from Saudi Arabia will help in implementing a universal screening/reflex testing strategy in a clinical setting in Saudi Arabia and in conducting a national screening program that benefits both patients and their relatives.
Collapse
Affiliation(s)
- Abdul K Siraj
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sarita Prabhakaran
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Prashant Bavi
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Rong Bu
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Shaham Beg
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohsen Al Hazmi
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Maha Al-Rasheed
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | - Rami Sairafi
- Department of Surgery, Security Forces Hospital, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Nasser Al-Sanea
- Colorectal Unit, Department of Surgery, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Shahab Uddin
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Berg M, Nordgaard O, Kørner H, Oltedal S, Smaaland R, Søreide JA, Søreide K. Molecular subtypes in stage II-III colon cancer defined by genomic instability: early recurrence-risk associated with a high copy-number variation and loss of RUNX3 and CDKN2A. PLoS One 2015; 10:e0122391. [PMID: 25879218 PMCID: PMC4399912 DOI: 10.1371/journal.pone.0122391] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/20/2015] [Indexed: 01/02/2023] Open
Abstract
Objective We sought to investigate various molecular subtypes defined by genomic instability that may be related to early death and recurrence in colon cancer. Methods We sought to investigate various molecular subtypes defined by instability at microsatellites (MSI), changes in methylation patterns (CpG island methylator phenotype, CIMP) or copy number variation (CNV) in 8 genes. Stage II-III colon cancers (n = 64) were investigated by methylation-specific multiplex ligated probe amplification (MS-MLPA). Correlation of CNV, CIMP and MSI, with mutations in KRAS and BRAFV600E were assessed for overlap in molecular subtypes and early recurrence risk by uni- and multivariate regression. Results The CIMP phenotype occurred in 34% (22/64) and MSI in 27% (16/60) of the tumors, with noted CIMP/MSI overlap. Among the molecular subtypes, a high CNV phenotype had an associated odds ratio (OR) for recurrence of 3.2 (95% CI 1.1-9.3; P = 0.026). Losses of CACNA1G (OR of 2.9, 95% CI 1.4-6.0; P = 0.001), IGF2 (OR of 4.3, 95% CI 1.1-15.8; P = 0.007), CDKN2A (p16) (OR of 2.0, 95% CI 1.1-3.6; P = 0.024), and RUNX3 (OR of 3.4, 95% CI 1.3-8.7; P = 0.002) were associated with early recurrence, while MSI, CIMP, KRAS or BRAF V600E mutations were not. The CNV was significantly higher in deceased patients (CNV in 6 of 8) compared to survivors (CNV in 3 of 8). Only stage and loss of RUNX3 and CDKN2A were significant in the multivariable risk-model for early recurrence. Conclusions A high copy number variation phenotype is a strong predictor of early recurrence and death, and may indicate a dose-dependent relationship between genetic instability and outcome. Loss of tumor suppressors RUNX3 and CDKN2A were related to recurrence-risk and warrants further investigation.
Collapse
Affiliation(s)
- Marianne Berg
- Centre of Organelle Research (CORE), University of Stavanger, Stavanger, Norway
- Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway
| | - Oddmund Nordgaard
- Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Hartwig Kørner
- Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Satu Oltedal
- Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Rune Smaaland
- Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Jon Arne Søreide
- Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kjetil Søreide
- Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|