1
|
Carrillo-Dávila IA, Garibaldi-Ríos AF, Figuera LE, Gómez-Meda BC, Zúñiga-González GM, Puebla-Pérez AM, García-Verdín PM, Castro-García PB, Gutiérrez-Hurtado IA, Torres-Mendoza BM, Gallegos-Arreola MP. Association of the rs1966265 and rs351855 FGFR4 Variants with Colorectal Cancer in a Mexican Population and Their Analysis In Silico. Biomedicines 2024; 12:602. [PMID: 38540215 PMCID: PMC10968131 DOI: 10.3390/biomedicines12030602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 05/25/2025] Open
Abstract
The aim of this study was to associate FGFR4 rs1966265 and rs351855 variants with colorectal cancer (CRC) in a Mexican population and to perform in silico analysis. Genomic DNA from 412 healthy individuals and 475 CRC patients was analyzed. In silico analysis was performed using the PolyPhen-V2, GEPIA, GTEx, and Cytoscape platforms. The GA genotype dominant model (GAAA) of rs1966265 and the AA genotype dominant and recessive models of rs351855 were identified as CRC risk factors (p < 0.05). CRC patients aged ≥ 50 years at diagnosis who consumed alcohol had a higher incidence of the rs351855 GA genotype than the control group (p < 0.05). Associations were observed between the rs1966265 GA genotype and patients with rectal cancer and stage III-IV disease. The rs351855 AA genotype was a risk factor for partial chemotherapy response, and the GA + AA genotype for age ≥ 50 years at diagnosis and rectal cancer was associated with a partial response to chemotherapy (p < 0.05). The AA haplotype was associated with increased susceptibility to CRC. In silico analysis indicated that the rs351855 variant is likely pathogenic (score = 0.998). Genotypic expression analysis in blood samples showed statistically significant differences (p < 0.05). EFNA4, SLC3A2, and HNF1A share signaling pathways with FGFR4. Therefore, rs1966265 and rs351855 may be potential CRC risk factors.
Collapse
Affiliation(s)
- Irving Alejandro Carrillo-Dávila
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico; (I.A.C.-D.); (A.F.G.-R.); (L.E.F.); (P.M.G.-V.)
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (B.C.G.-M.); (I.A.G.-H.)
| | - Asbiel Felipe Garibaldi-Ríos
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico; (I.A.C.-D.); (A.F.G.-R.); (L.E.F.); (P.M.G.-V.)
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (B.C.G.-M.); (I.A.G.-H.)
| | - Luis E. Figuera
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico; (I.A.C.-D.); (A.F.G.-R.); (L.E.F.); (P.M.G.-V.)
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (B.C.G.-M.); (I.A.G.-H.)
| | - Belinda Claudia Gómez-Meda
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (B.C.G.-M.); (I.A.G.-H.)
| | - Guillermo M. Zúñiga-González
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico;
| | - Ana María Puebla-Pérez
- Laboratorio de Inmunofarmacología, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara (UdeG), Guadalajara 44430, Jalisco, Mexico; (A.M.P.-P.); (P.B.C.-G.)
| | - Patricia Montserrat García-Verdín
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico; (I.A.C.-D.); (A.F.G.-R.); (L.E.F.); (P.M.G.-V.)
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (B.C.G.-M.); (I.A.G.-H.)
| | - Paola Beatriz Castro-García
- Laboratorio de Inmunofarmacología, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara (UdeG), Guadalajara 44430, Jalisco, Mexico; (A.M.P.-P.); (P.B.C.-G.)
| | - Itzae Adonai Gutiérrez-Hurtado
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (B.C.G.-M.); (I.A.G.-H.)
| | - Blanca Miriam Torres-Mendoza
- Laboratorio de Inmunodeficiencias Humanas y Retrovirus, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico;
- Departamento de Disciplinas Filosófico Metodológicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico
| | - Martha Patricia Gallegos-Arreola
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico; (I.A.C.-D.); (A.F.G.-R.); (L.E.F.); (P.M.G.-V.)
| |
Collapse
|
2
|
Wang L, Liu H, Liu Y, Guo S, Yan Z, Chen G, Wu Q, Xu S, Zhou Q, Liu L, Peng M, Cheng X, Yan T. Potential markers of cancer stem-like cells in ESCC: a review of the current knowledge. Front Oncol 2024; 13:1324819. [PMID: 38239657 PMCID: PMC10795532 DOI: 10.3389/fonc.2023.1324819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024] Open
Abstract
In patients with esophageal squamous cell carcinoma (ESCC), the incidence and mortality rate of ESCC in our country are also higher than those in the rest of the world. Despite advances in the treatment department method, patient survival rates have not obviously improved, which often leads to treatment obstruction and cancer repeat. ESCC has special cells called cancer stem-like cells (CSLCs) with self-renewal and differentiation ability, which reflect the development process and prognosis of cancer. In this review, we evaluated CSLCs, which are identified from the expression of cell surface markers in ESCC. By inciting EMTs to participate in tumor migration and invasion, stem cells promote tumor redifferentiation. Some factors can inhibit the migration and invasion of ESCC via the EMT-related pathway. We here summarize the research progress on the surface markers of CSLCs, EMT pathway, and the microenvironment in the process of tumor growth. Thus, these data may be more valuable for clinical applications.
Collapse
Affiliation(s)
- Lu Wang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huijuan Liu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yiqian Liu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shixing Guo
- Clinical Laboratory Medicine Centre, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhenpeng Yan
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guohui Chen
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qinglu Wu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Songrui Xu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qichao Zhou
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lili Liu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meilan Peng
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolong Cheng
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ting Yan
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
3
|
Current Application of iPS Cells in the Dental Tissue Regeneration. Biomedicines 2022; 10:biomedicines10123269. [PMID: 36552025 PMCID: PMC9775967 DOI: 10.3390/biomedicines10123269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
When teeth and periodontal tissues are severely damaged by severe caries, trauma, and periodontal disease, such cases may be subject to tooth extraction. As tooth loss leads to the deterioration of quality of life, the development of regenerative medicine for tooth and periodontal tissue is desired. Induced pluripotent stem cells (iPS cells) are promising cell resources for dental tissue regeneration because they offer high self-renewal and pluripotency, along with fewer ethical issues than embryonic stem cells. As iPS cells retain the epigenetic memory of donor cells, they have been established from various dental tissues for dental tissue regeneration. This review describes the regeneration of dental tissue using iPS cells. It is important to mimic the process of tooth development in dental tissue regeneration using iPS cells. Although iPS cells had safety issues in clinical applications, they have been overcome in recent years. Dental tissue regeneration using iPS cells has not yet been established, but it is expected in the future.
Collapse
|
4
|
Lyra-Leite DM, Gutiérrez-Gutiérrez Ó, Wang M, Zhou Y, Cyganek L, Burridge PW. A review of protocols for human iPSC culture, cardiac differentiation, subtype-specification, maturation, and direct reprogramming. STAR Protoc 2022; 3:101560. [PMID: 36035804 PMCID: PMC9405110 DOI: 10.1016/j.xpro.2022.101560] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The methods for the culture and cardiomyocyte differentiation of human embryonic stem cells, and later human induced pluripotent stem cells (hiPSC), have moved from a complex and uncontrolled systems to simplified and relatively robust protocols, using the knowledge and cues gathered at each step. HiPSC-derived cardiomyocytes have proven to be a useful tool in human disease modelling, drug discovery, developmental biology, and regenerative medicine. In this protocol review, we will highlight the evolution of protocols associated with hPSC culture, cardiomyocyte differentiation, sub-type specification, and cardiomyocyte maturation. We also discuss protocols for somatic cell direct reprogramming to cardiomyocyte-like cells.
Collapse
Affiliation(s)
- Davi M Lyra-Leite
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Óscar Gutiérrez-Gutiérrez
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Meimei Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
5
|
Rivas SR, Valdez MJM, Govindarajan V, Seetharam D, Doucet-O’Hare TT, Heiss JD, Shah AH. The Role of HERV-K in Cancer Stemness. Viruses 2022; 14:v14092019. [PMID: 36146825 PMCID: PMC9504571 DOI: 10.3390/v14092019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 12/15/2022] Open
Abstract
Human endogenous retrovirus-K (HERV-K) is the most recently integrated retrovirus in the human genome, with implications for multiple disorders, including cancer. Although typically transcriptionally silenced in normal adult cells, dysregulation of HERV-K (HML-2) elements has been observed in cancer, including breast, germ cell tumors, pancreatic, melanoma, and brain cancer. While multiple methods of carcinogenesis have been proposed, here we discuss the role of HERV-K (HML-2) in the promotion and maintenance of the stem-cell in cancer. Aberrant expression of HERV-K has been shown to promote expression of stem cell markers and promote dedifferentiation. In this review, we discuss HERV-K (HML-2) as a potential therapeutic target based on evidence that some tumors depend on the expression of its proteins for survival.
Collapse
Affiliation(s)
- Sarah R. Rivas
- Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892, USA
- Correspondence: (S.R.R.); (A.H.S.)
| | - Mynor J. Mendez Valdez
- Section of Virology and Immunotherapy, Department of Neurosurgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Vaidya Govindarajan
- Section of Virology and Immunotherapy, Department of Neurosurgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Deepa Seetharam
- Section of Virology and Immunotherapy, Department of Neurosurgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Tara T. Doucet-O’Hare
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - John D. Heiss
- Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892, USA
| | - Ashish H. Shah
- Section of Virology and Immunotherapy, Department of Neurosurgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (S.R.R.); (A.H.S.)
| |
Collapse
|
6
|
Hua Y, Yoshimochi K, Li J, Takekita K, Shimotsuma M, Li L, Qu X, Zhang J, Sawa Y, Liu L, Miyagawa S. Development and evaluation of a novel xeno-free culture medium for human-induced pluripotent stem cells. Stem Cell Res Ther 2022; 13:223. [PMID: 35658933 PMCID: PMC9166585 DOI: 10.1186/s13287-022-02879-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/03/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human-induced pluripotent stem cells (hiPSCs) are considered an ideal resource for regenerative medicine because of their ease of access and infinite expansion ability. To satisfy the sizable requirement for clinical applications of hiPSCs, large-scale, expansion-oriented, xeno-free, and cost-effective media are critical. Although several xeno-free media for hiPSCs have been generated over the past decades, few of them are suitable for scalable expansion of cultured hiPSCs because of their modest potential for proliferation and high cost. METHODS In this study, we developed a xeno-free ON2/AscleStem PSC medium (ON2) and cultured 253G1 hiPSCs on different matrices, including iMatrix-511 and gelatin nanofiber (GNF) in ON2. Over 20 passages, we evaluated cell proliferation by doubling times; pluripotency by flow cytometry, immunofluorescence staining and qRT-PCR; and differentiation ability by three germ layer differentiation in vitro and teratoma formation in severe combined immunodeficiency mice, followed by histological analysis. In addition, we compared the maintenance effect of ON2 on hiPSCs with StemFit® AK02 (AK02N) and Essential 8™ (E8). Besides 253G1 hiPSCs, we cultivated different hiPSC lines, including Ff-l01 hiPSCs, ATCC® ACS-1020™ hiPSCs, and Down's syndrome patient-specific ATCC® ACS-1003™ hiPSCs in ON2. RESULTS We found that 253G1 hiPSCs in ON2 demonstrated normal morphology and karyotype and high self-renewal and differentiation abilities on the tested matrices for over 20 passages. Moreover, 253G1 hiPSCs kept on GNF showed higher growth and stemness, as verified by the shorter doubling time and higher expression levels of pluripotent markers. Compared to AK02N and E8 media, 253G1 hiPSCs grown in ON2 showed higher pluripotency, as demonstrated by the increased expression level of pluripotent factors. In addition, all hiPSC lines cultivated in ON2 were able to grow for at least 10 passages with compact clonal morphology and were positive for all detected pluripotent markers. CONCLUSIONS Our xeno-free ON2 was compatible with various matrices and ideal for long-term expansion and maintenance of not only healthy-derived hiPSCs but also patient-specific hiPSCs. This highly efficient medium enabled the rapid expansion of hiPSCs in a reliable and cost-effective manner and could act as a promising tool for disease modeling and large-scale production for regenerative medicine in the future.
Collapse
Affiliation(s)
- Ying Hua
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Kenji Yoshimochi
- NACALAI TESQUE, INC. Research and Development Department, Kyoto, 604-0855, Japan
| | - Junjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.,Division of Cardiovascular Surgery, Department of Design for Tissue Regeneration, Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Kazuhiro Takekita
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Motoshi Shimotsuma
- NACALAI TESQUE, INC. Research and Development Department, Kyoto, 604-0855, Japan
| | - Lingjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Xiang Qu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Jingbo Zhang
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | | | - Li Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan. .,Division of Cardiovascular Surgery, Department of Design for Tissue Regeneration, Graduate School of Medicine, Osaka, 565-0871, Japan.
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
Obayashi F, Hamada A, Yamasaki S, Kanda T, Toratani S, Okamoto T. Identification of a Cowden syndrome patient with a novel PTEN mutation and establishment of patient-derived induced pluripotent stem cells. In Vitro Cell Dev Biol Anim 2022; 58:69-78. [PMID: 34984555 PMCID: PMC8803725 DOI: 10.1007/s11626-021-00637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/06/2021] [Indexed: 11/26/2022]
Abstract
Cowden syndrome (CS) is an autosomal dominant inherited disorder characterized by multiple hamartomas in various organs such as the mucosa, skin, and gastrointestinal tract. Patients with CS are at high risk for breast and thyroid cancers. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene that negatively regulates the AKT pathway, and PTEN mutations are known to be the major causes of this syndrome. However, the pathogenesis of this syndrome has not been clarified. Here, we present a case of a Japanese woman with multiple oral polyps, breast cancer, and thyroid cancer who was clinically diagnosed with CS. We obtained DNA and RNA samples from the patient's peripheral blood mononuclear cells (PBMCs) and buccal mucosa tumor. Next-generation sequencing revealed novel germline mutations (c.1020delT and c.1026G > A) in exon 8 of PTEN. Sanger sequencing identified no PTEN transcript from the mutant allele. Furthermore, CS-specific induced pluripotent stem cells (CS-iPSCs) were established from PBMCs of the patient under feeder- and serum-free culture. Compared with healthy PBMCs and iPSCs, both of the CS-derived PBMCs and CS-iPSCs exhibited significantly reduced expression of the PTEN transcript. The transcriptional variant, PTENδ, was increased in CS-iPSCs, suggesting that it may be the cause of the disease.
Collapse
Affiliation(s)
- Fumitaka Obayashi
- Department of Oral and Maxillofacial Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Atsuko Hamada
- Department of Oral and Maxillofacial Surgery, Hiroshima University Hospital, Hiroshima, Japan.
| | - Sachiko Yamasaki
- Department of Oral and Maxillofacial Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Taku Kanda
- Department of Oral and Maxillofacial Surgery, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Shigeaki Toratani
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tetsuji Okamoto
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
- School of Medical Sciences, The University of East Asia, Yamaguchi, Japan.
| |
Collapse
|
8
|
Hamada A, Mukasa H, Taguchi Y, Akagi E, Obayashi F, Yamasaki S, Kanda T, Koizumi K, Toratani S, Okamoto T. Identification of a familial cleidocranial dysplasia with a novel RUNX2 mutation and establishment of patient-derived induced pluripotent stem cells. Odontology 2021; 110:444-451. [PMID: 34779963 PMCID: PMC9170643 DOI: 10.1007/s10266-021-00674-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/31/2021] [Indexed: 11/24/2022]
Abstract
Cleidocranial dysplasia (CCD) is an autosomal dominant hereditary disease associated with the gene RUNX2. Disease-specific induced pluripotent stem cells (iPSCs) have emerged as a useful resource to further study human hereditary diseases such as CCD. In this study, we identified a novel CCD-specific RUNX2 mutation and established iPSCs with this mutation. Biopsies were obtained from familial CCD patients and mutation analyses were performed through Sanger sequencing and next generation sequencing. CCD-specific human iPSCs (CCD-hiPSCs) were established and maintained under completely defined serum, feeder, and integration-free condition using a non-integrating replication-defective Sendai virus vector. We identified the novel mutation RUNX2_c.371C>G and successfully established CCD-hiPSCs. The CCD-hiPSCs inherited the same mutation, possessed pluripotency, and showed the ability to differentiate the three germ layers. We concluded that RUNX2_c.371C>G was likely pathogenic because our results, derived from next generation sequencing, are supported by actual clinical evidence, familial tracing, and genetic data. Thus, we concluded that hiPSCs with a novel CCD-specific RUNX2 mutation are viable as a resource for future studies on CCD.
Collapse
Affiliation(s)
- Atsuko Hamada
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Applied Life Science, Graduate Institute of Biomedical and Health Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-city, Hiroshima, 734-8553, Japan.
| | - Hanae Mukasa
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Applied Life Science, Graduate Institute of Biomedical and Health Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-city, Hiroshima, 734-8553, Japan.,Mukasa Dental Clinic, Kanagawa, Japan
| | - Yuki Taguchi
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Applied Life Science, Graduate Institute of Biomedical and Health Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-city, Hiroshima, 734-8553, Japan
| | - Eri Akagi
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Applied Life Science, Graduate Institute of Biomedical and Health Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-city, Hiroshima, 734-8553, Japan
| | - Fumitaka Obayashi
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Applied Life Science, Graduate Institute of Biomedical and Health Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-city, Hiroshima, 734-8553, Japan
| | - Sachiko Yamasaki
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Applied Life Science, Graduate Institute of Biomedical and Health Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-city, Hiroshima, 734-8553, Japan
| | - Taku Kanda
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Applied Life Science, Graduate Institute of Biomedical and Health Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-city, Hiroshima, 734-8553, Japan
| | - Koichi Koizumi
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Shigeaki Toratani
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Tetsuji Okamoto
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.,School of Medical Sciences, The University of East Asia, Shimonoseki, Yamaguchi, 751-8503, Japan
| |
Collapse
|
9
|
Zhang J, Chou OHI, Tse YL, Ng KM, Tse HF. Application of Patient-Specific iPSCs for Modelling and Treatment of X-Linked Cardiomyopathies. Int J Mol Sci 2021; 22:ijms22158132. [PMID: 34360897 PMCID: PMC8347533 DOI: 10.3390/ijms22158132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/11/2022] Open
Abstract
Inherited cardiomyopathies are among the major causes of heart failure and associated with significant mortality and morbidity. Currently, over 70 genes have been linked to the etiology of various forms of cardiomyopathy, some of which are X-linked. Due to the lack of appropriate cell and animal models, it has been difficult to model these X-linked cardiomyopathies. With the advancement of induced pluripotent stem cell (iPSC) technology, the ability to generate iPSC lines from patients with X-linked cardiomyopathy has facilitated in vitro modelling and drug testing for the condition. Nonetheless, due to the mosaicism of the X-chromosome inactivation, disease phenotypes of X-linked cardiomyopathy in heterozygous females are also usually more heterogeneous, with a broad spectrum of presentation. Recent advancements in iPSC procedures have enabled the isolation of cells with different lyonisation to generate isogenic disease and control cell lines. In this review, we will summarise the current strategies and examples of using an iPSC-based model to study different types of X-linked cardiomyopathy. The potential application of isogenic iPSC lines derived from a female patient with heterozygous Danon disease and drug screening will be demonstrated by our preliminary data. The limitations of an iPSC-derived cardiomyocyte-based platform will also be addressed.
Collapse
Affiliation(s)
- Jennifer Zhang
- Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (J.Z.); (O.H.-I.C.); (Y.-L.T.)
| | - Oscar Hou-In Chou
- Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (J.Z.); (O.H.-I.C.); (Y.-L.T.)
| | - Yiu-Lam Tse
- Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (J.Z.); (O.H.-I.C.); (Y.-L.T.)
| | - Kwong-Man Ng
- Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (J.Z.); (O.H.-I.C.); (Y.-L.T.)
- Correspondence: (K.-M.N.); (H.-F.T.); Tel.: +852-3917-9955 (K.-M.N.); +852-2255-3598 (H.-F.T.)
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (J.Z.); (O.H.-I.C.); (Y.-L.T.)
- Centre of Translational Stem Cell Biology, Hong Kong Science and Technology Park, Hong Kong, China
- Correspondence: (K.-M.N.); (H.-F.T.); Tel.: +852-3917-9955 (K.-M.N.); +852-2255-3598 (H.-F.T.)
| |
Collapse
|
10
|
Bazina F, Brouxhon SM, Kyrkanides S. Reprogramming oral epithelial keratinocytes into a pluripotent phenotype for tissue regeneration. Clin Exp Dent Res 2021; 7:1112-1121. [PMID: 34021738 PMCID: PMC8638285 DOI: 10.1002/cre2.455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 11/19/2022] Open
Abstract
Objectives We set out to reprogram adult somatic oral epithelial keratinocytes into pluripotent cells for regenerative dentistry. Setting and Sample population Immortalized murine oral keratinocyte cell (IMOK) line raised from adult mouse mucosa were cultured in vitro in our studies. Materials and Methods Adult murine oral epithelial keratinocytes were chronically treated with TGF‐β1 in vitro, and the expression of Oct4, Nanog, Sox2 and Nestin, as well as specific homeobox Gata and Pax gene family members were investigated. Results We documented the induction of stem factors linked with pluripotency and/or the maintenance and regulation of stem‐cell self‐renewal in oral epithelial keratinocytes by TGFβ1. Moreover, we discovered that this TGF‐β1‐induced increase in Oct4, Nanog, Sox2 and Nestin was inhibited by SB431542, suggesting that TGF‐β1 signals via the TGF‐βRI receptor to induce pluripotency and stemness. Conclusions Adult oral epithelial keratinocytes treated chronically with TGF‐β1 acquired phenotypic characteristics consistent with pluripotent stem cells, highlighting the facileness of reprogramming adult oral keratinocytes into an unlimited supply of pluripotent stem cells.
Collapse
Affiliation(s)
- Fayrouz Bazina
- Ph.D. Program in Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA.,Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Sabine M Brouxhon
- Department of Physiology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Stephanos Kyrkanides
- Department of Oral Health Science, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
11
|
Sun W, Zhang S, Zhou T, Shan Y, Gao F, Zhang Y, Zhang D, Xiong Y, Mai Y, Fan K, Davidson AJ, Pan G, Zhang X. Human Urinal Cell Reprogramming: Synthetic 3D Peptide Hydrogels Enhance Induced Pluripotent Stem Cell Population Homogeneity. ACS Biomater Sci Eng 2020; 6:6263-6275. [PMID: 33449655 DOI: 10.1021/acsbiomaterials.0c00667] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs), which have promising potential applications in regenerative medicine. However, the challenges of successful applications of human iPSCs for medical purposes are the low generation efficiency, heterogeneous colonies, and exposure to the animal-derived product Matrigel. We aimed to investigate whether human urinal cells could be efficiently reprogrammed into iPSCs in three-dimensional Puramatrix (3D-PM) compared to two-dimensional Matrigel (2D-MG) and to understand how this 3D hydrogel environment affects the reprogramming process. Human urinal cells were successfully reprogrammed into iPSCs in the defined synthetic animal-free 3D-PM. Interestingly, although the colony efficiency in 3D-PM was similar to that in 2D-MG (∼0.05%), the reprogrammed colonies in 3D-PM contained an iPSC population with significantly higher homogeneity, as evidenced by the pluripotent-like morphology and expression of markers. This was further confirmed by transcriptome profile analysis in bulk cells and at the single cell level. Moreover, the homogeneity of the iPSC population in 3D-PM colonies was correlated with the downregulation of integrin β1 (ITGB1) and phosphorylated focal adhesion kinase (FAK). Collectively, 3D-PM provides an alternative approach for obtaining iPSCs with enhanced homogeneity. This work also unveiled the regulation of human somatic cell reprogramming via the extracellular microenvironment.
Collapse
Affiliation(s)
- Wei Sun
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Sheng Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Tiancheng Zhou
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Fenglin Gao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610051, China
| | - Ying Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Di Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yucui Xiong
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yuanbang Mai
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ke Fan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Alan J Davidson
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiao Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Medical University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
12
|
Hamada A, Akagi E, Obayashi F, Yamasaki S, Koizumi K, Ohtaka M, Nishimura K, Nakanishi M, Toratani S, Okamoto T. Induction of Noonan syndrome-specific human-induced pluripotent stem cells under serum-, feeder-, and integration-free conditions. In Vitro Cell Dev Biol Anim 2020; 56:888-895. [PMID: 33140329 PMCID: PMC7723931 DOI: 10.1007/s11626-020-00515-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 09/17/2020] [Indexed: 11/24/2022]
Abstract
Noonan syndrome is an autosomal dominant developmental disorder. Although it is relatively common, and its phenotypical variability is well documented, its pathophysiology is not fully understood. Previously, with the aim of revealing the pathogenesis of genetic disorders, we reported the induction of cleidocranial dysplasia-specific human-induced pluripotent stem cells (hiPSCs) from patient’s dental pulp cells (DPCs) under serum-free, feeder-free, and integration-free conditions. Notably, these cells showed potential for application to genetic disorder disease models. Furthermore, using similar procedures, we reported the induction of hiPSCs derived from peripheral blood mononuclear cells (PBMCs) of healthy volunteers. These methods are beneficial, because they are carried out without invasive and painful biopsies. Using those procedures, we reprogrammed DPCs and PBMCs that were derived from a patient with Noonan syndrome (NS) to establish NS-specific hiPSCs (NS-DPC-hiPSCs and NS-PBMC-hiPSCs, respectively). The induction efficiency of NS-hiPSCs was higher than that of WT-hiPSCs. We hypothesize that this was caused by high NANOG expression. Here, we describe the experimental results and findings related to NS-hiPSCs. This is the first report on the establishment of NS-hiPSCs and their disease modeling.
Collapse
Affiliation(s)
- Atsuko Hamada
- Oral and Maxillofacial Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Eri Akagi
- Oral and Maxillofacial Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Fumitaka Obayashi
- Oral and Maxillofacial Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Sachiko Yamasaki
- Oral and Maxillofacial Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Koichi Koizumi
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Manami Ohtaka
- TOKIWA-Bio, Inc., Tsukuba, Ibaraki, Japan.,National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mahito Nakanishi
- TOKIWA-Bio, Inc., Tsukuba, Ibaraki, Japan.,National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Shigeaki Toratani
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tetsuji Okamoto
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
13
|
Development of a High-Efficacy Reprogramming Method for Generating Human Induced Pluripotent Stem (iPS) Cells from Pathologic and Senescent Somatic Cells. Int J Mol Sci 2020; 21:ijms21186764. [PMID: 32942642 PMCID: PMC7555779 DOI: 10.3390/ijms21186764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/10/2020] [Indexed: 11/17/2022] Open
Abstract
Induced pluripotent stem (iPS) cells are a type of artificial pluripotent stem cell induced by the epigenetic silencing of somatic cells by the Yamanaka factors. Advances in iPS cell reprogramming technology will allow aging or damaged cells to be replaced by a patient's own rejuvenated cells. However, tissue that is senescent or pathologic has a relatively low reprogramming efficiency as compared with juvenile or robust tissue, resulting in incomplete reprogramming; iPS cells generated from such tissue types do not have sufficient differentiation ability and are therefore difficult to apply clinically. Here, we develop a new reprogramming method and examine it using myofibroblasts, which are pathologic somatic cells, from patient skin tissue and from each of the four heart chambers of a recipient heart in heart transplant surgery. By adjusting the type and amount of vectors containing transcriptional factors for iPS cell reprogramming, as well as adjusting the transfection load and culture medium, the efficiency of iPS cell induction from aged patient skin-derived fibroblasts was increased, and we successfully induced iPS cells from myocardial fibroblasts isolated from the pathologic heart of a heart transplant recipient.
Collapse
|
14
|
Al Abbar A, Ngai SC, Nograles N, Alhaji SY, Abdullah S. Induced Pluripotent Stem Cells: Reprogramming Platforms and Applications in Cell Replacement Therapy. Biores Open Access 2020; 9:121-136. [PMID: 32368414 PMCID: PMC7194323 DOI: 10.1089/biores.2019.0046] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
The generation of induced pluripotent stem cells (iPSCs) from differentiated mature cells is one of the most promising technologies in the field of regenerative medicine. The ability to generate patient-specific iPSCs offers an invaluable reservoir of pluripotent cells, which could be genetically engineered and differentiated into target cells to treat various genetic and degenerative diseases once transplanted, hence counteracting the risk of graft versus host disease. In this context, we review the scientific research streams that lead to the emergence of iPSCs, the roles of reprogramming factors in reprogramming to pluripotency, and the reprogramming strategies. As iPSCs serve tremendous correction potentials for various diseases, we highlight the successes and challenges of iPSCs in cell replacement therapy and the synergy of iPSCs and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing tools in therapeutics research.
Collapse
Affiliation(s)
- Akram Al Abbar
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Nadine Nograles
- Newcastle University Medicine Malaysia, Educity, Iskandar Puteri, Johor, Malaysia
| | - Suleiman Yusuf Alhaji
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Syahril Abdullah
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
15
|
Kuo HH, Gao X, DeKeyser JM, Fetterman KA, Pinheiro EA, Weddle CJ, Fonoudi H, Orman MV, Romero-Tejeda M, Jouni M, Blancard M, Magdy T, Epting CL, George AL, Burridge PW. Negligible-Cost and Weekend-Free Chemically Defined Human iPSC Culture. Stem Cell Reports 2020; 14:256-270. [PMID: 31928950 PMCID: PMC7013200 DOI: 10.1016/j.stemcr.2019.12.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022] Open
Abstract
Human induced pluripotent stem cell (hiPSC) culture has become routine, yet the cost of pluripotent cell media, frequent medium changes, and the reproducibility of differentiation have remained restrictive. Here, we describe the formulation of a hiPSC culture medium (B8) as a result of the exhaustive optimization of medium constituents and concentrations, establishing the necessity and relative contributions of each component to the pluripotent state and cell proliferation. The reagents in B8 represent only 3% of the costs of commercial media, made possible primarily by the in-lab generation of three E. coli-expressed, codon-optimized recombinant proteins: fibroblast growth factor 2, transforming growth factor β3, and neuregulin 1. We demonstrate the derivation and culture of 34 hiPSC lines in B8 as well as the maintenance of pluripotency long term (over 100 passages). This formula also allows a weekend-free feeding schedule without sacrificing capacity for differentiation.
Collapse
Affiliation(s)
- Hui-Hsuan Kuo
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xiaozhi Gao
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jean-Marc DeKeyser
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - K Ashley Fetterman
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily A Pinheiro
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Carly J Weddle
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hananeh Fonoudi
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael V Orman
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marisol Romero-Tejeda
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mariam Jouni
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Malorie Blancard
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tarek Magdy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Conrad L Epting
- Departments of Pediatrics and Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
16
|
Hamada A, Akagi E, Yamasaki S, Nakatao H, Obayashi F, Ohtaka M, Nishimura K, Nakanishi M, Toratani S, Okamoto T. Induction of integration-free human-induced pluripotent stem cells under serum- and feeder-free conditions. In Vitro Cell Dev Biol Anim 2019; 56:85-95. [PMID: 31768763 PMCID: PMC6989583 DOI: 10.1007/s11626-019-00412-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/15/2019] [Indexed: 01/08/2023]
Abstract
Human-induced pluripotent stem cells (hiPSCs) have shown great potential toward practical and scientific applications. We previously reported the generation of human dental pulp stem cells using non-integrating replication-defective Sendai virus (SeVdp) vector in feeder-free culture with serum-free medium hESF9. This study describes the generation of hiPSCs from peripheral blood mononuclear cells to increase the donor population, while reducing biopsy invasiveness. From 6-d-old primary culture of peripheral blood mononuclear cells (PBMCs) with IL-2, hiPSCs were established using SeVdp(KOSM)302L with recombinant Laminin-511 E8 fragments under serum-free condition. The established PBMC-derived hiPSCs showed pluripotency and differentiation ability both in vivo and in vitro. In addition, we evaluated microarray data from PBMC- and dental pulp–derived hiPSCs. These hiPSCs will be beneficial for characterizing the molecular mechanisms of cellular differentiation and may provide useful substrates for developing cellular therapeutics.
Collapse
Affiliation(s)
- Atsuko Hamada
- Department of Oral and Maxillofacial Surgery, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima-City, 734-8553, Japan
| | - Eri Akagi
- Department of Oral Maxillofacial Surgery, Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Sachiko Yamasaki
- Department of Oral and Maxillofacial Surgery, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima-City, 734-8553, Japan
| | - Hirotaka Nakatao
- Department of Oral and Maxillofacial Surgery, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima-City, 734-8553, Japan
| | - Fumitaka Obayashi
- Department of Oral and Maxillofacial Surgery, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima-City, 734-8553, Japan
| | - Manami Ohtaka
- TOKIWA-Bio, Inc., Tsukuba, Ibaraki, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mahito Nakanishi
- TOKIWA-Bio, Inc., Tsukuba, Ibaraki, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Shigeaki Toratani
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Applied Life Science, Graduate Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Tetsuji Okamoto
- Department of Oral and Maxillofacial Surgery, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima-City, 734-8553, Japan. .,Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Applied Life Science, Graduate Institute of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
17
|
Three-dimensional decellularized amnion membrane scaffold promotes the efficiency of male germ cells generation from human induced pluripotent stem cells. Exp Cell Res 2019; 384:111544. [DOI: 10.1016/j.yexcr.2019.111544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/21/2019] [Accepted: 08/01/2019] [Indexed: 12/30/2022]
|
18
|
Torizal FG, Horiguchi I, Sakai Y. Physiological Microenvironmental Conditions in Different Scalable Culture Systems for Pluripotent Stem Cell Expansion and Differentiation. Open Biomed Eng J 2019. [DOI: 10.2174/1874120701913010041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human Pluripotent Stem Cells (PSCs) are a valuable cell type that has a wide range of biomedical applications because they can differentiate into many types of adult somatic cell. Numerous studies have examined the clinical applications of PSCs. However, several factors such as bioreactor design, mechanical stress, and the physiological environment have not been optimized. These factors can significantly alter the pluripotency and proliferation properties of the cells, which are important for the mass production of PSCs. Nutritional mass transfer and oxygen transfer must be effectively maintained to obtain a high yield. Various culture systems are currently available for optimum cell propagation by maintaining the physiological conditions necessary for cell cultivation. Each type of culture system using a different configuration with various advantages and disadvantages affecting the mechanical conditions in the bioreactor, such as shear stress. These factors make it difficult to preserve the cellular viability and pluripotency of PSCs. Additional limitations of the culture system for PSCs must also be identified and overcome to maintain the culture conditions and enable large-scale expansion and differentiation of PSCs. This review describes the different physiological conditions in the various culture systems and recent developments in culture technology for PSC expansion and differentiation.
Collapse
|
19
|
Al Abbar A, Nordin N, Ghazalli N, Abdullah S. Generation of induced pluripotent stem cells by a polycistronic lentiviral vector in feeder- and serum- free defined culture. Tissue Cell 2018; 55:13-24. [DOI: 10.1016/j.tice.2018.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/08/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022]
|
20
|
Balestrieri E, Argaw-Denboba A, Gambacurta A, Cipriani C, Bei R, Serafino A, Sinibaldi-Vallebona P, Matteucci C. Human Endogenous Retrovirus K in the Crosstalk Between Cancer Cells Microenvironment and Plasticity: A New Perspective for Combination Therapy. Front Microbiol 2018; 9:1448. [PMID: 30013542 PMCID: PMC6036167 DOI: 10.3389/fmicb.2018.01448] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/11/2018] [Indexed: 12/24/2022] Open
Abstract
Abnormal activation of human endogenous retroviruses (HERVs) has been associated with several diseases such as cancer, autoimmunity, and neurological disorders. In particular, in cancer HERV activity and expression have been specifically associated with tumor aggressiveness and patient outcomes. Cancer cell aggressiveness is intimately linked to the acquisition of peculiar plasticity and heterogeneity based on cell stemness features, as well as on the crosstalk between cancer cells and the microenvironment. The latter is a driving factor in the acquisition of aggressive phenotypes, associated with metastasis and resistance to conventional cancer therapies. Remarkably, in different cell types and stages of development, HERV expression is mainly regulated by epigenetic mechanisms and is subjected to a very precise temporal and spatial regulation according to the surrounding microenvironment. Focusing on our research experience with HERV-K involvement in the aggressiveness and plasticity of melanoma cells, this perspective aims to highlight the role of HERV-K in the crosstalk between cancer cells and the tumor microenvironment. The implications for a combination therapy targeted at HERVs with standard approaches are discussed.
Collapse
Affiliation(s)
- Emanuela Balestrieri
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - Ayele Argaw-Denboba
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - Alessandra Gambacurta
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - Chiara Cipriani
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
21
|
Chang MC, Chang HH, Lin PS, Huang YA, Chan CP, Tsai YL, Lee SY, Jeng PY, Kuo HY, Yeung SY, Jeng JH. Effects of TGF-β1 on plasminogen activation in human dental pulp cells: Role of ALK5/Smad2, TAK1 and MEK/ERK signalling. J Tissue Eng Regen Med 2018; 12:854-863. [PMID: 27723266 DOI: 10.1002/term.2339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 07/30/2016] [Accepted: 09/26/2016] [Indexed: 11/07/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) plays an important role in the pulpal repair and dentinogenesis. Plasminogen activation (PA) system regulates extracellular matrix turnover. In this study, we investigated the effects of TGF-β1 on PA system of dental pulp cells and its signalling pathways. Dental pulp cells were treated with different concentrations of TGF-β1. MTT assay, reverse transcription-polymerase chain reaction, Western blotting and enzyme-linked immunosorbant assay (ELISA) were used to detect the effect of TGF-β1 on cell viability, mRNA and protein expression of urokinase-type plasminogen activator (uPA), uPA receptor (uPAR), plasminogen activator inhibitor-1 (PAI-1) as well as their secretion. The phosphorylation of Smad2 and TAK1 was analysed by Pathscan ELISA or Western blotting. Cells were pretreated with SB431542 (ALK5/Smad2/3 inhibitor), 5z-7-oxozeaenol (TAK1 inhibitor) and U0126 (MEK/ERK inhibitor) for examining the related signalling. TGF-β1 slightly inhibited cell growth that was reversed by SB431542. TGF-β1 upregulated both RNA and protein expression of PAI-1 and uPAR, whereas it downregulated uPA expression. Accordingly, TGF-β1 stimulated PAI-1 and soluble uPAR (suPAR) secretion of pulp cells, whereas uPA secretion was inhibited. TGF-β1 induced the phosphorylation of Smad2 and TAK1. In addition, SB431542, 5z-7-oxozeaenol and U0126 attenuated the TGF-β1-induced secretion of PAI-1 and suPAR. These results indicate that TGF-β1 is possibly involved in the repair/regeneration and inflammatory processes of dental pulp via regulation of PAI-1, uPA and uPAR. These effects of TGF-β1 are related to activation of ALK5/Smad2, TAK1 and MEK/ERK signalling pathways. Clarifying the signal transduction for the effects of TGF-β1 is helpful for pulpo-dentin regeneration and tissue engineering. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Biomedical Science Team and Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kwei-Shan, Taoyuan City, Taiwan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Hsiao-Hua Chang
- Laboratory of Dental Pharmacology, Toxicology & Material Biocompatibility, Graduate Institute of Clinical Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Po-Shuan Lin
- Laboratory of Dental Pharmacology, Toxicology & Material Biocompatibility, Graduate Institute of Clinical Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Yu-An Huang
- Laboratory of Dental Pharmacology, Toxicology & Material Biocompatibility, Graduate Institute of Clinical Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Chiu-Po Chan
- Department of Dentistry and School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ling Tsai
- Laboratory of Dental Pharmacology, Toxicology & Material Biocompatibility, Graduate Institute of Clinical Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Shen-Yang Lee
- Department of Dentistry and School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | - Po-Yuan Jeng
- School of Dentistry, University CEU, Cardenal Herrera, Valencia, Spain
| | - Han-Yueh Kuo
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Taiwan
| | - Sin-Yuet Yeung
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- Laboratory of Dental Pharmacology, Toxicology & Material Biocompatibility, Graduate Institute of Clinical Dentistry and Department of Dentistry, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| |
Collapse
|
22
|
Russell OM, Fruh I, Rai PK, Marcellin D, Doll T, Reeve A, Germain M, Bastien J, Rygiel KA, Cerino R, Sailer AW, Lako M, Taylor RW, Mueller M, Lightowlers RN, Turnbull DM, Helliwell SB. Preferential amplification of a human mitochondrial DNA deletion in vitro and in vivo. Sci Rep 2018; 8:1799. [PMID: 29379065 PMCID: PMC5789095 DOI: 10.1038/s41598-018-20064-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 12/27/2017] [Indexed: 01/19/2023] Open
Abstract
We generated induced pluripotent stem cells (iPSCs) from patient fibroblasts to yield cell lines containing varying degrees of heteroplasmy for a m.13514 A > G mtDNA point mutation (2 lines) and for a ~6 kb single, large scale mtDNA deletion (3 lines). Long term culture of the iPSCs containing a single, large-scale mtDNA deletion showed consistent increase in mtDNA deletion levels with time. Higher levels of mtDNA heteroplasmy correlated with increased respiratory deficiency. To determine what changes occurred in deletion level during differentiation, teratomas comprising all three embryonic germ layers were generated from low (20%) and intermediate heteroplasmy (55%) mtDNA deletion clones. Regardless of whether iPSCs harbouring low or intermediate mtDNA heteroplasmy were used, the final levels of heteroplasmy in all teratoma germ layers increased to a similar high level (>60%). Thus, during human stem cell division, cells not only tolerate high mtDNA deletion loads but seem to preferentially replicate deleted mtDNA genomes. This has implications for the involvement of mtDNA deletions in both disease and ageing.
Collapse
Affiliation(s)
- Oliver M Russell
- Wellcome Centre for Mitochondrial Research, Institutes of Neuroscience and Cellular and Molecular Bioscience, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, Tyne and Wear, UK
| | - Isabelle Fruh
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Pavandeep K Rai
- Wellcome Centre for Mitochondrial Research, Institutes of Neuroscience and Cellular and Molecular Bioscience, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, Tyne and Wear, UK
| | - David Marcellin
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Thierry Doll
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Amy Reeve
- Wellcome Centre for Mitochondrial Research, Institutes of Neuroscience and Cellular and Molecular Bioscience, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, Tyne and Wear, UK
| | - Mitchel Germain
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Julie Bastien
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Karolina A Rygiel
- Wellcome Centre for Mitochondrial Research, Institutes of Neuroscience and Cellular and Molecular Bioscience, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, Tyne and Wear, UK
| | - Raffaele Cerino
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Andreas W Sailer
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institutes of Neuroscience and Cellular and Molecular Bioscience, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, Tyne and Wear, UK
| | - Matthias Mueller
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland
| | - Robert N Lightowlers
- Wellcome Centre for Mitochondrial Research, Institutes of Neuroscience and Cellular and Molecular Bioscience, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, Tyne and Wear, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Institutes of Neuroscience and Cellular and Molecular Bioscience, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, Tyne and Wear, UK.
| | - Stephen B Helliwell
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, CH-4056, Switzerland.
| |
Collapse
|
23
|
Nurwidya F, Takahashi F, Kato M, Baskoro H, Hidayat M, Wirawan A, Takahashi K. CD44 silencing decreases the expression of stem cell-related factors induced by transforming growth factor β1 and tumor necrosis factor α in lung cancer: Preliminary findings. Bosn J Basic Med Sci 2017; 17:228-234. [PMID: 28446126 DOI: 10.17305/bjbms.2017.1966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 02/25/2017] [Accepted: 02/25/2017] [Indexed: 02/02/2023] Open
Abstract
The mechanism underlying increased concentrations of cancer stem cell (CSC)-associated factors in non-small cell lung cancer (NSCLC) cells treated with transforming growth factor β1 (TGFβ1) and tumor necrosis factor α (TNFα), is still not clear. The purpose of this study was to investigate the possible role of CD44 in the regulation of CSC-associated genes, by analyzing the effect of CD44 knockdown on their expression. A549, a NSCLC cell line that expresses CD44 antigen, was treated with TGFβ1 and TNFα. Small-interfering ribonucleic acid (siRNA) that specifically targets the CD44 gene was used to knockdown the expression of CD44 in A549. The gene expressions of CD44, CXCR4, POU5F1 (octamer-binding transcription factor 4 [Oct4]), PROM1, NANOG, c-Myc, KLF4, and SOX2, as well as of CDH1 (E-cadherin), CDH2 (N-cadherin), VIM (vimentin), and FN1 (fibronectin) were analyzed in A549 cells by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Cell morphology was observed using light microscopy. After TGFβ1/TNFα treatment, increased expressions of CXCR4 and POU5F1 were detected. Silencing of CD44 gene expression was confirmed by RT-qPCR. The knockdown of CD44 decreased the CXCR4 and POU5F1 gene expressions in TGFβ1/TNFα-treated A549 cells. However, the silencing of CD44 did not affect the morphology of TGFβ1/TNFα-treated A549 cells nor it reversed epithelial-mesenchymal transition (EMT) gene signature induced by TGFβ1/TNFα in A549 cells. Our preliminary findings suggest that the CD44 gene may have a role in regulating CXCR4 and POU5F1 gene expressions, independently of the EMT signaling pathway.
Collapse
Affiliation(s)
- Fariz Nurwidya
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Jakarta, Indonesia.
| | | | | | | | | | | | | |
Collapse
|
24
|
Kim YM, Kang YG, Park SH, Han MK, Kim JH, Shin JW, Shin JW. Effects of mechanical stimulation on the reprogramming of somatic cells into human-induced pluripotent stem cells. Stem Cell Res Ther 2017; 8:139. [PMID: 28595633 PMCID: PMC5465448 DOI: 10.1186/s13287-017-0594-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/24/2017] [Accepted: 05/22/2017] [Indexed: 12/26/2022] Open
Abstract
Background Mechanical stimuli play important roles in the proliferation and differentiation of adult stem cells. However, few studies on their effects on induced pluripotent stem cells (iPSCs) have been published. Methods Human dermal fibroblasts were seeded onto flexible membrane-bottom plates, and infected with retrovirus expressing the four reprogramming factors OCT4, SOX2, KLF, and c-MYC (OSKM). The cells were subjected to equiaxial stretching (3% or 8% for 2, 4, or 7 days) and seeded on feeder cells (STO). The reprogramming into iPSCs was evaluated by the expression of pluripotent markers, in vitro differentiation into three germ layers, and teratoma formation. Results Equiaxial stretching enhanced reprogramming efficiency without affecting the viral transduction rate. iPSCs induced by transduction of four reprogramming factors and application of equiaxial stretching had characteristics typical of iPSCs in terms of pluripotency and differentiation potentials. Conclusions This is the first study to show that mechanical stimuli can increase reprogramming efficiency. However, it did not enhance the infection rate, indicating that mechanical stimuli, defined as stretching in this study, have positive effects on reprogramming rather than on infection. Additional studies should evaluate the mechanism underlying the modulation of reprogramming of somatic cells into iPSCs.
Collapse
Affiliation(s)
- Young Mi Kim
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongsangnam-do, Republic of Korea
| | - Yun Gyeong Kang
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongsangnam-do, Republic of Korea
| | - So Hee Park
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongsangnam-do, Republic of Korea
| | - Myung-Kwan Han
- Department of Microbiology, Chonbuk National University Medical School, Jeonju, Jeollabuk-do, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Ji Won Shin
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongsangnam-do, Republic of Korea
| | - Jung-Woog Shin
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongsangnam-do, Republic of Korea. .,Department of Health Science and Technology/Cardiovascular and Metabolic Disease Center/Institute of Aged Life Redesign/UHARC, Gimhae, Gyeongsangnam-do, Republic of Korea.
| |
Collapse
|
25
|
Brigida AL, Siniscalco D. Induced pluripotent stem cells as a cellular model for studying Down Syndrome. J Stem Cells Regen Med 2016; 12:54-60. [PMID: 28096629 PMCID: PMC5227104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/27/2016] [Indexed: 05/22/2024]
Abstract
Down Syndrome (DS), or Trisomy 21 Syndrome, is one of the most common genetic diseases. It is a chromosomal abnormality caused by a duplication of chromosome 21. DS patients show the presence of a third copy (or a partial third copy) of chromosome 21 (trisomy), as result of meiotic errors. These patients suffer of many health problems, such as intellectual disability, congenital heart disease, duodenal stenosis, Alzheimer's disease, leukemia, immune system deficiencies, muscle hypotonia and motor disorders. About one in 1000 babies born each year are affected by DS. Alterations in the dosage of genes located on chromosome 21 (also called HSA21) are responsible for the DS phenotype. However, the molecular pathogenic mechanisms of DS triggering are still not understood; newest evidences suggest the involvement of epigenetic mechanisms. For obvious ethical reasons, studies performed on DS patients, as well as on human trisomic tissues are limited. Some authors have proposed mouse models of this syndrome. However, not all the features of the syndrome are represented. Stem cells are considered the future of molecular and regenerative medicine. Several types of stem cells could provide a valid approach to offer a potential treatment for some untreatable human diseases. Stem cells also represent a valid system to develop new cell-based drugs and/or a model to study molecular disease pathways. Among stem cell types, patient-derived induced pluripotent stem (iPS) cells offer some advantages for cell and tissue replacement, engineering and studying: self-renewal capacity, pluripotency and ease of accessibility to donor tissues. These cells can be reprogrammed into completely different cellular types. They are derived from adult somatic cells via reprogramming with ectopic expression of four transcription factors (Oct3/4, Sox2, c-Myc and Klf4; or, Oct3/4, Sox2, Nanog, and Lin28). By reprogramming cells from DS patients, it is possible to obtain new tissue with the same genetic background, offering a valuable tool for studying this genetic disease and to design customized patient-specific stem cell therapies.
Collapse
Affiliation(s)
- Anna Lisa Brigida
- Department of Experimental Medicine, Second University of Naples, 80138 Napoli, Italy.
| | - Dario Siniscalco
- Department of Experimental Medicine, Second University of Naples, 80138 Napoli, Italy.
| |
Collapse
|
26
|
Brigida AL, Siniscalco D. Induced pluripotent stem cells as a cellular model for studying Down Syndrome. J Stem Cells Regen Med 2016. [PMID: 28096629 PMCID: PMC5227104 DOI: 10.46582/jsrm.1202009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Down Syndrome (DS), or Trisomy 21 Syndrome, is one of the most common genetic diseases. It is a chromosomal abnormality caused by a duplication of chromosome 21. DS patients show the presence of a third copy (or a partial third copy) of chromosome 21 (trisomy), as result of meiotic errors. These patients suffer of many health problems, such as intellectual disability, congenital heart disease, duodenal stenosis, Alzheimer’s disease, leukemia, immune system deficiencies, muscle hypotonia and motor disorders. About one in 1000 babies born each year are affected by DS. Alterations in the dosage of genes located on chromosome 21 (also called HSA21) are responsible for the DS phenotype. However, the molecular pathogenic mechanisms of DS triggering are still not understood; newest evidences suggest the involvement of epigenetic mechanisms. For obvious ethical reasons, studies performed on DS patients, as well as on human trisomic tissues are limited. Some authors have proposed mouse models of this syndrome. However, not all the features of the syndrome are represented. Stem cells are considered the future of molecular and regenerative medicine. Several types of stem cells could provide a valid approach to offer a potential treatment for some untreatable human diseases. Stem cells also represent a valid system to develop new cell-based drugs and/or a model to study molecular disease pathways. Among stem cell types, patient-derived induced pluripotent stem (iPS) cells offer some advantages for cell and tissue replacement, engineering and studying: self-renewal capacity, pluripotency and ease of accessibility to donor tissues. These cells can be reprogrammed into completely different cellular types. They are derived from adult somatic cells via reprogramming with ectopic expression of four transcription factors (Oct3/4, Sox2, c-Myc and Klf4; or, Oct3/4, Sox2, Nanog, and Lin28). By reprogramming cells from DS patients, it is possible to obtain new tissue with the same genetic background, offering a valuable tool for studying this genetic disease and to design customized patient-specific stem cell therapies.
Collapse
Affiliation(s)
- Anna Lisa Brigida
- Department of Experimental Medicine, Second University of Naples, 80138 Napoli, Italy
| | - Dario Siniscalco
- Department of Experimental Medicine, Second University of Naples, 80138 Napoli, Italy
| |
Collapse
|
27
|
Grzybek M, Golonko A, Walczak M, Lisowski P. Epigenetics of cell fate reprogramming and its implications for neurological disorders modelling. Neurobiol Dis 2016; 99:84-120. [PMID: 27890672 DOI: 10.1016/j.nbd.2016.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 11/03/2016] [Accepted: 11/21/2016] [Indexed: 02/06/2023] Open
Abstract
The reprogramming of human induced pluripotent stem cells (hiPSCs) proceeds in a stepwise manner with reprogramming factors binding and epigenetic composition changes during transition to maintain the epigenetic landscape, important for pluripotency. There arises a question as to whether the aberrant epigenetic state after reprogramming leads to epigenetic defects in induced stem cells causing unpredictable long term effects in differentiated cells. In this review, we present a comprehensive view of epigenetic alterations accompanying reprogramming, cell maintenance and differentiation as factors that influence applications of hiPSCs in stem cell based technologies. We conclude that sample heterogeneity masks DNA methylation signatures in subpopulations of cells and thus believe that beside a genetic evaluation, extensive epigenomic screening should become a standard procedure to ensure hiPSCs state before they are used for genome editing and differentiation into neurons of interest. In particular, we suggest that exploitation of the single-cell composition of the epigenome will provide important insights into heterogeneity within hiPSCs subpopulations to fast forward development of reliable hiPSC-based analytical platforms in neurological disorders modelling and before completed hiPSC technology will be implemented in clinical approaches.
Collapse
Affiliation(s)
- Maciej Grzybek
- Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland.
| | - Aleksandra Golonko
- Department of Biotechnology, Faculty of Civil and Environmental Engineering, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland.
| | - Marta Walczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland.
| | - Pawel Lisowski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland; iPS Cell-Based Disease Modelling Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Str. 10, 13092 Berlin, Germany.
| |
Collapse
|
28
|
Sheyn D, Ben-David S, Shapiro G, De Mel S, Bez M, Ornelas L, Sahabian A, Sareen D, Da X, Pelled G, Tawackoli W, Liu Z, Gazit D, Gazit Z. Human Induced Pluripotent Stem Cells Differentiate Into Functional Mesenchymal Stem Cells and Repair Bone Defects. Stem Cells Transl Med 2016; 5:1447-1460. [PMID: 27400789 PMCID: PMC5070500 DOI: 10.5966/sctm.2015-0311] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/08/2016] [Indexed: 12/19/2022] Open
Abstract
Using short-term exposure of embryoid bodies to transforming growth factor-β, the authors directed induced pluripotent stem cells (iPSCs) toward mesenchymal stem cell (MSC) differentiation. Two types of iPSC-derived MSCs were identified: early (aiMSCs) and late (tiMSCs) outgrowing cells. Both types differentiated in vitro in response to osteogenic or adipogenic supplements; aiMSCs demonstrated higher osteogenic potential than tiMSCs. Upon orthotopic injection into radial defects, both types regenerated bone and contributed to defect repair. Mesenchymal stem cells (MSCs) are currently the most established cells for skeletal tissue engineering and regeneration; however, their availability and capability of self-renewal are limited. Recent discoveries of somatic cell reprogramming may be used to overcome these challenges. We hypothesized that induced pluripotent stem cells (iPSCs) that were differentiated into MSCs could be used for bone regeneration. Short-term exposure of embryoid bodies to transforming growth factor-β was used to direct iPSCs toward MSC differentiation. During this process, two types of iPSC-derived MSCs (iMSCs) were identified: early (aiMSCs) and late (tiMSCs) outgrowing cells. The transition of iPSCs toward MSCs was documented using MSC marker flow cytometry. Both types of iMSCs differentiated in vitro in response to osteogenic or adipogenic supplements. The results of quantitative assays showed that both cell types retained their multidifferentiation potential, although aiMSCs demonstrated higher osteogenic potential than tiMSCs and bone marrow-derived MSCs (BM-MSCs). Ectopic injections of BMP6-overexpressing tiMSCs produced no or limited bone formation, whereas similar injections of BMP6-overexpressing aiMSCs resulted in substantial bone formation. Upon orthotopic injection into radial defects, all three cell types regenerated bone and contributed to defect repair. In conclusion, MSCs can be derived from iPSCs and exhibit self-renewal without tumorigenic ability. Compared with BM-MSCs, aiMSCs acquire more of a stem cell phenotype, whereas tiMSCs acquire more of a differentiated osteoblast phenotype, which aids bone regeneration but does not allow the cells to induce ectopic bone formation (even when triggered by bone morphogenetic proteins), unless in an orthotopic site of bone fracture. Significance Mesenchymal stem cells (MSCs) are currently the most established cells for skeletal tissue engineering and regeneration of various skeletal conditions; however, availability of autologous MSCs is very limited. This study demonstrates a new method to differentiate human fibroblast-derived induced pluripotent stem cells (iPSCs) to cells with MSC properties, which we comprehensively characterized including differentiation potential and transcriptomic analysis. We showed that these iPS-derived MSCs are able to regenerate nonunion bone defects in mice more efficiently than bone marrow-derived human MSCs when overexpressing BMP6 using a nonviral transfection method.
Collapse
Affiliation(s)
- Dmitriy Sheyn
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shiran Ben-David
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Galina Shapiro
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sandra De Mel
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Maxim Bez
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Loren Ornelas
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- iPSC Core Facility, The David and Janet Polak Stem Cell Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Anais Sahabian
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- iPSC Core Facility, The David and Janet Polak Stem Cell Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dhruv Sareen
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
- iPSC Core Facility, The David and Janet Polak Stem Cell Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Xiaoyu Da
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Gadi Pelled
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wafa Tawackoli
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zhenqiu Liu
- Biostatistics and Bioinformatics Core, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dan Gazit
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zulma Gazit
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
29
|
Nakashima Y, Omasa T. What Kind of Signaling Maintains Pluripotency and Viability in Human-Induced Pluripotent Stem Cells Cultured on Laminin-511 with Serum-Free Medium? Biores Open Access 2016; 5:84-93. [PMID: 27096107 PMCID: PMC4834485 DOI: 10.1089/biores.2016.0001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Xeno-free medium contains no animal-derived components, but is composed of minimal growth factors and is serum free; the medium may be supplemented with insulin, transferrin, and selenium (ITS medium). Serum-free and xeno-free culture of human-induced pluripotent stem cells (hiPSCs) uses a variety of components based on ITS medium and Dulbecco's modified Eagle's medium/Ham's nutrient mixture F12 (DMEM/F12) that contain high levels of iron salt and glucose. Culture of hiPSCs also requires scaffolding materials, such as extracellular matrix, collagen, fibronectin, laminin, proteoglycan, and vitronectin. The scaffolding component laminin-511, which is composed of α5, β1, and γ1 chains, binds to α3β1, α6β1, and α6β4 integrins on the cell membrane to induce activation of the PI3K/AKT- and Ras/MAPK-dependent signaling pathways. In hiPSCs, the interaction of laminin-511/α6β1 integrin with the cell–cell adhesion molecule E-cadherin confers protection against apoptosis through the Ras homolog gene family member A (RhoA)/Rho kinase (ROCK) signaling pathway (the major pathways for cell death) and the proto-oncogene tyrosine-protein kinase Fyn (Fyn)-RhoA-ROCK signaling pathway. The expression levels of α6β1 integrin and E-cadherin on cell membranes are controlled through the activation of insulin receptor/insulin, FGF receptor/FGF2, or activin-like kinase 5 (ALK5)-dependent TGF-β signaling. A combination of growth factors, medium constituents, cell membrane-located E-cadherin, and α6β1 integrin-induced signaling is required for pluripotent cell proliferation and for optimal cell survival on a laminin-511 scaffold. In this review, we discuss and explore the influence of growth factors on the cadherin and integrin signaling pathways in serum-free and xeno-free cultures of hiPSCs during the preparation of products for regenerative medicinal therapies. In addition, we suggest the optimum serum-free medium components for use with laminin-511, a new scaffold for hiPSC culture.
Collapse
Affiliation(s)
- Yoshiki Nakashima
- Department of Material and Life Science, Graduate School of Engineering, Osaka University , Osaka, Japan
| | - Takeshi Omasa
- Department of Material and Life Science, Graduate School of Engineering, Osaka University , Osaka, Japan
| |
Collapse
|
30
|
Badenes SM, Fernandes TG, Cordeiro CSM, Boucher S, Kuninger D, Vemuri MC, Diogo MM, Cabral JMS. Defined Essential 8™ Medium and Vitronectin Efficiently Support Scalable Xeno-Free Expansion of Human Induced Pluripotent Stem Cells in Stirred Microcarrier Culture Systems. PLoS One 2016; 11:e0151264. [PMID: 26999816 PMCID: PMC4801338 DOI: 10.1371/journal.pone.0151264] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/19/2016] [Indexed: 12/24/2022] Open
Abstract
Human induced pluripotent stem (hiPS) cell culture using Essential 8™ xeno-free medium and the defined xeno-free matrix vitronectin was successfully implemented under adherent conditions. This matrix was able to support hiPS cell expansion either in coated plates or on polystyrene-coated microcarriers, while maintaining hiPS cell functionality and pluripotency. Importantly, scale-up of the microcarrier-based system was accomplished using a 50 mL spinner flask, under dynamic conditions. A three-level factorial design experiment was performed to identify optimal conditions in terms of a) initial cell density b) agitation speed, and c) to maximize cell yield in spinner flask cultures. A maximum cell yield of 3.5 is achieved by inoculating 55,000 cells/cm2 of microcarrier surface area and using 44 rpm, which generates a cell density of 1.4x106 cells/mL after 10 days of culture. After dynamic culture, hiPS cells maintained their typical morphology upon re-plating, exhibited pluripotency-associated marker expression as well as tri-lineage differentiation capability, which was verified by inducing their spontaneous differentiation through embryoid body formation, and subsequent downstream differentiation to specific lineages such as neural and cardiac fates was successfully accomplished. In conclusion, a scalable, robust and cost-effective xeno-free culture system was successfully developed and implemented for the scale-up production of hiPS cells.
Collapse
Affiliation(s)
- Sara M. Badenes
- Department of Bioengineering, and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering, and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| | - Cláudia S. M. Cordeiro
- Department of Bioengineering, and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Shayne Boucher
- Thermo Fisher Scientific, Cell Biology, Life Sciences Solutions, Frederick, Maryland, United States of America
| | - David Kuninger
- Thermo Fisher Scientific, Cell Biology, Life Sciences Solutions, Frederick, Maryland, United States of America
| | - Mohan C. Vemuri
- Thermo Fisher Scientific, Cell Biology, Life Sciences Solutions, Frederick, Maryland, United States of America
| | - Maria Margarida Diogo
- Thermo Fisher Scientific, Cell Biology, Life Sciences Solutions, Frederick, Maryland, United States of America
| | - Joaquim M. S. Cabral
- Thermo Fisher Scientific, Cell Biology, Life Sciences Solutions, Frederick, Maryland, United States of America
| |
Collapse
|
31
|
Leha A, Moens N, Meleckyte R, Culley OJ, Gervasio MK, Kerz M, Reimer A, Cain SA, Streeter I, Folarin A, Stegle O, Kielty CM, Durbin R, Watt FM, Danovi D. A high-content platform to characterise human induced pluripotent stem cell lines. Methods 2015; 96:85-96. [PMID: 26608109 PMCID: PMC4773406 DOI: 10.1016/j.ymeth.2015.11.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/11/2015] [Accepted: 11/17/2015] [Indexed: 01/16/2023] Open
Abstract
iPSCs show inter/intra-line/donor-variability hampering characterisation. HipSci generates, banks and provides iPSCs from hundreds of individual donors. iPSCs respond to different human plasma fibronectin concentrations on 96-well assays. Phenotypic features: cell number, proliferation, morphology and intercellular adhesion. The methodologies described can be tailored for disease-modelling and other cell types.
Induced pluripotent stem cells (iPSCs) provide invaluable opportunities for future cell therapies as well as for studying human development, modelling diseases and discovering therapeutics. In order to realise the potential of iPSCs, it is crucial to comprehensively characterise cells generated from large cohorts of healthy and diseased individuals. The human iPSC initiative (HipSci) is assessing a large panel of cell lines to define cell phenotypes, dissect inter- and intra-line and donor variability and identify its key determinant components. Here we report the establishment of a high-content platform for phenotypic analysis of human iPSC lines. In the described assay, cells are dissociated and seeded as single cells onto 96-well plates coated with fibronectin at three different concentrations. This method allows assessment of cell number, proliferation, morphology and intercellular adhesion. Altogether, our strategy delivers robust quantification of phenotypic diversity within complex cell populations facilitating future identification of the genetic, biological and technical determinants of variance. Approaches such as the one described can be used to benchmark iPSCs from multiple donors and create novel platforms that can readily be tailored for disease modelling and drug discovery.
Collapse
Affiliation(s)
- Andreas Leha
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Nathalie Moens
- HipSci Cell Phenotyping, Centre for Stem Cells and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Ruta Meleckyte
- HipSci Cell Phenotyping, Centre for Stem Cells and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Oliver J Culley
- HipSci Cell Phenotyping, Centre for Stem Cells and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Mia K Gervasio
- HipSci Cell Phenotyping, Centre for Stem Cells and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Maximilian Kerz
- HipSci Cell Phenotyping, Centre for Stem Cells and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK; NIHR Biomedical Research Centre for Mental Health Informatics Core, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Andreas Reimer
- HipSci Cell Phenotyping, Centre for Stem Cells and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Stuart A Cain
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Ian Streeter
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Amos Folarin
- NIHR Biomedical Research Centre for Mental Health Informatics Core, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Cay M Kielty
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | - Richard Durbin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Fiona M Watt
- HipSci Cell Phenotyping, Centre for Stem Cells and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Davide Danovi
- HipSci Cell Phenotyping, Centre for Stem Cells and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
32
|
Yamasaki S, Hamada A, Akagi E, Nakatao H, Ohtaka M, Nishimura K, Nakanishi M, Toratani S, Okamoto T. Generation of cleidocranial dysplasia-specific human induced pluripotent stem cells in completely serum-, feeder-, and integration-free culture. In Vitro Cell Dev Biol Anim 2015; 52:252-64. [PMID: 26559068 PMCID: PMC4746228 DOI: 10.1007/s11626-015-9968-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/15/2015] [Indexed: 12/30/2022]
Abstract
Human pluripotent stem cells hold great promise for their practical and scientific potentials. To improve understanding of self-renewal and differentiation, we previously reported a defined serum-free medium hESF9 could generate and maintain human induced pluripotent stem cells (iPSCs) in serum- and feeder-free culture conditions using retroviral vectors. To avoid the unpredictable side effects associated with retrovirus integration, we report here the successful generation of hiPSCs from dental pulp cells with a non-integrating replication-defective and persistent Sendai virus (SeVdp) vector expressing four key reprogramming genes. We found that hESF9 medium in combination with fibronectin are effective for generating and maintaining hiPSCs with SeVdp (KOSM). Using this system, pluripotent and self-renewing hiPSCs could be easily and stably generated and propagated. With this system, we successfully generated hiPSCs from cleidocranial dysplasia (CCD) caused by a heterozygous germ-line mutation of runt-related protein2 (RUNX2), which has an important role in the differentiation of osteoblasts and maturation of chondrocytes. This is the first report of the establishment of CCD-specific iPSCs. The cartilage in the teratomas of CCD-iPSCs showed abnormalities. These CCD-iPSCs would be beneficial to clarify the molecular mechanism and for development of medical applications. Moreover, it brings new pathophysiological role of RUNX2 in the differentiation of the human chondrocytes and osteocytes.
Collapse
Affiliation(s)
- Sachiko Yamasaki
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Applied Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
| | - Atsuko Hamada
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Applied Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
| | - Eri Akagi
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Applied Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
| | - Hirotaka Nakatao
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Applied Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
| | - Manami Ohtaka
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Central 4, Tsukuba, Ibaraki, 305-8562, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki, 305-8575, Japan
| | - Mahito Nakanishi
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Central 4, Tsukuba, Ibaraki, 305-8562, Japan
| | - Shigeaki Toratani
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Applied Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tetsuji Okamoto
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Applied Life Sciences, Graduate Institute of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
33
|
Kamada M, Mitsui Y, Matsuo T, Takahashi T. Reversible transformation and de-differentiation of human cells derived from induced pluripotent stem cell teratomas. Hum Cell 2015; 29:1-9. [PMID: 26069211 PMCID: PMC4705144 DOI: 10.1007/s13577-015-0119-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 11/29/2022]
Abstract
We first aimed to generate transformed cell lines from a human induced pluripotent stem cell (hiPSC)-teratoma, and then examined the tumorigenic risks of the differentiated cells from hiPSC explant, because hiPSC-derivatives give rise to tumors in immune-deficient mice when transplanted. The colonies isolated from sparse cultures of hiPSC-teratoma cells expressed NANOG and OCT3/4 strongly, and telomerase reverse transcriptase (TERT) weakly. However, soft agar assay demonstrated that only one of them generated colonies in the gel, though hiPSCs, hTERT-transfected immortal cells, and its oncogene-transfected cells did not form any colonies. Furthermore, none of colonies isolated from the soft agar gel on primary culture (passage 0) of teratoma cells, expressed NANOG and OCT3/4 in the expanded cultures. The second soft agar assay on the colony-derived cells was unexpectedly negative. The cumulative growth curve, telomere shortening, and senescence-associated β-galactosidase (SA β-gal) staining confirmed the mortality of these cells, suggesting their reversible transformation. By using medium for embryonic stem cell (ESC medium) after MCDB 131 (MCDB) medium, the differentiated culture cells derived from hiPSC-teratoma converted into the cells expressing undifferentiated marker proteins, which lost afterwords even in ESC medium with feeder SNL76/7. The reversibility of transformation and de-differentiation suggest that tumorigenic risks of differentiated cells arise when they are exposed to suitable niches in vivo. Thus, removal of only the undifferentiated cells from iPSC-derivatives before transplantation does not solve the problem. Elucidation of mechanisms of reversibility and control of epigenetic changes is discussed as a safety bottleneck for hiPSC therapy.
Collapse
Affiliation(s)
- Mizuna Kamada
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Youji Mitsui
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan. .,Foundation for Advancement of International Science, Department of Research Development, Ibaraki, 305-0821, Japan.
| | - Taira Matsuo
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Tomoko Takahashi
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan.
| |
Collapse
|
34
|
Jasnic-Savovic J, Klajn A, Milivojevic M, Mojsin M, Nikcevic G. Human embryonal carcinoma cells in serum-free conditions as an in vitro model system of neural differentiation. Altern Lab Anim 2015; 43:9-18. [PMID: 25802994 DOI: 10.1177/026119291504300105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Serum is generally regarded as an essential component of many eukaryotic cell culture media, despite the fact that serum composition varies greatly and may be the source of a wide range of artefacts. The objective of this study was to assess serum-free growth conditions for the human embryonal carcinoma cell line, NT2/D1. These cells greatly resemble embryonic stem cells. In the presence of retinoic acid (RA), NT2/D1 cells irreversibly differentiate along the neuronal lineage. We have previously shown that the early phases of neural induction of these cells by RA involve the up-regulation of SOX3 gene expression. Our goal was to compare RA-induced differentiation of NT2/D1 cells in serum-containing and serum-free media, by using SOX3 protein levels as a marker of differentiation. We found that NT2/D1 cells can be successfully grown under serum-free conditions, and that the presence or absence of serum does not affect the level of SOX3 protein after a 48-hour RA induction. However, six days of RA treatment resulted in a marked increase in SOX3 protein levels in serum-free media compared to serum-containing media, indicating that serum might have an inhibitory effect on the expression of this neural differentiation marker. This finding is important for both basic and translational studies that hope to exploit cell culture conditions that are free of animal-derived products.
Collapse
Affiliation(s)
- Jovana Jasnic-Savovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Andrijana Klajn
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milena Milivojevic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Mojsin
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Gordana Nikcevic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
35
|
Joddar B, Nishioka C, Takahashi E, Ito Y. Chemically fixed autologous feeder cell-derived niche for human induced pluripotent stem cell culture. J Mater Chem B 2015; 3:2301-2307. [DOI: 10.1039/c4tb01635a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A newer method of hiPS culture on feeder cell-derived niche is reported in this study.
Collapse
Affiliation(s)
- Binata Joddar
- Nano Medical Engineering Laboratory
- RIKEN
- Wako
- Japan
- Department of Mechanical Engineering & Biomedical Engineering Program at The University of Texas at El Paso
| | - Chieko Nishioka
- Support Unit for Animal Experiment
- Research Resources Center
- RIKEN Brain Science Institute
- Wako
- Japan
| | - Eiki Takahashi
- Support Unit for Animal Experiment
- Research Resources Center
- RIKEN Brain Science Institute
- Wako
- Japan
| | | |
Collapse
|
36
|
Gazdhar A, Grad I, Tamò L, Gugger M, Feki A, Geiser T. The secretome of induced pluripotent stem cells reduces lung fibrosis in part by hepatocyte growth factor. Stem Cell Res Ther 2014; 5:123. [PMID: 25384638 PMCID: PMC4445988 DOI: 10.1186/scrt513] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/28/2014] [Indexed: 02/07/2023] Open
Abstract
Introduction Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible fibrotic lung disease, resulting in respiratory insufficiency and reduced survival. Pulmonary fibrosis is a result of repeated alveolar epithelial microinjuries, followed by abnormal regeneration and repair processes in the lung. Recently, stem cells and their secretome have been investigated as a novel therapeutic approach in pulmonary fibrosis. We evaluated the potential of induced pluripotent stem cells (iPSC) conditioned media (iPSC-cm) to regenerate and repair the alveolar epithelium in vitro and improve bleomycin induced lung injury in vivo. Methods IPSC-cm was collected from cultured iPSC derived from human foreskin fibroblasts and its biological effects on alveolar epithelial wound repair was studied in an alveolar wound healing assay in vitro. Furthermore, iPSC-cm was intratracheally instilled 7 days after bleomycin induced injury in the rat lungs and histologically and biochemically assessed 7 days after instillation. Results iPSC-cm increased alveolar epithelial wound repair in vitro compared with medium control. Intratracheal instillation of iPSC-cm in bleomycin-injured lungs reduced the collagen content and improved lung fibrosis in the rat lung in vivo. Profibrotic TGFbeta1 and α-smooth muscle actin (α-sma) expression were markedly reduced in the iPSC-cm treated group compared with control. Antifibrotic hepatocyte growth factor (HGF) was detected in iPSC-cm in biologically relevant levels, and specific inhibition of HGF in iPSC-cm attenuated the antifibrotic effect of iPSC-cm, indicating a central role of HGF in iPSC-cm. Conclusion iPSC-cm increased alveolar epithelial wound repair in vitro and attenuated bleomycin induced fibrosis in vivo, partially due to the presence of HGF and may represent a promising novel, cell free therapeutic option against lung injury and fibrosis. Electronic supplementary material The online version of this article (doi:10.1186/scrt513) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Kamada M, Mitsui Y, Kumazaki T, Kawahara Y, Matsuo T, Takahashi T. Tumorigenic risk of human induced pluripotent stem cell explants cultured on mouse SNL76/7 feeder cells. Biochem Biophys Res Commun 2014; 453:668-73. [PMID: 25305485 DOI: 10.1016/j.bbrc.2014.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/05/2014] [Indexed: 01/21/2023]
Abstract
The potential for tumor formation from transplanted human induced pluripotent stem cell (hiPSC) derivatives represents a high risk in their application to regenerative medicine. We examined the genetic origin and characteristics of tumors, that were formed when 13 hiPSC lines, established by ourselves, and 201B7 hiPSC from Kyoto University were transplanted into severe combined immune-deficient (SCID) mice. Though teratomas formed in 58% of mice, five angiosarcomas, one malignant solitary fibrous tumor and one undifferentiated pleomorphic sarcoma formed in the remaining mice. Three malignant cell lines were established from the tumors, which were derived from mitomycin C (MMC)-treated SNL76/7 (MMC-SNL) feeder cells, as tumor development from fusion cells between MMC-SNL and hiPSCs was negative by genetic analysis. While parent SNL76/7 cells produced malignant tumors, neither MMC-SNL nor MMC-treated mouse embryo fibroblast (MEF) produced malignant tumors. When MMC-SNL feeder cells were co-cultured with hiPSCs, growing cell lines were generated, that expressed genes similar to the parent SNL76/7 cells. Thus, hiPSCs grown on MMC-SNL feeder cells have a high risk of generating feeder-derived malignant tumors. The possible mechanism(s) of growth restoration and the formation of multiple tumor types are discussed with respect of the interactions between MMC-SNL and hiPSC.
Collapse
Affiliation(s)
- Mizuna Kamada
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Youji Mitsui
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan.
| | - Tsutomu Kumazaki
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Yuta Kawahara
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Taira Matsuo
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Tomoko Takahashi
- Laboratory of Physiological Chemistry, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan.
| |
Collapse
|
38
|
Ishii T, Mann GE. Redox status in mammalian cells and stem cells during culture in vitro: critical roles of Nrf2 and cystine transporter activity in the maintenance of redox balance. Redox Biol 2014; 2:786-94. [PMID: 25009780 PMCID: PMC4085355 DOI: 10.1016/j.redox.2014.04.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 12/24/2022] Open
Abstract
Culturing cells and tissues in vitro has provided valuable insights into the molecular mechanisms regulating redox signaling in cells with implications for medicine. However, standard culture techniques maintain mammalian cells in vitro under an artificial physicochemical environment such as ambient air and 5% CO2. Oxidative stress is caused by the rapid oxidation of cysteine to cystine in culture media catalyzed by transition metals, leading to diminished intracellular cysteine and glutathione (GSH) pools. Some cells, such as fibroblasts and macrophages, express cystine transport activity, designated as system [Formula: see text], which enables cells to maintain these pools to counteract oxidative stress. Additionally, many cells have the ability to activate the redox sensitive transcription factor Nrf2, a master regulator of cellular defenses against oxidative stress, and to upregulate xCT, the subunit of the [Formula: see text] transport system leading to increases in cellular GSH. In contrast, some cells, including lymphoid cells, embryonic stem cells and iPS cells, express relatively low levels of xCT and cannot maintain cellular cysteine and GSH pools. Thus, fibroblasts have been used as feeder cells for the latter cell types based on their ability to supply cysteine. Other key Nrf2 regulated gene products include heme oxygenase 1, peroxiredoxin 1 and sequestosome1. In macrophages, oxidized LDL activates Nrf2 and upregulates the scavenger receptor CD36 forming a positive feedback loop to facilitate removal of the oxidant from the vascular microenvironment. This review describes cell type specific responses to oxygen derived stress, and the key roles that activation of Nrf2 and membrane transport of cystine and cysteine play in the maintenance and proliferation of mammalian cells in culture.
Collapse
Key Words
- 2-Mercaptoethanol
- 4HNE, 4-hydroxynonenal
- BCS, bathocuproine sulfonate
- CD36
- Cystine transporter
- ES cells, embryonic stem cells
- Embryonic stem cells
- Feeder cells
- Glutathione
- HO-1, heme oxygenase 1
- Keap1, Kelch-like ECH-associated protein 1
- Lymphocytes
- MRPs, multidrug resistance-associated proteins
- Nrf2
- Nrf2, nuclear factor erythroid 2-related factor 2
- Oxygen
- Prx1, peroxiredoxin 1
- SQSTM1, sequestosome1
- iPS cells
- iPS cells, induced pluripotent stem cells
- oxLDL, oxidized low density lipoprotein
- xCT
Collapse
Affiliation(s)
- Tetsuro Ishii
- University of Tsukuba, Ibaraki, Japan
- Corresponding author:
| | - Giovanni E. Mann
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, School of Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|