1
|
Bastaki NK, Albarjas TA, Almoosa FA, Al-Adsani AM. Chronic heat stress induces the expression of HSP genes in the retina of chickens (Gallus gallus). Front Genet 2023; 14:1085590. [PMID: 37077545 PMCID: PMC10106695 DOI: 10.3389/fgene.2023.1085590] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Introduction: Chronic heat stress during summer is a major challenge imposed by global warming. Chickens are more sensitive to heat stress than mammals because they lack sweat glands. Thus, chickens are more susceptible to heat stress during summer than other seasons. Induction of heat shock protein (HSP) genes is one of the primary defense mechanisms against heat stress. Tissue-specific responses exhibited by different classes of HSPs upon exposure to heat stress have been reported previously in different tissues including the heart, kidney, intestine, blood, and muscle, but not in the retina. Therefore, this study aimed to investigate the expression levels of HSP27, HSP40, HSP60, HSP70, and HSP90 in the retina under chronic heat stress.Methods: This study was conducted during the summers of 2020 and 2021 in Kuwait. Chickens (Gallus gallus) were divided into control and heat-treated groups and sacrificed at different developmental stages. Retinas were extracted and analyzed by using Real Time quantitative Polymerase Chain Reaction (RT-qPCR).Results: Our results from the summer of 2021 were similar to that from the summer of 2020, regardless of whether GAPDH or RPL5 was used as a gene normalizer. All five HSP genes were upregulated in the retina of 21-day-old heat-treated chickens and stayed upregulated until 35 days of age, with the exception of HSP40, which was downregulated. The addition of two more developmental stages in the summer of 2021 showed that at 14 days, all HSP genes were upregulated in the retina of heat-treated chickens. In contrast, at 28 days, HSP27 and HSP40 were downregulated, whereas HSP60, HSP70, and HSP90 were upregulated. Furthermore, our results showed that under chronic heat stress, the highest upregulation of HSP genes was seen at the earliest developmental stages.Discussion: To the best of our knowledge, this is the first study to report the expression levels of HSP27, HSP40, HSP60, HSP70, and HSP90 in the retina under chronic heat stress. Some of our results match the previously reported expression levels of some HSPs in other tissues under heat stress. These results suggest that HSP gene expression can be used as a biomarker for chronic heat stress in the retina.
Collapse
|
2
|
Shehata AM, Saadeldin IM, Tukur HA, Habashy WS. Modulation of Heat-Shock Proteins Mediates Chicken Cell Survival against Thermal Stress. Animals (Basel) 2020; 10:E2407. [PMID: 33339245 PMCID: PMC7766623 DOI: 10.3390/ani10122407] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Heat stress is one of the most challenging environmental stresses affecting domestic animal production, particularly commercial poultry, subsequently causing severe yearly economic losses. Heat stress, a major source of oxidative stress, stimulates mitochondrial oxidative stress and cell dysfunction, leading to cell damage and apoptosis. Cell survival under stress conditions needs urgent response mechanisms and the consequent effective reinitiation of cell functions following stress mitigation. Exposure of cells to heat-stress conditions induces molecules that are ready for mediating cell death and survival signals, and for supporting the cell's tolerance and/or recovery from damage. Heat-shock proteins (HSPs) confer cell protection against heat stress via different mechanisms, including developing thermotolerance, modulating apoptotic and antiapoptotic signaling pathways, and regulating cellular redox conditions. These functions mainly depend on the capacity of HSPs to work as molecular chaperones and to inhibit the aggregation of non-native and misfolded proteins. This review sheds light on the key factors in heat-shock responses for protection against cell damage induced by heat stress in chicken.
Collapse
Affiliation(s)
- Abdelrazeq M. Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt;
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Islam M. Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hammed A. Tukur
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Walid S. Habashy
- Department of Animal and Poultry Production, Damanhour University, Damanhour 22511, Egypt;
| |
Collapse
|
3
|
Aspirin Enhances the Protection of Hsp90 from Heat-Stressed Injury in Cardiac Microvascular Endothelial Cells Through PI3K-Akt and PKM2 Pathways. Cells 2020; 9:cells9010243. [PMID: 31963688 PMCID: PMC7016979 DOI: 10.3390/cells9010243] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 12/27/2022] Open
Abstract
Heat stress (HS) often causes sudden death of humans and animals due to heart failure, mainly resulting from the contraction of cardiac microvasculature followed by myocardial ischemia. Cardiac microvascular endothelial cells (CMVECs) play an important role in maintaining vasodilatation. Aspirin (ASA) is well known for its protective abilities of febrile animals. However, there is little knowledge about molecular resistance mechanisms of CMVECs and which role ASA may play in this context. Therefore, we used a heat stress model of rat cardiac microvascular endothelial cell cultures in vitro and investigated the cell injuries and molecular resistance mechanism of CMVECs caused by heat stress, and the effect of aspirin (ASA) on it. HS induced severe pathological damage of CMVECs and cellular oxidative stress and dysfunction of NO release. Hsp90 was proven to be indispensable for resisting HS-injury of CMVECs through PI3K-Akt and PKM2 signaling pathways. Meanwhile, PKM2 functioned in reducing Akt phosphorylation. ASA treatment of CMVECs induced a significant expression of Hsp90, which promoted both Akt and PKM2 signals, which are beneficial for relieving HS damage and maintaining the function of CMVECs. Akt activation also promoted HSF-1 that regulates the expression of Hsp70, which is known to assist Hsp90′s molecular chaperone function and when released to the extracellular liquid to protect myocardial cells from HS damage. To the best of our knowledge, this is the first study to show that HS damages CMVECs and the protection mechanism of Hsp90 on it, and that ASA provides a new potential strategy for regulating cardiac microcirculation preventing HS-induced heart failure.
Collapse
|
4
|
Sun J, Yin B, Tang S, Zhang X, Xu J, Bao E. Vitamin C mitigates heat damage by reducing oxidative stress, inducing HSP expression in TM4 Sertoli cells. Mol Reprod Dev 2019; 86:673-685. [PMID: 30989754 DOI: 10.1002/mrd.23146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/18/2019] [Accepted: 03/02/2019] [Indexed: 01/04/2023]
Abstract
Heat stress is a major stressor that can lead to male reproductive dysfunction. Sertoli cells play a crucial role in spermatogenesis by providing germ cells with structural and nutritional support, and contributing to blood-testis barrier formation. Vitamin C (Vc) is an antioxidant capable of neutralizing reactive oxygen species and preventing lipid peroxidation widely used because it is inexpensive and highly accessible. In the present study, we investigated the protective effect of Vc on TM4 cells following heat stress. Pretreatment with Vc could effectively inhibit apoptosis (p < 0.01), lipid peroxidation, and lactate dehydrogenase (LDH) activity. However, a significant increase in the malondialdehyde (MDA) level and LDH activity (p < 0.01) was observed in TM4 cells without Vc-pretreatment, in conjunction with vacuole degeneration and karyopyknosis. In addition, both the messenger RNA and protein levels of CryAB, Hsp27, Hsp70, and Hsp110 substantially increased in the 3 and 12 hr recovery groups (p < 0.01). Vc also prevented microtubule aggregation following heat stress. These results suggest that pretreatment with Vc-protected TM4 cells against heat stress by reducing the level of oxidative stress and inducing heat shock protein expression.
Collapse
Affiliation(s)
- Jiarui Sun
- Department of Veterinary Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Bin Yin
- Department of Veterinary Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shu Tang
- Department of Veterinary Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaohui Zhang
- Department of Veterinary Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiao Xu
- Department of Veterinary Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Endong Bao
- Department of Veterinary Pathology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
A monoclonal antibody targeted to the functional peptide of αB-crystallin inhibits the chaperone and anti-apoptotic activities. J Immunol Methods 2019; 467:37-47. [PMID: 30738041 DOI: 10.1016/j.jim.2019.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/24/2019] [Accepted: 02/05/2019] [Indexed: 01/18/2023]
Abstract
αB-Crystallin is a member of the small heat shock protein family. It is a molecular chaperone and an anti-apoptotic protein. Previous studies have shown that the peptide (73DRFSVNLDVKHFSPEELKVKV93, hereafter referred to as peptain-1) from the core domain of αB-crystallin exhibits both chaperone and anti-apoptotic properties similar to the parent protein. We developed a mouse monoclonal antibody against peptain-1 with the aim of blocking the functions of αB-crystallin. The antibody reacted with peptain-1, it did not react with the chaperone peptide of αA-crystallin. The antibody strongly reacted with human recombinant αB-crystallin but weakly with Hsp20; it did not react with αA-crystallin or Hsp27. The antibody specifically reacted with αB-crystallin in human and mouse lens proteins but not with αA-crystallin. The antibody reacted with αB-crystallin in human lens epithelial cells, human retinal endothelial cells, and with peptain-1 in peptain-1-transduced cells. Unlike the commercial antibodies against αB-crystallin, the antibody against peptain-1 inhibited the chaperone and anti-apoptotic activities of peptain-1. The antibody might find use in inhibiting αB-crystallin's chaperone and anti-apoptotic activities in diseases where αB-crystallin is a causative or contributing factor.
Collapse
|
6
|
Liu Y, Shen J, Yang X, Sun Q, Yang X. Folic Acid Reduced Triglycerides Deposition in Primary Chicken Hepatocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13162-13172. [PMID: 30484310 DOI: 10.1021/acs.jafc.8b05193] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Abdominal fat or fatty liver cause huge economic losses in the poultry industry, and nonalcoholic fatty liver disease (NAFLD) is also a global health issue in humans. More than 90% of de novo lipogenesis in humans and chickens is undertaken by the liver, which is proved to be full of lipids in new-born chickens. Folic acid was thought to have correlation with lipid metabolism. Primary hepatocytes from new-born chickens were employed as a natural model of early stage fatty liver in vitro and further to explore whether folic acid could prevent fatty liver in the current study. We found that folic acid addition reduced triglyceride deposition by suppressing de novo fatty acid synthesis and coordinately promoting triglyceride hydrolysis and exportation in primary chicken hepatocytes from new-born chickens. In addition, lipogenesis suppression was through the PI3K/AKT/SREBP pathway mediated by weakening insulin/IGF signal. Our data suggested that folic acid may be considered as a precautionary strategy for abdominal fat deposition in broilers or fatty liver in laying hens and humans. In addition, mechanism regulation also implied that an IGF2 inhibitor and PI3K inhibitor may be used for the NAFLD precautionary measure to reduce TG deposition.
Collapse
Affiliation(s)
- Yanli Liu
- College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Jing Shen
- College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Xin Yang
- College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Qingzhu Sun
- College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Xiaojun Yang
- College of Animal Science and Technology , Northwest A&F University , Yangling , China
| |
Collapse
|
7
|
Tang S, Yin B, Xu J, Bao E. Rosemary Reduces Heat Stress by Inducing CRYAB and HSP70 Expression in Broiler Chickens. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7014126. [PMID: 30425783 PMCID: PMC6218721 DOI: 10.1155/2018/7014126] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/20/2018] [Accepted: 09/12/2018] [Indexed: 11/17/2022]
Abstract
Heat stress negatively affects poultry production and animal health. In response, animals invoke a heat stress response by inducing heat shock proteins (HSPs). Scientists are actively seeking natural products that can enhance the heat shock response. The present study aimed at assessing the effects of a purified rosemary extract comprising antioxidant compounds on the heat shock response and HSP expression profile in broiler chickens. The response of broilers to HS in the presence of purified rosemary extract was assessed using an in vivo myocardial cell model. Pathological lesions of heart tissue were examined microscopically. The levels and activities of enzymes associated with heart damage and oxidative damage were detected. Immunohistochemical staining was performed for HSPs in myocardial cells. The results showed that lactate dehydrogenase (LDH), creatine kinase (CK), and myocardial CK (CKMB) levels were reduced by the purified rosemary extract before and during heat stress. Heat stress alone increased CK and CKMB levels. The levels of oxidative damage-associated enzymes were compared between the rosemary + heat stress and heat stress-alone groups. The results indicated that in terms of these enzymes, the purified rosemary extract induced a more antioxidative state. Pathological examinations showed that heat stress caused myocardial fiber fracture, karyopyknosis, and degeneration. The addition of purified rosemary extract ameliorated these lesions to some degree, preserving more of the basic structure. Heat stress decreased the cellular levels of crystallin alpha B (CRYAB) and HSP70. The addition of the purified rosemary extract significantly increased the levels of CRYAB and HSP70 during heat stress (p < 0.0001). Immunohistochemistry showed that after rosemary treatment, CRYAB and HSP70 showed more intense staining compared with the no heat stress control group. In the rosemary + heat group, after 10 hours of heat stress, the staining intensity of these two proteins remained higher than in the heat stress group. Thus, purified rosemary extract could induce high levels of HSP70 and CRYAB in chicken hearts before and during heat stress. Purified rosemary extract could be used to alleviate heat stress in broiler chickens.
Collapse
Affiliation(s)
- Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Yin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiao Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Tang S, Zhou S, Yin B, Xu J, Di L, Zhang J, Bao E. Heat stress-induced renal damage in poultry and the protective effects of HSP60 and HSP47. Cell Stress Chaperones 2018; 23:1033-1040. [PMID: 29779133 PMCID: PMC6111100 DOI: 10.1007/s12192-018-0912-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
The present study investigates the effects of heat stress on the kidney in broilers, based on previous findings which showed that heat stress caused cardiac damage in broilers. Further, the possible renoprotective role of aspirin and the heat shock proteins HSP60 and HSP47 was also investigated. The enzyme levels of urea and uric acid, which are indicators of renal damage, and lactate dehydrogenase, an indicator of oxidative damage, were measured in chickens that were only exposed to heat stress, chickens that were pretreated with aspirin before heat stress, and chickens that were only treated with aspirin. Further, histological examination of renal tissue from the three groups was also performed. Finally, expression of HSP60 and HSP47 was also examined. In the heat stress group, the enzyme measurements were indicative of renal dysfunction and oxidative damage, and the histological findings were indicative of renal ischemia and damage. Aspirin seemed to have a protective effect against the renal damage caused by the stress, based on the enzyme measurements and histopathological findings in the aspirin-treated group. The findings also indicate that aspirin may induce HSP60 and HSP47 expression in renal cells. Finally, the expression patterns of HSP60 and HSP47 indicated that they may play a renoprotective role, as their expression was higher in the aspirin-treated groups. In conclusion, the present findings show that heat stress causes renal damage in poultry and that aspirin may play a protective role against this damage via pathways that involve HSP60 and HSP47.
Collapse
Affiliation(s)
- Shu Tang
- College of veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Shuang Zhou
- College of animal science and technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Bin Yin
- College of veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jiao Xu
- College of veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Liangjiao Di
- Zoohance Biotech Co., Ltd, Yinchuan, 750001, Ningxia, China
| | - Jinbao Zhang
- Zoohance Biotech Co., Ltd, Yinchuan, 750001, Ningxia, China
| | - Endong Bao
- College of veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| |
Collapse
|
9
|
Hoter A, Amiri M, Prince A, Amer H, Warda M, Naim HY. Differential Glycosylation and Modulation of Camel and Human HSP Isoforms in Response to Thermal and Hypoxic Stresses. Int J Mol Sci 2018; 19:ijms19020402. [PMID: 29385708 PMCID: PMC5855624 DOI: 10.3390/ijms19020402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/18/2018] [Accepted: 01/26/2018] [Indexed: 01/11/2023] Open
Abstract
Increased expression of heat shock proteins (HSPs) following heat stress or other stress conditions is a common physiological response in almost all living organisms. Modification of cytosolic proteins including HSPs by O-GlcNAc has been shown to enhance their capabilities for counteracting lethal levels of cellular stress. Since HSPs are key players in stress resistance and protein homeostasis, we aimed to analyze their forms at the cellular and molecular level using camel and human HSPs as models for efficient and moderate thermotolerant mammals, respectively. In this study, we cloned the cDNA encoding two inducible HSP members, HSPA6 and CRYAB from both camel (Camelus dromedarius) and human in a Myc-tagged mammalian expression vector. Expression of these chaperones in COS-1 cells revealed protein bands of approximately 25-kDa for both camel and human CRYAB and 70-kDa for camel HSPA6 and its human homologue. While localization and trafficking of the camel and human HSPs revealed similar cytosolic localization, we could demonstrate altered glycan structure between camel and human HSPA6. Interestingly, the glycoform of camel HSPA6 was rapidly formed and stabilized under normal and stress culture conditions whereas human HSPA6 reacted differently under similar thermal and hypoxic stress conditions. Our data suggest that efficient glycosylation of camel HSPA6 is among the mechanisms that provide camelids with a superior capability for alleviating stressful environmental circumstances.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Mahdi Amiri
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Abdelbary Prince
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Hassan Amer
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Mohamad Warda
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
10
|
Tang S, Yin B, Song E, Chen H, Cheng Y, Zhang X, Bao E, Hartung J. Aspirin upregulates αB-Crystallin to protect the myocardium against heat stress in broiler chickens. Sci Rep 2016; 6:37273. [PMID: 27857180 PMCID: PMC5114548 DOI: 10.1038/srep37273] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/27/2016] [Indexed: 11/12/2022] Open
Abstract
We established in vivo and in vitro models to investigate the role of αB-Crystallin (CryAB) and assess the ability of aspirin (ASA) to protect the myocardium during prolonged heat stress. Thirty-day-old chickens were divided into three groups (n = 90): heat stress (HS, 40±1 °C); ASA(−)HS(+), 1 mg/kg ASA orally 2 h before heat stress; and ASA(+)HS(−), pretreated with aspirin, no heat stress (25 °C). Hearts were excised after 0, 1, 2, 3, 5, 7, 10, 15 and 24 h. Heat stress increased body temperature, though the ASA(−)HS(+) group had significantly higher temperatures than the ASA(+)HS(+) group at all time points. Compared to ASA(+)HS(+), the ASA(−)HS(+) group displayed increased sensitivity to heat stress. Pathological analysis revealed the ASA (+)HS(+) myocardium showed less severe changes (narrowed, chaotic fibers; fewer necrotic cells) than the ASA(−)HS(+) group (bleeding and extensive cell death). In vitro, ASA-pretreatment significantly increased primary chicken myocardial cell survival during heat stress. ELISAs indicated ASA induced CryAB in vivo to protect against heat stress-induced myocardial damage, but ASA did not induce CryAB in primary chicken myocardial cells. The mechanisms by which ASA induces the expression of CryAB in vivo and protects the myocardium during heat stress merit further research.
Collapse
Affiliation(s)
- Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Yin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Erbao Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongbo Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanfen Cheng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Joerg Hartung
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover, 30173, Germany
| |
Collapse
|
11
|
Wu D, Zhang M, Lu Y, Tang S, Kemper N, Hartung J, Bao E. Aspirin-induced heat stress resistance in chicken myocardial cells can be suppressed by BAPTA-AM in vitro. Cell Stress Chaperones 2016; 21:817-27. [PMID: 27262845 PMCID: PMC5003798 DOI: 10.1007/s12192-016-0706-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/09/2016] [Accepted: 05/27/2016] [Indexed: 02/02/2023] Open
Abstract
Our recent studies have displayed the protective functions of aspirin against heat stress (HS) in chicken myocardial cells, and it may be associated with heat shock proteins (HSPs). In this study, we further investigated the potential role of HSPs in the aspirin-induced heat stress resistance. Four of the most important HSPs including HspB1 (Hsp27), Hsp60, Hsp70, and Hsp90 were induced by aspirin pretreatment and were suppressed by BAPTA-AM. When HSPs were induced by aspirin, much slighter HS injury was detected. But more serious damages were observed when HSPs were suppressed by BAPTA-AM than those cells exposed to HS without BAPTA-AM, even the myocardial cells have been treated with aspirin in prior. Comparing to other HSPs, HspB1 presented the largest increase after aspirin treatments, 86-fold higher than the baseline (the level before HS). These findings suggested that multiple HSPs participated in aspirin's anti-heat stress function but HspB1 may contribute the most. Interestingly, during the experiments, we also found that apoptosis rate as well as the oxidative stress indicators (T-SOD and MDA) was not consistently responding to heat stress injury as expected. By selecting from a series of candidates, myocardial cell damage-related enzymes (CK-MB and LDH), cytopathological tests, and necrosis rate (measured by flow cytometry assays) are believed to be reliable indicators to evaluate heat stress injury in chicken's myocardial cells and they will be used in our further investigations.
Collapse
Affiliation(s)
- Di Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Miao Zhang
- College of Animal Science and Technology, Jinling Institute of Technology, Nanjing, 210038, China
| | - Yinjun Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - N Kemper
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - J Hartung
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China.
| |
Collapse
|
12
|
Zhang X, Qian Z, Zhu H, Tang S, Wu D, Zhang M, Kemper N, Hartung J, Bao E. HSP90 gene expression induced by aspirin is associated with damage remission in a chicken myocardial cell culture exposed to heat stress. Br Poult Sci 2016; 57:462-73. [PMID: 27088575 DOI: 10.1080/00071668.2016.1174978] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To understand the potential protection of heat shock protein 90 (HSP90) induced by aspirin against heat stress damage in chicken myocardial cells, enzyme activities related to stress damage, cytopathological changes, the expression and distribution of HSP90, and HSP90 mRNA levels in the myocardial cells exposed to heat stress (42°C) for different durations with or without aspirin administration (1 mg/ml, 2 h prior) in vitro were investigated. Significant increase of enzyme levels in the supernatant of heat-stressed myocardial cells and cellular lesions characterised by acute degeneration, karyopyknosis and karyorrhexis were observed, compared to non-treated cells. However, the lesions of cells treated with aspirin were milder, characterised by earlier recovery of enzyme levels to the control levels and no obvious heat stress-related cellular necrosis. Stronger positive signals in the cytoplasm and longer retention of HSP90 signal in nuclei were observed in aspirin-treated myocardial cells than those of only heat-stressed cells. HSP90 level in the aspirin-treated myocardial cells was 11.1-fold higher than that in non-treated cells, and remained at a high level at the early stage of heat stress, whereas it was just 4.1-fold higher in only heat-stressed cells and returned rapidly to a low level. Overexpression of HSP90 mRNA in aspirin-treated cells was observed throughout the experiment, whereas HSP90 mRNA decreased significantly only in heat-stressed cells. The early higher HSP90 expression induced by aspirin during heat stress was accompanied by decreased heat stress damage, suggesting that aspirin might play an important role in preventing myocardial cells from heat stress damage in vitro.
Collapse
Affiliation(s)
- X Zhang
- a College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , China
| | - Z Qian
- a College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , China
| | - H Zhu
- a College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , China
| | - S Tang
- a College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , China
| | - D Wu
- a College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , China
| | - M Zhang
- b College of Animal Science and Technology , Jinling Institute of Technology , Nanjing , China
| | - N Kemper
- c Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour , University of Veterinary Medicine Hannover, Foundation , Hannover , Germany
| | - J Hartung
- c Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour , University of Veterinary Medicine Hannover, Foundation , Hannover , Germany
| | - E Bao
- a College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
13
|
Oskoueian E, Abdullah N, Zulkifli I, Ebrahimi M, Karimi E, Goh YM, Oskoueian A, Shakeri M. Cytoprotective effect of palm kernel cake phenolics against aflatoxin B1-induced cell damage and its underlying mechanism of action. Altern Ther Health Med 2015; 15:392. [PMID: 26518905 PMCID: PMC4628249 DOI: 10.1186/s12906-015-0921-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 10/19/2015] [Indexed: 12/13/2022]
Abstract
Background Palm kernel cake (PKC), a by-product of the palm oil industry is abundantly available in many tropical and subtropical countries. The product is known to contain high levels of phenolic compounds that may impede the deleterious effects of fungal mycotoxins. This study focused on the evaluation of PKC phenolics as a potential cytoprotective agent towards aflatoxin B1 (AFB1)-induced cell damage. Methods The phenolic compounds of PKC were obtained by solvent extraction and the product rich in phenolic compounds was labeled as phenolic-enriched fraction (PEF). This fraction was evaluated for its phenolic compounds composition. The antioxidant activity of PEF was determined by using 1,1-diphenyl-2-picryl-hydrazil scavenging activity, ferric reducing antioxidant power, inhibition of ß-carotene bleaching, and thiobarbituric acid reactive substances assays. The cytotoxicity assay and molecular biomarkers analyses were performed to evaluate the cytoprotective effects of PEF towards aflatoxin B1 (AFB1)-induced cell damage. Results The results showed that PEF contained gallic acid, pyrogallol, vanillic acid, caffeic acid, syringic acid, epicatechin, catechin and ferulic acid. The PEF exhibited free radical scavenging activity, ferric reducing antioxidant power, ß-carotene bleaching inhibition and thiobarbituric acid reactive substances inhibition. The PEF demonstrated cytoprotective effects in AFB1-treated chicken hepatocytes by reducing the cellular lipid peroxidation and enhancing antioxidant enzymes production. The viability of AFB1-treated hepatocytes was improved by PEF through up-regulation of oxidative stress tolerance genes and down-regulation of pro-inflammatory and apoptosis associated genes. Conclusions The present findings supported the proposition that the phenolic compounds present in PKC could be a potential cytoprotective agent towards AFB1 cytotoxicity.
Collapse
|
14
|
Dubey A, Prajapati KS, Swamy M, Pachauri V. Heat shock proteins: a therapeutic target worth to consider. Vet World 2015; 8:46-51. [PMID: 27046995 PMCID: PMC4777810 DOI: 10.14202/vetworld.2015.46-51] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/20/2014] [Accepted: 11/28/2014] [Indexed: 01/07/2023] Open
Abstract
Heat shock proteins (HSPs) are the molecular chaperones, that are not only expressed during the normal growth process of cell cycle consecutively, but also get induced in cells during various stress conditions produced by cellular insult, environmental changes, temperature, infections, tumors etc. According to their molecular weight and functions, HSPs are divided into five major families. HSP90, HSP70, HSP60 and HSP100 are the most studied members of the family. Experimental studies have proved that overexpression and/or inhibition of HSPs play an important role in maintaining the tolerance and cell viability under above-described stress conditions. HSP90 is found to be a promising the candidate for the diagnosis, prognosis and treatment of cancer. Similarly, HSP70, HSP60 and small HSPs experimentally and clinically have potential for the treatment of neurodegenerative disease, ischemia, cell death, autoimmunity, graft rejection, etc. In a way, exploring, the cytoprotective and immunoregulatory role of HSPs can open a new avenue for the drug discovery and treatment of critical diseases.
Collapse
Affiliation(s)
- Amita Dubey
- Department of Pathology, College of veterinary science & AH, NDVSU, Jabalpur, Madhya Pradesh, India
| | - K S Prajapati
- Department of Pathology, College of veterinary science & AH, AAU, Anand, Gujarat, India
| | - Madhu Swamy
- Department of Pathology, College of veterinary science & AH, NDVSU, Jabalpur, Madhya Pradesh, India
| | - V Pachauri
- Krishi Vigyan Kendra, Jawaharlal Nehru Agricultural University, Sagar, Madhya Pradesh, India
| |
Collapse
|
15
|
CHEN HONGBO, ADAM ABDELNASIR, CHENG YANFEN, TANG SHU, HARTUNG JÖRG, BAO ENDONG. Localization and expression of heat shock protein 70 with rat myocardial cell damage induced by heat stress in vitro and in vivo. Mol Med Rep 2014; 11:2276-84. [DOI: 10.3892/mmr.2014.2986] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 09/12/2014] [Indexed: 11/05/2022] Open
|
16
|
Oskoueian E, Abdullah N, Idrus Z, Ebrahimi M, Goh YM, Shakeri M, Oskoueian A. Palm kernel cake extract exerts hepatoprotective activity in heat-induced oxidative stress in chicken hepatocytes. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:368. [PMID: 25273634 PMCID: PMC4197309 DOI: 10.1186/1472-6882-14-368] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/19/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND Palm kernel cake (PKC), the most abundant by-product of oil palm industry is believed to contain bioactive compounds with hepatoprotective potential. These compounds may serve as hepatoprotective agents which could help the poultry industry to alleviate adverse effects of heat stress on liver function in chickens. METHODS This study was performed to evaluate the hepatoprotective potential of PKC extract in heat-induced oxidative stress in chicken hepatocytes. The nature of the active metabolites and elucidation of the possible mechanism involved were also investigated. RESULTS The PKC extract possessed free radical scavenging activity with values significantly (p < 0.05) lower than silymarin as the reference antioxidant. Heat-induced oxidative stress in chicken hepatocyte impaired the total protein, lipid peroxidation and antioxidant enzymes activity significantly (p < 0.05). Treatment of heat-induced hepatocytes with PKC extract (125 μg/ml) and silymarin as positive control increased these values significantly (p < 0.05). The real time PCR and western blot analyses revealed the significant (p < 0.05) up-regulation of oxidative stress biomarkers including TNF-like, IFN-γ and IL-1β genes; NF-κB, COX-2, iNOS and Hsp70 proteins expression upon heat stress in chicken hepatocytes. The PKC extract and silymarin were able to alleviate the expression of all of these biomarkers in heat-induced chicken hepatocytes. The gas chromatography-mass spectrometry analysis of PKC extract showed the presence of fatty acids, phenolic compounds, sugar derivatives and other organic compounds such as furfural which could be responsible for the observed hepatoprotective activity. CONCLUSION Palm kernel cake extract could be a potential agent to protect hepatocytes function under heat induced oxidative stress.
Collapse
|