1
|
Izquierdo-Martinez A, Schäper S, Brito AD, Liao Q, Tesseur C, Sorg M, Botinas DS, Wang X, Pinho MG. Chromosome segregation dynamics during the cell cycle of Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638847. [PMID: 40027834 PMCID: PMC11870517 DOI: 10.1101/2025.02.18.638847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Research on chromosome organization and cell cycle progression in spherical bacteria, particularly Staphylococcus aureus, remains limited and fragmented. In this study, we established a working model to investigate chromosome dynamics in S. aureus using a Fluorescent Repressor-Operator System (FROS), which enabled precise localization of specific chromosomal loci. This approach revealed that the S. aureus cell cycle and chromosome replication cycle are not coupled, with cells exhibiting two segregated origins of replication at the start of the cell cycle. The chromosome has a specific origin-terminus-origin conformation, with origins localizing near the membrane, towards the tip of each hemisphere, or the "cell poles". We further used this system to assess the role of various proteins with a role in S. aureus chromosome biology, focusing on the ParB-parS and SMC-ScpAB systems. Our results demonstrate that ParB binds five parS chromosomal sequences and the resulting complexes influence chromosome conformation, but play a minor role in chromosome compaction and segregation. In contrast, the SMC-ScpAB complex plays a key role in S. aureus chromosome biology, contributing to chromosome compaction, segregation and spatial organization. Additionally, we systematically assessed and compared the impact of proteins linking chromosome segregation to cell division-Noc, FtsK, SpoIIIE and XerC-on origin and terminus number and positioning. This work provides a comprehensive study of the factors governing chromosome dynamics and organization in S. aureus, contributing to our knowledge on chromosome biology of spherical bacteria.
Collapse
Affiliation(s)
- Adrian Izquierdo-Martinez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Simon Schäper
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - António D. Brito
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Qin Liao
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Coralie Tesseur
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Moritz Sorg
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Daniela S. Botinas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Mariana G. Pinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| |
Collapse
|
2
|
Pulianmackal LT, Vecchiarelli AG. Positioning of cellular components by the ParA/MinD family of ATPases. Curr Opin Microbiol 2024; 79:102485. [PMID: 38723344 PMCID: PMC11407121 DOI: 10.1016/j.mib.2024.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 06/11/2024]
Abstract
The ParA/MinD (A/D) family of ATPases spatially organize an array of genetic- and protein-based cellular cargos across the bacterial and archaeal domains of life. By far, the two best-studied members, and family namesake, are ParA and MinD, involved in bacterial DNA segregation and divisome positioning, respectively. ParA and MinD make protein waves on the nucleoid or membrane to segregate chromosomes and position the divisome. Less studied is the growing list of A/D ATPases widespread across bacteria and implicated in the subcellular organization of diverse protein-based complexes and organelles involved in myriad biological processes, from metabolism to pathogenesis. Here we describe mechanistic commonality, variation, and coordination among the most widespread family of positioning ATPases used in the subcellular organization of disparate cargos across bacteria and archaea.
Collapse
Affiliation(s)
- Lisa T Pulianmackal
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Puentes-Rodriguez SG, Norcross J, Mera PE. To let go or not to let go: how ParA can impact the release of the chromosomal anchoring in Caulobacter crescentus. Nucleic Acids Res 2023; 51:12275-12287. [PMID: 37933842 PMCID: PMC10711552 DOI: 10.1093/nar/gkad982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023] Open
Abstract
Chromosomal maintenance is vital for the survival of bacteria. In Caulobacter crescentus, chromosome replication initiates at ori and segregation is delayed until the nearby centromere-like region parS is replicated. Our understanding of how this sequence of events is regulated remains limited. The segregation of parS has been shown to involve multiple steps including polar release from anchoring protein PopZ, slow movement and fast ParA-dependent movement to the opposite cell pole. In this study, we demonstrate that ParA's competing attractions from PopZ and from DNA are critical for segregation of parS. Interfering with this balance of attractions-by expressing a variant ParA-R195E unable to bind DNA and thus favoring interactions exclusively between ParA-PopZ-results in cell death. Our data revealed that ParA-R195E's sole interactions with PopZ obstruct PopZ's ability to release the polar anchoring of parS, resulting in cells with multiple parS loci fixed at one cell pole. We show that the inability to separate and segregate multiple parS loci from the pole is specifically dependent on the interaction between ParA and PopZ. Collectively, our results reveal that the initial steps in chromosome segregation are highly regulated.
Collapse
Affiliation(s)
| | - John D Norcross
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paola E Mera
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
4
|
Kaljević J, Tesseur C, Le TBK, Laloux G. Cell cycle-dependent organization of a bacterial centromere through multi-layered regulation of the ParABS system. PLoS Genet 2023; 19:e1010951. [PMID: 37733798 PMCID: PMC10547168 DOI: 10.1371/journal.pgen.1010951] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/03/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
The accurate distribution of genetic material is crucial for all organisms. In most bacteria, chromosome segregation is achieved by the ParABS system, in which the ParB-bound parS sequence is actively partitioned by ParA. While this system is highly conserved, its adaptation in organisms with unique lifestyles and its regulation between developmental stages remain largely unexplored. Bdellovibrio bacteriovorus is a predatory bacterium proliferating through polyploid replication and non-binary division inside other bacteria. Our study reveals the subcellular dynamics and multi-layered regulation of the ParABS system, coupled to the cell cycle of B. bacteriovorus. We found that ParA:ParB ratios fluctuate between predation stages, their balance being critical for cell cycle progression. Moreover, the parS chromosomal context in non-replicative cells, combined with ParB depletion at cell division, critically contribute to the unique cell cycle-dependent organization of the centromere in this bacterium, highlighting new levels of complexity in chromosome segregation and cell cycle control.
Collapse
Affiliation(s)
| | | | - Tung B. K. Le
- John Innes Centre, Department of Molecular Microbiology, Norwich, United Kingdom
| | | |
Collapse
|
5
|
Kishore V, Gaiwala Sharma SS, Raghunand TR. Septum site placement in Mycobacteria - identification and characterisation of mycobacterial homologues of Escherichia coli MinD. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001359. [PMID: 37526955 PMCID: PMC10482377 DOI: 10.1099/mic.0.001359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/22/2023] [Indexed: 08/02/2023]
Abstract
A major virulence trait of Mycobacterium tuberculosis (M. tb) is its ability to enter a dormant state within its human host. Since cell division is intimately linked to metabolic shut down, understanding the mechanism of septum formation and its integration with other events in the division pathway is likely to offer clues to the molecular basis of dormancy. The M. tb genome lacks obvious homologues of several conserved cell division proteins, and this study was aimed at identifying and functionally characterising mycobacterial homologues of the E. coli septum site specification protein MinD (Ec MinD). Sequence homology based analyses suggested that the genomes of both M. tb and the saprophyte Mycobacterium smegmatis (M. smegmatis) encode two putative Ec MinD homologues - Rv1708/MSMEG_3743 and Rv3660c/ MSMEG_6171. Of these, Rv1708/MSMEG_3743 were found to be the true homologues, through complementation of the E. coli ∆minDE mutant HL1, overexpression studies, and structural comparisons. Rv1708 and MSMEG_3743 fully complemented the mini-cell phenotype of HL1, and over-expression of MSMEG_3743 in M. smegmatis led to cell elongation and a drastic decrease in c.f.u. counts, indicating its essentiality in cell-division. MSMEG_3743 displayed ATPase activity, consistent with its containing a conserved Walker A motif. Interaction of Rv1708 with the chromosome associated proteins ScpA and ParB, implied a link between its septum formation role, and chromosome segregation. Comparative structural analyses showed Rv1708 to be closer in similarity to Ec MinD than Rv3660c. In summary we identify Rv1708 and MSMEG_3743 to be homologues of Ec MinD, adding a critical missing piece to the mycobacterial cell division puzzle.
Collapse
Affiliation(s)
- Vimal Kishore
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road Hyderabad - 500007, India
- Present address: National Centre for Cell Science (NCCS), NCCS Complex, University of Pune Campus, Pune University Rd, Ganeshkhind, Pune, 411007, India
| | - Sujata S. Gaiwala Sharma
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road Hyderabad - 500007, India
- Present address: Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Tirumalai R. Raghunand
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road Hyderabad - 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
6
|
Seidel M, Skotnicka D, Glatter T, Søgaard-Andersen L. During heat stress in Myxococcus xanthus, the CdbS PilZ domain protein, in concert with two PilZ-DnaK chaperones, perturbs chromosome organization and accelerates cell death. PLoS Genet 2023; 19:e1010819. [PMID: 37339150 PMCID: PMC10313047 DOI: 10.1371/journal.pgen.1010819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/30/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
C-di-GMP is a bacterial second messenger that regulates diverse processes in response to environmental or cellular cues. The nucleoid-associated protein (NAP) CdbA in Myxococcus xanthus binds c-di-GMP and DNA in a mutually exclusive manner in vitro. CdbA is essential for viability, and CdbA depletion causes defects in chromosome organization, leading to a block in cell division and, ultimately, cell death. Most NAPs are not essential; therefore, to explore the paradoxical cdbA essentiality, we isolated suppressor mutations that restored cell viability without CdbA. Most mutations mapped to cdbS, which encodes a stand-alone c-di-GMP binding PilZ domain protein, and caused loss-of-function of cdbS. Cells lacking CdbA and CdbS or only CdbS were fully viable and had no defects in chromosome organization. CdbA depletion caused post-transcriptional upregulation of CdbS accumulation, and this CdbS over-accumulation was sufficient to disrupt chromosome organization and cause cell death. CdbA depletion also caused increased accumulation of CsdK1 and CsdK2, two unusual PilZ-DnaK chaperones. During CdbA depletion, CsdK1 and CsdK2, in turn, enabled the increased accumulation and toxicity of CdbS, likely by stabilizing CdbS. Moreover, we demonstrate that heat stress, possibly involving an increased cellular c-di-GMP concentration, induced the CdbA/CsdK1/CsdK2/CdbS system, causing a CsdK1- and CsdK2-dependent increase in CdbS accumulation. Thereby this system accelerates heat stress-induced chromosome mis-organization and cell death. Collectively, this work describes a unique system that contributes to regulated cell death in M. xanthus and suggests a link between c-di-GMP signaling and regulated cell death in bacteria.
Collapse
Affiliation(s)
- Michael Seidel
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Dorota Skotnicka
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Core Facility for Mass Spectrometry & Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
7
|
Puentes-Rodriguez SG, Norcross J, Mera PE. To let go or not to let go: how ParA can impact the release of the chromosomal anchoring in Caulobacter crescentus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536610. [PMID: 37090538 PMCID: PMC10120649 DOI: 10.1101/2023.04.12.536610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Chromosomal maintenance is vital for the survival of bacteria. In Caulobacter crescentus, chromosome replication initiates at ori and segregation is delayed until the nearby centromere-like region parS is replicated. Our understanding of how this sequence of events is regulated remains limited. The segregation of parS has been shown to involve multiple steps including polar release from anchoring protein PopZ, slow movement, and fast ParA-dependent movement to opposite cell pole. In this study, we demonstrate that ParA's competing attractions from PopZ and from DNA are critical for segregation of parS. Interfering with this balance of attractions - by expressing a variant ParA-R195E unable to bind DNA and thus favoring interactions exclusively between ParA-PopZ - results in cell death. Our data revealed that ParA-R195E's sole interactions with PopZ obstruct PopZ's ability to release the polar anchoring of parS resulting in cells with multiple parS loci fixed at one cell pole. We show that the inability to separate and segregate multiple parS loci from the pole is specifically dependent on the interaction between ParA and PopZ. Interfering with interactions between PopZ and the partitioning protein ParB, which is the interaction that anchors parS at the cell pole, does not rescue the ability of cells to separate the fixed parS loci when expressing parA-R195E. Thus, ParA and PopZ appear to have a distinct conversation from ParB yet can impact the release of ParB-parS from the anchoring at the cell pole. Collectively, our results reveal that the initial steps in chromosome segregation are highly regulated.
Collapse
Affiliation(s)
| | - J.D. Norcross
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paola E. Mera
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
8
|
Abstract
Maintaining proper chromosome inheritance after the completion of each cell cycle is paramount for bacterial survival. Mechanistic details remain incomplete for how bacteria manage to retain complete chromosomes after each cell cycle. In this study, we examined the potential roles of the partitioning protein ParA on chromosomal maintenance that go beyond triggering the onset of chromosome segregation in Caulobacter crescentus. Our data revealed that increasing the levels of ParA result in cells with multiple origins of replication in a DnaA-ATP-dependent manner. This ori supernumerary is retained even when expressing variants of ParA that are deficient in promoting chromosome segregation. Our data suggest that in Caulobacter ParA's impact on replication initiation is likely indirect, possibly through the effect of other cell cycle events. Overall, our data provide new insights into the highly interconnected network that drives the forward progression of the bacterial cell cycle. IMPORTANCE The successful generation of a daughter cell containing a complete copy of the chromosome requires the exquisite coordination of major cell cycle events. Any mistake in this coordination can be lethal, making these processes ideal targets for novel antibiotics. In this study, we focused on the coordination between the onset of chromosome replication, and the partitioning protein ParA. We demonstrate that altering the cellular levels of ParA causes cells to accumulate multiple origins of replication in Caulobacter crescentus. Our work provides important insights into the complex regulation involved in the coordination of the bacterial cell cycle.
Collapse
|
9
|
Roberts DM. A new role for monomeric ParA/Soj in chromosome dynamics in Bacillus subtilis. Microbiologyopen 2023; 12:e1344. [PMID: 36825885 PMCID: PMC9841721 DOI: 10.1002/mbo3.1344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
ParABS (Soj-Spo0J) systems were initially implicated in plasmid and chromosome segregation in bacteria. However, it is now increasingly understood that they play multiple roles in cell cycle events in Bacillus subtilis, and possibly other bacteria. In a recent study, monomeric forms of ParA/Soj have been implicated in regulating aspects of chromosome dynamics during B. subtilis sporulation. In this commentary, I will discuss the known roles of ParABS systems, explore why sporulation is a valuable model for studying these proteins, and the new insights into the role of monomeric ParA/Soj. Finally, I will touch upon some of the future work that remains.
Collapse
|
10
|
Takacs CN, Wachter J, Xiang Y, Ren Z, Karaboja X, Scott M, Stoner MR, Irnov I, Jannetty N, Rosa PA, Wang X, Jacobs-Wagner C. Polyploidy, regular patterning of genome copies, and unusual control of DNA partitioning in the Lyme disease spirochete. Nat Commun 2022; 13:7173. [PMID: 36450725 PMCID: PMC9712426 DOI: 10.1038/s41467-022-34876-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Borrelia burgdorferi, the tick-transmitted spirochete agent of Lyme disease, has a highly segmented genome with a linear chromosome and various linear or circular plasmids. Here, by imaging several chromosomal loci and 16 distinct plasmids, we show that B. burgdorferi is polyploid during growth in culture and that the number of genome copies decreases during stationary phase. B. burgdorferi is also polyploid inside fed ticks and chromosome copies are regularly spaced along the spirochete's length in both growing cultures and ticks. This patterning involves the conserved DNA partitioning protein ParA whose localization is controlled by a potentially phage-derived protein, ParZ, instead of its usual partner ParB. ParZ binds its own coding region and acts as a centromere-binding protein. While ParA works with ParZ, ParB controls the localization of the condensin, SMC. Together, the ParA/ParZ and ParB/SMC pairs ensure faithful chromosome inheritance. Our findings underscore the plasticity of cellular functions, even those as fundamental as chromosome segregation.
Collapse
Affiliation(s)
- Constantin N Takacs
- Department of Biology, Stanford University, Palo Alto, CA, USA
- Sarafan ChEM-H Institute, Stanford University, Palo Alto, CA, USA
- The Howard Hughes Medical Institute, Palo Alto, CA, USA
| | - Jenny Wachter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Bacterial Vaccine Development Group, Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yingjie Xiang
- Department of Mechanical Engineering, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale West Campus, West Haven, CT, USA
| | - Zhongqing Ren
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Xheni Karaboja
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Molly Scott
- Microbial Sciences Institute, Yale West Campus, West Haven, CT, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Matthew R Stoner
- The Howard Hughes Medical Institute, Palo Alto, CA, USA
- Microbial Sciences Institute, Yale West Campus, West Haven, CT, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Irnov Irnov
- Department of Biology, Stanford University, Palo Alto, CA, USA
- Sarafan ChEM-H Institute, Stanford University, Palo Alto, CA, USA
- The Howard Hughes Medical Institute, Palo Alto, CA, USA
| | - Nicholas Jannetty
- The Howard Hughes Medical Institute, Palo Alto, CA, USA
- Microbial Sciences Institute, Yale West Campus, West Haven, CT, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Patricia A Rosa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, IN, USA.
| | - Christine Jacobs-Wagner
- Department of Biology, Stanford University, Palo Alto, CA, USA.
- Sarafan ChEM-H Institute, Stanford University, Palo Alto, CA, USA.
- The Howard Hughes Medical Institute, Palo Alto, CA, USA.
| |
Collapse
|
11
|
Osorio-Valeriano M, Altegoer F, Das CK, Steinchen W, Panis G, Connolley L, Giacomelli G, Feddersen H, Corrales-Guerrero L, Giammarinaro PI, Hanßmann J, Bramkamp M, Viollier PH, Murray S, Schäfer LV, Bange G, Thanbichler M. The CTPase activity of ParB determines the size and dynamics of prokaryotic DNA partition complexes. Mol Cell 2021; 81:3992-4007.e10. [PMID: 34562373 DOI: 10.1016/j.molcel.2021.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/27/2021] [Accepted: 08/31/2021] [Indexed: 01/29/2023]
Abstract
ParB-like CTPases mediate the segregation of bacterial chromosomes and low-copy number plasmids. They act as DNA-sliding clamps that are loaded at parS motifs in the centromere of target DNA molecules and spread laterally to form large nucleoprotein complexes serving as docking points for the DNA segregation machinery. Here, we solve crystal structures of ParB in the pre- and post-hydrolysis state and illuminate the catalytic mechanism of nucleotide hydrolysis. Moreover, we identify conformational changes that underlie the CTP- and parS-dependent closure of ParB clamps. The study of CTPase-deficient ParB variants reveals that CTP hydrolysis serves to limit the sliding time of ParB clamps and thus drives the establishment of a well-defined ParB diffusion gradient across the centromere whose dynamics are critical for DNA segregation. These findings clarify the role of the ParB CTPase cycle in partition complex assembly and function and thus advance our understanding of this prototypic CTP-dependent molecular switch.
Collapse
Affiliation(s)
- Manuel Osorio-Valeriano
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Florian Altegoer
- Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Chandan K Das
- Theoretical Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Wieland Steinchen
- Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Lara Connolley
- Department of Systems & Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Giacomo Giacomelli
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| | - Helge Feddersen
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| | | | - Pietro I Giammarinaro
- Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Juri Hanßmann
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | - Marc Bramkamp
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Seán Murray
- Department of Systems & Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Lars V Schäfer
- Theoretical Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Gert Bange
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany.
| |
Collapse
|
12
|
Szafran MJ, Jakimowicz D, Elliot MA. Compaction and control-the role of chromosome-organizing proteins in Streptomyces. FEMS Microbiol Rev 2021; 44:725-739. [PMID: 32658291 DOI: 10.1093/femsre/fuaa028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Chromosomes are dynamic entities, whose organization and structure depend on the concerted activity of DNA-binding proteins and DNA-processing enzymes. In bacteria, chromosome replication, segregation, compaction and transcription are all occurring simultaneously, and to ensure that these processes are appropriately coordinated, all bacteria employ a mix of well-conserved and species-specific proteins. Unusually, Streptomyces bacteria have large, linear chromosomes and life cycle stages that include multigenomic filamentous hyphae and unigenomic spores. Moreover, their prolific secondary metabolism yields a wealth of bioactive natural products. These different life cycle stages are associated with profound changes in nucleoid structure and chromosome compaction, and require distinct repertoires of architectural-and regulatory-proteins. To date, chromosome organization is best understood during Streptomyces sporulation, when chromosome segregation and condensation are most evident, and these processes are coordinated with synchronous rounds of cell division. Advances are, however, now being made in understanding how chromosome organization is achieved in multigenomic hyphal compartments, in defining the functional and regulatory interplay between different architectural elements, and in appreciating the transcriptional control exerted by these 'structural' proteins.
Collapse
Affiliation(s)
- Marcin J Szafran
- Laboratory of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Dagmara Jakimowicz
- Laboratory of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Marie A Elliot
- Department of Biology, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
13
|
Anand D, Schumacher D, Søgaard-Andersen L. SMC and the bactofilin/PadC scaffold have distinct yet redundant functions in chromosome segregation and organization in Myxococcus xanthus. Mol Microbiol 2020; 114:839-856. [PMID: 32738827 DOI: 10.1111/mmi.14583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/22/2020] [Indexed: 12/20/2022]
Abstract
In bacteria, ParABS systems and structural maintenance of chromosome (SMC) condensin-like complexes are important for chromosome segregation and organization. The rod-shaped Myxococcus xanthus cells have a unique chromosome arrangement in which a scaffold composed of the BacNOP bactofilins and PadC positions the essential ParB∙parS segregation complexes and the DNA segregation ATPase ParA in the subpolar regions. We identify the Smc and ScpAB subunits of the SMC complex in M. xanthus and demonstrate that SMC is conditionally essential, with Δsmc or ΔscpAB mutants being temperature sensitive. Inactivation of SMC caused defects in chromosome segregation and organization. Lack of the BacNOP/PadC scaffold also caused chromosome segregation defects but this scaffold is not essential for viability. Inactivation of SMC was synthetic lethal with lack of the BacNOP/PadC scaffold. Lack of SMC interfered with formation of the BacNOP/PadC scaffold while lack of this scaffold did not interfere with chromosome association by SMC. Altogether, our data support that three systems function together to enable chromosome segregation in M. xanthus. ParABS constitutes the basic and essential machinery. SMC and the BacNOP/PadC scaffold have different yet redundant roles in chromosome segregation with SMC supporting individualization of daughter chromosomes and BacNOP/PadC making the ParABS system operate more robustly.
Collapse
Affiliation(s)
- Deepak Anand
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Dominik Schumacher
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
14
|
Abstract
Proper chromosome segregation during cell division is essential in all domains of life. In the majority of bacterial species, faithful chromosome segregation is mediated by the tripartite ParABS system, consisting of an ATPase protein ParA, a CTPase and DNA-binding protein ParB, and a centromere-like parS site. The parS site is most often located near the origin of replication and is segregated first after chromosome replication. ParB nucleates on parS before binding to adjacent non-specific DNA to form a multimeric nucleoprotein complex. ParA interacts with ParB to drive the higher-order ParB–DNA complex, and hence the replicating chromosomes, to each daughter cell. Here, we review the various models for the formation of the ParABS complex and describe its role in segregating the origin-proximal region of the chromosome. Additionally, we discuss outstanding questions and challenges in understanding bacterial chromosome segregation.
Collapse
Affiliation(s)
- Adam S B Jalal
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
15
|
CdbA is a DNA-binding protein and c-di-GMP receptor important for nucleoid organization and segregation in Myxococcus xanthus. Nat Commun 2020; 11:1791. [PMID: 32286293 PMCID: PMC7156744 DOI: 10.1038/s41467-020-15628-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/19/2020] [Indexed: 01/04/2023] Open
Abstract
Cyclic di-GMP (c-di-GMP) is a second messenger that modulates multiple responses to environmental and cellular signals in bacteria. Here we identify CdbA, a DNA-binding protein of the ribbon-helix-helix family that binds c-di-GMP in Myxococcus xanthus. CdbA is essential for viability, and its depletion causes defects in chromosome organization and segregation leading to a block in cell division. The protein binds to the M. xanthus genome at multiple sites, with moderate sequence specificity; however, its depletion causes only modest changes in transcription. The interactions of CdbA with c-di-GMP and DNA appear to be mutually exclusive and residue substitutions in CdbA regions important for c-di-GMP binding abolish binding to both c-di-GMP and DNA, rendering these protein variants non-functional in vivo. We propose that CdbA acts as a nucleoid-associated protein that contributes to chromosome organization and is modulated by c-di-GMP, thus revealing a link between c-di-GMP signaling and chromosome biology. The second messenger c-di-GMP modulates multiple responses to environmental and cellular signals in bacteria. Here, Skotnicka et al. identify a protein that binds c-di-GMP and contributes to chromosome organization and segregation in Myxococcus xanthus, with DNA-binding activity regulated by c-di-GMP.
Collapse
|
16
|
Kawalek A, Wawrzyniak P, Bartosik AA, Jagura-Burdzy G. Rules and Exceptions: The Role of Chromosomal ParB in DNA Segregation and Other Cellular Processes. Microorganisms 2020; 8:E105. [PMID: 31940850 PMCID: PMC7022226 DOI: 10.3390/microorganisms8010105] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
The segregation of newly replicated chromosomes in bacterial cells is a highly coordinated spatiotemporal process. In the majority of bacterial species, a tripartite ParAB-parS system, composed of an ATPase (ParA), a DNA-binding protein (ParB), and its target(s) parS sequence(s), facilitates the initial steps of chromosome partitioning. ParB nucleates around parS(s) located in the vicinity of newly replicated oriCs to form large nucleoprotein complexes, which are subsequently relocated by ParA to distal cellular compartments. In this review, we describe the role of ParB in various processes within bacterial cells, pointing out interspecies differences. We outline recent progress in understanding the ParB nucleoprotein complex formation and its role in DNA segregation, including ori positioning and anchoring, DNA condensation, and loading of the structural maintenance of chromosome (SMC) proteins. The auxiliary roles of ParBs in the control of chromosome replication initiation and cell division, as well as the regulation of gene expression, are discussed. Moreover, we catalog ParB interacting proteins. Overall, this work highlights how different bacterial species adapt the DNA partitioning ParAB-parS system to meet their specific requirements.
Collapse
Affiliation(s)
| | | | | | - Grazyna Jagura-Burdzy
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (A.K.); (P.W.); (A.A.B.)
| |
Collapse
|
17
|
Chien HL, Huang WZ, Tsai MY, Cheng CH, Liu CT. Overexpression of the Chromosome Partitioning Gene parA in Azorhizobium caulinodans ORS571 Alters the Bacteroid Morphotype in Sesbania rostrata Stem Nodules. Front Microbiol 2019; 10:2422. [PMID: 31749773 PMCID: PMC6842974 DOI: 10.3389/fmicb.2019.02422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/07/2019] [Indexed: 11/13/2022] Open
Abstract
Azorhizobium caulinodans ORS571 is a diazotroph that forms N2-fixing nodules on the roots and stems of the tropical legume Sesbania rostrata. Deletion of the parA gene of this bacterium results in cell cycle defects, pleiomorphic cell shape, and formation of immature stem nodules on its host plant. In this study, we constructed a parA overexpression mutant (PnptII-parA) to complement a previous study and provide new insights into bacteroid formation. We found that overproduction of ParA did not affect growth, cell morphology, chromosome partitioning, or vegetative nitrogen fixation in the free-living state. Under symbiosis, however, distinctive features, such as a single swollen bacteroid in one symbiosome, relatively narrow symbiosome space, and polyploid cells were observed. The morphotype of the PnptII-parA bacteroid is reminiscent of terminal differentiation in some IRLC indeterminate nodules, but S. rostrata is not thought to produce the NCR peptides that induce terminal differentiation in rhizobia. In addition, the transcript patterns of many symbiosis-related genes elicited by PnptII-parA were different from those elicited by the wild type. Accordingly, we propose that the particular symbiosome formation in PnptII-parA stem-nodules is due to cell cycle disruption caused by excess ParA protein in the symbiotic cells during nodulation.
Collapse
Affiliation(s)
- Hsiao-Lin Chien
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Wan-Zhen Huang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ming-Yen Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chiung-Hsiang Cheng
- Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Te Liu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
18
|
Weber PM, Moessel F, Paredes GF, Viehboeck T, Vischer NO, Bulgheresi S. A Bidimensional Segregation Mode Maintains Symbiont Chromosome Orientation toward Its Host. Curr Biol 2019; 29:3018-3028.e4. [DOI: 10.1016/j.cub.2019.07.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/24/2019] [Accepted: 07/22/2019] [Indexed: 11/24/2022]
|
19
|
Two-step chromosome segregation in the stalked budding bacterium Hyphomonas neptunium. Nat Commun 2019; 10:3290. [PMID: 31337764 PMCID: PMC6650430 DOI: 10.1038/s41467-019-11242-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022] Open
Abstract
Chromosome segregation typically occurs after replication has finished in eukaryotes but during replication in bacteria. Here, we show that the alphaproteobacterium Hyphomonas neptunium, which proliferates by bud formation at the tip of a stalk-like cellular extension, segregates its chromosomes in a unique two-step process. First, the two sister origin regions are targeted to opposite poles of the mother cell, driven by the ParABS partitioning system. Subsequently, once the bulk of chromosomal DNA has been replicated and the bud exceeds a certain threshold size, the cell initiates a second segregation step during which it transfers the stalk-proximal origin region through the stalk into the nascent bud compartment. Thus, while chromosome replication and segregation usually proceed concurrently in bacteria, the two processes are largely uncoupled in H. neptunium, reminiscent of eukaryotic mitosis. These results indicate that stalked budding bacteria have evolved specific mechanisms to adjust chromosome segregation to their unusual life cycle.
Collapse
|
20
|
Kawalek A, Bartosik AA, Glabski K, Jagura-Burdzy G. Pseudomonas aeruginosa partitioning protein ParB acts as a nucleoid-associated protein binding to multiple copies of a parS-related motif. Nucleic Acids Res 2019; 46:4592-4606. [PMID: 29648658 PMCID: PMC5961200 DOI: 10.1093/nar/gky257] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/28/2018] [Indexed: 12/16/2022] Open
Abstract
ParA and ParB homologs are involved in accurate chromosome segregation in bacteria. ParBs participate in the separation of ori domains by binding to parS palindromes, mainly localized close to oriC. In Pseudomonas aeruginosa neither ParB deficiency nor modification of all 10 parSs is lethal. However, such mutants show not only defects in chromosome segregation but also growth retardation and motility dysfunctions. Moreover, a lack of parB alters expression of over 1000 genes, suggesting that ParB could interact with the chromosome outside its canonical parS targets. Here, we show that indeed ParB binds specifically to hundreds of sites in the genome. ChIP-seq analysis revealed 420 ParB-associated regions in wild-type strain and around 1000 in a ParB-overproducing strain and in various parS mutants. The vast majority of the ParB-enriched loci contained a heptanucleotide motif corresponding to one arm of the parS palindrome. All previously postulated parSs, except parS5, interacted with ParB in vivo. Whereas the ParB binding to the four parS sites closest to oriC, parS1-4, is involved in chromosome segregation, its genome-wide interactions with hundreds of parS half-sites could affect chromosome topology, compaction and gene expression, thus allowing P. aeruginosa ParB to be classified as a nucleoid-associated protein.
Collapse
Affiliation(s)
- Adam Kawalek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Aneta A Bartosik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Krzysztof Glabski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Grazyna Jagura-Burdzy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
21
|
Random Chromosome Partitioning in the Polyploid Bacterium Thermus thermophilus HB27. G3-GENES GENOMES GENETICS 2019; 9:1249-1261. [PMID: 30792193 PMCID: PMC6469415 DOI: 10.1534/g3.119.400086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Little is known about chromosome segregation in polyploid prokaryotes. In this study, whether stringent or variable chromosome segregation occurs in polyploid thermophilic bacterium Thermus thermophilus was analyzed. A stable heterozygous strain (HL01) containing two antibiotic resistance markers at one gene locus was generated. The inheritance of the two alleles in the progeny of the heterozygous strain was then followed. During incubation without selection pressure, the fraction of heterozygous cells decreased and that of homozygous cells increased, while the relative abundance of each allele in the whole population remained constant, suggesting chromosome segregation had experienced random event. Consistently, in comparison with Bacillus subtilis in which the sister chromosomes were segregated equally, the ratios of DNA content in two daughter cells of T. thermophilus had a broader distribution and a larger standard deviation, indicating that the DNA content in the two daughter cells was not always identical. Further, the protein homologs (i.e., ParA and MreB) which have been suggested to be involved in bacterial chromosome partitioning did not actively participate in the chromosome segregation in T. thermophilus. Therefore, it seems that protein-based chromosome segregation machineries are less critical for the polyploid T. thermophilus, and chromosome segregation in this bacterium are not stringently controlled but tend to be variable, and random segregation can occur.
Collapse
|
22
|
Marczynski GT, Petit K, Patel P. Crosstalk Regulation Between Bacterial Chromosome Replication and Chromosome Partitioning. Front Microbiol 2019; 10:279. [PMID: 30863373 PMCID: PMC6399470 DOI: 10.3389/fmicb.2019.00279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/04/2019] [Indexed: 12/14/2022] Open
Abstract
Despite much effort, the bacterial cell cycle has proved difficult to study and understand. Bacteria do not conform to the standard eukaryotic model of sequential cell-cycle phases. Instead, for example, bacteria overlap their phases of chromosome replication and chromosome partitioning. In “eukaryotic terms,” bacteria simultaneously perform “S-phase” and “mitosis” whose coordination is absolutely required for rapid growth and survival. In this review, we focus on the signaling “crosstalk,” meaning the signaling mechanisms that advantageously commit bacteria to start both chromosome replication and chromosome partitioning. After briefly reviewing the molecular mechanisms of replication and partitioning, we highlight the crosstalk research from Bacillus subtilis, Vibrio cholerae, and Caulobacter crescentus. As the initiator of chromosome replication, DnaA also mediates crosstalk in each of these model bacteria but not always in the same way. We next focus on the C. crescentus cell cycle and describe how it is revealing novel crosstalk mechanisms. Recent experiments show that the novel nucleoid associated protein GapR has a special role(s) in starting and separating the replicating chromosomes, so that upon asymmetric cell division, the new chromosomes acquire different fates in C. crescentus’s distinct replicating and non-replicating cell types. The C. crescentus PopZ protein forms a special cell-pole organizing matrix that anchors the chromosomes through their centromere-like DNA sequences near the origin of replication. We also describe how PopZ anchors and interacts with several key cell-cycle regulators, thereby providing an organized subcellular environment for more novel crosstalk mechanisms.
Collapse
Affiliation(s)
- Gregory T Marczynski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Kenny Petit
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Priya Patel
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
23
|
Hürtgen D, Murray SM, Mascarenhas J, Sourjik V. DNA Segregation in Natural and Synthetic Minimal Systems. ACTA ACUST UNITED AC 2019; 3:e1800316. [DOI: 10.1002/adbi.201800316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/18/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel Hürtgen
- MPI for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (Synmikro) Marburg 35043 Germany
| | - Seán M. Murray
- MPI for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (Synmikro) Marburg 35043 Germany
| | - Judita Mascarenhas
- MPI for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (Synmikro) Marburg 35043 Germany
| | - Victor Sourjik
- MPI for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (Synmikro) Marburg 35043 Germany
| |
Collapse
|
24
|
Abstract
Spatial organization is a hallmark of all living systems. Even bacteria, the smallest forms of cellular life, display defined shapes and complex internal organization, showcasing a highly structured genome, cytoskeletal filaments, localized scaffolding structures, dynamic spatial patterns, active transport, and occasionally, intracellular organelles. Spatial order is required for faithful and efficient cellular replication and offers a powerful means for the development of unique biological properties. Here, we discuss organizational features of bacterial cells and highlight how bacteria have evolved diverse spatial mechanisms to overcome challenges cells face as self-replicating entities.
Collapse
|
25
|
Schumacher D, Søgaard-Andersen L. Fluorescence Live-cell Imaging of the Complete Vegetative Cell Cycle of the Slow-growing Social Bacterium Myxococcus xanthus. J Vis Exp 2018. [PMID: 29985348 PMCID: PMC6101962 DOI: 10.3791/57860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Fluorescence live-cell imaging of bacterial cells is a key method in the analysis of the spatial and temporal dynamics of proteins and chromosomes underlying central cell cycle events. However, imaging of these molecules in slow-growing bacteria represents a challenge due to photobleaching of fluorophores and phototoxicity during image acquisition. Here, we describe a simple protocol to circumvent these limitations in the case of Myxococcus xanthus (which has a generation time of 4 - 6 h). To this end, M. xanthus cells are grown on a thick nutrient-containing agar pad in a temperature-controlled humid environment. Under these conditions, we determine the doubling time of individual cells by following the growth of single cells. Moreover, key cellular processes such as chromosome segregation and cell division can be imaged by fluorescence live-cell imaging of cells containing relevant fluorescently labeled marker proteins such as ParB-YFP, FtsZ-GFP, and mCherry-PomX over multiple cell cycles. Subsequently, the acquired images are processed to generate montages and/or movies.
Collapse
Affiliation(s)
- Dominik Schumacher
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology
| | | |
Collapse
|
26
|
Logsdon MM, Aldridge BB. Stable Regulation of Cell Cycle Events in Mycobacteria: Insights From Inherently Heterogeneous Bacterial Populations. Front Microbiol 2018; 9:514. [PMID: 29619019 PMCID: PMC5871693 DOI: 10.3389/fmicb.2018.00514] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/06/2018] [Indexed: 11/24/2022] Open
Abstract
Model bacteria, such as E. coli and B. subtilis, tightly regulate cell cycle progression to achieve consistent cell size distributions and replication dynamics. Many of the hallmark features of these model bacteria, including lateral cell wall elongation and symmetric growth and division, do not occur in mycobacteria. Instead, mycobacterial growth is characterized by asymmetric polar growth and division. This innate asymmetry creates unequal birth sizes and growth rates for daughter cells with each division, generating a phenotypically heterogeneous population. Although the asymmetric growth patterns of mycobacteria lead to a larger variation in birth size than typically seen in model bacterial populations, the cell size distribution is stable over time. Here, we review the cellular mechanisms of growth, division, and cell cycle progression in mycobacteria in the face of asymmetry and inherent heterogeneity. These processes coalesce to control cell size. Although Mycobacterium smegmatis and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) utilize a novel model of cell size control, they are similar to previously studied bacteria in that initiation of DNA replication is a key checkpoint for cell division. We compare the regulation of DNA replication initiation and strategies used for cell size homeostasis in mycobacteria and model bacteria. Finally, we review the importance of cellular organization and chromosome segregation relating to the physiology of mycobacteria and consider how new frameworks could be applied across the wide spectrum of bacterial diversity.
Collapse
Affiliation(s)
- Michelle M Logsdon
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States.,Department of Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, United States
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States.,Department of Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, United States.,Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, United States
| |
Collapse
|
27
|
Bactofilin-mediated organization of the ParABS chromosome segregation system in Myxococcus xanthus. Nat Commun 2017; 8:1817. [PMID: 29180656 PMCID: PMC5703909 DOI: 10.1038/s41467-017-02015-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/01/2017] [Indexed: 12/02/2022] Open
Abstract
In bacteria, homologs of actin, tubulin, and intermediate filament proteins often act in concert with bacteria-specific scaffolding proteins to ensure the proper arrangement of cellular components. Among the bacteria-specific factors are the bactofilins, a widespread family of polymer-forming proteins whose biology is poorly investigated. Here, we study the three bactofilins BacNOP in the rod-shaped bacterium Myxococcus xanthus. We show that BacNOP co-assemble into elongated scaffolds that restrain the ParABS chromosome segregation machinery to the subpolar regions of the cell. The centromere (parS)-binding protein ParB associates with the pole-distal ends of these structures, whereas the DNA partitioning ATPase ParA binds along their entire length, using the newly identified protein PadC (MXAN_4634) as an adapter. The integrity of these complexes is critical for proper nucleoid morphology and chromosome segregation. BacNOP thus mediate a previously unknown mechanism of subcellular organization that recruits proteins to defined sites within the cytoplasm, far off the cell poles. The roles played by bactofilins, a widespread type of bacterial cytoskeletal elements, are unclear. Here, the authors show that the bactofilins BacNOP facilitate proper subcellular localization of the ParABS chromosome segregation system in the model organism Myxococcus xanthus.
Collapse
|
28
|
Moine A, Espinosa L, Martineau E, Yaikhomba M, Jazleena PJ, Byrne D, Biondi EG, Notomista E, Brilli M, Molle V, Gayathri P, Mignot T, Mauriello EMF. The nucleoid as a scaffold for the assembly of bacterial signaling complexes. PLoS Genet 2017; 13:e1007103. [PMID: 29161263 PMCID: PMC5716589 DOI: 10.1371/journal.pgen.1007103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/05/2017] [Accepted: 11/05/2017] [Indexed: 11/17/2022] Open
Abstract
The FrzCD chemoreceptor from the gliding bacterium Myxococcus xanthus forms cytoplasmic clusters that occupy a large central region of the cell body also occupied by the nucleoid. In this work, we show that FrzCD directly binds to the nucleoid with its N-terminal positively charged tail and recruits active signaling complexes at this location. The FrzCD binding to the nucleoid occur in a DNA-sequence independent manner and leads to the formation of multiple distributed clusters that explore constrained areas. This organization might be required for cooperative interactions between clustered receptors as observed in membrane-bound chemosensory arrays.
Collapse
Affiliation(s)
- Audrey Moine
- Laboratoire de Chimie Bactérienne, CNRS-Université Aix-Marseille, Marseille, France
| | - Leon Espinosa
- Laboratoire de Chimie Bactérienne, CNRS-Université Aix-Marseille, Marseille, France
| | - Eugenie Martineau
- Laboratoire de Chimie Bactérienne, CNRS-Université Aix-Marseille, Marseille, France
| | - Mutum Yaikhomba
- Biology Division, Indian Institute of Science Education and Research, Pune, India
| | - P. J. Jazleena
- Biology Division, Indian Institute of Science Education and Research, Pune, India
| | - Deborah Byrne
- Protein Purification Platform, Institut de Microbiologie de la Méditerranée, CNRS, Marseille, France
| | - Emanuele G. Biondi
- Laboratoire de Chimie Bactérienne, CNRS-Université Aix-Marseille, Marseille, France
| | - Eugenio Notomista
- Dipartimento di Biologia, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Matteo Brilli
- DAFNAE, Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnano, Italy
| | - Virginie Molle
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS-Universités de Montpellier II et I, Montpellier, France
| | - Pananghat Gayathri
- Biology Division, Indian Institute of Science Education and Research, Pune, India
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, CNRS-Université Aix-Marseille, Marseille, France
| | | |
Collapse
|
29
|
Kawalek A, Glabski K, Bartosik AA, Fogtman A, Jagura-Burdzy G. Increased ParB level affects expression of stress response, adaptation and virulence operons and potentiates repression of promoters adjacent to the high affinity binding sites parS3 and parS4 in Pseudomonas aeruginosa. PLoS One 2017; 12:e0181726. [PMID: 28732084 PMCID: PMC5521831 DOI: 10.1371/journal.pone.0181726] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/06/2017] [Indexed: 12/14/2022] Open
Abstract
Similarly to its homologs in other bacteria, Pseudomonas aeruginosa partitioning protein ParB facilitates segregation of newly replicated chromosomes. Lack of ParB is not lethal but results in increased frequency of anucleate cells production, longer division time, cell elongation, altered colony morphology and defective swarming and swimming motility. Unlike in other bacteria, inactivation of parB leads to major changes of the transcriptome, suggesting that, directly or indirectly, ParB plays a role in regulation of gene expression in this organism. ParB overproduction affects growth rate, cell division and motility in a similar way as ParB deficiency. To identify primary ParB targets, here we analysed the impact of a slight increase in ParB level on P. aeruginosa transcriptome. ParB excess, which does not cause changes in growth rate and chromosome segregation, significantly alters the expression of 176 loci. Most notably, the mRNA level of genes adjacent to high affinity ParB binding sites parS1-4 close to oriC is reduced. Conversely, in cells lacking either parB or functional parS sequences the orfs adjacent to parS3 and parS4 are upregulated, indicating that direct ParB- parS3/parS4 interactions repress the transcription in this region. In addition, increased ParB level brings about repression or activation of numerous genes including several transcriptional regulators involved in SOS response, virulence and adaptation. Overall, our data support the role of partitioning protein ParB as a transcriptional regulator in Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Adam Kawalek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Warsaw, Poland
| | - Krzysztof Glabski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Warsaw, Poland
| | - Aneta Agnieszka Bartosik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Warsaw, Poland
| | - Anna Fogtman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Microarray Analysis, Warsaw, Poland
| | - Grazyna Jagura-Burdzy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Warsaw, Poland
| |
Collapse
|
30
|
Ginda K, Santi I, Bousbaine D, Zakrzewska-Czerwińska J, Jakimowicz D, McKinney J. The studies of ParA and ParB dynamics reveal asymmetry of chromosome segregation in mycobacteria. Mol Microbiol 2017; 105:453-468. [PMID: 28517109 DOI: 10.1111/mmi.13712] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2017] [Indexed: 01/02/2023]
Abstract
Active segregation of bacterial chromosomes usually involves the action of ParB proteins, which bind in proximity of chromosomal origin (oriC) regions forming nucleoprotein complexes - segrosomes. Newly duplicated segrosomes are moved either uni- or bidirectionally by the action of ATPases - ParA proteins. In Mycobacterium smegmatis the oriC region is located in an off-centred position and newly replicated segrosomes are segregated towards cell poles. The elimination of M. smegmatis ParA and/or ParB leads to chromosome segregation defects. Here, we took advantage of microfluidic time-lapse fluorescent microscopy to address the question of ParA and ParB dynamics in M. smegmatis and M. tuberculosis cells. Our results reveal that ParB complexes are segregated in an asymmetrical manner. The rapid movement of segrosomes is dependent on ParA that is transiently associated with the new pole. Remarkably in M. tuberculosis, the movement of the ParB complex is much slower than in M. smegmatis, but segregation as in M. smegmatis lasts approximately 10% of the cell cycle, which suggests a correlation between segregation dynamics and the growth rate. On the basis of our results, we propose a model for the asymmetric action of segregation machinery that reflects unequal division and growth of mycobacterial cells.
Collapse
Affiliation(s)
- Katarzyna Ginda
- Department of Molecular Microbiology, University of Wroclaw, Wroclaw, Poland
| | - Isabella Santi
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Djenet Bousbaine
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Jolanta Zakrzewska-Czerwińska
- Department of Molecular Microbiology, University of Wroclaw, Wroclaw, Poland.,Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Dagmara Jakimowicz
- Department of Molecular Microbiology, University of Wroclaw, Wroclaw, Poland.,Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - John McKinney
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, 1015, Switzerland
| |
Collapse
|
31
|
Novel Chromosome Organization Pattern in Actinomycetales-Overlapping Replication Cycles Combined with Diploidy. mBio 2017; 8:mBio.00511-17. [PMID: 28588128 PMCID: PMC5461407 DOI: 10.1128/mbio.00511-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Bacteria regulate chromosome replication and segregation tightly with cell division to ensure faithful segregation of DNA to daughter generations. The underlying mechanisms have been addressed in several model species. It became apparent that bacteria have evolved quite different strategies to regulate DNA segregation and chromosomal organization. We have investigated here how the actinobacterium Corynebacterium glutamicum organizes chromosome segregation and DNA replication. Unexpectedly, we found that C. glutamicum cells are at least diploid under all of the conditions tested and that these organisms have overlapping C periods during replication, with both origins initiating replication simultaneously. On the basis of experimental data, we propose growth rate-dependent cell cycle models for C. glutamicum. Bacterial cell cycles are known for few model organisms and can vary significantly between species. Here, we studied the cell cycle of Corynebacterium glutamicum, an emerging cell biological model organism for mycolic acid-containing bacteria, including mycobacteria. Our data suggest that C. glutamicum carries two pole-attached chromosomes that replicate with overlapping C periods, thus initiating a new round of DNA replication before the previous one is terminated. The newly replicated origins segregate to midcell positions, where cell division occurs between the two new origins. Even after long starvation or under extremely slow-growth conditions, C. glutamicum cells are at least diploid, likely as an adaptation to environmental stress that may cause DNA damage. The cell cycle of C. glutamicum combines features of slow-growing organisms, such as polar origin localization, and fast-growing organisms, such as overlapping C periods.
Collapse
|
32
|
Schumacher D, Søgaard-Andersen L. Regulation of Cell Polarity in Motility and Cell Division in Myxococcus xanthus. Annu Rev Microbiol 2017; 71:61-78. [PMID: 28525300 DOI: 10.1146/annurev-micro-102215-095415] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rod-shaped Myxococcus xanthus cells are polarized with proteins asymmetrically localizing to specific positions. This spatial organization is important for regulation of motility and cell division and changes over time. Dedicated protein modules regulate motility independent of the cell cycle, and cell division dependent on the cell cycle. For motility, a leading-lagging cell polarity is established that is inverted during cellular reversals. Establishment and inversion of this polarity are regulated hierarchically by interfacing protein modules that sort polarized motility proteins to the correct cell poles or cause their relocation between cell poles during reversals akin to a spatial toggle switch. For division, a novel self-organizing protein module that incorporates a ParA ATPase positions the FtsZ-ring at midcell. This review covers recent findings concerning the spatiotemporal regulation of motility and cell division in M. xanthus and illustrates how the study of diverse bacteria may uncover novel mechanisms involved in regulating bacterial cell polarity.
Collapse
Affiliation(s)
- Dominik Schumacher
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany;
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany;
| |
Collapse
|
33
|
Cytoskeletal Proteins in Caulobacter crescentus: Spatial Orchestrators of Cell Cycle Progression, Development, and Cell Shape. Subcell Biochem 2017; 84:103-137. [PMID: 28500524 DOI: 10.1007/978-3-319-53047-5_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Caulobacter crescentus, an aquatic Gram-negative α-proteobacterium, is dimorphic, as a result of asymmetric cell divisions that give rise to a free-swimming swarmer daughter cell and a stationary stalked daughter. Cell polarity of vibrioid C. crescentus cells is marked by the presence of a stalk at one end in the stationary form and a polar flagellum in the motile form. Progression through the cell cycle and execution of the associated morphogenetic events are tightly controlled through regulation of the abundance and activity of key proteins. In synergy with the regulation of protein abundance or activity, cytoskeletal elements are key contributors to cell cycle progression through spatial regulation of developmental processes. These include: polarity establishment and maintenance, DNA segregation, cytokinesis, and cell elongation. Cytoskeletal proteins in C. crescentus are additionally required to maintain its rod shape, curvature, and pole morphology. In this chapter, we explore the mechanisms through which cytoskeletal proteins in C. crescentus orchestrate developmental processes by acting as scaffolds for protein recruitment, generating force, and/or restricting or directing the motion of molecular machines. We discuss each cytoskeletal element in turn, beginning with those important for organization of molecules at the cell poles and chromosome segregation, then cytokinesis, and finally cell shape.
Collapse
|
34
|
Barillà D. Driving Apart and Segregating Genomes in Archaea. Trends Microbiol 2016; 24:957-967. [PMID: 27450111 PMCID: PMC5120986 DOI: 10.1016/j.tim.2016.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/16/2016] [Accepted: 07/01/2016] [Indexed: 11/01/2022]
Abstract
Genome segregation is a fundamental biological process in organisms from all domains of life. How this stage of the cell cycle unfolds in Eukarya has been clearly defined and considerable progress has been made to unravel chromosome partition in Bacteria. The picture is still elusive in Archaea. The lineages of this domain exhibit different cell-cycle lifestyles and wide-ranging chromosome copy numbers, fluctuating from 1 up to 55. This plurality of patterns suggests that a variety of mechanisms might underpin disentangling and delivery of DNA molecules to daughter cells. Here I describe recent developments in archaeal genome maintenance, including investigations of novel genome segregation machines that point to unforeseen bacterial and eukaryotic connections.
Collapse
Affiliation(s)
- Daniela Barillà
- Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
35
|
Phosphorylation of Mycobacterium tuberculosis ParB participates in regulating the ParABS chromosome segregation system. PLoS One 2015; 10:e0119907. [PMID: 25807382 PMCID: PMC4373775 DOI: 10.1371/journal.pone.0119907] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/04/2015] [Indexed: 11/19/2022] Open
Abstract
Here, we present for the first time that Mycobacterium tuberculosis ParB is phosphorylated by several mycobacterial Ser/Thr protein kinases in vitro. ParB and ParA are the key components of bacterial chromosome segregation apparatus. ParB is a cytosolic conserved protein that binds specifically to centromere-like DNA parS sequences and interacts with ParA, a weak ATPase required for its proper localization. Mass spectrometry identified the presence of ten phosphate groups, thus indicating that ParB is phosphorylated on eight threonines, Thr32, Thr41, Thr53, Thr110, Thr195, and Thr254, Thr300, Thr303 as well as on two serines, Ser5 and Ser239. The phosphorylation sites were further substituted either by alanine to prevent phosphorylation or aspartate to mimic constitutive phosphorylation. Electrophoretic mobility shift assays revealed a drastic inhibition of DNA-binding by ParB phosphomimetic mutant compared to wild type. In addition, bacterial two-hybrid experiments showed a loss of ParA-ParB interaction with the phosphomimetic mutant, indicating that phosphorylation is regulating the recruitment of the partitioning complex. Moreover, fluorescence microscopy experiments performed in the surrogate Mycobacterium smegmatis ΔparB strain revealed that in contrast to wild type Mtb ParB, which formed subpolar foci similar to M. smegmatis ParB, phoshomimetic Mtb ParB was delocalized. Thus, our findings highlight a novel regulatory role of the different isoforms of ParB representing a molecular switch in localization and functioning of partitioning protein in Mycobacterium tuberculosis.
Collapse
|
36
|
Cell division resets polarity and motility for the bacterium Myxococcus xanthus. J Bacteriol 2014; 196:3853-61. [PMID: 25157084 DOI: 10.1128/jb.02095-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Links between cell division and other cellular processes are poorly understood. It is difficult to simultaneously examine division and function in most cell types. Most of the research probing aspects of cell division has experimented with stationary or immobilized cells or distinctly asymmetrical cells. Here we took an alternative approach by examining cell division events within motile groups of cells growing on solid medium by time-lapse microscopy. A total of 558 cell divisions were identified among approximately 12,000 cells. We found an interconnection of division, motility, and polarity in the bacterium Myxococcus xanthus. For every division event, motile cells stop moving to divide. Progeny cells of binary fission subsequently move in opposing directions. This behavior involves M. xanthus Frz proteins that regulate M. xanthus motility reversals but is independent of type IV pilus "S motility." The inheritance of opposing polarity is correlated with the distribution of the G protein RomR within these dividing cells. The constriction at the point of division limits the intracellular distribution of RomR. Thus, the asymmetric distribution of RomR at the parent cell poles becomes mirrored at new poles initiated at the site of division.
Collapse
|
37
|
Lim HC, Surovtsev IV, Beltran BG, Huang F, Bewersdorf J, Jacobs-Wagner C. Evidence for a DNA-relay mechanism in ParABS-mediated chromosome segregation. eLife 2014; 3:e02758. [PMID: 24859756 PMCID: PMC4067530 DOI: 10.7554/elife.02758] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/16/2014] [Indexed: 12/12/2022] Open
Abstract
The widely conserved ParABS system plays a major role in bacterial chromosome segregation. How the components of this system work together to generate translocation force and directional motion remains uncertain. Here, we combine biochemical approaches, quantitative imaging and mathematical modeling to examine the mechanism by which ParA drives the translocation of the ParB/parS partition complex in Caulobacter crescentus. Our experiments, together with simulations grounded on experimentally-determined biochemical and cellular parameters, suggest a novel 'DNA-relay' mechanism in which the chromosome plays a mechanical function. In this model, DNA-bound ParA-ATP dimers serve as transient tethers that harness the elastic dynamics of the chromosome to relay the partition complex from one DNA region to another across a ParA-ATP dimer gradient. Since ParA-like proteins are implicated in the partitioning of various cytoplasmic cargos, the conservation of their DNA-binding activity suggests that the DNA-relay mechanism may be a general form of intracellular transport in bacteria.DOI: http://dx.doi.org/10.7554/eLife.02758.001.
Collapse
Affiliation(s)
- Hoong Chuin Lim
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States Microbial Diversity Institute, Yale University, West Haven, United States
| | - Ivan Vladimirovich Surovtsev
- Microbial Diversity Institute, Yale University, West Haven, United States Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States Howard Hughes Medical Institute, Yale University, New Haven, United States
| | - Bruno Gabriel Beltran
- Department of Mathematics, Louisiana State University, Baton Rouge, United States Howard Hughes Medical Institute, Yale University, New Haven, United States
| | - Fang Huang
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Jörg Bewersdorf
- Department of Cell Biology, Yale School of Medicine, New Haven, United States Department of Biomedical Engineering, Yale University, New Haven, United States
| | - Christine Jacobs-Wagner
- Microbial Diversity Institute, Yale University, West Haven, United States Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States Howard Hughes Medical Institute, Yale University, New Haven, United States Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, United States
| |
Collapse
|