1
|
Molnár AÁ, Birgés K, Surman A, Merkely B. The Complex Connection Between Myocardial Dysfunction and Cancer Beyond Cardiotoxicity: Shared Risk Factors and Common Molecular Pathways. Int J Mol Sci 2024; 25:13185. [PMID: 39684895 DOI: 10.3390/ijms252313185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiovascular diseases and cancer represent the largest disease burden worldwide. Previously, these two conditions were considered independent, except in terms of cardiotoxicity, which links cancer treatment to subsequent cardiovascular issues. However, recent studies suggest that there are further connections between cancer and heart disease beyond cardiotoxicity. It has been revealed that myocardial dysfunction may promote carcinogenesis, indicating that additional common pathophysiological mechanisms might be involved in the relationship between cardiology and oncology, rather than simply a connection through cardiotoxic effects. These mechanisms may include shared risk factors and common molecular pathways, such as persistent inflammation and neurohormonal activation. This review explores the connection between myocardial dysfunction and cancer, emphasizing their shared risk factors, similar biological mechanisms, and causative factors like cardiotoxicity, along with their clinical implications.
Collapse
Affiliation(s)
| | - Kristóf Birgés
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Adrienn Surman
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| |
Collapse
|
2
|
Wesley CD, Sansonetti A, Neutel CHG, Krüger DN, De Meyer GRY, Martinet W, Guns PJ. Short-Term Proteasome Inhibition: Assessment of the Effects of Carfilzomib and Bortezomib on Cardiac Function, Arterial Stiffness, and Vascular Reactivity. BIOLOGY 2024; 13:844. [PMID: 39452152 PMCID: PMC11504385 DOI: 10.3390/biology13100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Proteasome inhibitors such as bortezomib and carfilzomib induce apoptosis and are a cornerstone in the treatment of relapsed or refractory multiple myeloma. However, concerns have emerged concerning their link to cancer therapy-related cardiovascular dysfunction (CTRCD). Bortezomib, a reversible first-generation inhibitor, and carfilzomib, a second-generation irreversible inhibitor, are associated with hypertension, heart failure, and cardiac arrhythmias. The current study investigated the effects of bortezomib and carfilzomib on cardiac (left ventricular ejection fraction, LVEF) and vascular (arterial stiffness, vascular reactivity) function. Cardiac function assessment aimed to build upon existing evidence of proteasome inhibitors CTRCD, while arterial stiffness served as an early indicator of potential vascular remodeling. Groups of 12-week-old C57BL/6J male mice (n = 8 per group) were randomly assigned to receive vehicle, carfilzomib (8 mg/kg I.P.), or bortezomib (0.5 mg/kg I.P.). Additionally, proteasome inhibition was assessed in mice treated with L-NAME (0.5 mg/kg) to induce hypertension. Cardiac and vascular parameters were evaluated via echocardiography on days 0 and 3. On day 6, mice were sacrificed for ex vivo analysis of arterial stiffness and vascular reactivity. Overall, no changes in arterial stiffness were detected either in vivo or ex vivo at basal pressures. However, a steeper pressure-stiffness curve was observed for carfilzomib in normotensive (p < 0.01) and hypertensive (p < 0.0001) mice ex vivo. Additionally, in hypertensive mice, carfilzomib decreased LVEF (p = 0.06), with bortezomib exhibiting similar trends. Vascular reactivity remained largely unchanged, but proteasome inhibition tended to enhance endothelial-independent relaxations in both control and hypertensive mice. In conclusion, short-term treatment with carfilzomib and bortezomib is considered relatively safe for the protocols assessed in the study.
Collapse
Affiliation(s)
- Callan D. Wesley
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences University of Antwerp, Campus Drie Eiken, 2610 Antwerp, Belgium; (A.S.); (C.H.G.N.); (D.N.K.); (G.R.Y.D.M.); (W.M.); (P.-J.G.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Gao F, Xu T, Zang F, Luo Y, Pan D. Cardiotoxicity of Anticancer Drugs: Molecular Mechanisms, Clinical Management and Innovative Treatment. Drug Des Devel Ther 2024; 18:4089-4116. [PMID: 39286288 PMCID: PMC11404500 DOI: 10.2147/dddt.s469331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
With the continuous refinement of therapeutic measures, the survival rate of tumor patients has been improving year by year, while cardiovascular complications related to cancer therapy have become increasingly prominent. Exploring the mechanism and prevention strategy of cancer therapy-related cardiovascular toxicity (CTR-CVT) remains one of the research hotspots in the field of Cardio-Oncology in recent years. Cardiotoxicity of anticancer drugs involves heart failure, myocarditis, hypertension, arrhythmias and vascular toxicity, mechanistically related to vascular endothelial dysfunction, ferroptosis, mitochondrial dysfunction and oxidative stress. To address the cardiotoxicity induced by different anticancer drugs, various therapeutic measures have been put in place, such as reducing the accumulation of anticancer drugs, shifting to drugs with less cardiotoxicity, using cardioprotective drugs, and early detection. Due to the very limited treatments available to ameliorate anticancer drugs-induced cardiotoxicity, a few innovations are being shifted from animal studies to human studies. Examples include mitochondrial transplantation. Mitochondrial transplantation has been proven to be effective in in vivo and in vitro experiments. Several recent studies have demonstrated that intercellular mitochondrial transfer can ameliorate doxorubicin(DOX)-induced cardiotoxicity, laying the foundation for innovative therapies in anticancer drugs-induced cardiotoxicity. In this review, we will discuss the current status of anticancer drugs-induced cardiotoxicity in terms of the pathogenesis and treatment, with a focus on mitochondrial transplantation, and we hope that this review will bring some inspiration to you.
Collapse
Affiliation(s)
- Feiyu Gao
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Tao Xu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Fangnan Zang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Yuanyuan Luo
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Defeng Pan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| |
Collapse
|
4
|
Ali S, Zulfiqar M, Summer M, Arshad M, Noor S, Nazakat L, Javed A. Zebrafish as an innovative model for exploring cardiovascular disease induction mechanisms and novel therapeutic interventions: a molecular insight. Mol Biol Rep 2024; 51:904. [PMID: 39133413 DOI: 10.1007/s11033-024-09814-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Cardiovascular disease (CVD) is a common cardiac disorder that leads to heart attacks, strokes, and heart failure. It is primarily characterized by conditions that impact the heart and blood arteries, including peripheral artery disease, arrhythmias, atherosclerosis, myocardial ischemia, congenital heart abnormalities, heart failure, rheumatic heart disease, hypertension, and cardiomyopathies. These conditions are mainly effect the heart and blood vessels, causing blockages or weakened pumping, due to severe hereditary and environmental factors. The frequency of CVD is rising significantly as life expectancy increases. Despite this, no effective treatment or management for its symptoms has been found. One of the most difficult obstacles to overcome, is finding a suitable animal model for drug screening and drug development. Although rodents, mice, swine, and mammals serve as the basis for most animal models of cardiovascular disease, no model accurately captures the epidemiology of the condition. Zebrafish (Danio rerio) have drawn the interest of the international scientific community due to certain shortcomings of the previously discussed animal models because they are smaller, less costly, and have an incredibly high rate of reproduction. This review article emphasizes the significance of using zebrafish as an animal model to investigate the possible facets of cardiovascular disease. Moreover, the ultimate purpose of this review article is to establish the advantages of employing zebrafish over other animal models and to investigate the boundaries of using zebrafish to study human disease. Furthermore, the mechanisms of cardiovascular diseases induction in zebrafish were covered to improve understanding for readers. Finally, the analysis of cardiotoxicity using Zebra fish model, is also explained. In order to stop the health index from deteriorating, the current study also covers some innovative, effective, and relatively safer treatments for treatment and management of cardiotoxicity.
Collapse
Affiliation(s)
- Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Maryam Zulfiqar
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Mahnoor Arshad
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Abdullah Javed
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
5
|
Kao TW, Huang TC, Liao CW, Shun CT, Tsai CH, Lin YH. Severe Heart Failure after Using Bortezomib in a Patient with Multiple Myeloma and Cardiac Amyloidosis of Normal Wall Thickness. ACTA CARDIOLOGICA SINICA 2024; 40:454-457. [PMID: 39045372 PMCID: PMC11261364 DOI: 10.6515/acs.202407_40(4).20240410a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/10/2024] [Indexed: 07/25/2024]
Affiliation(s)
- Ting-Wei Kao
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine
| | - Tai-Chung Huang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine
| | - Che-Wei Liao
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine
- Department of Medicine, National Taiwan University Cancer Center
| | - Chia-Tung Shun
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Hsuan Tsai
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine
| | - Yen-Hung Lin
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine
| |
Collapse
|
6
|
Das I, Shay-Winkler K, Emmert ME, Goh Q, Cornwall R. The Relative Efficacy of Available Proteasome Inhibitors in Preventing Muscle Contractures Following Neonatal Brachial Plexus Injury. J Bone Joint Surg Am 2024; 106:727-734. [PMID: 38194588 PMCID: PMC11023787 DOI: 10.2106/jbjs.23.00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
BACKGROUND Contractures following neonatal brachial plexus injury (NBPI) are associated with growth deficits in denervated muscles. This impairment is mediated by an increase in muscle protein degradation, as contractures can be prevented in an NBPI mouse model with bortezomib (BTZ), a proteasome inhibitor (PI). However, BTZ treatment causes substantial toxicity (0% to 80% mortality). The current study tested the hypothesis that newer-generation PIs can prevent contractures with less severe toxicity than BTZ. METHODS Unilateral brachial plexus injuries were surgically created in postnatal (5-day-old) mice. Following NBPI, mice were treated with either saline solution or various doses of 1 of 3 different PIs: ixazomib (IXZ), carfilzomib (CFZ), or marizomib (MRZ). Four weeks post-NBPI, mice were assessed for bilateral passive range of motion at the shoulder and elbow joints, with blinding to the treatment group, through an established digital photography technique to determine contracture severity. Drug toxicity was assessed with survival curves. RESULTS All PIs prevented contractures at both the elbow and shoulder (p < 0.05 versus saline solution controls), with the exception of IXZ, which did not prevent shoulder contractures. However, their efficacies and toxicity profiles differed. At lower doses, CFZ was limited by toxicity (30% to 40% mortality), whereas MRZ was limited by efficacy. At higher doses, CFZ was limited by loss of efficacy, MRZ was limited by toxicity (50% to 60% mortality), and IXZ was limited by toxicity (80% to 100% mortality) and loss of efficacy. Comparisons of the data on these drugs as well as data on BTZ generated in prior studies revealed BTZ to be optimal for preventing contractures, although it, too, was limited by toxicity. CONCLUSIONS All of the tested second-generation PIs were able to reduce NBPI-induced contractures, offering further proof of concept for a regulatory role of the proteasome in contracture formation. However, the narrow dose ranges of efficacy for all PIs highlight the necessity of precise proteasome regulation for preventing contractures. Finally, the substantial toxicity stemming from proteasome inhibition underscores the importance of identifying muscle-targeted strategies to suppress protein degradation and prevent contractures safely. CLINICAL RELEVANCE Although PIs offer unique opportunities to establish critical mechanistic insights into contracture pathophysiology, their clinical use is contraindicated in patients with NPBI at this time.
Collapse
Affiliation(s)
- Indranshu Das
- Department of Medical Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kritton Shay-Winkler
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Marianne E Emmert
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Qingnian Goh
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Roger Cornwall
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
7
|
Hayek SS, Zaha VG, Bogle C, Deswal A, Langston A, Rotz S, Vasbinder A, Yang E, Okwuosa T. Cardiovascular Management of Patients Undergoing Hematopoietic Stem Cell Transplantation: From Pretransplantation to Survivorship: A Scientific Statement From the American Heart Association. Circulation 2024; 149:e1113-e1127. [PMID: 38465648 DOI: 10.1161/cir.0000000000001220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Hematopoietic stem cell transplantation can cure various disorders but poses cardiovascular risks, especially for elderly patients and those with cardiovascular diseases. Cardiovascular evaluations are crucial in pretransplantation assessments, but guidelines are lacking. This American Heart Association scientific statement summarizes the data on transplantation-related complications and provides guidance for the cardiovascular management throughout transplantation. Hematopoietic stem cell transplantation consists of 4 phases: pretransplantation workup, conditioning therapy and infusion, immediate posttransplantation period, and long-term survivorship. Complications can occur during each phase, with long-term survivors facing increased risks for late effects such as cardiovascular disease, secondary malignancies, and endocrinopathies. In adults, arrhythmias such as atrial fibrillation and flutter are the most frequent acute cardiovascular complication. Acute heart failure has an incidence ranging from 0.4% to 2.2%. In pediatric patients, left ventricular systolic dysfunction and pericardial effusion are the most common cardiovascular complications. Factors influencing the incidence and risk of complications include pretransplantation therapies, transplantation type (autologous versus allogeneic), conditioning regimen, comorbid conditions, and patient age. The pretransplantation cardiovascular evaluation consists of 4 steps: (1) initial risk stratification, (2) exclusion of high-risk cardiovascular disease, (3) assessment of cardiac reserve, and (4) optimization of cardiovascular reserve. Clinical risk scores could be useful tools for the risk stratification of adult patients. Long-term cardiovascular management of hematopoietic stem cell transplantation survivors includes optimizing risk factors, monitoring, and maintaining a low threshold for evaluating cardiovascular causes of symptoms. Future research should prioritize refining risk stratification and creating evidence-based guidelines and strategies to optimize outcomes in this growing patient population.
Collapse
|
8
|
Jang B, Jeong J, Heo KN, Koh Y, Lee JY. Real-world incidence and risk factors of bortezomib-related cardiovascular adverse events in patients with multiple myeloma. Blood Res 2024; 59:3. [PMID: 38485811 PMCID: PMC10903519 DOI: 10.1007/s44313-024-00004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/11/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Although most studies on the cardiovascular toxicity of proteasome inhibitors have focused on carfilzomib, the risk of cardiotoxicity associated with bortezomib remains controversial. This study aimed to evaluate the incidence and risk factors of cardiovascular adverse events (CVAEs) associated with bortezomib in patients with multiple myeloma in a real-world setting. METHODS This cross-sectional study included patients who were treated with bortezomib at a tertiary hospital in South Korea. CVAEs, defined as hypertension, arrhythmia, heart failure, myocardial infarction, pulmonary arterial hypertension, angina, and venous thromboembolism, were detected using cardiac markers, ECG, echocardiography, medications, or documentation by clinicians. The patients were observed for at least 6 months and up to 2 years after starting bortezomib administration. RESULTS Among the 395 patients, 20.8% experienced CVAEs of any grade, and 14.7% experienced severe adverse events. The median onset time for any CVAE was 101.5 days (IQR, 42-182 days), and new-onset/worsened hypertension was the most prevalent CVAE. The risk of CVAEs increased in patients with a body mass index lower than 18.5 (adjusted HR (aHR) 3.50, 95% confidence interval (CI) 1.05-11.72), light chain (1.80, 1.04-3.13), and IgD (4.63, 1.06-20.20) as the multiple myeloma subtype, baseline stroke (4.52, 1.59-12.80), and hypertension (1.99, 1.23-3.23). However, CVAEs did not significantly affect the 2-year overall survival and progression-free survival. CONCLUSION Approximately 15% of the Korean patients treated with bortezomib experienced severe CVAEs. Thus, patients, especially those with identified risk factors, should be closely monitored for CVAE symptoms during bortezomib treatment.
Collapse
Affiliation(s)
- Bitna Jang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
- Department of Pharmacy, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jonghyun Jeong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Kyu-Nam Heo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Daehak-Ro Jongno-Gu, 101, Seoul, Republic of Korea.
| | - Ju-Yeun Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
9
|
Jattin-Balcázar JJ, Quiroga-Ramírez PA. Cardiac Toxicity in the Treatment of Light Chain Amyloidosis: Systematic Review of Clinical Studies. Curr Drug Saf 2024; 19:444-454. [PMID: 38204273 DOI: 10.2174/0115748863264472231227060926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Light chain amyloidosis (AL) is a progressive and a fatal disease that primarily affects cardiac tissue. Although the current approach to anti-amyloidosis treatments has managed to reduce amyloidosis morbimortality, the dynamics of cardiac adverse events are unknown. OBJECTIVE to provide evidence about reported cardiac toxicity during treatment of AL amyloidosis through a systematic review of the literature. METHODS A search was performed for registered clinical trials on ClinicalTrials.gov filtered for AL amyloidosis up to December 31, 2022. Studies were filtered by those that reported intervention in patients with AL amyloidosis and that had reported adverse events. The type of study, the intervention performed, and the frequency of reported cardiac adverse events were discriminated from each trial. RESULTS 25 clinical trials were analyzed, representing a population of 1,542 patients, among whom 576 (38.95%) adverse events were reported, 326 being serious (SAE) and 242 nonserious (nSAE). The most frequent SAEs were cardiac failure, atrial fibrillation, and cardiac arrest, while the most frequent nSAEs were palpitations, atrial fibrillation, and sinus tachycardia. CONCLUSION cardiac toxicity during treatment for amyloidosis seems common, and it is important to evaluate the relationship of therapies with its occurrence.
Collapse
|
10
|
Fomina EV, Kardanova SA, Bochkarnikova OV, Murtuzaliev SM, Appolonova SA, Markin PA, Privalova EV, Ilgisonis IS, Belenkov YN. [Assessment of systemic inflammation activity, myocardial structure and functional features, their relationship in patients with multiple myeloma, receiving bortezomib therapy]. KARDIOLOGIIA 2023; 63:29-38. [PMID: 37970853 DOI: 10.18087/cardio.2023.10.n2489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/30/2023] [Indexed: 11/19/2023]
Abstract
AIM To study the dynamics of calculated indices [neutrophil-lymphocyte ratio (NLR); systemic inflammation index (SIV)] and biomarkers of systemic inflammation [interleukin-1β (IL-1β); high-sensitivity C-reactive protein (hsCRP)], parameters of the structure-and-function state of the myocardium and intracardiac hemodynamics, and their relationship in patients newly diagnosed with multiple myeloma (MM) at the onset of the disease and after 6 courses of chemotherapy (CT) containing the proteasome inhibitor bortezomib. MATERIAL AND METHODS This prospective study included 30 patients aged 63.8±10.0 years diagnosed with MM; 17 (56.7 %) of them were men. The following tests were performed for all patients: measurement of IL-1β and hsCRP, calculation of the inflammation indexes NLR and SIV, transthoracic echocardiography before and after 6 courses of bortezomib-containing CT. At the time of study completion, 9 patients dropped out due to reasons not related to cardiovascular complications of CT. RESULTS The antitumor therapy was associated with increases of immune-inflammation indexes: NLR increased from 1.54 [1.02; 1.83] to 2.9 [1.9; 4.35] (p=0.009) and SIV increased from 402.95 [230.5; 534.0] to 1102.2 [453.1; 1307.9] (р=0.014). IL-1β increased from 5.15 [4.05; 5.77] to 6.22 [5.66; 6.52] pg/ml remaining within the reference range (p=0.142) whereas hsCRP decreased from 1.02 [0.02; 2.71] to 0.02 [0.02; 0.82] IU/l (p=0.138). Statistically significant changes in parameters of heart remodeling and clinical picture of cardiovascular complications were not observed. A correlation analysis showed significant inverse correlations of hsCRP with left ventricular ejection fraction (LV EF) (r= -0.557; p=0.003), the number of plasma cells (PC) with LV EF (r= -0.443; p=0.023), and a direct correlation of the number of PC with hsCRP (r=0.433; p=0.022). CONCLUSION During the study, the accepted criteria for cardiotoxicity of bortezomib-containing chemotherapy in patients with MM, were not met. The identified correlations between the level of markers for acute inflammation, indexes of intracardiac hemodynamics, and the immediate MM substrate may indicate the role of chronic low-intensity inflammation in the pathogenesis of myocardial remodeling in patients with MM. This necessitates further studies on larger samples of patients to assess the prognostic significance.
Collapse
Affiliation(s)
- E V Fomina
- Sechenov First Moscow State Medical University
| | | | | | | | | | - P A Markin
- Sechenov First Moscow State Medical University
| | | | | | | |
Collapse
|
11
|
Pickett JR, Wu Y, Zacchi LF, Ta HT. Targeting endothelial vascular cell adhesion molecule-1 in atherosclerosis: drug discovery and development of vascular cell adhesion molecule-1-directed novel therapeutics. Cardiovasc Res 2023; 119:2278-2293. [PMID: 37595265 PMCID: PMC10597632 DOI: 10.1093/cvr/cvad130] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 08/20/2023] Open
Abstract
Vascular cell adhesion molecule-1 (VCAM-1) has been well established as a critical contributor to atherosclerosis and consequently as an attractive therapeutic target for anti-atherosclerotic drug candidates. Many publications have demonstrated that disrupting the VCAM-1 function blocks monocyte infiltration into the sub-endothelial space, which effectively prevents macrophage maturation and foam cell transformation necessary for atherosclerotic lesion formation. Currently, most VCAM-1-inhibiting drug candidates in pre-clinical and clinical testing do not directly target VCAM-1 itself but rather down-regulate its expression by inhibiting upstream cytokines and transcriptional regulators. However, the pleiotropic nature of these regulators within innate immunity means that optimizing dosage to a level that suppresses pathological activity while preserving normal physiological function is extremely challenging and oftentimes infeasible. In recent years, highly specific pharmacological strategies that selectively inhibit VCAM-1 function have emerged, particularly peptide- and antibody-based novel therapeutics. Studies in such VCAM-1-directed therapies so far remain scarce and are limited by the constraints of current experimental atherosclerosis models in accurately representing the complex pathophysiology of the disease. This has prompted the need for a comprehensive review that recounts the evolution of VCAM-1-directed pharmaceuticals and addresses the current challenges in novel anti-atherosclerotic drug development.
Collapse
Affiliation(s)
- Jessica R Pickett
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, West Creek Road, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Kessels Road, Nathan, QLD 4111, Australia
| | - Yuao Wu
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, West Creek Road, Nathan, QLD 4111, Australia
| | - Lucia F Zacchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, St. Lucia, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, the University of Queensland, St. Lucia, QLD 4072, Australia
| | - Hang T Ta
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, West Creek Road, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Kessels Road, Nathan, QLD 4111, Australia
| |
Collapse
|
12
|
Morfino P, Aimo A, Castiglione V, Chianca M, Vergaro G, Cipolla CM, Fedele A, Emdin M, Fabiani I, Cardinale D. Cardiovascular toxicity from therapies for light chain amyloidosis. Front Cardiovasc Med 2023; 10:1212983. [PMID: 37476571 PMCID: PMC10354454 DOI: 10.3389/fcvm.2023.1212983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
Amyloid light-chain (AL) amyloidosis is a hematological disorder characterized by abnormal proliferation of a plasma cell clone producing monoclonal free light chains that misfold and aggregate into insoluble fibrils in various tissues. Cardiac involvement is a common feature leading to restrictive cardiomyopathy and poor prognosis. Current first-line treatments aim at achieving hematological response by targeting the plasma cell clones, and these have been adapted from multiple myeloma therapy. Patients with AL amyloidosis often exhibit multiorgan involvement, making them susceptible to cancer therapy-related cardiovascular toxicity. Managing AL amyloidosis is a complex issue that requires enhanced knowledge of the cardio-oncological implications of hematological treatments. Future research should focus on implementing and validating primary and secondary prevention strategies and understanding the biochemical basis of oncological therapy-related damage to mitigate cardiovascular toxicity.
Collapse
Affiliation(s)
- Paolo Morfino
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Alberto Aimo
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Vincenzo Castiglione
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Michela Chianca
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Giuseppe Vergaro
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Carlo Maria Cipolla
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, I.R.C.C.S., Milan, Italy
| | - Antonella Fedele
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, I.R.C.C.S., Milan, Italy
| | - Michele Emdin
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Iacopo Fabiani
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Daniela Cardinale
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, I.R.C.C.S., Milan, Italy
| |
Collapse
|
13
|
Zhang X, Gao Y, Yang B, Ma S, Zuo W, Wei J. The mechanism and treatment of targeted anti-tumour drugs induced cardiotoxicity. Int Immunopharmacol 2023; 117:109895. [PMID: 36806040 DOI: 10.1016/j.intimp.2023.109895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/29/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023]
Abstract
As the intensive anti-tumour therapy and combination of multiple anti-tumour drugs, cardiotoxicity events caused by anti-tumour drugs have also increased significantly, and the incidence of cardiotoxicity also increased with survival time. Different types of anti-tumour drugs could cause all kinds of cardiotoxicity which increase the difficulties in treatment and even live threatening. In this review, we concentrated in the targeted anti-tumour drugs such as human epidermal growth factor receptor-2 (HER2) inhibitors, tyrosine kinase inhibitors (TKIs), immune checkpoint inhibitors (ICIs), and proteasome inhibitors (Pls). The molecular mechanism of how these drugs induce cardiotoxicity is introduced which includes several signal pathways. These drugs induced cardiotoxicity involved heart failure, hypertension, atherosis and thrombosis, QT interval prolongation, and myocarditis. Some of the cardiotoxicity could be moderate and reversible but others could have happened severely.The aim of this review is to summarise the targeted anti-tumour drugs induced cardiotoxicity and treatment strategies.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Yiqiang Gao
- Department of Pharmacy, State Key Laboratory of Complex Sever and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China; School of Pharmacy, Tianjin University of Traditional Chinese Medicine, China.
| | - Benyu Yang
- Department of Pharmacy, State Key Laboratory of Complex Sever and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China; School of Pharmacy, Tianjin University of Traditional Chinese Medicine, China
| | - Siqing Ma
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin, Ireland
| | - Wei Zuo
- Department of Pharmacy, State Key Laboratory of Complex Sever and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Junji Wei
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
14
|
Madanat L, Gupta R, Weber P, Kumar N, Chandra R, Ahaneku H, Bansal Y, Anderson J, Bilolikar A, Jaiyesimi I. Cardiotoxicity of Biological Therapies in Cancer Patients: An In-depth Review. Curr Cardiol Rev 2023; 19:e310522205428. [PMID: 35642110 PMCID: PMC10280990 DOI: 10.2174/1573403x18666220531094800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
Cardiotoxicity from chemotherapy regimens has been long reported. However, the understanding of cardiac side effects of biological therapies is rapidly evolving. With cancer patients achieving higher life expectancy due to the use of personalized medicine and novel targeted anticancer agents, the occurrence of cardiotoxicity is becoming more significant. Novel biological therapies include anti-HER2 antibodies, tyrosine kinase inhibitors, bruton kinase inhibitors, antivascular endothelial growth factors, proteasome inhibitors, immunomodulator drugs, and immune checkpoint inhibitors. Potential cardiovascular toxicities linked to these anticancer agents include hypertension, arrhythmias, QT prolongation, myocardial ischemia and infarction, left ventricular dysfunction, congestive heart failure, and thromboembolism. Cardiac biomarkers, electrocardiography, echocardiography and magnetic resonance imaging are common diagnostic modalities used for early detection of these complications and timely intervention. This review discusses the various types of cardiotoxicities caused by novel anticancer biologic agents, their molecular and pathophysiological mechanisms, risk factors, and diagnostic and management strategies that can be used to prevent, minimize, and treat them.
Collapse
Affiliation(s)
- Luai Madanat
- Department of Internal Medicine, William Beaumont Hospital, Royal Oak, Michigan
| | - Ruby Gupta
- Department of Hematology and Medical Oncology, William Beaumont Hospital, Royal Oak, Michigan
| | - Paul Weber
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Navneet Kumar
- Department of Cardiovascular Disease, St. Joseph Mercy Oakland Hospital, Pontiac, Michigan
| | - Rohit Chandra
- Department of Internal Medicine, William Beaumont Hospital, Royal Oak, Michigan
| | - Hycienth Ahaneku
- Department of Hematology and Medical Oncology, William Beaumont Hospital, Royal Oak, Michigan
| | - Yatharth Bansal
- Department of Internal Medicine, University of Detroit Mercy, Detroit, Michigan
| | - Joseph Anderson
- Department of Hematology and Medical Oncology, William Beaumont Hospital, Royal Oak, Michigan
| | - Abhay Bilolikar
- Department of Cardiovascular Disease, William Beaumont Hospital, Royal Oak, Michigan
| | - Ishmael Jaiyesimi
- Department of Hematology and Medical Oncology, William Beaumont Hospital, Royal Oak, Michigan
| |
Collapse
|
15
|
Alam MF, Hijri SI, Alshahrani S, Alqahtani SS, Jali AM, Ahmed RA, Adawi MM, Algassmi SM, Shaheen ES, Moni SS, Anwer T. Zingerone Attenuates Carfilzomib-Induced Cardiotoxicity in Rats through Oxidative Stress and Inflammatory Cytokine Network. Int J Mol Sci 2022; 23:ijms232415617. [PMID: 36555257 PMCID: PMC9779556 DOI: 10.3390/ijms232415617] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Carfilzomib (CFZ) is an anticancer medication acting as a selective proteasome inhibitor. However, it can cause cardiovascular problems, increasing mortality and morbidity. This study aimed to investigate whether zingerone (ZRN) could help reduce carfilzomib-induced cardiotoxicity in Wistar albino rats. Rats were divided into five groups of six animals each. The first group received normal saline as a control (NC); the second group received multiple doses (six) of CFZ (4 mg/kg) intraperitoneally (IP); the third and fourth groups received zingerone (50 mg/kg and 100 mg/kg oral) along with six doses of CFZ for 16 days; and the fifth group received only 100 mg/kg zingerone orally. Hematological, biochemical, oxidative stress, and histopathological studies confirmed the findings of CFZ-induced cardiotoxicity. We found that ZRN significantly attenuated the effects of CFZ on oxidative stress by enhancing the antioxidant properties of glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). Additionally, ZRN reduces inflammatory cytokines and apoptotic markers, such as IL-1β, IL-6, TNFα, and caspase-3. Overall, zingerone prevents carfilzomib-induced cardiotoxicity in rats, as evidenced by histopathological studies.
Collapse
Affiliation(s)
- Mohammad Firoz Alam
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Correspondence:
| | - Sami I. Hijri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saad S. Alqahtani
- Department of Pharmacy Practice, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Pharmacy Practice Research Unit, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Rayan A. Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mansour M. Adawi
- Department of Histopathology, King Fahad Hospital, Jazan 45142, Saudi Arabia
| | - Sameeh M. Algassmi
- Department of Histopathology, King Fahad Hospital, Jazan 45142, Saudi Arabia
| | - Emad Sayed Shaheen
- Department of Animal House, Medical Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Sivakumar S. Moni
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Tarique Anwer
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
16
|
Janssens R, Lang T, Vallejo A, Galinsky J, Morgan K, Plate A, De Ronne C, Verschueren M, Schoefs E, Vanhellemont A, Delforge M, Schjesvold F, Cabezudo E, Vandebroek M, Stevens H, Simoens S, Huys I. What matters most to patients with multiple myeloma? A Pan-European patient preference study. Front Oncol 2022; 12:1027353. [PMID: 36523996 PMCID: PMC9745810 DOI: 10.3389/fonc.2022.1027353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 09/05/2023] Open
Abstract
INTRODUCTION Given the rapid increase in novel treatments for patients with multiple myeloma (MM), this patient preference study aimed to establish which treatment attributes matter most to MM patients and evaluate discrete choice experiment (DCE) and swing weighting (SW) as two elicitation methods for quantifying patients' preferences. METHODS A survey incorporating DCE and SW was disseminated among European MM patients. The survey included attributes and levels informed by a previous qualitative study with 24 MM patients. Latent class and mixed logit models were used to estimate the DCE attribute weights and descriptive analyses were performed to derive SW weights. MM patients and patient organisations provided extensive feedback during survey development. RESULTS 393 MM patients across 21 countries completed the survey (M years since diagnosis=6; M previous therapies=3). Significant differences (p<.01) between participants' attribute weights were revealed depending on participants' prior therapy experience, and their experience with side-effects and symptoms. Multivariate analyses showed that participants across the three MM patient classes identified via the latent class model differed regarding their past number of therapies (F=4.772, p=.009). Patients with the most treatments (class 1) and those with the least treatments (class 3) attached more value to life expectancy versus quality of life-related attributes such as pain, mobility and thinking problems. Conversely, patients with intermediary treatment experience (class 2) attached more value to quality of life-related attributes versus life expectancy. Participants highlighted the difficulty of trading-off between life expectancy and quality of life and between physical and mental health. Participants expressed a need for greater psychological support to cope with their symptoms, treatment side-effects, and uncertainties. With respect to patients' preferences for the DCE or SW questions, 42% had no preference, 32% preferred DCE, and 25% preferred SW. CONCLUSIONS Quality of life-related attributes affecting MM patients' physical, mental and psychological health such as pain, mobility and thinking problems were considered very important to MM patients, next to life expectancy. This underscores a need to include such attributes in decision-making by healthcare stakeholders involved in MM drug development, evidence generation, evaluation, and clinical practice. This study highlights DCE as the preferred methodology for understanding relative attribute weights from a patient's perspective.
Collapse
Affiliation(s)
- Rosanne Janssens
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | - Elise Schoefs
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | | | - Michel Delforge
- Department of Oncology, University Hospital Leuven, Leuven, Belgium
| | - Fredrik Schjesvold
- Oslo Myeloma Center, Department of Haematology, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Center for B cell Malignancies, University of Oslo, Oslo, Norway
| | - Elena Cabezudo
- Department of Haematology, H. Moises Broggi/ICO-Hospitalet, Barcelona, Spain
| | | | - Hilde Stevens
- Institute for Interdisciplinary Innovation in Healthcare (I3h), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Steven Simoens
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Isabelle Huys
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Gilles F. [What a cardiologist needs to know about managing a patient with multiple myeloma]. Ann Cardiol Angeiol (Paris) 2022; 71:309-316. [PMID: 35963791 DOI: 10.1016/j.ancard.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multiple myeloma is one of the most frequent hematological malignancies in the elderly and corresponds to the presence of a plasma cell clone. Antitumor treatment combines different therapeutics, including alkylating agents, high-dose corticosteroids, immunomodulators and proteasome inhibitors. These treatments can have cardiovascular side effects that are important to be aware of. The role of the cardiologist is essential in preventing, detecting and managing these effects properly in order to improve the cardiological and oncological prognosis of patients.
Collapse
Affiliation(s)
- F Gilles
- Service de cardiologie, Centre Hospitalier de Versailles, André Mignot, 177 rue de Versailles 78150 Le Chesnay, France.
| |
Collapse
|
18
|
Cammalleri V, De Luca VM, Antonelli G, Annibali O, Nusca A, Mega S, Carpenito M, Ricciardi D, Gurrieri F, Avvisati G, Ussia GP, Grigioni F. Emerging from the Darkness. Sudden Cardiac Death in Cardiac Amyloidosis. Rev Cardiovasc Med 2022; 23:345. [PMID: 39077150 PMCID: PMC11267335 DOI: 10.31083/j.rcm2310345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 07/31/2024] Open
Abstract
Cardiac amyloidosis (CA) manifests as infiltrative cardiomyopathy with a hypertrophic pattern, usually presenting with heart failure with a preserved ejection fraction. In addition, degenerative valvular heart disease, particularly severe aortic stenosis, is commonly seen in patients with CA. However, amyloid fibril deposition might also infiltrate the conduction system and promote the development of electrical disorders, including ventricular tachyarrhythmias, atrio-ventricular block or acute electromechanical dissociation. These manifestations can increase the risk of sudden cardiac death. This review summarises the pathophysiological mechanisms and risk factors for sudden cardiac death in CA and focuses on the major current concerns regarding medical and device management in this challenging scenario.
Collapse
Affiliation(s)
- Valeria Cammalleri
- Fondazione Policlinico Universitario Campus-Biomedico, Operative Research Unit of Cardiovascular Science, 00128 Roma, Italy
| | - Valeria Maria De Luca
- Department of Cardiovascular Science, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Giorgio Antonelli
- Department of Cardiovascular Science, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Ombretta Annibali
- Department of Haematology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Annunziata Nusca
- Fondazione Policlinico Universitario Campus-Biomedico, Operative Research Unit of Cardiovascular Science, 00128 Roma, Italy
| | - Simona Mega
- Fondazione Policlinico Universitario Campus-Biomedico, Operative Research Unit of Cardiovascular Science, 00128 Roma, Italy
| | - Myriam Carpenito
- Fondazione Policlinico Universitario Campus-Biomedico, Operative Research Unit of Cardiovascular Science, 00128 Roma, Italy
| | - Danilo Ricciardi
- Fondazione Policlinico Universitario Campus-Biomedico, Operative Research Unit of Cardiovascular Science, 00128 Roma, Italy
| | - Fiorella Gurrieri
- Laboratory of Medical Genetics, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Giuseppe Avvisati
- Department of Haematology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Gian Paolo Ussia
- Fondazione Policlinico Universitario Campus-Biomedico, Operative Research Unit of Cardiovascular Science, 00128 Roma, Italy
- Department of Cardiovascular Science, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Francesco Grigioni
- Fondazione Policlinico Universitario Campus-Biomedico, Operative Research Unit of Cardiovascular Science, 00128 Roma, Italy
- Department of Cardiovascular Science, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| |
Collapse
|
19
|
Chen M, Shortt J. Plasma-cell directed therapy for immune thrombotic thrombocytopenic purpura (iTTP). Transfus Med Rev 2022; 36:204-214. [DOI: 10.1016/j.tmrv.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
|
20
|
de Wit S, Glen C, de Boer RA, Lang NN. Mechanisms shared between cancer, heart failure, and targeted anti-cancer therapies. Cardiovasc Res 2022; 118:3451-3466. [PMID: 36004495 PMCID: PMC9897696 DOI: 10.1093/cvr/cvac132] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) and cancer are the leading causes of death worldwide and accumulating evidence demonstrates that HF and cancer affect one another in a bidirectional way. Patients with HF are at increased risk for developing cancer, and HF is associated with accelerated tumour growth. The presence of malignancy may induce systemic metabolic, inflammatory, and microbial alterations resulting in impaired cardiac function. In addition to pathophysiologic mechanisms that are shared between cancer and HF, overlaps also exist between pathways required for normal cardiac physiology and for tumour growth. Therefore, these overlaps may also explain the increased risk for cardiotoxicity and HF as a result of targeted anti-cancer therapies. This review provides an overview of mechanisms involved in the bidirectional connection between HF and cancer, specifically focusing upon current 'hot-topics' in these shared mechanisms. It subsequently describes targeted anti-cancer therapies with cardiotoxic potential as a result of overlap between their anti-cancer targets and pathways required for normal cardiac function.
Collapse
Affiliation(s)
- Sanne de Wit
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, PO Box 30.001, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Claire Glen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, PO Box 30.001, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | | |
Collapse
|
21
|
Abstract
The quest of defeating cancer and improving prognosis in survivors has generated remarkable strides forward in research and have advanced the development of new antineoplastic therapies. These achievements, combined with rapid screening and early detection, have considerably extended the life expectancy of patients surviving multiple types of malignancies. Consequently, chemotherapy-related toxicity in several organ systems, especially the cardiovascular system, has surfaced as one of the leading causes of morbidity and mortality among cancer survivors. Recent evidence classifies chemotherapy-induced cardiotoxicity as the second-leading cause of morbidity and mortality, closely comparing with secondary cancer malignancies. While a certain degree of cardiotoxicity has been reported to accompany most chemotherapies, including anthracyclines, anti-metabolites, and alkylating agents, even the latest targeted cancer therapies such as immune checkpoint inhibitors and tyrosine kinase inhibitors have been associated with acute and chronic cardiac sequelae. In this chapter, we focus on describing the principal mechanism(s) for each class of chemotherapeutic agents that lead to cardiotoxicity and the innovative translational research approaches that are currently being explored to prevent or treat cancer therapy-induced cardiotoxicity and related cardiac complications.
Collapse
Affiliation(s)
- Adolfo G Mauro
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA, United States
| | - Katherine Hunter
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA, United States
| | - Fadi N Salloum
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Pauley Heart Center, Richmond, VA, United States.
| |
Collapse
|
22
|
Koutroumpakis E, Agrawal N, Palaskas NL, Abe JI, Iliescu C, Yusuf SW, Deswal A. Myocardial Dysfunction in Patients with Cancer. Heart Fail Clin 2022; 18:361-374. [PMID: 35718412 DOI: 10.1016/j.hfc.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Myocardial dysfunction in patients with cancer is a major cause of morbidity and mortality. Cancer therapy-related cardiotoxicities are an important contributor to the development of cardiomyopathy in this patient population. Furthermore, cardiac AL amyloidosis, cardiac malignancies/metastases, accelerated atherosclerosis, stress cardiomyopathy, systemic and pulmonary hypertension are also linked to the development of myocardial dysfunction. Herein, we summarize current knowledge on the mechanisms of myocardial dysfunction in the setting of cancer and cancer-related therapies. Additionally, we briefly outline key recommendations on the surveillance and management of cancer therapy-related myocardial dysfunction based on the consensus of experts in the field of cardio-oncology.
Collapse
Affiliation(s)
- Efstratios Koutroumpakis
- Department of Cardiology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1451, Houston, TX 77030, USA
| | - Nikhil Agrawal
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Nicolas L Palaskas
- Department of Cardiology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1451, Houston, TX 77030, USA
| | - Jun-Ichi Abe
- Department of Cardiology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1451, Houston, TX 77030, USA
| | - Cezar Iliescu
- Department of Cardiology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1451, Houston, TX 77030, USA
| | - Syed Wamique Yusuf
- Department of Cardiology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1451, Houston, TX 77030, USA
| | - Anita Deswal
- Department of Cardiology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1451, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Rocca C, De Francesco EM, Pasqua T, Granieri MC, De Bartolo A, Gallo Cantafio ME, Muoio MG, Gentile M, Neri A, Angelone T, Viglietto G, Amodio N. Mitochondrial Determinants of Anti-Cancer Drug-Induced Cardiotoxicity. Biomedicines 2022; 10:biomedicines10030520. [PMID: 35327322 PMCID: PMC8945454 DOI: 10.3390/biomedicines10030520] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are key organelles for the maintenance of myocardial tissue homeostasis, playing a pivotal role in adenosine triphosphate (ATP) production, calcium signaling, redox homeostasis, and thermogenesis, as well as in the regulation of crucial pathways involved in cell survival. On this basis, it is not surprising that structural and functional impairments of mitochondria can lead to contractile dysfunction, and have been widely implicated in the onset of diverse cardiovascular diseases, including ischemic cardiomyopathy, heart failure, and stroke. Several studies support mitochondrial targets as major determinants of the cardiotoxic effects triggered by an increasing number of chemotherapeutic agents used for both solid and hematological tumors. Mitochondrial toxicity induced by such anticancer therapeutics is due to different mechanisms, generally altering the mitochondrial respiratory chain, energy production, and mitochondrial dynamics, or inducing mitochondrial oxidative/nitrative stress, eventually culminating in cell death. The present review summarizes key mitochondrial processes mediating the cardiotoxic effects of anti-neoplastic drugs, with a specific focus on anthracyclines (ANTs), receptor tyrosine kinase inhibitors (RTKIs) and proteasome inhibitors (PIs).
Collapse
Affiliation(s)
- Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (C.R.); (M.C.G.); (A.D.B.)
| | - Ernestina Marianna De Francesco
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy; (E.M.D.F.); (M.G.M.)
| | - Teresa Pasqua
- Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Maria Concetta Granieri
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (C.R.); (M.C.G.); (A.D.B.)
| | - Anna De Bartolo
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (C.R.); (M.C.G.); (A.D.B.)
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.E.G.C.); (G.V.)
| | - Maria Grazia Muoio
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy; (E.M.D.F.); (M.G.M.)
| | - Massimo Gentile
- Hematology Unit, “Annunziata” Hospital of Cosenza, 87100 Cosenza, Italy;
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
- Hematology Fondazione Cà Granda, IRCCS Policlinico, 20122 Milan, Italy
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (C.R.); (M.C.G.); (A.D.B.)
- National Institute of Cardiovascular Research (I.N.R.C.), 40126 Bologna, Italy
- Correspondence: (T.A.); (N.A.)
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.E.G.C.); (G.V.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.E.G.C.); (G.V.)
- Correspondence: (T.A.); (N.A.)
| |
Collapse
|
24
|
Liu Z, Zhang L, Liu M, Wang F, Xiong Y, Tang Z, Li Q, Lu Q, Liang S, Niu T, Huang H. Myocardial Injury in Multiple Myeloma Patients With Preserved Left Ventricular Ejection Fraction: Noninvasive Left Ventricular Pressure-Strain Myocardial Work. Front Cardiovasc Med 2022; 8:782580. [PMID: 35127857 PMCID: PMC8810812 DOI: 10.3389/fcvm.2021.782580] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/20/2021] [Indexed: 01/02/2023] Open
Abstract
Introduction Over one-half of patients with multiple myeloma (MM) die of heart failure or arrhythmia. Left ventricular ejection fraction (LVEF) is used to describe left ventricular systolic function. However, depressed LVEF means advanced stage of left ventricular dysfunction in patients with MM. Left ventricular pressure-strain-derived myocardial work (LVMW) is a novel and noninvasive method for evaluating LV function related to LV dynamic pressure load. MW is assessed by LV MW index (LVMWI), constructive work, wasted work, and LV MW efficiency (LVMWE). In this study, we aimed to investigate the value of LVMW in cardiac function assessment and clinical prognosis of MM patients with preserved LVEF. Methods A total of 72 subjects, including 40 untreated MM patients with preserved EF (including the thick wall and normal wall groups) and 32 non-MM patients, were enrolled in this study. Laboratory data and clinical history of all the patients were collected. All the patients underwent comprehensive echocardiographic examinations and then LVMWI and LVMWE were calculated. Moreover, cardiac adverse events (CAEs) were observed in MM patients treated with bortezomib-based therapy after 6 months and the prognostic value of MW was assessed. Results (1) LV myocardial global work index (GWI), myocardial global work efficiency (GWE), and global longitudinal strain (GLS) were lower in the thick wall group of patients with MM compared with the normal wall group and controls. Cardiac segmental analysis of LVMWI in patients with MM showed an apical sparing pattern; (2) The area under the curve (AUC) of GWE for judging the disease severity based on the Revised International Staging System (R-ISS) was 0.835 (95% CI: 0.684–0.933, p < 0.05); (3) GWE, LgdFLC, and arrhythmia were independent risk factors of CAEs. The AUC of GWE for predicting CAEs in MM patients treated with bortezomib-based therapy for 6 months follow-up was 0.896 (95% CI: 0.758–0.970, p < 0.05). Conclusion MM Patients with preserved EF had subclinical LV systolic dysfunction, which was worse in the thick wall group. LVMWI was presented as “apical sparing” in patients with MM. A lower LVGWE may have a predictive value for CAEs in patients with MM after 6 months of follow-up.
Collapse
Affiliation(s)
- Zhiyue Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Zhang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Mei Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Wang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yanqiu Xiong
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuoqin Tang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Li
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiuchen Lu
- Department of Ultrasound, Mianyang Central Hospital, Mianyang, China
| | - Shichu Liang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ting Niu
| | - He Huang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
- He Huang
| |
Collapse
|
25
|
Tamargo J, Caballero R, Delpón E. Cancer Chemotherapy-Induced Sinus Bradycardia: A Narrative Review of a Forgotten Adverse Effect of Cardiotoxicity. Drug Saf 2022; 45:101-126. [PMID: 35025085 DOI: 10.1007/s40264-021-01132-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 12/20/2022]
Abstract
Cardiotoxicity is a common adverse effect of anticancer drugs (ACDs), including the so-called targeted drugs, and increases morbidity and mortality in patients with cancer. Attention has focused mainly on ACD-induced heart failure, myocardial ischemia, hypertension, thromboembolism, QT prolongation, and tachyarrhythmias. Yet, although an increasing number of ACDs can produce sinus bradycardia (SB), this proarrhythmic effect remains an underappreciated complication, probably because of its low incidence and severity since most patients are asymptomatic. However, SB merits our interest because its incidence increases with the aging of the population and cancer is an age-related disease and because SB represents a risk factor for QT prolongation. Indeed, several ACDs that produce SB also prolong the QT interval. We reviewed published reports on ACD-induced SB from January 1971 to November 2020 using the PubMed and EMBASE databases. Published reports from clinical trials, case reports, and recent reviews were considered. This review describes the associations between ACDs and SB, their clinical relevance, risk factors, and possible mechanisms of onset and treatment.
Collapse
Affiliation(s)
- Juan Tamargo
- Department of Pharmacology, School of Medicine, Universidad Complutense, Institute of Health Gregorio Marañón, CIBERCV, 28040, Madrid, Spain.
| | - Ricardo Caballero
- Department of Pharmacology, School of Medicine, Universidad Complutense, Institute of Health Gregorio Marañón, CIBERCV, 28040, Madrid, Spain
| | - Eva Delpón
- Department of Pharmacology, School of Medicine, Universidad Complutense, Institute of Health Gregorio Marañón, CIBERCV, 28040, Madrid, Spain
| |
Collapse
|
26
|
Sundaravel SH, Marar RI, Abbasi MA, Baljevic M, Stone JR. Bortezomib-Induced Reversible Cardiomyopathy: Recovered with Guideline-Directed Medical Therapy. Cureus 2021; 13:e20295. [PMID: 35024253 PMCID: PMC8742456 DOI: 10.7759/cureus.20295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 11/29/2022] Open
Abstract
Bortezomib (BTZ) is a proteasome inhibitor (PI) used for the treatment of several hematologic malignancies, including multiple myeloma (MM), and various lymphomas including mantle cell lymphoma (MCL). It acts via disruption of the ubiquitin-proteasome pathway which plays a major role in regulating cell cycle and inhibiting synthesis of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-KB). The ubiquitin-proteasome pathway is also important in maintaining the integral signaling in cardiac myocytes. By inhibiting this system, BTZ induces cellular apoptosis in cancer cells, and possibly the cardiomyocytes. BTZ-induced cardiotoxicity in monotherapy and combination treatments is not well described in the literature. We observed a series of three patients who developed cardiotoxicity after treatment with BTZ. All patients had echocardiograms every 3 months until recovery to assess ejection fraction (EF) and global longitudinal strain (GLS). Two of the patients had a cardiac MRI (CMR) conducted during follow-up to assess for late gadolinium enhancement (LGE). The median age of our patients was 55 years (range 37-74). Two of them had MM, while one patient had MCL. Table 1 demonstrates patient demographics, past medical histories, and the cumulative dose and duration of BTZ therapy. Of the three patients, only one had a heart failure exacerbation at diagnosis. The other two patients were diagnosed with asymptomatic left ventricular systolic dysfunction on routine pre-transplant echocardiograms. Most importantly, all three patients had improvement or normalization of cardiac function with discontinuation of BTZ and initiation of guideline-directed medical therapy (GDMT) for heart failure. The median duration to recovery was 5 months (range 3-13). One patient had underlying non-compaction cardiomyopathy, and although EF did not normalize, it recovered to his previous baseline. All 3 patients had improvement in GLS. Two patients underwent CMRI at the time of cardiomyopathy diagnosis and neither of them had any late gadolinium enhancement. Since there was no routine pre-treatment echocardiogram, using the GLS trend to detect subclinical cardiac dysfunction was not possible. This case series demonstrates that BTZ-induced cardiomyopathy is potentially reversible with discontinuation of the drug and early initiation of GDMT. Further studies are needed to determine the ideal surveillance strategy for BTZ-induced cardiomyopathy.
Collapse
|
27
|
Jayaweera SPE, Wanigasinghe Kanakanamge SP, Rajalingam D, Silva GN. Carfilzomib: A Promising Proteasome Inhibitor for the Treatment of Relapsed and Refractory Multiple Myeloma. Front Oncol 2021; 11:740796. [PMID: 34858819 PMCID: PMC8631731 DOI: 10.3389/fonc.2021.740796] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/21/2021] [Indexed: 01/04/2023] Open
Abstract
The proteasome is crucial for the degradation of intracellular proteins and plays an important role in mediating a number of cell survival and progression events by controlling the levels of key regulatory proteins such as cyclins and caspases in both normal and tumor cells. However, compared to normal cells, cancer cells are more dependent on the ubiquitin proteasome pathway (UPP) due to the accumulation of proteins in response to uncontrolled gene transcription, allowing proteasome to become a potent therapeutic target for human cancers such as multiple myeloma (MM). Up to date, three proteasome inhibitors namely bortezomib (2003), carfilzomib (2012) and ixazomib (2015) have been approved by the US Food and Drug Administration (FDA) for the treatment of patients with relapsed and/or refractory MM. This review mainly focuses on the biochemical properties, mechanism of action, toxicity profile and pivotal clinical trials related to carfilzomib, a second-generation proteasome inhibitor that binds irreversibly with proteasome to overcome the major toxicities and resistance associated with bortezomib.
Collapse
Affiliation(s)
| | | | - Dharshika Rajalingam
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Gayathri N Silva
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
28
|
Fontes Oliveira M, Naaktgeboren WR, Hua A, Ghosh AK, Oakervee H, Hallam S, Manisty C. Optimising cardiovascular care of patients with multiple myeloma. Heart 2021; 107:1774-1782. [PMID: 33820757 DOI: 10.1136/heartjnl-2020-318748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/04/2022] Open
Abstract
Multiple myeloma (MM) is the third most common haematological malignancy, with increasing prevalence over recent years. Advances in therapy have improved survival, changing the clinical course of MM into a chronic condition and meaning that management of comorbidities is fundamental to improve clinical outcomes. Cardiovascular (CV) events affect up to 7.5% of individuals with MM, due to a combination of patient, disease and treatment-related factors and adversely impact survival. MM typically affects older people, many with pre-existing CV risk factors or established CV disease, and the disease itself can cause renal impairment, anaemia and hyperviscosity, which exacerabate these further. Up to 15% of patients with MM develop systemic amyloidosis, with prognosis determined by the extent of cardiac involvement. Management of MM generally involves administration of multiple treatment lines over several years as disease progresses, with many drug classes associated with adverse CV effects including high rates of venous and arterial thrombosis alongside heart failure. Recommendations for holistic management of patients with MM now include routine baseline risk stratification including ECG and echocardiography and administration of thromboprophylaxis drugs for patients treated with immunomodulatory drugs. Close surveillance of high-risk patients with collaboration between haematology and cardiology is required, with prompt investigation in the event of CV symptoms, in order to identify and treat complications early. Decisions regarding discontinuation of cardiotoxic therapies should be made in a multidisciplinary setting, taking into account the severity of the complication, prognosis, expected benefits and the availability of effective alternatives.
Collapse
Affiliation(s)
- Marta Fontes Oliveira
- Department of Cardio-Oncology, St Bartholomew's Hospital, London, UK
- Department of Cardiology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Willeke R Naaktgeboren
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Julius Center for Health Sciences and Primary Care, Utrecht, The Netherlands
| | - Alina Hua
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Arjun K Ghosh
- Department of Cardio-Oncology, St Bartholomew's Hospital, London, UK
- Hatter Institute, London, UK
| | - Heather Oakervee
- Department of Haemato-Oncology, St Bartholomew's Hospital, London, UK
| | - Simon Hallam
- Department of Haemato-Oncology, St Bartholomew's Hospital, London, UK
- Queen Mary University of London, London, UK
| | - Charlotte Manisty
- Department of Cardio-Oncology, St Bartholomew's Hospital, London, UK
- University College London, London, UK
| |
Collapse
|
29
|
Proskuriakova E, Jada K, Kakieu Djossi S, Khedr A, Neupane B, Mostafa JA. Mechanisms and Potential Treatment Options of Heart Failure in Patients With Multiple Myeloma. Cureus 2021; 13:e15943. [PMID: 34336442 PMCID: PMC8312996 DOI: 10.7759/cureus.15943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 06/26/2021] [Indexed: 11/26/2022] Open
Abstract
Multiple myeloma is a pathology of plasma cells, with one of the most common side effects of its treatment is heart failure. In addition, cardiac amyloidosis could cause heart failure by itself. Even though mechanisms of cardiac amyloidosis are known, and they involve lysosomal dysfunction, reactive oxygen species (ROS) accumulation, and infiltrative effect by fibrils, there is no specific agent that could protect from these effects. While the molecular mechanism of doxorubicin cardiotoxicity via topoisomerase II β is established, the only FDA-approved agent for treatment is dexrazoxane. Liposomal doxorubicin can potentially improve response and decrease the development of heart failure due to microscopic liposomes that can accumulate and penetrate only tumor vasculature. Supplements that enhance mitochondrial biogenesis are also shown to improve doxorubicin-induced cardiotoxicity. Other agents, such as JR-311, ICRF-193, and ursolic acid, could potentially become new treatment options. Proteasome inhibitors, novel agents, have significantly improved survival rates among multiple myeloma patients. They act on a proteasome system that is highly active in cardiomyocytes and activates various molecular cascades in malignant cells, as well as in the heart, through nuclear factor kappa B (NF-kB), endoplasmic reticulum (ER), calcineurin-nuclear factor of activated T-cells (NFAT), and adenosine monophosphate-activated protein kinase (AMPKa)/autophagy pathways. Metformin, apremilast, and rutin have shown positive results in animal studies and may become a promising therapy as cardioprotective agents. This article aims to highlight the main molecular mechanisms of heart failure among patients with multiple myeloma and potential treatment options to facilitate the development and research of new preventive strategies. Hence, this will have a positive impact on life expectancy in patients with multiple myeloma.
Collapse
Affiliation(s)
- Ekaterina Proskuriakova
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Keji Jada
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Anwar Khedr
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Bandana Neupane
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jihan A Mostafa
- Psychiatry, Psychotherapy and Research Field, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
30
|
Hahn VS, Zhang KW, Sun L, Narayan V, Lenihan DJ, Ky B. Heart Failure With Targeted Cancer Therapies: Mechanisms and Cardioprotection. Circ Res 2021; 128:1576-1593. [PMID: 33983833 DOI: 10.1161/circresaha.121.318223] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oncology has seen growing use of newly developed targeted therapies. Although this has resulted in dramatic improvements in progression-free and overall survival, challenges in the management of toxicities related to longer-term treatment of these therapies have also become evident. Although a targeted approach often exploits the differences between cancer cells and noncancer cells, overlap in signaling pathways necessary for the maintenance of function and survival in multiple cell types has resulted in systemic toxicities. In particular, cardiovascular toxicities are of important concern. In this review, we highlight several targeted therapies commonly used across a variety of cancer types, including HER2 (human epidermal growth factor receptor 2)+ targeted therapies, tyrosine kinase inhibitors, immune checkpoint inhibitors, proteasome inhibitors, androgen deprivation therapies, and MEK (mitogen-activated protein kinase kinase)/BRAF (v-raf murine sarcoma viral oncogene homolog B) inhibitors. We present the oncological indications, heart failure incidence, hypothesized mechanisms of cardiotoxicity, and potential mechanistic rationale for specific cardioprotective strategies.
Collapse
Affiliation(s)
- Virginia S Hahn
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD (V.S.H.)
| | - Kathleen W Zhang
- Cardio-Oncology Center of Excellence, Washington University, St Louis, MO (K.W.Z., D.J.L.)
| | - Lova Sun
- Penn Cardio-Oncology Translational Center of Excellence, Abramson Cancer Center (L.S., V.N., B.K.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Vivek Narayan
- Penn Cardio-Oncology Translational Center of Excellence, Abramson Cancer Center (L.S., V.N., B.K.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Daniel J Lenihan
- Cardio-Oncology Center of Excellence, Washington University, St Louis, MO (K.W.Z., D.J.L.)
| | - Bonnie Ky
- Penn Cardio-Oncology Translational Center of Excellence, Abramson Cancer Center (L.S., V.N., B.K.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Division of Cardiovascular Medicine (B.K.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Division of Biostatistics (B.K.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
31
|
Latif A, Kapoor V, Lateef N, Ahsan MJ, Usman RM, Malik SU, Ahmad N, Rosko N, Rudoni J, William P, Khouri J, Anwer F. Incidence and Management of Carfilzomib-induced Cardiovascular Toxicity; A Systematic Review and Meta-analysis. Cardiovasc Hematol Disord Drug Targets 2021; 21:30-45. [PMID: 33845729 DOI: 10.2174/1871529x21666210412113017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/07/2020] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The ASPIRE and ENDEAVOUR trials have shown cardiovascular adverse effects in patients treated with carfilzomib-based regimens. Therefore, we conducted this meta-analysis of published clinical trials to identify the cumulative incidence and risk of cardiovascular adverse effects due to carfilzomib. METHODS A systematic search of PubMed, Embase, Web of Science, and Cochrane library was performed, and we identified 45 prospective trials of carfilzomib with data on 5583 patients. Among all patients being treated with carfilzomib (N=5,583), 8.9% sustained all grade cardiotoxicity, while 4.4% sustained high-grade cardiotoxicity. All-grade hypertension was present in 13.2%, while the incidence of high-grade hypertension was 5.3%. RESULT The observed incidences of all-grade heart failure, edema, and ischemia were 5.1%, 20.7%, and 4.6% respectively. Likewise, for high-grade heart failure and edema observed incidence was 3.2%, and 2.7% respectively. There was no difference in the event rate of all and high-grade cardiotoxicity between newly diagnosed multiple myeloma and relapsed/refractory (p-value 0.42 and 0.86 respectively). Likewise, we did not observe any difference in the event rate of all and high-grade cardiotoxicity when carfilzomib was used as a single agent versus when used in combination therapy with other agents (p-value 0.43 and 0.73 respectively). CONCLUSION Carfilzomib is associated with a significant risk of cardiovascular toxicity and hypertension. With the increasing utilization of carfilzomib, it is critical for primary care physicians, oncologists and cardiologists to be aware of the risk of cardiotoxicity associated with the use of carfilzomib to recognize and treat baseline cardiovascular risk factors in such patients.
Collapse
Affiliation(s)
- Azka Latif
- CHI Health Creighton University, Omaha, NE. United States
| | - Vikas Kapoor
- CHI Health Creighton University, Omaha, NE. United States
| | - Noman Lateef
- CHI Health Creighton University, Omaha, NE. United States
| | | | - Rana Mohammad Usman
- Internal Medicine Residency Program, University of Tennessee, Memphis, TN. United States
| | - Saad Ullah Malik
- Department of Epidemiology and Biostatistics at the Mel and Enid Zuckerman College of Public Health., University of Arizona, Tucson, AZ. United States
| | - Naqib Ahmad
- Taussig Cancer Center Research, Cleveland Clinic, Cleveland, OH . United States
| | - Nathaniel Rosko
- Department of Pharmacy, Cleveland Clinic, Cleveland, OH. United States
| | - Joslyn Rudoni
- Department of Pharmacy, Cleveland Clinic, Cleveland, OH. United States
| | - Preethi William
- Department of Medicine, Division of Cardiology, University of Arizona, Tucson, AZ . United States
| | - Jack Khouri
- Hematology, Oncology, Stem Cell Transplantation, Myeloma program, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH. United States
| | - Faiz Anwer
- Hematology, Oncology, Stem Cell Transplantation, Myeloma program, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH. United States
| |
Collapse
|
32
|
Mamoshina P, Rodriguez B, Bueno-Orovio A. Toward a broader view of mechanisms of drug cardiotoxicity. CELL REPORTS MEDICINE 2021; 2:100216. [PMID: 33763655 PMCID: PMC7974548 DOI: 10.1016/j.xcrm.2021.100216] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiotoxicity, defined as toxicity that affects the heart, is one of the most common adverse drug effects. Numerous drugs have been shown to have the potential to induce lethal arrhythmias by affecting cardiac electrophysiology, which is the focus of current preclinical testing. However, a substantial number of drugs can also affect cardiac function beyond electrophysiology. Within this broader sense of cardiotoxicity, this review discusses the key drug-protein interactions known to be involved in cardiotoxic drug response. We cover adverse effects of anticancer, central nervous system, genitourinary system, gastrointestinal, antihistaminic, anti-inflammatory, and anti-infective agents, illustrating that many share mechanisms of cardiotoxicity, including contractility, mitochondrial function, and cellular signaling.
Collapse
Affiliation(s)
| | - Blanca Rodriguez
- Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Alfonso Bueno-Orovio
- Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| |
Collapse
|
33
|
Giudice V, Vecchione C, Selleri C. Cardiotoxicity of Novel Targeted Hematological Therapies. Life (Basel) 2020; 10:life10120344. [PMID: 33322351 PMCID: PMC7763613 DOI: 10.3390/life10120344] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy-related cardiac dysfunction, also known as cardiotoxicity, is a group of drug-related adverse events negatively affecting myocardial structure and functions in patients who received chemotherapy for cancer treatment. Clinical manifestations can vary from life-threatening arrythmias to chronic conditions, such as heart failure or hypertension, which dramatically reduce quality of life of cancer survivors. Standard chemotherapy exerts its toxic effect mainly by inducing oxidative stress and genomic instability, while new targeted therapies work by interfering with signaling pathways important not only in cancer cells but also in myocytes. For example, Bruton’s tyrosine kinase (BTK) inhibitors interfere with class I phosphoinositide 3-kinase isoforms involved in cardiac hypertrophy, contractility, and regulation of various channel forming proteins; thus, off-target effects of BTK inhibitors are associated with increased frequency of arrhythmias, such as atrial fibrillation, compared to standard chemotherapy. In this review, we summarize current knowledge of cardiotoxic effects of targeted therapies used in hematology.
Collapse
Affiliation(s)
- Valentina Giudice
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.V.); (C.S.)
- Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Correspondence: ; Tel.: +39-089-672-493
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.V.); (C.S.)
- IRCCS Neuromed (Mediterranean Neurological Institute), 86077 Pozzilli, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.V.); (C.S.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
34
|
Lyon AR, Dent S, Stanway S, Earl H, Brezden-Masley C, Cohen-Solal A, Tocchetti CG, Moslehi JJ, Groarke JD, Bergler-Klein J, Khoo V, Tan LL, Anker MS, von Haehling S, Maack C, Pudil R, Barac A, Thavendiranathan P, Ky B, Neilan TG, Belenkov Y, Rosen SD, Iakobishvili Z, Sverdlov AL, Hajjar LA, Macedo AV, Manisty C, Ciardiello F, Farmakis D, de Boer RA, Skouri H, Suter TM, Cardinale D, Witteles RM, Fradley MG, Herrmann J, Cornell RF, Wechelaker A, Mauro MJ, Milojkovic D, de Lavallade H, Ruschitzka F, Coats AJ, Seferovic PM, Chioncel O, Thum T, Bauersachs J, Andres MS, Wright DJ, López-Fernández T, Plummer C, Lenihan D. Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: a position statement and new risk assessment tools from the Cardio-Oncology Study Group of the Heart Failure Association of the European Society of Cardiology in collaboration with the International Cardio-Oncology Society. Eur J Heart Fail 2020; 22:1945-1960. [PMID: 32463967 PMCID: PMC8019326 DOI: 10.1002/ejhf.1920] [Citation(s) in RCA: 460] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
This position statement from the Heart Failure Association of the European Society of Cardiology Cardio-Oncology Study Group in collaboration with the International Cardio-Oncology Society presents practical, easy-to-use and evidence-based risk stratification tools for oncologists, haemato-oncologists and cardiologists to use in their clinical practice to risk stratify oncology patients prior to receiving cancer therapies known to cause heart failure or other serious cardiovascular toxicities. Baseline risk stratification proformas are presented for oncology patients prior to receiving the following cancer therapies: anthracycline chemotherapy, HER2-targeted therapies such as trastuzumab, vascular endothelial growth factor inhibitors, second and third generation multi-targeted kinase inhibitors for chronic myeloid leukaemia targeting BCR-ABL, multiple myeloma therapies (proteasome inhibitors and immunomodulatory drugs), RAF and MEK inhibitors or androgen deprivation therapies. Applying these risk stratification proformas will allow clinicians to stratify cancer patients into low, medium, high and very high risk of cardiovascular complications prior to starting treatment, with the aim of improving personalised approaches to minimise the risk of cardiovascular toxicity from cancer therapies.
Collapse
Affiliation(s)
- Alexander R. Lyon
- Cardio-Oncology Service, Royal Brompton Hospital and Imperial College, London, UK
- Corresponding author. Cardio-Oncology Service, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK. Tel: +44 20 7352 8121,
| | - Susan Dent
- Duke Cancer Institute, Duke University, Durham, NC, USA
| | | | - Helena Earl
- Department of Oncology, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | | | - Alain Cohen-Solal
- UMR-S 942, Paris University, Cardiology Department, Lariboisiere Hospital, AP-HP, Paris, France
| | - Carlo G. Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center for Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy
| | - Javid J. Moslehi
- Cardio-Oncology Program, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John D. Groarke
- Cardio-Oncology Program, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Vincent Khoo
- Department of Clinical Oncology, Royal Marsden Hospital and Institute of Cancer Research, London, UK
- Department of Medical Imaging and Radiation Sciences, Monash University and Department of Medicine, Melbourne University, Melbourne, Australia
| | - Li Ling Tan
- Department of Cardiology, National University Heart Centre, Singapore, National University Health System, Singapore, Singapore
| | - Markus S. Anker
- Division of Cardiology and Metabolism, Department of Cardiology, Charité and Berlin Institute of Health Center for Regenerative Therapies (BCRT) and DZHK (German Centre for Cardiovascular Research), partner site Berlin and Department of Cardiology, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Goettingen Medical Center, Goettingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Goettingen, Goettingen, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Radek Pudil
- First Department of Medicine – Cardioangiology, Charles University Prague, Medical Faculty and University Hospital Hradec Kralove, Prague, Czech Republic
| | - Ana Barac
- MedStar Heart and Vascular Institute, Georgetown University, Washington, DC, USA
| | - Paaladinesh Thavendiranathan
- Ted Rogers Program in Cardiotoxicity Prevention and Joint Division of Medical Imaging, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Bonnie Ky
- University of Pennsylvania, Philadelphia, PA, USA
| | - Tomas G. Neilan
- Cardio-Oncology Program, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Stuart D. Rosen
- Cardio-Oncology Service, Royal Brompton Hospital and Imperial College, London, UK
| | - Zaza Iakobishvili
- Department of Community Cardiology, Tel Aviv Jaffa District, Clalit Health Fund and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Aaron L. Sverdlov
- School of Medicine and Public Health, University of Newcastle and “Cancer and the Heart” Program, Hunter New England LHD, Newcastle, Australia
| | - Ludhmila A. Hajjar
- Cardio-Oncology, Department of Cardio-Pneumology, University of São Paulo, São Paulo, Brazil
| | - Ariane V.S. Macedo
- Santa Cardio-Oncology, Santa Casa de São Paulo and Rede Dor São Luiz, São Paulo, Brazil
| | | | - Fortunato Ciardiello
- Department of Precision Medicine, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Dimitrios Farmakis
- University of Cyprus Medical School, Nicosia, Cyprus
- Cardio-Oncology Clinic, Heart Failure Unit, “Attikon” University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Rudolf A. de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hadi Skouri
- Cardiology Division, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Thomas M. Suter
- Department of Cardiology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Daniela Cardinale
- Cardioncology Unit, European Institute of Oncology, IRCCS, Milan, Italy
| | | | | | - Joerg Herrmann
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Dragana Milojkovic
- Department of Haematology, Hammersmith Hospital, Imperial College, London, UK
| | | | - Frank Ruschitzka
- University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Andrew J.S. Coats
- University of Warwick, Warwick, UK
- Pharmacology, Centre of Clinical and Experimental Medicine, IRCCS San Raffaele Pisana, Rome, Italy
| | - Petar M. Seferovic
- Faculty of Medicine and Serbian Academy of Sciences and Arts, University of Belgrade, Belgrade, Serbia
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases ‘Prof. C.C. Iliescu’, Bucharest, Romania
- University of Medicine Carol Davila, Bucharest, Romania
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - M. Sol Andres
- Cardio-Oncology Service, Royal Brompton Hospital and Imperial College, London, UK
| | - David J. Wright
- Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, Liverpool, UK
| | - Teresa López-Fernández
- Cardiology Service, Cardio-Oncology Unit, La Paz University Hospital and IdiPAz Research Institute, Ciber CV, Madrid, Spain
| | - Chris Plummer
- Department of Cardiology, The Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle, UK
| | - Daniel Lenihan
- Cardio-Oncology Center of Excellence, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|
35
|
Ling Y, Li R, Zhong J, Zhao Y, Chen Z. Ixazomib-associated cardiovascular adverse events in multiple myeloma: a systematic review and meta-analysis. Drug Chem Toxicol 2020; 45:1443-1448. [PMID: 33108916 DOI: 10.1080/01480545.2020.1835945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Prolonged survival and expanded treatment options in myeloma patients have led to adverse events associated with treatment getting increased attention. This systematic review and meta-analysis aimed to determine the incidence of ixazomib-associated cardiovascular adverse events (CVAEs) and to compare the rates of ixazomib-associated CVAEs and related therapies. CVAEs were defined as heart failure, hypertension, ischemia, and arrhythmia. All-grade and high-grade CVAEs and study characteristics were recorded. A total of 266 potentially relevant articles were identified, and 246 were excluded after review. Twenty studies of 1715 patients with multiple myeloma were thus considered in this study. The estimated rates of all-grade and high-grade ixazomib associated CVAEs were 11.2 and 3.7%, respectively. Subgroup analysis showed that median age ≥65 years, none phase 1 trial and combination regimen were associated with higher rates of high-grade ixazomib associated CVAEs. Ixazomib was association with increased high-grade CVAEs risk (RR = 1.679, 95% CI: 1.078-2.615, P = 0.022). Ixazomib was associated with a significant rate of high-grade CVAEs. Future studies are needed to identify patients at high risk for high-grade CVAEs.
Collapse
Affiliation(s)
- Yiwen Ling
- Department of Hematology, First People's Hospital of Foshan, Foshan, China
| | - Rui Li
- Department of Internal Medicine, Foshan Maternal and Child Health Hospital, Foshan, China
| | - Jiankai Zhong
- Department of Cardiology, Shunde Hospital, Southern Medical University, Guangdong, China
| | - Ying Zhao
- Department of Hematology, First People's Hospital of Foshan, Foshan, China
| | - Zhuowen Chen
- Department of Hematology, First People's Hospital of Foshan, Foshan, China
| |
Collapse
|
36
|
Khanna S, Lo P, Cho K, Subbiah R. Ventricular Arrhythmias in Cardiac Amyloidosis: A Review of Current Literature. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2020; 14:1179546820963055. [PMID: 33088185 PMCID: PMC7545745 DOI: 10.1177/1179546820963055] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/06/2020] [Indexed: 01/29/2023]
Abstract
Cardiac Amyloidosis is an infiltrative cardiomyopathy which occurs secondary to deposition of mis-folded protein in the myocardium, with the two most common subtypes being AL amyloidosis and TTR amyloidosis. The pathogenesis of the disease is multifaceted and involves a variety of mechanisms including an inflammatory response cascade, oxidative stress and subsequent separation of myocyte fibrils. Cardiac Amyloidosis frequently results in congestive cardiac failure and arrhythmias, from a disruption in cardiac substrate with subsequent electro-mechanical remodelling. Disease progression is usually demonstrated by development of progressive pump failure, which may be seen with a high arrhythmic burden, usually portending a poor prognosis. There is a paucity of literature on the clinical implications of ventricular arrhythmias in the context of cardiac amyloidosis. The important diagnostic investigations for these patients include transthoracic echocardiography, cardiac magnetic resonance imaging and an electrophysiology study. Whilst there are no robust management guidelines, studies have indicated benefits from contemporary pharmacological therapy and case-by-case catheter ablation. There are novel directed therapies available for TTR amyloidosis that have shown to improve overall survival. The role of ICD therapy in cardiac amyloidosis is controversial, with benefits seen predominantly in early phases of the disease process. The only definitive surgical therapy includes heart transplantation, but is largely indicated for progressive decompensated heart failure (Figure 1). Further large-scale studies are required to better outline management paradigms for treating ventricular arrhythmias in cardiac amyloidosis.
Collapse
Affiliation(s)
- Shaun Khanna
- Department of Cardiology, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Phillip Lo
- Department of Cardiology, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Kenneth Cho
- Department of Cardiology, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Rajesh Subbiah
- Department of Cardiology, St Vincent's Hospital, Darlinghurst, NSW, Australia.,University of New South Wales, Kensington, Sydney, NSW, Australia.,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| |
Collapse
|
37
|
Pancheri E, Guglielmi V, Wilczynski GM, Malatesta M, Tonin P, Tomelleri G, Nowis D, Vattemi G. Non-Hematologic Toxicity of Bortezomib in Multiple Myeloma: The Neuromuscular and Cardiovascular Adverse Effects. Cancers (Basel) 2020; 12:cancers12092540. [PMID: 32906684 PMCID: PMC7563977 DOI: 10.3390/cancers12092540] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Multiple myeloma (MM) is a still uncurable tumor of mainly elderly patients originating from the terminally differentiated B cells. Introduction to the treatment of MM patients of a new class of drugs called proteasome inhibitors (bortezomib followed by carfilzomib and ixazomib) significantly improved disease control. Proteasome inhibitors interfere with the major mechanism of protein degradation in a cell leading to the severe imbalance in the protein turnover that is deadly to MM cells. Currently, these drugs are the mainstream of MM therapy but are also associated with an increased rate of the injuries to multiple organs and tissues. In this review, we summarize the current knowledge on the molecular mechanisms of the first-in-class proteasome inhibitor bortezomib-induced disturbances in the function of peripheral nerves and cardiac and skeletal muscle. Abstract The overall approach to the treatment of multiple myeloma (MM) has undergone several changes during the past decade. and proteasome inhibitors (PIs) including bortezomib, carfilzomib, and ixazomib have considerably improved the outcomes in affected patients. The first-in-class selective PI bortezomib has been initially approved for the refractory forms of the disease but has now become, in combination with other drugs, the backbone of the frontline therapy for newly diagnosed MM patients, as well as in the maintenance therapy and relapsed/refractory setting. Despite being among the most widely used and highly effective agents for MM, bortezomib can induce adverse events that potentially lead to early discontinuation of the therapy with negative effects on the quality of life and outcome of the patients. Although peripheral neuropathy and myelosuppression have been recognized as the most relevant bortezomib-related adverse effects, cardiac and skeletal muscle toxicities are relatively common in MM treated patients, but they have received much less attention. Here we review the neuromuscular and cardiovascular side effects of bortezomib. focusing on the molecular mechanisms underlying its toxicity. We also discuss our preliminary data on the effects of bortezomib on skeletal muscle tissue in mice receiving the drug.
Collapse
Affiliation(s)
- Elia Pancheri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Valeria Guglielmi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Grzegorz M. Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology Warsaw, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Anatomy and Histology, University of Verona, 37134 Verona, Italy;
| | - Paola Tonin
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Giuliano Tomelleri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, 02-093 Warsaw, Poland;
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-093 Warsaw, Poland
| | - Gaetano Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
- Correspondence:
| |
Collapse
|
38
|
Milluzzo A, Vigneri P, Martorana F, Vigneri R, Sciacca L. Type 2 diabetes and cancer: problems and suggestions for best patient management. EXPLORATION OF MEDICINE 2020. [DOI: 10.37349/emed.2020.00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Diabetes and cancer are widespread worldwide and the number of subjects presenting both diseases increased over the years. The management of cancer patients having diabetes represents a challenge not only because of the complexity and heterogeneity of these pathologies but also for the lack of standardised clinical guidelines. The diagnosis of cancer is traumatizing and monopolizes the attention of both patients and caregivers. Thus, pre-existent or new-onset diabetes can be overshadowed thus increasing the risk for short- and long-term adverse events. Moreover, drugs used for each disease can interfere with the clinical course of the concomitant disease, making challenging the management of these patients. Over the years, this issue has become more relevant because of the increased patients’ life expectancy due to the improved efficacy of diabetes and cancer therapies.
The purpose of this review is to highlight what is known and what should be taken into consideration to optimise the clinical management of patients with diabetes and cancer. Due to the complexity of these diseases, a multidisciplinary, shared approach, including all the protagonists involved, is necessary to improve patients’ quality of life and lifespan.
Collapse
Affiliation(s)
- Agostino Milluzzo
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania Medical School, 95122 Catania, Italy
| | - Paolo Vigneri
- Center of Experimental Oncology and Hematology, Department of Clinical and Experimental Medicine, University of Catania, A.O.U. Policlinico-Vittorio Emanuele, 95124 Catania, Italy
| | - Federica Martorana
- Center of Experimental Oncology and Hematology, Department of Clinical and Experimental Medicine, University of Catania, A.O.U. Policlinico-Vittorio Emanuele, 95124 Catania, Italy
| | - Riccardo Vigneri
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania Medical School, 95122 Catania, Italy; Institute of Crystallography, Catania Section, National Research Council, CNR, 95126 Catania, Italy
| | - Laura Sciacca
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania Medical School, 95122 Catania, Italy
| |
Collapse
|
39
|
Sampat PJ, Martinez F, Riaz S, Aiello D. Bortezomib Plus Melphalan-Induced Cardiomyopathy Presenting as Sinus Tachycardia and Systolic Heart Failure. Cureus 2020; 12:e9488. [PMID: 32775113 PMCID: PMC7402422 DOI: 10.7759/cureus.9488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Chemotherapy-induced cardiotoxicity is a known condition, however, bortezomib and melphalan do not typically cause cardiotoxicity. With the rise in the use of newer chemotherapeutic agents, it is important to identify and understand the cardiac implications of chemotherapeutic agents. We present a case of a 70-year-old female with no known significant cardiac history presenting with partially reversible cardiomyopathy with initial presentation only being as sinus tachycardia.
Collapse
|
40
|
Wu P, Oren O, Gertz MA, Yang EH. Proteasome Inhibitor-Related Cardiotoxicity: Mechanisms, Diagnosis, and Management. Curr Oncol Rep 2020; 22:66. [DOI: 10.1007/s11912-020-00931-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Qi WX, Zhao S, Chen J. Risk factors for developing cardiac toxicities in cancer patients treated with panitumumab combination therapy. Future Oncol 2020; 16:1359-1370. [PMID: 32422068 DOI: 10.2217/fon-2020-0050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To evaluate the incidence and risk of cardiac toxicities associated with panitumumab in advanced cancer of Caucasian patients. Materials & methods: The incidence of cardiac toxicity was assessed by simple incidence rates and rates per 100 person-years. Univariate and multivariate Cox regression was conducted. Results: Panitumumab-containing therapy significantly increased the risk of developing cardiac arrhythmias (p = 0.036), but not for any cardiac event (p = 0.24) or ischemic event (p = 0.087). The absolute rate of developing cardiac arrhythmia was 10.0 events versus 7.5 events per 100 person-years. Pre-existing hypertension (p = 0.033), history of cardiac disease (p = 0.055) or panitumumab usage (p = 0.046) were risk factors for cardiac arrhythmias. Conclusion: The addition of panitumumab to chemotherapy increases the risk of developing cardiac arrhythmia, but not for any cardiac toxicity or ischemic events.
Collapse
Affiliation(s)
- Wei-Xiang Qi
- Department of Radiation Oncology, Rui Jin Hospital Affiliated Medicine School of Shanghai Jiao Tong University, Shanghai, PR China
| | - Shengguang Zhao
- Department of Radiation Oncology, Rui Jin Hospital Affiliated Medicine School of Shanghai Jiao Tong University, Shanghai, PR China
| | - Jiayi Chen
- Department of Radiation Oncology, Rui Jin Hospital Affiliated Medicine School of Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
42
|
Itzhaki Ben Zadok O, Kornowski R. Cardiac Care of Patients with Cardiac Amyloidosis. Acta Haematol 2020; 143:343-351. [PMID: 32408301 DOI: 10.1159/000506919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022]
Abstract
Cardiac amyloidosis, the majority of cases of which are due to immunoglobulin light chain amyloidosis (AL) and transthyretin amyloidosis (ATTR), affects different aspects of the heart and cardiovascular system. Amyloid-induced cardiomyopathy, clinically manifesting with heart failure and electrophysiological abnormalities, has distinct characteristics compared to non-amyloid cardiomyopathies. Accordingly, specific management strategies are required. This paper will review the cardiovascular manifestations of patients with cardiac amyloidosis and their suggested treatment strategies, emphasizing the importance of multidisciplinary care.
Collapse
Affiliation(s)
- Osnat Itzhaki Ben Zadok
- Department of Cardiology, Rabin Medical Center, Petah Tikva, Israel,
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,
| | - Ran Kornowski
- Department of Cardiology, Rabin Medical Center, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
43
|
Latif A, Lateef N, Razzaq F, Kapoor V, Ahsan MJ, Ashfaq M, Iftikhar A, Anwer F, Holmberg M, William P. Fundamentals of Light Chain Cardiac Amyloidosis: A Focused Review. Cardiovasc Hematol Disord Drug Targets 2020; 20:274-283. [PMID: 33256586 DOI: 10.2174/1871529x20666201130110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 06/12/2023]
Abstract
The estimated prevalence of AL CA in the US is approximately 8-12 cases per million. Almost 30-50% diagnosed cases of AL amyloid in the US have multisystem involvement, including cardiac involvement. Even with the availability of advanced diagnostic testing and novel therapies, prognosis remains poor. It is overlooked as a cause of heart failure with preserved ejection fraction leading to a delay in diagnosis when management options are limited and associated with poor survival outcomes. Therefore, the education of physicians is needed to ensure that it would be highly considered as a differential diagnosis. The purpose of this manuscript is to review the advances in the diagnosis and management of cardiac amyloidosis with the aim of educating colleagues who provide care in the primary care setting. We have summarized the pathogenesis of amyloidosis, its association with plasma cell dyscrasias, novel diagnostic and surveillance approaches including echocardiography, cardiovascular magnetic resonance imaging, histopathologic techniques, systemic biomarkers, and advanced treatment approaches including supportive symptomatic management and standard of care chemotherapy targeting the amyloid deposits. Given the overall poor prognosis of amyloidosis, we have also discussed the role of palliative and hospice care.
Collapse
Affiliation(s)
- Azka Latif
- Creighton University Medical Center, Omaha, Nebraska, NE, 68178, United States
| | - Noman Lateef
- Creighton University Medical Center, Omaha, Nebraska, NE, 68178, United States
| | - Faryal Razzaq
- Foundation University Medical College, Islamabad, Pakistan
| | - Vikas Kapoor
- Creighton University Medical Center, Omaha, Nebraska, NE, 68178, United States
| | - Muhammad J Ahsan
- Creighton University Medical Center, Omaha, Nebraska, NE, 68178, United States
| | - Muhammad Ashfaq
- Creighton University Medical Center, Omaha, Nebraska, NE, 68178, United States
| | - Ahmad Iftikhar
- University of Arizona, Tucson, Arizona, AZ 85721, United States
| | - Faiz Anwer
- Cleveland Clinic, Cleveland, OH, United States
| | - Mark Holmberg
- Creighton University Medical Center, Omaha, Nebraska, NE, 68178, United States
| | - Preethi William
- University of Arizona, Tucson, Arizona, AZ 85721, United States
| |
Collapse
|
44
|
What the Intensivists Need to Know About Critically Ill Myeloma Patients. ONCOLOGIC CRITICAL CARE 2020. [PMCID: PMC7121630 DOI: 10.1007/978-3-319-74588-6_98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by an increase in aberrant plasma cells in the bone marrow leading to rising monoclonal protein in serum and urine. With the introduction of novel therapies with manageable side effects, this incurable disease has evolved into a chronic disease with an acceptable quality of life for the majority of patients. Accordingly, management of acute complications is fundamental in reducing the morbidity and mortality in MM. MM emergencies include symptoms and signs related directly to the disease and/or to the treatment; many organs may be involved including, but not limited to, renal, cardiovascular, neurologic, hematologic, and infectious complications. This review will focus on the numerous approaches that are aimed at managing these complications.
Collapse
|
45
|
Cheng Z, Combs M, Zhu Q, Xia P, Opheim Z, Parker J, Mack CP, Taylor JM. Genome-Wide RNAi Screen Identifies Regulators of Cardiomyocyte Necrosis. ACS Pharmacol Transl Sci 2019; 2:361-371. [PMID: 32259070 DOI: 10.1021/acsptsci.9b00052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Indexed: 12/22/2022]
Abstract
Regulation of cellular death is central to nearly all physiological routines and is dysregulated in virtually all diseases. Cell death occurs by two major processes, necrosis which culminates in a pervasive inflammatory response and apoptosis which is largely immunologically inert. As necrosis has long been considered an accidental, unregulated form of cellular death that occurred in response to a harsh environmental stimulus, it was largely ignored as a clinical target. However, recent elegant studies suggest that certain forms of necrosis can be reprogrammed. However, scant little is known about the molecules and pathways that orchestrate calcium-overload-induced necrosis, a main mediator of ischemia/reperfusion (IR)-induced cardiomyocyte cell death. To rectify this critical gap in our knowledge, we performed a novel genome-wide siRNA screen to identify modulators of calcium-induced necrosis in human muscle cells. Our screen identified multiple molecular circuitries that either enhance or inhibit this process, including lysosomal calcium channel TPCN1, mitophagy mediatorTOMM7, Ran-binding protein RanBP9, Histone deacetylase HDAC2, chemokine CCL11, and the Arp2/3 complex regulator glia maturation factor-γ (GMFG). Notably, a number of druggable enzymes were identified, including the proteasome β5 subunit (encoded by PSMB5 gene), which controls the proteasomal chymotrypsin-like peptidase activity. Such findings open up the possibility for the discovery of pharmacological interventions that could provide therapeutic benefits to patients affected by myriad disorders characterized by excessive (or too little) necrotic cell loss, including but not limited to IR injury in the heart and kidney, chronic neurodegenerative disorders, muscular dystrophies, sepsis, and cancers.
Collapse
Affiliation(s)
- Zhaokang Cheng
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington 99210, United States
| | - Matthew Combs
- Department of Pathology, Department of Genetics, Lineberger Cancer Center, and McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Qiang Zhu
- Department of Pathology, Department of Genetics, Lineberger Cancer Center, and McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Peng Xia
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington 99210, United States
| | - Zachary Opheim
- Department of Pathology, Department of Genetics, Lineberger Cancer Center, and McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Joel Parker
- Department of Pathology, Department of Genetics, Lineberger Cancer Center, and McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Department of Pathology, Department of Genetics, Lineberger Cancer Center, and McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Christopher P Mack
- Department of Pathology, Department of Genetics, Lineberger Cancer Center, and McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Department of Pathology, Department of Genetics, Lineberger Cancer Center, and McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Joan M Taylor
- Department of Pathology, Department of Genetics, Lineberger Cancer Center, and McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Department of Pathology, Department of Genetics, Lineberger Cancer Center, and McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
46
|
Witteles RM, Liedtke M. AL Amyloidosis for the Cardiologist and Oncologist: Epidemiology, Diagnosis, and Management. JACC CardioOncol 2019; 1:117-130. [PMID: 34396169 PMCID: PMC8352106 DOI: 10.1016/j.jaccao.2019.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 02/07/2023] Open
Abstract
AL amyloidosis results from clonal production of immunoglobulin light chains, most commonly arising from a clonal plasma cell disorder. Once considered a nearly uniformly fatal disease, prognosis has improved markedly over the past 15 years, predominantly because of advances in light chain suppressive therapies. Cardiac deposition of amyloid fibrils is common, and the severity of cardiac involvement remains the primary driver of prognosis. Improvements in chemotherapy/immunotherapy have prompted a reassessment of the role of advanced cardiac therapies previously considered contraindicated in most patients, including the role of implantable cardioverter-defibrillators and cardiac transplantation. This state-of-the-art review highlights the current state of the field, including diagnosis, prognosis, and hematologic- and cardiac-specific therapies.
Collapse
Key Words
- AL amyloidosis
- ASCT, autologous stem cell transplantation
- BNP, B-type natriuretic peptide
- CyBorD, cyclophosphamide, bortezomib, and dexamethasone
- FLC, free light chain
- ICD, implantable cardioverter-defibrillator
- MGUS, monoclonal gammopathy of undetermined significance
- NT-proBNP, N-terminal pro–B-type natriuretic peptide
- SAP, serum amyloid P
- SPIE, serum protein electrophoresis with immunofixation
- UPIE, urine protein electrophoresis with immunofixation
- amyloidosis
- diagnosis
- drug therapy
- heart failure
- imaging
- treatment
Collapse
Affiliation(s)
- Ronald M. Witteles
- Division of Cardiovascular Medicine, Stanford Amyloid Center, Stanford University School of Medicine, Stanford, California, USA
| | - Michaela Liedtke
- Division of Hematology, Stanford Amyloid Center, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
47
|
In vitro and in vivo investigation of cardiotoxicity associated with anticancer proteasome inhibitors and their combination with anthracycline. Clin Sci (Lond) 2019; 133:1827-1844. [PMID: 31409729 DOI: 10.1042/cs20190139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/26/2019] [Accepted: 08/12/2019] [Indexed: 01/07/2023]
Abstract
Although proteasome inhibitors (PIs) are modern targeted anticancer drugs, they have been associated with a certain risk of cardiotoxicity and heart failure (HF). Recently, PIs have been combined with anthracyclines (ANTs) to further boost their anticancer efficacy. However, this raised concerns regarding cardiac safety, which were further supported by several in vitro studies on immature cardiomyocytes. In the present study, we investigated the toxicity of clinically used PIs alone (bortezomib (BTZ), carfilzomib (CFZ)) as well as their combinations with an ANT (daunorubicin (DAU)) in both neonatal and adult ventricular cardiomyocytes (NVCMs and AVCMs) and in a chronic rabbit model of DAU-induced HF. Using NVCMs, we found significant cytotoxicity of both PIs around their maximum plasma concentration (cmax) as well as significant augmentation of DAU cytotoxicity. In AVCMs, BTZ did not induce significant cytotoxicity in therapeutic concentrations, whereas the toxicity of CFZ was significant and more profound. Importantly, neither PI significantly augmented the cardiotoxicity of DAU despite even more profound proteasome-inhibitory activity in AVCMs compared with NVCMs. Furthermore, in young adult rabbits, no significant augmentation of chronic ANT cardiotoxicity was noted with respect to any functional, morphological, biochemical or molecular parameter under study, despite significant inhibition of myocardial proteasome activity. Our experimental data show that combination of PIs with ANTs is not accompanied by an exaggerated risk of cardiotoxicity and HF in young adult animal cardiomyocytes and hearts.
Collapse
|
48
|
Perez IE, Taveras Alam S, Hernandez GA, Sancassani R. Cancer Therapy-Related Cardiac Dysfunction: An Overview for the Clinician. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2019; 13:1179546819866445. [PMID: 31384135 PMCID: PMC6664629 DOI: 10.1177/1179546819866445] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/02/2019] [Indexed: 12/28/2022]
Abstract
Cancer therapy-related cardiac dysfunction (CTRCD) is one of the most feared and
undesirable side effects of chemotherapy, occurring in approximately 10% of the
patients. It can be classified as direct (dose-dependent vs dose-independent) or
indirect, either case being potentially permanent or reversible. Risk
assessment, recognition, and prevention of CTRCD are crucial.
Collapse
Affiliation(s)
- Irving E Perez
- Department of Cardiovascular Disease, Jackson Memorial Hospital, University of Miami Hospital, Miami, FL, USA
| | - Sara Taveras Alam
- Section of Hematology-Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Gabriel A Hernandez
- Department of Cardiovascular Disease, Jackson Memorial Hospital, University of Miami Hospital, Miami, FL, USA
| | - Rhea Sancassani
- Department of Cardiovascular Disease, Jackson Memorial Hospital, University of Miami Hospital, Miami, FL, USA
| |
Collapse
|
49
|
Tocchetti CG, Cadeddu C, Di Lisi D, Femminò S, Madonna R, Mele D, Monte I, Novo G, Penna C, Pepe A, Spallarossa P, Varricchi G, Zito C, Pagliaro P, Mercuro G. From Molecular Mechanisms to Clinical Management of Antineoplastic Drug-Induced Cardiovascular Toxicity: A Translational Overview. Antioxid Redox Signal 2019; 30:2110-2153. [PMID: 28398124 PMCID: PMC6529857 DOI: 10.1089/ars.2016.6930] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: Antineoplastic therapies have significantly improved the prognosis of oncology patients. However, these treatments can bring to a higher incidence of side-effects, including the worrying cardiovascular toxicity (CTX). Recent Advances: Substantial evidence indicates multiple mechanisms of CTX, with redox mechanisms playing a key role. Recent data singled out mitochondria as key targets for antineoplastic drug-induced CTX; understanding the underlying mechanisms is, therefore, crucial for effective cardioprotection, without compromising the efficacy of anti-cancer treatments. Critical Issues: CTX can occur within a few days or many years after treatment. Type I CTX is associated with irreversible cardiac cell injury, and it is typically caused by anthracyclines and traditional chemotherapeutics. Type II CTX is generally caused by novel biologics and more targeted drugs, and it is associated with reversible myocardial dysfunction. Therefore, patients undergoing anti-cancer treatments should be closely monitored, and patients at risk of CTX should be identified before beginning treatment to reduce CTX-related morbidity. Future Directions: Genetic profiling of clinical risk factors and an integrated approach using molecular, imaging, and clinical data may allow the recognition of patients who are at a high risk of developing chemotherapy-related CTX, and it may suggest methodologies to limit damage in a wider range of patients. The involvement of redox mechanisms in cancer biology and anticancer treatments is a very active field of research. Further investigations will be necessary to uncover the hallmarks of cancer from a redox perspective and to develop more efficacious antineoplastic therapies that also spare the cardiovascular system.
Collapse
Affiliation(s)
| | - Christian Cadeddu
- 2 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Daniela Di Lisi
- 3 Biomedical Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Saveria Femminò
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Rosalinda Madonna
- 5 Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy.,6 Department of Internal Medicine, The Texas Heart Institute and Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Donato Mele
- 7 Cardiology Unit, Emergency Department, University Hospital of Ferrara, Ferrara, Italy
| | - Ines Monte
- 8 Department of General Surgery and Medical-Surgery Specialities, University of Catania, Catania, Italy
| | - Giuseppina Novo
- 3 Biomedical Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Claudia Penna
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alessia Pepe
- 9 U.O.C. Magnetic Resonance Imaging, Fondazione Toscana G. Monasterio C.N.R., Pisa, Italy
| | - Paolo Spallarossa
- 10 Clinic of Cardiovascular Diseases, IRCCS San Martino IST, Genova, Italy
| | - Gilda Varricchi
- 1 Department of Translational Medical Sciences, Federico II University, Naples, Italy.,11 Center for Basic and Clinical Immunology Research (CISI) - Federico II University, Naples, Italy
| | - Concetta Zito
- 12 Division of Cardiology, Clinical and Experimental Department of Medicine and Pharmacology, Policlinico "G. Martino" University of Messina, Messina, Italy
| | - Pasquale Pagliaro
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giuseppe Mercuro
- 2 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
50
|
Fraz MA, Warraich FH, Warraich SU, Tariq MJ, Warraich Z, Khan AY, Usman M, Ijaz A, Tenneti P, Mushtaq A, Akbar F, Shahid Z, Ali Z, Fazeel HM, Rodriguez C, Nasar A, McBride A, Anwer F. Special considerations for the treatment of multiple myeloma according to advanced age, comorbidities, frailty and organ dysfunction. Crit Rev Oncol Hematol 2019; 137:18-26. [PMID: 31014512 PMCID: PMC6508081 DOI: 10.1016/j.critrevonc.2019.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/24/2019] [Indexed: 12/30/2022] Open
Abstract
Multiple Myeloma (MM) is primarily a disease of old age with a median age of sixty-nine years at diagnosis. The development of novel therapies for induction and use of autologous stem cell transplantation has resulted in improved clinical outcomes and better quality of life for MM patients. Elderly patients, comprising the majority of MM population, have a higher incidence of age-related comorbidities, frailty and organ dysfunction which complicates the coordination of treatment and limits the selection of therapies. Even in the era of multiple chemotherapeutic options, the clinical heterogeneity of the myeloma patients' demands personalized treatments which often require dose-adjustments or dose delays. The use of reduced-dose regimens and various comorbidity indices has improved clinical outcome and regimen tolerability in MM patients with renal, neurological and bone abnormalities. We focus on advancements in the treatment of multiple myeloma with the goal to guide clinicians towards patient-specific management.
Collapse
Affiliation(s)
- Muhammad Asad Fraz
- Department of Medicine, Division of Hematology Oncology, Blood and Marrow Transplantation, University of Arizona, Tucson, AZ, 85721, United States
| | - Faiza Hassan Warraich
- Department of Internal Medicine, McLaren-Flint Medical Center, Flint, MI, 48532, United States
| | - Sami Ullah Warraich
- Department of Medicine, Division of Hematology Oncology, Blood and Marrow Transplantation, University of Arizona, Tucson, AZ, 85721, United States
| | - Muhammad Junaid Tariq
- Department of Medicine, Division of Hematology Oncology, Blood and Marrow Transplantation, University of Arizona, Tucson, AZ, 85721, United States
| | - Zabih Warraich
- Department of Internal Medicine, United Health Services Wilson Memorial Regional Medical Center, Johnson City, NY, 13790, United States
| | - Ali Younas Khan
- Department of Medicine, Division of Hematology Oncology, Blood and Marrow Transplantation, University of Arizona, Tucson, AZ, 85721, United States
| | - Muhammad Usman
- Department of Medicine, Division of Hematology Oncology, Blood and Marrow Transplantation, University of Arizona, Tucson, AZ, 85721, United States
| | - Awais Ijaz
- Department of Medicine, Division of Hematology Oncology, Blood and Marrow Transplantation, University of Arizona, Tucson, AZ, 85721, United States
| | - Pavan Tenneti
- Department of Medicine, Banner University Medical Center, Tucson, AZ, 85724, United States
| | - Adeela Mushtaq
- Department of Medicine, University of Pittsburgh Medical Center, McKeesport, PA, 15132, United States
| | - Faisal Akbar
- Department of Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC, 27157, United States
| | - Zaina Shahid
- Department of Medicine, Wilkes Medical Center- Wake Forest Baptist Health, Wilkesboro, NC, 28659, United States
| | - Zeeshan Ali
- Department of Medicine, Southern Arizona Veterans Affairs Health Care System, Tucson, AZ, 85723, United States
| | - Hafiz Muhammad Fazeel
- Department of Medicine, Division of Hematology Oncology, Blood and Marrow Transplantation, University of Arizona, Tucson, AZ, 85721, United States
| | - Cesar Rodriguez
- Department of Hematology Oncology, Wake Forest Baptist Medical Comprehensive Cancer Center, Winston Salem, NC, 27157, United States
| | - Aboo Nasar
- Department of Geriatrics, Tri-City Medical Center, 4002 Vista Way, Oceanside, CA 92056, United States
| | - Ali McBride
- Department of Pharmacy, The University of Arizona Cancer Center, Tucson, AZ, 85737, United States
| | - Faiz Anwer
- Department of Medicine, Division of Hematology Oncology, Blood and Marrow Transplantation, University of Arizona, Tucson, AZ, 85721, United States; Taussig Cancer Center, Department of Hematology, Medical Oncology, Cleveland Clinic, Cleveland, OH, 44195, United States.
| |
Collapse
|