1
|
Baruah P, Padhi D, Moorthy H, Ramesh M, Govindaraju T. Navigating the dichotomy of reactive oxygen, nitrogen, and sulfur species: detection strategies and therapeutic interventions. RSC Chem Biol 2025:d5cb00006h. [PMID: 39877134 PMCID: PMC11770382 DOI: 10.1039/d5cb00006h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Reactive oxygen, nitrogen and sulfur species (RONSS) collectively encompasses a variety of energetically dynamic entities that emerge as inherent characteristics of aerobic life. This broad category includes reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS). A conundrum arises from the indispensable role of RONSS in redox signalling, while its overproduction in the mitochondria poses deleterious effects. This imbalance leads to biomolecular damage and contributes to neurodegenerative disorders, cancer, cardiovascular diseases and inflammation. Notably, the differential roles of RONSS across various diseases can be strategically exploited for therapeutic interventions. Timely, precise, and sensitive detection methods are indispensable for elucidating the spatiotemporal dynamics of RONSS and evaluating disease pathogenesis and progression. By monitoring RONSS levels, we can discern early markers of disease onset, enabling proactive intervention strategies for effective disease management. Therapeutic interventions targeting oxidative/nitrosative stress in disease pathologies have proven to be effective treatment routes in the mitigation of different diseases. This review aims to offer a comprehensive overview of the functional implications and delicate balance of RONSS in disease conditions, and advances made in detection strategies over the years while offering therapeutic strategies to tackle their adverse effects. A special emphasis is focussed on neurodegenerative disorders and cancer with case studies using RONSS-targeted chemical probes and prodrugs.
Collapse
Affiliation(s)
- Prayasee Baruah
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Dikshaa Padhi
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru Karnataka 560064 India
| |
Collapse
|
2
|
Tarot P, Lasbleiz C, Liévens JC. NRF2 signaling cascade in amyotrophic lateral sclerosis: bridging the gap between promise and reality. Neural Regen Res 2024; 19:1006-1012. [PMID: 37862202 PMCID: PMC10749620 DOI: 10.4103/1673-5374.385283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 10/22/2023] Open
Abstract
Amyotrophic lateral sclerosis is a very disabling disease due to the degeneration of motor neurons. Symptoms include muscle weakness and atrophy, spasticity, and progressive paralysis. Currently, there is no treatment to reverse damage to motor neurons and cure amyotrophic lateral sclerosis. The only two treatments actually approved, riluzole and edaravone, have shown mitigated beneficial effects. The difficulty to find a cure lies in the complexity and multifaceted pattern of amyotrophic lateral sclerosis pathogenesis. Among mechanisms, abnormal RNA metabolism, nucleocytoplasmic transport defects, accumulation of unfolded protein, and mitochondrial dysfunction would in fine induce oxidative damage and vice versa. A potent therapeutic strategy will be to find molecules that break this vicious circle. Sharpening the nuclear factor erythroid-2 related factor 2 signaling may fulfill this objective since nuclear factor erythroid-2 related factor 2 has a multitarget profile controlling antioxidant defense, mitochondrial functioning, and inflammation. We here discuss the interest of developing nuclear factor erythroid-2 related factor 2-based therapy in regard to the pathophysiological mechanisms and we provide a general overview of the attempted clinical assays in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Pauline Tarot
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | | | |
Collapse
|
3
|
Fatoki TH, Chukwuejim S, Udenigwe CC, Aluko RE. In Silico Exploration of Metabolically Active Peptides as Potential Therapeutic Agents against Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:5828. [PMID: 36982902 PMCID: PMC10058213 DOI: 10.3390/ijms24065828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is regarded as a fatal neurodegenerative disease that is featured by progressive damage of the upper and lower motor neurons. To date, over 45 genes have been found to be connected with ALS pathology. The aim of this work was to computationally identify unique sets of protein hydrolysate peptides that could serve as therapeutic agents against ALS. Computational methods which include target prediction, protein-protein interaction, and peptide-protein molecular docking were used. The results showed that the network of critical ALS-associated genes consists of ATG16L2, SCFD1, VAC15, VEGFA, KEAP1, KIF5A, FIG4, TUBA4A, SIGMAR1, SETX, ANXA11, HNRNPL, NEK1, C9orf72, VCP, RPSA, ATP5B, and SOD1 together with predicted kinases such as AKT1, CDK4, DNAPK, MAPK14, and ERK2 in addition to transcription factors such as MYC, RELA, ZMIZ1, EGR1, TRIM28, and FOXA2. The identified molecular targets of the peptides that support multi-metabolic components in ALS pathogenesis include cyclooxygenase-2, angiotensin I-converting enzyme, dipeptidyl peptidase IV, X-linked inhibitor of apoptosis protein 3, and endothelin receptor ET-A. Overall, the results showed that AGL, APL, AVK, IIW, PVI, and VAY peptides are promising candidates for further study. Future work would be needed to validate the therapeutic properties of these hydrolysate peptides by in vitro and in vivo approaches.
Collapse
Affiliation(s)
- Toluwase Hezekiah Fatoki
- Department of Biochemistry, Federal University Oye-Ekiti, PMB 373, Oye 371104, Nigeria; (T.H.F.); (S.C.)
| | - Stanley Chukwuejim
- Department of Biochemistry, Federal University Oye-Ekiti, PMB 373, Oye 371104, Nigeria; (T.H.F.); (S.C.)
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Chibuike C. Udenigwe
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
4
|
Olufunmilayo EO, Gerke-Duncan MB, Holsinger RMD. Oxidative Stress and Antioxidants in Neurodegenerative Disorders. Antioxidants (Basel) 2023; 12:antiox12020517. [PMID: 36830075 PMCID: PMC9952099 DOI: 10.3390/antiox12020517] [Citation(s) in RCA: 181] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Neurodegenerative disorders constitute a substantial proportion of neurological diseases with significant public health importance. The pathophysiology of neurodegenerative diseases is characterized by a complex interplay of various general and disease-specific factors that lead to the end point of neuronal degeneration and loss, and the eventual clinical manifestations. Oxidative stress is the result of an imbalance between pro-oxidant species and antioxidant systems, characterized by an elevation in the levels of reactive oxygen and reactive nitrogen species, and a reduction in the levels of endogenous antioxidants. Recent studies have increasingly highlighted oxidative stress and associated mitochondrial dysfunction to be important players in the pathophysiologic processes involved in neurodegenerative conditions. In this article, we review the current knowledge of the general effects of oxidative stress on the central nervous system, the different specific routes by which oxidative stress influences the pathophysiologic processes involved in Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis and Huntington's disease, and how oxidative stress may be therapeutically reversed/mitigated in order to stall the pathological progression of these neurodegenerative disorders to bring about clinical benefits.
Collapse
Affiliation(s)
- Edward O. Olufunmilayo
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Department of Medicine, University College Hospital, Queen Elizabeth Road, Oritamefa, Ibadan 5116, PMB, Nigeria
| | - Michelle B. Gerke-Duncan
- Education Innovation, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
5
|
Sever B, Ciftci H, DeMirci H, Sever H, Ocak F, Yulug B, Tateishi H, Tateishi T, Otsuka M, Fujita M, Başak AN. Comprehensive Research on Past and Future Therapeutic Strategies Devoted to Treatment of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:2400. [PMID: 35269543 PMCID: PMC8910198 DOI: 10.3390/ijms23052400] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly debilitating fatal neurodegenerative disorder, causing muscle atrophy and weakness, which leads to paralysis and eventual death. ALS has a multifaceted nature affected by many pathological mechanisms, including oxidative stress (also via protein aggregation), mitochondrial dysfunction, glutamate-induced excitotoxicity, apoptosis, neuroinflammation, axonal degeneration, skeletal muscle deterioration and viruses. This complexity is a major obstacle in defeating ALS. At present, riluzole and edaravone are the only drugs that have passed clinical trials for the treatment of ALS, notwithstanding that they showed modest benefits in a limited population of ALS. A dextromethorphan hydrobromide and quinidine sulfate combination was also approved to treat pseudobulbar affect (PBA) in the course of ALS. Globally, there is a struggle to prevent or alleviate the symptoms of this neurodegenerative disease, including implementation of antisense oligonucleotides (ASOs), induced pluripotent stem cells (iPSCs), CRISPR-9/Cas technique, non-invasive brain stimulation (NIBS) or ALS-on-a-chip technology. Additionally, researchers have synthesized and screened new compounds to be effective in ALS beyond the drug repurposing strategy. Despite all these efforts, ALS treatment is largely limited to palliative care, and there is a strong need for new therapeutics to be developed. This review focuses on and discusses which therapeutic strategies have been followed so far and what can be done in the future for the treatment of ALS.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey;
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Halilibrahim Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey;
| | - Hasan DeMirci
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey;
| | - Hilal Sever
- Ministry of Health, Istanbul Training and Research Hospital, Physical Medicine and Rehabilitation Clinic, Istanbul 34098, Turkey;
| | - Firdevs Ocak
- Faculty of Medicine, Kocaeli University, Kocaeli 41001, Turkey;
| | - Burak Yulug
- Department of Neurology and Neuroscience, Faculty of Medicine, Alaaddin Keykubat University, Alanya 07425, Turkey;
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Takahisa Tateishi
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, Fukuoka 830-0011, Japan;
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Ayşe Nazlı Başak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (KUTTAM-NDAL), Koc University, Istanbul 34450, Turkey
| |
Collapse
|
6
|
Dhasmana S, Dhasmana A, Narula AS, Jaggi M, Yallapu MM, Chauhan SC. The panoramic view of amyotrophic lateral sclerosis: A fatal intricate neurological disorder. Life Sci 2022; 288:120156. [PMID: 34801512 DOI: 10.1016/j.lfs.2021.120156] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurological disease affecting both upper and lower motor neurons. In the United States alone, there are 16,000-20,000 established cases of ALS. The early disease diagnosis is challenging due to many overlapping pathophysiologies with other neurological diseases. The etiology of ALS is unknown; however, it is divided into two categories: familial ALS (fALS) which occurs due to gene mutations & contributes to 5-10% of ALS, and sporadic ALS (sALS) which is due to environmental factors & contributes to 90-95% of ALS. There is still no curative treatment for ALS: palliative care and symptomatic treatment are therefore essential components in the management of these patients. In this review, we provide a panoramic view of ALS, which includes epidemiology, risk factors, pathophysiologies, biomarkers, diagnosis, therapeutics (natural, synthetic, gene-based, pharmacological, stem cell, extracellular vesicles, and physical therapy), controversies (in the clinical trials of ALS), the scope of nanomedicine in ALS, and future perspectives.
Collapse
Affiliation(s)
- Swati Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Acharan S Narula
- Narula Research LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
7
|
An Overview of the Nrf2/ARE Pathway and Its Role in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22179592. [PMID: 34502501 PMCID: PMC8431732 DOI: 10.3390/ijms22179592] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022] Open
Abstract
Nrf2 is a basic region leucine-zipper transcription factor that plays a pivotal role in the coordinated gene expression of antioxidant and detoxifying enzymes, promoting cell survival in adverse environmental or defective metabolic conditions. After synthesis, Nrf2 is arrested in the cytoplasm by the Kelch-like ECH-associated protein 1 suppressor (Keap1) leading Nrf2 to ubiquitin-dependent degradation. One Nrf2 activation mechanism relies on disconnection from the Keap1 homodimer through the oxidation of cysteine at specific sites of Keap1. Free Nrf2 enters the nucleus, dimerizes with small musculoaponeurotic fibrosarcoma proteins (sMafs), and binds to the antioxidant response element (ARE) sequence of the target genes. Since oxidative stress, next to neuroinflammation and mitochondrial dysfunction, is one of the hallmarks of neurodegenerative pathologies, a molecular intervention into Nrf2/ARE signaling and the enhancement of the transcriptional activity of particular genes are targets for prevention or delaying the onset of age-related and inherited neurogenerative diseases. In this study, we review evidence for the Nrf2/ARE-driven pathway dysfunctions leading to various neurological pathologies, such as Alzheimer’s, Parkinson’s, and Huntington’s diseases, as well as amyotrophic lateral sclerosis, and the beneficial role of natural and synthetic molecules that are able to interact with Nrf2 to enhance its protective efficacy.
Collapse
|
8
|
Jiménez-Villegas J, Ferraiuolo L, Mead RJ, Shaw PJ, Cuadrado A, Rojo AI. NRF2 as a therapeutic opportunity to impact in the molecular roadmap of ALS. Free Radic Biol Med 2021; 173:125-141. [PMID: 34314817 DOI: 10.1016/j.freeradbiomed.2021.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/12/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating heterogeneous disease with still no convincing therapy. To identify the most strategically significant hallmarks for therapeutic intervention, we have performed a comprehensive transcriptomics analysis of dysregulated pathways, comparing datasets from ALS patients and healthy donors. We have identified crucial alterations in RNA metabolism, intracellular transport, vascular system, redox homeostasis, proteostasis and inflammatory responses. Interestingly, the transcription factor NRF2 (nuclear factor (erythroid-derived 2)-like 2) has significant effects in modulating these pathways. NRF2 has been classically considered as the master regulator of the antioxidant cellular response, although it is currently considered as a key component of the transduction machinery to maintain coordinated control of protein quality, inflammation, and redox homeostasis. Herein, we will summarize the data from NRF2 activators in ALS pre-clinical models as well as those that are being studied in clinical trials. As we will discuss, NRF2 is a promising target to build a coordinated transcriptional response to motor neuron injury, highlighting its therapeutic potential to combat ALS.
Collapse
Affiliation(s)
- J Jiménez-Villegas
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - L Ferraiuolo
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - R J Mead
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - P J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - A Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - A I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
9
|
Oxidative Stress in Amyotrophic Lateral Sclerosis: Pathophysiology and Opportunities for Pharmacological Intervention. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5021694. [PMID: 33274002 PMCID: PMC7683149 DOI: 10.1155/2020/5021694] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/25/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease or Charcot disease, is a fatal neurodegenerative disease that affects motor neurons (MNs) and leads to death within 2–5 years of diagnosis, without any effective therapy available. Although the pathological mechanisms leading to ALS are still unknown, a wealth of evidence indicates that an excessive reactive oxygen species (ROS) production associated with an inefficient antioxidant defense represents an important pathological feature in ALS. Substantial evidence indicates that oxidative stress (OS) is implicated in the loss of MNs and in mitochondrial dysfunction, contributing decisively to neurodegeneration in ALS. Although the modulation of OS represents a promising approach to protect MNs from degeneration, the fact that several antioxidants with beneficial effects in animal models failed to show any therapeutic benefit in patients raises several questions that should be analyzed. Using specific queries for literature search on PubMed, we review here the role of OS-related mechanisms in ALS, including the involvement of altered mitochondrial function with repercussions in neurodegeneration. We also describe antioxidant compounds that have been mostly tested in preclinical and clinical trials of ALS, also describing their respective mechanisms of action. While the description of OS mechanism in the different mutations identified in ALS has as principal objective to clarify the contribution of OS in ALS, the description of positive and negative outcomes for each antioxidant is aimed at paving the way for novel opportunities for intervention. In conclusion, although antioxidant strategies represent a very promising approach to slow the progression of the disease, it is of utmost need to invest on the characterization of OS profiles representative of each subtype of patient, in order to develop personalized therapies, allowing to understand the characteristics of antioxidants that have beneficial effects on different subtypes of patients.
Collapse
|
10
|
Obrenovich M, Jaworski H, Tadimalla T, Mistry A, Sykes L, Perry G, Bonomo RA. The Role of the Microbiota-Gut-Brain Axis and Antibiotics in ALS and Neurodegenerative Diseases. Microorganisms 2020; 8:E784. [PMID: 32456229 PMCID: PMC7285349 DOI: 10.3390/microorganisms8050784] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
: The human gut hosts a wide and diverse ecosystem of microorganisms termed the microbiota, which line the walls of the digestive tract and colon where they co-metabolize digestible and indigestible food to contribute a plethora of biochemical compounds with diverse biological functions. The influence gut microbes have on neurological processes is largely yet unexplored. However, recent data regarding the so-called leaky gut, leaky brain syndrome suggests a potential link between the gut microbiota, inflammation and host co-metabolism that may affect neuropathology both locally and distally from sites where microorganisms are found. The focus of this manuscript is to draw connection between the microbiota-gut-brain (MGB) axis, antibiotics and the use of "BUGS AS DRUGS" for neurodegenerative diseases, their treatment, diagnoses and management and to compare the effect of current and past pharmaceuticals and antibiotics for alternative mechanisms of action for brain and neuronal disorders, such as Alzheimer disease (AD), Amyotrophic Lateral Sclerosis (ALS), mood disorders, schizophrenia, autism spectrum disorders and others. It is a paradigm shift to suggest these diseases can be largely affected by unknown aspects of the microbiota. Therefore, a future exists for applying microbial, chemobiotic and chemotherapeutic approaches to enhance translational and personalized medical outcomes. Microbial modifying applications, such as CRISPR technology and recombinant DNA technology, among others, echo a theme in shifting paradigms, which involve the gut microbiota (GM) and mycobiota and will lead to potential gut-driven treatments for refractory neurologic diseases.
Collapse
Affiliation(s)
- Mark Obrenovich
- Research Service, Louis Stokes Cleveland, Department of Veteran’s Affairs Medical Center, Cleveland, OH 44106, USA; (H.J.); (T.T.); (R.A.B.)
- Departments of Chemistry, Biochemistry, Pathology and Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Gilgamesh Foundation for Medical Science and Research, Cleveland, OH 44116, USA
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
- Cleveland State University Departments of Chemistry and Engineering, Cleveland, OH 44115, USA;
| | - Hayden Jaworski
- Research Service, Louis Stokes Cleveland, Department of Veteran’s Affairs Medical Center, Cleveland, OH 44106, USA; (H.J.); (T.T.); (R.A.B.)
- Cleveland State University Departments of Chemistry and Engineering, Cleveland, OH 44115, USA;
| | - Tara Tadimalla
- Research Service, Louis Stokes Cleveland, Department of Veteran’s Affairs Medical Center, Cleveland, OH 44106, USA; (H.J.); (T.T.); (R.A.B.)
- Departments of Chemistry, Biochemistry, Pathology and Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Adil Mistry
- Cleveland State University Departments of Chemistry and Engineering, Cleveland, OH 44115, USA;
| | - Lorraine Sykes
- Department of Laboratory Medicine, Metro Health Medical Center, Cleveland, OH 44109, USA;
| | - George Perry
- Department of Biology University of Texas San Antonio, San Antonio, TX 78249, USA;
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland, Department of Veteran’s Affairs Medical Center, Cleveland, OH 44106, USA; (H.J.); (T.T.); (R.A.B.)
- Departments of Chemistry, Biochemistry, Pathology and Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
11
|
Iaconelli J, Ibrahim L, Chen E, Hull M, Schultz PG, Bollong MJ. Small-Molecule Stimulators of NRF1 Transcriptional Activity. Chembiochem 2019; 21:1816-1819. [PMID: 31596542 DOI: 10.1002/cbic.201900487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/25/2019] [Indexed: 01/09/2023]
Abstract
The transcription factor nuclear factor erythroid 2-related factor 1 (NRF1) maintains proteostasis and promotes cellular resilience by stimulating the transcription of proteasomal subunits and a host of protective enzymes. Although NRF1 activation would likely be beneficial in a number of disease states, information regarding its ligandability and upstream regulation are lacking. Herein we report a high-throughput chemical screen that identified selective stimulators of NRF1-driven transcription, including unannotated inhibitors of the ubiquitin proteasome system (UPS) as well as two non-UPS-targeted compounds that synergistically activate NRF1 in the context of submaximal UPS inhibition. This work introduces a suite of tool molecules to study the NRF1 transcriptional response and to uncover the druggable components governing NRF1 activity in cells.
Collapse
Affiliation(s)
- Jonathan Iaconelli
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Lara Ibrahim
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Emily Chen
- California Institute for Biomedical Research (Calibr), La Jolla, CA, 92037, USA
| | - Mitchell Hull
- California Institute for Biomedical Research (Calibr), La Jolla, CA, 92037, USA
| | - Peter G Schultz
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Michael J Bollong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
12
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
13
|
|
14
|
Kano O, Tanaka K, Kanno T, Iwasaki Y, Ikeda JE. Neuronal apoptosis inhibitory protein is implicated in amyotrophic lateral sclerosis symptoms. Sci Rep 2018; 8:6. [PMID: 29311650 PMCID: PMC5758777 DOI: 10.1038/s41598-017-18627-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022] Open
Abstract
The delineation of the molecular pathology underlying amyotrophic lateral sclerosis (ALS) is being hampered by the lack of suitable biomarkers. We have previously reported that bromocriptine upregulates the endogenous antioxidative factor, neuronal apoptosis inhibitory protein (NAIP), sustains motor function and slows disease progression in ALS patients, implying the NAIP's implication in ALS. Here, we aimed to verify a correlation of NAIP level with disease progression in ALS patients. The amount of NAIP in mononuclear cells (MNC) from peripheral blood from ALS patients (n = 18) and the age matched healthy controls (n = 12) was validated by NAIP-Dot blotting. Notably, the MNC-NAIP level in ALS patients (0.62 ± 0.29 ng) was nearly half of that in the healthy controls (1.34 ± 0.61 ng, P = 0.0019). Furthermore, the MNC-NAIP level in ALS patients and their ALS Functional Rating Scale-Revised (ALSFRS-R) score were evaluated through 1 year. Regression analysis of the MNC-NAIP vs ALSFRS-R indicated that a higher amount of MNC-NAIP was associated with a smaller change in ALSFRS-R at 12 months (R2 = 0.799; P = 0.016), suggesting that a progressive increment of the MNC-NAIP led to slower ALS progression. Our present report implies that NAIP will have broad implications for ALS symptoms as a risk factor and a promising prognostic biomarker.
Collapse
Affiliation(s)
- Osamu Kano
- Division of Neurology, Department of Internal Medicine, School of Medicine, Faculty of Medicine, Toho University, Tokyo, 143-8541, Japan
| | - Kazunori Tanaka
- NGP Biomedical Research Institute, Neugen Pharma Inc., Tokyo, 153-0051, Japan
| | - Takuya Kanno
- CMIC Pharma Science Co., Ltd., Hokuto, Yamanashi, 408-0044, Japan
| | - Yasuo Iwasaki
- Division of Neurology, Department of Internal Medicine, School of Medicine, Faculty of Medicine, Toho University, Tokyo, 143-8541, Japan
| | - Joh-E Ikeda
- Department of Molecular Neurology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, 252-0374, Japan.
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, Ontario, K1H 8L1, Canada.
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan.
| |
Collapse
|
15
|
Kanno T, Yasutake K, Tanaka K, Hadano S, Ikeda JE. A novel function of N-linked glycoproteins, alpha-2-HS-glycoprotein and hemopexin: Implications for small molecule compound-mediated neuroprotection. PLoS One 2017; 12:e0186227. [PMID: 29016670 PMCID: PMC5633190 DOI: 10.1371/journal.pone.0186227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 09/27/2017] [Indexed: 11/18/2022] Open
Abstract
Therapeutic agents to the central nervous system (CNS) need to be efficiently delivered to the target site of action at appropriate therapeutic levels. However, a limited number of effective drugs for the treatment of neurological diseases has been developed thus far. Further, the pharmacological mechanisms by which such therapeutic agents can protect neurons from cell death have not been fully understood. We have previously reported the novel small-molecule compound, 2-[mesityl(methyl)amino]-N-[4-(pyridin-2-yl)-1H-imidazol-2-yl] acetamide trihydrochloride (WN1316), as a unique neuroprotectant against oxidative injury and a highly promising remedy for the treatment of amyotrophic lateral sclerosis (ALS). One of the remarkable characteristics of WN1316 is that its efficacious doses in ALS mouse models are much less than those against oxidative injury in cultured human neuronal cells. It is also noted that the WN1316 cytoprotective activity observed in cultured cells is totally dependent upon the addition of fetal bovine serum in culture medium. These findings led us to postulate some serum factors being tightly linked to the WN1316 efficacy. In this study, we sieved through fetal bovine serum proteins and identified two N-linked glycoproteins, alpha-2-HS-glycoprotein (AHSG) and hemopexin (HPX), requisites to exert the WN1316 cytoprotective activity against oxidative injury in neuronal cells in vitro. Notably, the removal of glycan chains from these molecules did not affect the WN1316 cytoprotective activity. Thus, two glycoproteins, AHSG and HPX, represent a pivotal glycoprotein of the cytoprotective activity for WN1316, showing a concrete evidence for the novel glycan-independent function of serum glycoproteins in neuroprotective drug efficacy.
Collapse
Affiliation(s)
- Takuya Kanno
- NGP Biomedical Research Institute, Neugen Pharma Inc., Meguro, Tokyo, Japan
| | - Kaori Yasutake
- NGP Biomedical Research Institute, Neugen Pharma Inc., Meguro, Tokyo, Japan
| | - Kazunori Tanaka
- NGP Biomedical Research Institute, Neugen Pharma Inc., Meguro, Tokyo, Japan
| | - Shinji Hadano
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
| | - Joh-E Ikeda
- NGP Biomedical Research Institute, Neugen Pharma Inc., Meguro, Tokyo, Japan
- Department of Molecular Neurology, Faculty of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario, Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
16
|
Are Astrocytes the Predominant Cell Type for Activation of Nrf2 in Aging and Neurodegeneration? Antioxidants (Basel) 2017; 6:antiox6030065. [PMID: 28820437 PMCID: PMC5618093 DOI: 10.3390/antiox6030065] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 12/29/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates hundreds of antioxidant genes, and is activated in response to oxidative stress. Given that many neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, Huntington’s disease and multiple sclerosis are characterised by oxidative stress, Nrf2 is commonly activated in these diseases. Evidence demonstrates that Nrf2 activity is repressed in neurons in vitro, and only cultured astrocytes respond strongly to Nrf2 inducers, leading to the interpretation that Nrf2 signalling is largely restricted to astrocytes. However, Nrf2 activity can be observed in neurons in post-mortem brain tissue and animal models of disease. Thus this interpretation may be false, and a detailed analysis of the cell type expression of Nrf2 in neurodegenerative diseases is required. This review describes the evidence for Nrf2 activation in each cell type in prominent neurodegenerative diseases and normal aging in human brain and animal models of neurodegeneration, the response to pharmacological and genetic modulation of Nrf2, and clinical trials involving Nrf2-modifying drugs.
Collapse
|
17
|
Salvant JM, Edwards AV, Kurek DZ, Looper RE. Regioselective Base-Mediated Cyclizations of Mono-N-acylpropargylguanidines. J Org Chem 2017; 82:6958-6967. [PMID: 28558466 PMCID: PMC6016371 DOI: 10.1021/acs.joc.7b00639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A regioselective base-mediated cyclization of mono-N-acylpropargylguanidines is reported. A related Ag(I)-catalyzed hydroamination strategy was recently employed to yield N3-Cbz-protected ene-guanidines, which found utility in the synthesis of naamidine A. Herein, we report the base-catalyzed hydroamination of mono-N-acylpropargylguanidines, which proceeds with the opposite regiochemistry to deliver isomerized N2-acyl-2-aminoimidazoles with broad substrate scope, circumventing the problematic regiospecific acylation of free 2-aminoimidazoles.
Collapse
Affiliation(s)
- Justin M. Salvant
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Anne V. Edwards
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Daniel Z. Kurek
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Ryan E. Looper
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
18
|
Pehar M, Harlan BA, Killoy KM, Vargas MR. Role and Therapeutic Potential of Astrocytes in Amyotrophic Lateral Sclerosis. Curr Pharm Des 2017; 23:5010-5021. [PMID: 28641533 PMCID: PMC5740017 DOI: 10.2174/1381612823666170622095802] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/04/2017] [Accepted: 06/16/2017] [Indexed: 12/18/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. The molecular mechanism underlying the progressive degeneration of motor neuron remains uncertain but involves a non-cell autonomous process. In acute injury or degenerative diseases astrocytes adopt a reactive phenotype known as astrogliosis. Astrogliosis is a complex remodeling of astrocyte biology and most likely represents a continuum of potential phenotypes that affect neuronal function and survival in an injury-specific manner. In ALS patients, reactive astrocytes surround both upper and lower degenerating motor neurons and play a key role in the pathology. It has become clear that astrocytes play a major role in ALS pathology. Through loss of normal function or acquired new characteristics, astrocytes are able to influence motor neuron fate and the progression of the disease. The use of different cell culture models indicates that ALS-astrocytes are able to induce motor neuron death by secreting a soluble factor(s). Here, we discuss several pathogenic mechanisms that have been proposed to explain astrocyte-mediated motor neuron death in ALS. In addition, examples of strategies that revert astrocyte-mediated motor neuron toxicity are reviewed to illustrate the therapeutic potential of astrocytes in ALS. Due to the central role played by astrocytes in ALS pathology, therapies aimed at modulating astrocyte biology may contribute to the development of integral therapeutic approaches to halt ALS progression.
Collapse
Affiliation(s)
- Mariana Pehar
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Benjamin A. Harlan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kelby M. Killoy
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Marcelo R. Vargas
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
19
|
Lu H, Le WD, Xie YY, Wang XP. Current Therapy of Drugs in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2016; 14:314-21. [PMID: 26786249 PMCID: PMC4876587 DOI: 10.2174/1570159x14666160120152423] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/16/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), commonly termed as motor neuron disease (MND) in UK, is a chronically lethal disorder among the neurodegenerative diseases, meanwhile. ALS is basically irreversible and progressive deterioration of upper and lower motor neurons in the motor cortex, brain stem and medulla spinalis. Riluzole, used for the treatment of ALS, was demonstrated to slightly delay the initiation of respiratory dysfunction and extend the median survival of patients by a few months. In this study, the key biochemical defects were discussed, such as: mutant Cu/Zn superoxide dismutase, mitochondrial protectants, and anti-excitotoxic/ anti-oxidative / anti-inflammatory/ anti-apoptotic agents, so the related drug candidates that have been studied in ALS models would possibly be further used in ALS patients.
Collapse
Affiliation(s)
| | | | | | - Xiao-Ping Wang
- Department of Neurology, Shanghai First People's Hospital , Shanghai Jiao-Tong University, China, 200080.
| |
Collapse
|
20
|
Nagata E, Ogino M, Iwamoto K, Kitagawa Y, Iwasaki Y, Yoshii F, Ikeda JE. Bromocriptine Mesylate Attenuates Amyotrophic Lateral Sclerosis: A Phase 2a, Randomized, Double-Blind, Placebo-Controlled Research in Japanese Patients. PLoS One 2016; 11:e0149509. [PMID: 26910108 PMCID: PMC4765990 DOI: 10.1371/journal.pone.0149509] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 02/01/2016] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Bromocriptine mesylate (BRC), a dopamine D2 receptor agonist has been shown to confer neuroprotection, sustained motor function and slowed disease progression in mouse models of amyotrophic lateral sclerosis (ALS) Here we report a first in human trial in ALS. DESIGN A multicenter, Riluzole add-on, randomized, double-blind, placebo controlled 102-week extension BRC clinical trial. METHODS The trial was conducted between January 2009 and March 2012 on 36 Japanese ALS patients. A 12-week treatment with Riluzole observational period was followed by combined treatment (Riluzole + BRC; n = 29 or Riluzole + placebo; n = 7). The dosing commenced at 1.25 mg/day increasing in steps at two weeks intervals to a maximum of 15 mg/day. The efficacy of BRC was evaluated by comparing BRC and placebo groups upon completion of stepwise dosing at 14 weeks 2 points (1st endpoint) and upon completion or discontinuation of the study (2nd endpoint) of the dosing. RESULTS Statistics analyses revealed a marginal BRC treatment efficacy with P≦20%to placebo by 1st and 2nd endpoint analysis. In the 1st endpoint analysis, BRC group was significantly effective on the scores of ALSAQ40-communicaton (P = 1.2%), eating and drinking (P = 2.2%), ALSFRS-R total (P = 17.6%), grip strength (P = 19.8%) compared to the placebo group. In the 2nd endpoint analysis, differences between the scores of Limb Norris Scale (P = 18.3%), ALSAQ40-communication (P = 11.9%), eating and drinking (P = 13.6%), and neck forward-bent test (P = 15.4%) of BRC group were detected between the two groups. There was no significant difference between the treatment groups for adverse events or serious drug reactions incidence. CONCLUSIONS BRC sustains motoneuronal function at least in part through BRC treatment. Further analysis involving a Phase 2b or 3 clinical trial is required but BRC currently shows promise for ALS treatment. TRIAL REGISTRATION UMIN Clinical Trials UMIN000008527.
Collapse
Affiliation(s)
- Eiichiro Nagata
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Mieko Ogino
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kounosuke Iwamoto
- Department of Neurology, Toho University Omori Medical Center, Tokyo, Japan
| | - Yasuhisa Kitagawa
- Department of Neurology, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Yasuo Iwasaki
- Department of Neurology, Toho University Omori Medical Center, Tokyo, Japan
| | - Fumihito Yoshii
- Department of Neurology, Tokai University Oiso Hospital, Kanagawa, Japan
| | - Joh-E. Ikeda
- Molecular Neurology, Faculty of Medicine, Kitasato University School of Medicine, Sagamihara, Japan
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, ARC/Children’s Hospital of Eastern Ontario, Ottawa, Canada
| | | |
Collapse
|
21
|
Browne EC, Abbott BM. Recent progress towards an effective treatment of amyotrophic lateral sclerosis using the SOD1 mouse model in a preclinical setting. Eur J Med Chem 2016; 121:918-925. [PMID: 27012524 DOI: 10.1016/j.ejmech.2016.02.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal and incurable neurodegenerative disorder. Motor neurone degeneration can be caused by genetic mutation but the exact etiology of the disease, particularly for sporadic illness, still remains unclear. Therapeutics which target known pathogenic mechanisms involved in ALS, such as protein aggregation, oxidative stress, apoptosis, inflammation, endoplasmic reticulum stress and mitochondria dysfunction, are currently being pursued in order to provide neuroprotection which may be able to slow down, or perhaps even halt, disease progression. This present review focuses on the compounds which have been recently evaluated using the SOD1 mouse model, the most widely used preclinical model for ALS research.
Collapse
Affiliation(s)
- Elisse C Browne
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Belinda M Abbott
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
22
|
Caballero-Hernandez D, Toscano MG, Cejudo-Guillen M, Garcia-Martin ML, Lopez S, Franco JM, Quintana FJ, Roodveldt C, Pozo D. The ‘Omics’ of Amyotrophic Lateral Sclerosis. Trends Mol Med 2016; 22:53-67. [DOI: 10.1016/j.molmed.2015.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 10/29/2015] [Accepted: 11/08/2015] [Indexed: 12/11/2022]
|
23
|
Nrf2–ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol Ther 2016; 157:84-104. [DOI: 10.1016/j.pharmthera.2015.11.003] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Hasegawa M, Hara-Miyauchi C, Ohta H, Sakimura K, Okano H, Okano HJ. Analysis of RNA metabolism in peripheral WBCs of TDP-43 KI mice identifies novel biomarkers of ALS. Neurosci Res 2015; 106:12-22. [PMID: 26672899 DOI: 10.1016/j.neures.2015.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 12/11/2022]
Abstract
Diagnostic biomarkers for amyotrophic lateral sclerosis (ALS) have yet to be identified. One of the causes of neuronal cell death in neurodegenerative diseases is abnormal RNA metabolism, although the mechanisms by which this occurs are unclear. Detection of abnormal RNA metabolism in white blood cells (WBCs) could lead to a new biomarker of ALS onset. TAR DNA-binding protein 43kDa (TDP-43) is an RNA-binding protein that regulates RNA metabolism. We previously developed a mouse model of ALS that exhibits adult-onset motor dysfunction; these mutant TDP-43 knock in (KI) mice heterozygously express mutant human TDP-43 (A382T or G348C). In the present study, we examined TDP-43 mRNA levels in WBCs of KI mice and found that A382T mutant mRNA is significantly higher than G348C. Our results suggest that each mutant TDP-43 induces distinct RNA metabolism, and that the expression of total TDP-43 alone in WBC is not suitable as an ALS biomarker. To identify additional candidates, we focused on survival and apoptosis-related factors and examined their mRNA metabolism in WBCs. mRNA levels of both Smn1 and Naip5 correlated with TDP-43 levels and also differed between A382T and G348C. Together, TDP-43 and these factors may enable detection of abnormalities in individual ALS pathologies.
Collapse
Affiliation(s)
- Minami Hasegawa
- Division of Regenerative Medicine, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 1058461, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Chikako Hara-Miyauchi
- Division of Regenerative Medicine, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 1058461, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroki Ohta
- Division of Regenerative Medicine, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 1058461, Japan; Vascular Surgery, Department of Surgery, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 1058461, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, 1-757 Asahimachidori Niigata Chuo-ku, Niigata 951-8585, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Hirotaka James Okano
- Division of Regenerative Medicine, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 1058461, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
25
|
Johnson DA, Johnson JA. Nrf2--a therapeutic target for the treatment of neurodegenerative diseases. Free Radic Biol Med 2015; 88:253-267. [PMID: 26281945 PMCID: PMC4809057 DOI: 10.1016/j.freeradbiomed.2015.07.147] [Citation(s) in RCA: 272] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 12/13/2022]
Abstract
The brain is very sensitive to changes in redox status; thus maintaining redox homeostasis in the brain is critical for the prevention of accumulating oxidative damage. Aging is the primary risk factor for developing neurodegenerative diseases. In addition to age, genetic and environmental risk factors have also been associated with disease development. The primary reactive insults associated with the aging process are a result of oxidative stress (OS) and nitrosative stress (NS). Markers of increased oxidative stress, protein and DNA modification, inflammation, and dysfunctional proteostasis have all been implicated in contributing to the progression of neurodegeneration. The ability of the cell to combat OS/NS and maintain a clearance mechanism for misfolded aggregating proteins determines whether or not it will survive. A critical pathway in this regard is the Nrf2 (nuclear factor erythroid 2-related factor 2)- antioxidant response element (ARE) pathway. Nrf2 activation has been shown to mitigate a number of pathologic mechanisms associated with Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. This review will focus on the role of Nrf2 in these diseases and the potential for Nrf2 activation to attenuate disease progression.
Collapse
Affiliation(s)
- Delinda A Johnson
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Jeffrey A Johnson
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
26
|
Murdock BJ, Bender DE, Segal BM, Feldman EL. The dual roles of immunity in ALS: Injury overrides protection. Neurobiol Dis 2015; 77:1-12. [DOI: 10.1016/j.nbd.2015.02.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/09/2015] [Accepted: 02/13/2015] [Indexed: 02/06/2023] Open
|