1
|
Munke A, Ahmed Abdelrahim Gamil A, Mikalsen AB, Wang H, Evensen Ø, Okamoto K. Structure of the T=13 capsid of infectious pancreatic necrosis virus (IPNV)-a salmonid birnavirus. J Virol 2025; 99:e0145424. [PMID: 39817769 PMCID: PMC11853034 DOI: 10.1128/jvi.01454-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025] Open
Abstract
Birnaviruses infect a broad range of vertebrate hosts, including fish and birds, and cause substantial economic losses in the fishery and livestock industries. The infectious pancreatic necrosis virus (IPNV), an aquabirnavirus, specifically infects salmonids. While structures on T=1 subviral particles of the birnaviruses, including IPNV, have been studied, structural insights into the infectious T=13 particles have been limited to the infectious bursal disease virus (IBDV), an avibirnavirus. Determining the capsid structure of the T=13 particle of IPNV is crucial for advancing knowledge of its antigenicity, capsid assembly, and possible functional structures. Here, the capsid structure of the IPNV L5 strain has been determined at a resolution of 2.75 Å. The overall structure resembles the T=13 IBDV structure, with notable differences in the surface loops on the P domain of the VP2 capsid protein essential for antigenicity and virulence. Additionally, previously undescribed structural features have been identified, including the C-terminal regions of the VP2 subunits within the pentagonal assembly unit at each 5-fold axis, which interlock with adjacent VP2 subunits. This interlocking, together with class-averaged projections of triangular and pentagonal units, suggests that the pentagonal unit formation could be important for a correct T=13 particle assembly, preventing the formation of T=1 subviral particles. Furthermore, positively charged residues in obstructed capsid pores at each 5-fold axis are speculated to facilitate intraparticle genome synthesis of IPNV.IMPORTANCEAquabirnaviruses cause deadly infectious diseases in salmonid fish, posing significant challenges for both wild and farmed fish populations. The most prevalent aquabirnavirus worldwide is the infectious pancreatic necrosis virus, whose multifunctional capsid is critical to its infection, replication, and maturation. Previously, research has focused on the structure of the virus' non-infectious subviral capsid. In this study, however, the first structure of the large, infectious, and functional form of the capsid has been determined. This new capsid structure reveals functional motifs that were previously unclear in the non-infectious capsid. These motifs are believed to be essential for the virus' replication and particle assembly, making them promising targets for developing strategies to control virus proliferation.
Collapse
Affiliation(s)
- Anna Munke
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Aase B. Mikalsen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, As, Norway
| | - Han Wang
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Øystein Evensen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, As, Norway
| | - Kenta Okamoto
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Yang H, Zhang M, Wang S, Peng D, Martinez-Sobrido L, Ye C. Establishment of minigenomes for infectious bursal disease virus. Vet Res 2024; 55:162. [PMID: 39695895 DOI: 10.1186/s13567-024-01423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/01/2024] [Indexed: 12/20/2024] Open
Abstract
Minigenomes (MGs) have greatly advanced research on the viral life cycle, including viral replication and transcription, virus‒host interactions, and the discovery of antivirals against RNA viruses. However, an MG for infectious bursal disease virus (IBDV) has not been well established. Here, we describe the development of IBDV MG, in which the entire coding sequences of viral genomic segments A and B are replaced with Renilla luciferase (Rluc) or enhanced green fluorescent protein (EGFP) reporter genes. Under the control of the RNA polymerase I promoter, the translation of IBDV MG is controlled by the viral proteins VP1 and VP3. Interestingly, IBDV B MG shows greater activity than does IBDV A MG. Moreover, the sense IBDV B MG was expressed at a higher level than the antisense IBDV B MG. In agreement with our previous findings, the translation of IBDV B MG controlled by VP1 and VP3 is independent of the cellular translation machinery components eukaryotic initiation factor (eIF)4E and eIF4G, but intact VP1 polymerase activity, VP3 dsRNA-binding activity, and the interaction between VP1 and VP3 are indispensable for both sense and antisense IBDV B MG activity. In addition, ribavirin, which inhibits IBDV replication, inhibits IBDV B MG activity in a dose-dependent manner. Collectively, the IBDV MG established in this study provides a powerful tool to investigate IBDV intracellular replication and transcription and virus‒host interactions and facilitates high-throughput screening for the identification of IBDV antivirals.
Collapse
Affiliation(s)
- Hui Yang
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Mingrui Zhang
- Wenzhou Medical University, Affiliated Hospital 1, Wenzhou, Zhejiang, China
| | - Sanying Wang
- Zhejiang Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, Hangzhou, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Luis Martinez-Sobrido
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Chengjin Ye
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
3
|
Brodrick AJ, Broadbent AJ. The Formation and Function of Birnaviridae Virus Factories. Int J Mol Sci 2023; 24:ijms24108471. [PMID: 37239817 DOI: 10.3390/ijms24108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
The use of infectious bursal disease virus (IBDV) reverse genetics to engineer tagged reporter viruses has revealed that the virus factories (VFs) of the Birnaviridae family are biomolecular condensates that show properties consistent with liquid-liquid phase separation (LLPS). Although the VFs are not bound by membranes, it is currently thought that viral protein 3 (VP3) initially nucleates the formation of the VF on the cytoplasmic leaflet of early endosomal membranes, and likely drives LLPS. In addition to VP3, IBDV VFs contain VP1 (the viral polymerase) and the dsRNA genome, and they are the sites of de novo viral RNA synthesis. Cellular proteins are also recruited to the VFs, which are likely to provide an optimal environment for viral replication; the VFs grow due to the synthesis of the viral components, the recruitment of other proteins, and the coalescence of multiple VFs in the cytoplasm. Here, we review what is currently known about the formation, properties, composition, and processes of these structures. Many open questions remain regarding the biophysical nature of the VFs, as well as the roles they play in replication, translation, virion assembly, viral genome partitioning, and in modulating cellular processes.
Collapse
Affiliation(s)
- Andrew J Brodrick
- Department of Animal and Avian Sciences, University of Maryland, 8127 Regents Drive, College Park, MD 20742, USA
| | - Andrew J Broadbent
- Department of Animal and Avian Sciences, University of Maryland, 8127 Regents Drive, College Park, MD 20742, USA
| |
Collapse
|
4
|
Birnaviridae Virus Factories Show Features of Liquid-Liquid Phase Separation and Are Distinct from Paracrystalline Arrays of Virions Observed by Electron Microscopy. J Virol 2022; 96:e0202421. [PMID: 35138130 PMCID: PMC8941928 DOI: 10.1128/jvi.02024-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
To gain more information about the nature of Birnaviridae virus factories (VFs), we used a recombinant infectious bursal disease virus (IBDV) expressing split-GFP11 tagged to the polymerase (VP1) that we have previously shown is a marker for VFs in infected cells expressing GFP1-10. We found that VFs colocalized with 5-ethynyl uridine in the presence of actinomycin, demonstrating they contained newly synthesized viral RNA, and VFs were visible in infected cells that were fixed and permeabilized with digitonin, demonstrating that they were not membrane bound. Fluorescence recovery after photobleaching (FRAP) a region of interest within the VFs occurred rapidly, recovering from approximately 25% to 87% the original intensity over 146 s, and VFs were dissolved by 1,6-hexanediol treatment, demonstrating they showed properties consistent with liquid-liquid phase separation. There was a lower colocalization of the VF GFP signal with the capsid protein VP2 (Manders' coefficient [MC] 0.6), compared to VP3 (MC, 0.9), which prompted us to investigate the VF ultrastructure by transmission electron microscopy (TEM). In infected cells, paracrystalline arrays (PAs) of virions were observed in the cytoplasm, as well as discrete electron dense regions. Using correlative light and electron microscopy (CLEM), we observed that the electron dense regions correlated with the GFP signal of the VFs, which were distinct from the PAs. In summary, Birnaviridae VFs contain newly synthesized viral RNA, are not bound by a membrane, show properties consistent with liquid-liquid phase separation, and are distinct from the PAs observed by TEM. IMPORTANCE Members of the Birnaviridae infect birds, fish and insects, and are responsible for diseases of significant economic importance to the poultry industry and aquaculture. Despite their importance, how they replicate in cells remains poorly understood. Here, we show that the Birnaviridae virus factories are not membrane bound, demonstrate properties consistent with liquid-liquid phase separation, and are distinct from the paracrystalline arrays of virions observed by transmission electron microscopy, enhancing our fundamental knowledge of virus replication that could be used to develop strategies to control disease, or optimize their therapeutic application.
Collapse
|
5
|
Phosphatidylinositol 3-Phosphate Mediates the Establishment of Infectious Bursal Disease Virus Replication Complexes in Association with Early Endosomes. J Virol 2021; 95:JVI.02313-20. [PMID: 33361427 DOI: 10.1128/jvi.02313-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Infectious bursal disease virus (IBDV) is the archetypal member of the family Birnaviridae and the etiological agent of Gumboro disease, a highly contagious immunosuppressive infection of concern to the global poultry sector for its adverse health effects in chicks. Unlike most double-stranded RNA (dsRNA) viruses, which enclose their genomes within specialized cores throughout their viral replication cycle, birnaviruses organize their bisegmented dsRNA genome in ribonucleoprotein (RNP) structures. Recently, we demonstrated that IBDV exploits endosomal membranes for replication. The establishment of IBDV replication machinery on the cytosolic leaflet of endosomal compartments is mediated by the viral protein VP3 and its intrinsic ability to target endosomes. In this study, we identified the early endosomal phosphatidylinositol 3-phosphate [PtdIns(3)P] as a key host factor of VP3 association with endosomal membranes and consequent establishment of IBDV replication complexes in early endosomes. Indeed, our data reveal a crucial role for PtdIns(3)P in IBDV replication. Overall, our findings provide new insights into the replicative strategy of birnaviruses and strongly suggest that it resembles those of positive-strand RNA (+ssRNA) viruses, which replicate in association with host membranes. Furthermore, our findings support the role of birnaviruses as evolutionary intermediaries between +ssRNA and dsRNA viruses and, importantly, demonstrate a novel role for PtdIns(3)P in the replication of a dsRNA virus.IMPORTANCE Infectious bursal disease virus (IBDV) infects chicks and is the causative agent of Gumboro disease. During IBDV outbreaks in recent decades, the emergence of very virulent variants and the lack of effective prevention/treatment strategies to fight this disease have had devastating consequences for the poultry industry. IBDV belongs to the peculiar family Birnaviridae Unlike most dsRNA viruses, birnaviruses organize their genomes in ribonucleoprotein complexes and replicate in a core-independent manner. We recently demonstrated that IBDV exploits host cell endosomes as platforms for viral replication, a process that depends on the VP3 viral protein. In this study, we delved deeper into the molecular characterization of IBDV-endosome association and investigated the role of host cell phosphatidylinositide lipids in VP3 protein localization and IBDV infection. Together, our findings demonstrate that PtdIns(3)P serves as a scaffold for the association of VP3 to endosomes and reveal its essential role for IBDV replication.
Collapse
|
6
|
Yang H, Ye C. Reverse genetics approaches for live-attenuated vaccine development of infectious bursal disease virus. Curr Opin Virol 2020; 44:139-144. [PMID: 32892072 DOI: 10.1016/j.coviro.2020.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 02/02/2023]
Abstract
Infectious bursal disease (IBD), which is caused by infectious bursal disease virus (IBDV) infection, leads to severe immunosuppression in young chickens and results in significant economic losses in the poultry industry. To date, vaccination with live-attenuated vaccine (LAV) is a convenient method to provide effective protection against IBDV infection. Classical attenuated viruses are usually obtained by either passaging virus in cultured cells or natural isolation. However, these empiric attenuation methods, which are time-consuming and not guaranteed, are not reliable for emergent antigenic variant and very virulent IBDV strains. The reverse genetics (RG) system opens a new avenue for the development of IBDV LAV. In this review, we summarize the current knowledge on the biological characteristics of IBDV structure and genome organization, as well as the established RG systems. We also describe the details for the strategies used to develop IBDV LAV based on the RG systems.
Collapse
Affiliation(s)
- Hui Yang
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, 666 Wusu Street, Hangzhou, Zhejiang 311300, China
| | - Chengjin Ye
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, 666 Wusu Street, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
7
|
Ex vivo rescue of recombinant very virulent IBDV using a RNA polymerase II driven system and primary chicken bursal cells. Sci Rep 2020; 10:13298. [PMID: 32764663 PMCID: PMC7411059 DOI: 10.1038/s41598-020-70095-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/17/2020] [Indexed: 02/04/2023] Open
Abstract
Infectious Bursal Disease Virus (IBDV), a member of the Birnaviridae family, causes an immunosuppressive disease in young chickens. Although several reverse genetics systems are available for IBDV, the isolation of most field-derived strains, such as very virulent IBDV (vvIBDV) and their subsequent rescue, has remained challenging due to the lack of replication of those viruses in vitro. Such rescue required either the inoculation of animals, embryonated eggs, or the introduction of mutations in the capsid protein (VP2) hypervariable region (HVR) to adapt the virus to cell culture, the latter option concomitantly altering its virulence in vivo. We describe an improved ex vivo IBDV rescue system based on the transfection of an avian cell line with RNA polymerase II-based expression vectors, combined with replication on primary chicken bursal cells, the main cell type targeted in vivo of IBDV. We validated this system by rescuing to high titers two recombinant IBDV strains: a cell-culture adapted attenuated strain and a vvIBDV. Sequencing of VP2 HVR confirmed the absence of unwanted mutations that may alter the biological properties of the recombinant viruses. Therefore, this approach is efficient, economical, time-saving, reduces animal suffering and can be used to rescue other non-cell culture adapted IBDV strains.
Collapse
|
8
|
Shirokov DA, Manuvera VA, Miroshina OA, Dubovoi AS, Samuseva GN, Dmitrieva ME, Lazarev VN. Generation of recombinant VP3 protein of infectious bursal disease virus in three different expression systems, antigenic analysis of the obtained polypeptides and development of an ELISA test. Arch Virol 2020; 165:1611-1620. [PMID: 32405826 DOI: 10.1007/s00705-020-04650-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
Abstract
Infectious bursal disease virus (IBDV), which infects young chickens, is one of the most important pathogens that harm the poultry industry. Evaluation of the immune status of birds before and after vaccination is of great importance for controlling the disease caused by this virus. Therefore, the development of low-cost and easy-to-manufacture test systems for IBDV antibody detection remains an urgent issue. In this study, three expression systems (bacteria, yeast, and human cells) were used to produce recombinant VP3 protein of IBDV. VP3 is a group-specific antigen and hence may be a good candidate for use in diagnostic tests. Comparison of the antigenic properties of the obtained polypeptides showed that the titres of antibodies raised in chickens against bacteria- or human-cell-derived recombinant VP3 were high, whereas the antibody level against yeast-derived recombinant VP3 was low. The results of an enzyme-linked immunosorbent assay (ELISA) of sera from IBDV-infected chickens demonstrated that the recombinant VP3 produced in E. coli would be the best choice for use in test systems.
Collapse
Affiliation(s)
- Dmitriy A Shirokov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian Federation.
- K. I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow, Russian Federation.
| | - Valentin A Manuvera
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
- All-Russian Research Veterinary Institute of Poultry Science, Branch of All-Russian Research and Technological Poultry Institute of the Russian Academy of Sciences, Sergiyev Posad, Russian Federation, St. Petersburg, Russian Federation
| | - Olga A Miroshina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | - Alexandr S Dubovoi
- All-Russian Research Veterinary Institute of Poultry Science, Branch of All-Russian Research and Technological Poultry Institute of the Russian Academy of Sciences, Sergiyev Posad, Russian Federation, St. Petersburg, Russian Federation
| | - Galina N Samuseva
- All-Russian Research Veterinary Institute of Poultry Science, Branch of All-Russian Research and Technological Poultry Institute of the Russian Academy of Sciences, Sergiyev Posad, Russian Federation, St. Petersburg, Russian Federation
| | - Margarita E Dmitrieva
- All-Russian Research Veterinary Institute of Poultry Science, Branch of All-Russian Research and Technological Poultry Institute of the Russian Academy of Sciences, Sergiyev Posad, Russian Federation, St. Petersburg, Russian Federation
| | - Vassili N Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| |
Collapse
|
9
|
Discrete Virus Factories Form in the Cytoplasm of Cells Coinfected with Two Replication-Competent Tagged Reporter Birnaviruses That Subsequently Coalesce over Time. J Virol 2020; 94:JVI.02107-19. [PMID: 32321810 PMCID: PMC7307154 DOI: 10.1128/jvi.02107-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
The Birnaviridae family, responsible for major economic losses to poultry and aquaculture, is composed of nonenveloped viruses with a segmented double-stranded RNA (dsRNA) genome that replicate in discrete cytoplasmic virus factories (VFs). Reassortment is common; however, the underlying mechanism remains unknown given that VFs may act as a barrier to genome mixing. In order to provide new information on VF trafficking during dsRNA virus coinfection, we rescued two recombinant infectious bursal disease viruses (IBDVs) of strain PBG98 containing either a split GFP11 or a tetracysteine (TC) tag fused to the VP1 polymerase (PBG98-VP1-GFP11 and PBG98-VP1-TC). DF-1 cells transfected with GFP1-10 prior to PBG98-VP1-GFP11 infection or stained with a biarsenical derivative of the red fluorophore resorufin (ReAsH) following PBG98-VP1-TC infection, had green or red foci in the cytoplasm, respectively, that colocalized with VP3 and dsRNA, consistent with VFs. The average number of VFs decreased from a mean of 60 to 5 per cell between 10 and 24 h postinfection (hpi) (P < 0.0001), while the average area increased from 1.24 to 45.01 μm2 (P < 0.0001), and live cell imaging revealed that the VFs were highly dynamic structures that coalesced in the cytoplasm. Small VFs moved faster than large (average 0.57 μm/s at 16 hpi compared to 0.22 μm/s at 22 hpi), and VF coalescence was dependent on an intact microtubule network and actin cytoskeleton. During coinfection with PBG98-VP1-GFP11 and PBG98-VP1-TC viruses, discrete VFs initially formed from each input virus that subsequently coalesced 10 to 16 hpi, and we speculate that Birnaviridae reassortment requires VF coalescence.IMPORTANCE Reassortment is common in viruses with segmented double-stranded RNA (dsRNA) genomes. However, these viruses typically replicate within discrete cytoplasmic virus factories (VFs) that may represent a barrier to genome mixing. We generated the first replication competent tagged reporter birnaviruses, infectious bursal disease viruses (IBDVs) containing a split GFP11 or tetracysteine (TC) tag and used the viruses to track the location and movement of IBDV VFs, in order to better understand the intracellular dynamics of VFs during a coinfection. Discrete VFs initially formed from each virus that subsequently coalesced from 10 h postinfection. We hypothesize that VF coalescence is required for the reassortment of the Birnaviridae This study provides new information that adds to our understanding of dsRNA virus VF trafficking.
Collapse
|
10
|
Rapid Generation of Attenuated Infectious Bursal Disease Virus from Dual-Promoter Plasmids by Reduction of Viral Ribonucleoprotein Activity. J Virol 2020; 94:JVI.01569-19. [PMID: 31915284 DOI: 10.1128/jvi.01569-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/29/2019] [Indexed: 01/02/2023] Open
Abstract
Infectious bursal disease virus (IBDV) of the Birnaviridae family leads to immunosuppression of young chickens by destroying B cells in the bursa of Fabricius (BFs). Given the increasing number of variant IBDV strains, we urgently require a method to produce attenuated virus for vaccine development. To accomplish this goal, the dual-promoter plasmids in which the RNA polymerase II and RNA polymerase I (Pol I) promoters were placed upstream of the IBDV genomic sequence, which was followed by mouse Pol I terminator and a synthetic polyadenylation signal, were developed for rapid generation of IBDV. This approach did not require trans-supplementation of plasmids for the expression of VP1 and VP3, the main components of IBDV ribonucleoprotein (RNP). Based on the finding in this study that the IBDV RNP activity was partially retained by VP1-FLAG, we successfully rescued the replication-competent IBDV/1FLAG expressing VP1-FLAG. Compared with its parental counterpart, IBDV/1FLAG formed smaller size plaques in cultured cells and induced the same 100% immune protection in vivo However, neither retarded development nor severe BFs lesion was observed in the IBDV/1FLAG-inoculated chickens. Collectively, this is the first report that viral RNP activity was affected by the addition of an epitope tag on the componential viral proteins. Furthermore, this work demonstrates the rapid generation of attenuated IBDV from dual-promoter plasmids via reducing viral RNP activity by a fused FLAG tag on the C terminus of VP1. This would be a convenient strategy to attenuate epidemic variant IBDV strains for rapid and efficient vaccine development.IMPORTANCE Immunosuppression in chickens as a result of infectious bursal disease virus (IBDV) infection leads to significant economic losses in the poultry industry worldwide every year. Currently, vaccination is still the best way to prevent the prevalence of IBDV. However, with the occurrence of increasing numbers of variant IBDV strains, it is challenging to develop antigen-matched live attenuated vaccine. Here, we first developed a dual-promoter reverse-genetic system for the rapid generation of IBDV. Using this system, the attenuated IBDV/1FLAG expressing VP1-FLAG, which displays the decreased viral RNP activity, was rescued. Moreover, IBDV/1FLAG inoculation induced a similar level of neutralizing antibodies to that of its parental counterpart, protecting chickens against lethal challenge. Our study, for the first time, describes a dual-promoter reverse-genetic approach for the rapid generation of attenuated IBDV while maintaining entire parental antigenicity, suggesting a potential new method to attenuate epidemic variant IBDV strains for vaccine development.
Collapse
|
11
|
Exacerbated Apoptosis of Cells Infected with Infectious Bursal Disease Virus upon Exposure to Interferon Alpha. J Virol 2018. [PMID: 29540594 DOI: 10.1128/jvi.00364-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Infectious bursal disease virus (IBDV) belongs to the Birnaviridae family and is the etiological agent of a highly contagious and immunosuppressive disease (IBD) that affects domestic chickens (Gallus gallus). IBD or Gumboro disease leads to high rates of morbidity and mortality of infected animals and is responsible for major economic losses to the poultry industry worldwide. IBD is characterized by a massive loss of IgM-bearing B lymphocytes and the destruction of the bursa of Fabricius. The molecular bases of IBDV pathogenicity are still poorly understood; nonetheless, an exacerbated cytokine immune response and B cell depletion due to apoptosis are considered main factors that contribute to the severity of the disease. Here we have studied the role of type I interferon (IFN) in IBDV infection. While IFN pretreatment confers protection against subsequent IBDV infection, the addition of IFN to infected cell cultures early after infection drives massive apoptotic cell death. Downregulation of double-stranded RNA (dsRNA)-dependent protein kinase (PKR), tumor necrosis factor alpha (TNF-α), or nuclear factor κB (NF-κB) expression drastically reduces the extent of apoptosis, indicating that they are critical proteins in the apoptotic response induced by IBDV upon treatment with IFN-α. Our results indicate that IBDV genomic dsRNA is a major viral factor that contributes to the triggering of apoptosis. These findings provide novel insights into the potential mechanisms of IBDV-induced immunosuppression and pathogenesis in chickens.IMPORTANCE IBDV infection represents an important threat to the poultry industry worldwide. IBDV-infected chickens develop severe immunosuppression, which renders them highly susceptible to secondary infections and unresponsive to vaccination against other pathogens. The early dysregulation of the innate immune response led by IBDV infection and the exacerbated apoptosis of B cells have been proposed as the main factors that contribute to virus-induced immunopathogenesis. Our work contributes for the first time to elucidating a potential mechanism driving the apoptotic death of IBDV-infected cells upon exposure to type I IFN. We provide solid evidence about the critical importance of PKR, TNF-α, and NF-κB in this phenomenon. The described mechanism could facilitate the early clearance of infected cells, thereby aiding in the amelioration of IBDV-induced pathogenesis, but it could also contribute to B cell depletion and immunosuppression. The balance between these two opposing effects might be dramatically affected by the genetic backgrounds of both the host and the infecting virus strain.
Collapse
|
12
|
Infectious Bursal Disease Virus Hijacks Endosomal Membranes as the Scaffolding Structure for Viral Replication. J Virol 2018. [PMID: 29540593 DOI: 10.1128/jvi.01964-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Birnaviruses are unconventional members of the group of double-stranded RNA (dsRNA) viruses that are characterized by the lack of a transcriptionally active inner core. Instead, the birnaviral particles organize their genome in ribonucleoprotein complexes (RNPs) composed by dsRNA segments, the dsRNA-binding VP3 protein, and the virally encoded RNA-dependent RNA polymerase (RdRp). This and other structural features suggest that birnaviruses may follow a completely different replication program from that followed by members of the Reoviridae family, supporting the hypothesis that birnaviruses are the evolutionary link between single-stranded positive RNA (+ssRNA) and dsRNA viruses. Here we demonstrate that infectious bursal disease virus (IBDV), a prototypical member of the Birnaviridae family, hijacks endosomal membranes of infected cells through the interaction of a viral protein, VP3, with the phospholipids on the cytosolic leaflet of these compartments for replication. Employing a mutagenesis approach, we demonstrated that VP3 domain PATCH 2 (P2) mediates the association of VP3 with the endosomal membranes. To determine the role of VP3 P2 in the context of the virus replication cycle, we used avian cells stably overexpressing VP3 P2 for IBDV infection. Importantly, the intra- and extracellular virus yields, as well as the intracellular levels of VP2 viral capsid protein, were significantly diminished in cells stably overexpressing VP3 P2. Together, our results indicate that the association of VP3 with endosomes has a relevant role in the IBDV replication cycle. This report provides direct experimental evidence for membranous compartments such as endosomes being required by a dsRNA virus for its replication. The results also support the previously proposed role of birnaviruses as an evolutionary link between +ssRNA and dsRNA viruses.IMPORTANCE Infectious bursal disease (IBD; also called Gumboro disease) is an acute, highly contagious immunosuppressive disease that affects young chickens and spreads worldwide. The etiological agent of IBD is infectious bursal disease virus (IBDV). This virus destroys the central immune organ (bursa of Fabricius), resulting in immunosuppression and reduced responses of chickens to vaccines, which increase their susceptibility to other pathogens. IBDV is a member of Birnaviridae family, which comprises unconventional members of dsRNA viruses, whose replication strategy has been scarcely studied. In this report we show that IBDV hijacks the endosomes of the infected cells for establishing viral replication complexes via the association of the ribonucleoprotein complex component VP3 with the phospholipids in the cytosolic leaflet of endosomal membranes. We show that this interaction is mediated by the VP3 PATCH 2 domain and demonstrate its relevant role in the context of viral infection.
Collapse
|
13
|
Ganguly B, Umapathi V, Rastogi SK. Nitric oxide induced by Indian ginseng root extract inhibits Infectious Bursal Disease virus in chicken embryo fibroblasts in vitro. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2018; 60:2. [PMID: 29340165 PMCID: PMC5759882 DOI: 10.1186/s40781-017-0156-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/08/2017] [Indexed: 11/24/2022]
Abstract
Infectious Bursal Disease is a severe viral disease of chicken responsible for serious economic losses to poultry farmers. The causative agent, Infectious Bursal Disease virus, is inhibited by nitric oxide. Root extract of the Indian ginseng, Withania somnifera, inhibits Infectious Bursal Disease virus in vitro. Also, Withania somnifera root extract is known to induce nitric oxide production in vitro. Therefore, the present study was undertaken to determine if the inhibitory activity of Withania somnifera against Infectious Bursal Disease virus was based on the production of nitric oxide. We show that besides other mechanisms, the inhibition of Infectious Bursal Disease virus by Withania somnifera involves the production of nitric oxide. Our results also highlight the paradoxical role of nitric oxide in the pathogenesis of Infectious Bursal Disease.
Collapse
Affiliation(s)
- Bhaskar Ganguly
- Animal Biotechnology Center, Department of Veterinary Physiology and Biochemistry, College of Veterinary & Animal Sciences, G. B. Pant University of Agriculture & Technology, Pantnagar, 263145 India.,Clinical Research Division, Ayurvet Limited, Katha, 173205 India
| | - Vijaypillai Umapathi
- Animal Biotechnology Center, Department of Veterinary Physiology and Biochemistry, College of Veterinary & Animal Sciences, G. B. Pant University of Agriculture & Technology, Pantnagar, 263145 India.,Division of Animal Biochemistry, FMD Research Laboratory, Indian Veterinary Research Institute, Hebbal, Bengaluru, 560024 India
| | - Sunil Kumar Rastogi
- Animal Biotechnology Center, Department of Veterinary Physiology and Biochemistry, College of Veterinary & Animal Sciences, G. B. Pant University of Agriculture & Technology, Pantnagar, 263145 India
| |
Collapse
|
14
|
VP1 and VP3 Are Required and Sufficient for Translation Initiation of Uncapped Infectious Bursal Disease Virus Genomic Double-Stranded RNA. J Virol 2018; 92:JVI.01345-17. [PMID: 29093101 DOI: 10.1128/jvi.01345-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/27/2017] [Indexed: 01/06/2023] Open
Abstract
Infectious bursal disease virus (IBDV) is a bisegmented double-strand RNA (dsRNA) virus of the Birnaviridae family. While IBDV genomic dsRNA lacks a 5' cap, the means by which the uncapped IBDV genomic RNA is translated effectively is unknown. In this study, we describe a cap-independent pathway of translation initiation of IBDV uncapped RNA that relies on VP1 and VP3. We show that neither purified IBDV genomic dsRNA nor the uncapped viral plus-sense RNA transcripts were directly translated and rescued into infectious viruses in host cells. This defect in translation of the uncapped IBDV genomic dsRNA was rescued by trans-supplementation of the viral proteins VP1 and VP3 which was dependent on both the intact polymerase activity of VP1 and the dsRNA binding activity of VP3. Deletion analysis showed that both 5' and 3' untranslated regions (UTRs) of IBDV dsRNA were essential for VP1/VP3-dependent translation initiation. Significantly, VP1 and VP3 could also mediate the recovery of infectious IBDV from the authentic minus-sense strand of IBDV dsRNA. Moreover, downregulation or inhibition of the cap-binding protein eIF4E did not decrease but, rather, enhanced the VP1/VP3-mediated translation of the uncapped IBDV RNA. Collectively, our findings for the first time reveal that VP1 and VP3 compensate for the deficiency of the 5' cap and replace eIF4E to confer upon the uncapped IBDV RNA the ability to be translated and rescued into infectious viruses.IMPORTANCE A key point of control for virus replication is viral translation initiation. The current study shows that the uncapped IBDV RNA cannot be translated into viral proteins directly by host translation machinery and is thus noninfectious. Our results constitute the first direct experimental evidence that VP1 and VP3 are required and sufficient to initiate translation of uncapped IBDV genomic RNA by acting as a substitute for cap and replacing the cap-binding protein eIF4E. Significantly, VP1/VP3 mediate the recovery of infectious IBDV not only from the plus-sense strand but also from the minus-sense strand of the IBDV dsRNA. These findings provide not only new insights into the molecular mechanisms of the life cycle of IBDV but also a new tool for an alternative strategy for the recovery of IBDV from both the plus- and the minus-sense strands of the viral genomic dsRNA.
Collapse
|
15
|
Voltage-Dependent Anion Channel 1 Interacts with Ribonucleoprotein Complexes To Enhance Infectious Bursal Disease Virus Polymerase Activity. J Virol 2017; 91:JVI.00584-17. [PMID: 28592532 DOI: 10.1128/jvi.00584-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/28/2017] [Indexed: 02/05/2023] Open
Abstract
Infectious bursal disease virus (IBDV) is a double-stranded RNA (dsRNA) virus. Segment A contains two overlapping open reading frames (ORFs), which encode viral proteins VP2, VP3, VP4, and VP5. Segment B contains one ORF and encodes the viral RNA-dependent RNA polymerase, VP1. IBDV ribonucleoprotein complexes are composed of VP1, VP3, and dsRNA and play a critical role in mediating viral replication and transcription during the virus life cycle. In the present study, we identified a cellular factor, VDAC1, which was upregulated during IBDV infection and found to mediate IBDV polymerase activity. VDAC1 senses IBDV infection by interacting with viral proteins VP1 and VP3. This association is caused by RNA bridging, and all three proteins colocalize in the cytoplasm. Furthermore, small interfering RNA (siRNA)-mediated downregulation of VDAC1 resulted in a reduction in viral polymerase activity and a subsequent decrease in viral yield. Moreover, overexpression of VDAC1 enhanced IBDV polymerase activity. We also found that the viral protein VP3 can replace segment A to execute polymerase activity. A previous study showed that mutations in the C terminus of VP3 directly influence the formation of VP1-VP3 complexes. Our immunoprecipitation experiments demonstrated that protein-protein interactions between VDAC1 and VP3 and between VDAC1 and VP1 play a role in stabilizing the interaction between VP3 and VP1, further promoting IBDV polymerase activity.IMPORTANCE The cellular factor VDAC1 controls the entry and exit of mitochondrial metabolites and plays a pivotal role during intrinsic apoptosis by mediating the release of many apoptogenic molecules. Here we identify a novel role of VDAC1, showing that VDAC1 interacts with IBDV ribonucleoproteins (RNPs) and facilitates IBDV replication by enhancing IBDV polymerase activity through its ability to stabilize interactions in RNP complexes. To our knowledge, this is the first report that VDAC1 is specifically involved in regulating IBDV RNA polymerase activity, providing novel insight into virus-host interactions.
Collapse
|
16
|
Mosley YYC, Wu CC, Lin TL. Infectious bursal disease virus as a replication-incompetent viral vector expressing green fluorescent protein. Arch Virol 2016; 162:23-32. [PMID: 27659678 DOI: 10.1007/s00705-016-3066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 11/26/2022]
Abstract
Infectious bursal disease virus (IBDV) has been established as a replication-competent viral vector capable of carrying an epitope at multiple loci in the genome. To enhance the safety and increase the insertion capacity of IBDV as a vector, a replication-incompetent IBDV vector was developed in the present study. The feasibility of replacing one of the viral gene loci, including pvp2, vp3, vp1, or the polyprotein vp243, with the sequence of green fluorescent protein (GFP) was explored. A method combining TCID50 and immunoperoxidase monolayer assay (IPMA) determined the most feasible locus for gene replacement to be pvp2. The genomic segment containing gfp at the pvp2 locus was able to be encapsidated into IBDV particles. Furthermore, the expression of GFP in GFP-IBDV infected cells was confirmed by Western blotting and GFP-IBDV particles showed similar morphology and size to that of wildtype IBDV by electron microscopy. By providing the deleted protein in trans in a packaging cell line (pVP2-DF1), replication-incompetent GFP-IBDV particles were successfully plaque-quantified. The gfp sequence from the plaque-forming GFP-IBDV in pVP2-DF1 was confirmed by RT-PCR and sequencing. To our knowledge, GFP-IBDV developed in the present study is the first replication-incompetent IBDV vector which expresses a foreign protein in infected cells without the capability to produce viral progeny. Additionally, such replication-incompetent IBDV vectors could serve as bivalent vaccine vectors for conferring protection against infections with IBDV and other economically important, or zoonotic, avian pathogens.
Collapse
Affiliation(s)
- Yung-Yi C Mosley
- ADDL, Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 406 South University Street, West Lafayette, IN, 47907-2065, USA
| | - Ching Ching Wu
- ADDL, Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 406 South University Street, West Lafayette, IN, 47907-2065, USA
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Tsang Long Lin
- ADDL, Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 406 South University Street, West Lafayette, IN, 47907-2065, USA.
| |
Collapse
|
17
|
Mosley YYC, Wu CC, Lin TL. IBDV particles packaged with only segment A dsRNA. Virology 2015; 488:68-72. [PMID: 26609936 DOI: 10.1016/j.virol.2015.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 06/28/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
Abstract
Multi-segmented dsRNA viruses have been suggested to utilize cis-acting elements in the plus-strand RNA to accomplish genomic RNA assortment during viral packaging. It is not clear if bi-segmented dsRNA birnavirus uses the same strategy. By applying a reverse genetic technique, we generated IBDV particles packaged with only segment A by co-transfection DF-1 cells of cDNA from segment A and VP1 (without 5' and 3' noncoding region of segment B) supporting random assortment mechanism and indicating the packaging elements of segment B include sequences in the 5' and 3' NCR. However, gfp-containing IBDV could not be generated in the presence of gfp cDNA constructs flanked by 5' and 3' NCR from segment A or segment B. The data suggest additional packaging signals are required for IBDV genomic packaging. The presence of VP1 protein in the IBDV-A particles also suggests the formation of ribonucleoprotein (RNP) complexes might be involved in the assembly of viral particles.
Collapse
Affiliation(s)
- Yung-Yi C Mosley
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Ching Ching Wu
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Tsang Long Lin
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
18
|
Infectious Bursal Disease Virus VP3 Upregulates VP1-Mediated RNA-Dependent RNA Replication. J Virol 2015; 89:11165-8. [PMID: 26311889 DOI: 10.1128/jvi.00218-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/15/2015] [Indexed: 11/20/2022] Open
Abstract
Genome replication is a critical step in virus life cycles. Here, we analyzed the role of the infectious bursal disease virus (IBDV) VP3, a major component of IBDV ribonucleoprotein complexes, on the regulation of VP1, the virus-encoded RNA-dependent RNA polymerase (RdRp). Data show that VP3, as well as a peptide mimicking its C-terminal domain, efficiently stimulates the ability of VP1 to replicate synthetic single-stranded RNA templates containing the 3' untranslated regions (UTRs) from the IBDV genome segments.
Collapse
|
19
|
Querido JFB, Echeverría MG, Marti GA, Costa RM, Susevich ML, Rabinovich JE, Copa A, Montaño NA, Garcia L, Cordova M, Torrico F, Sánchez-Eugenia R, Sánchez-Magraner L, Muñiz-Trabudua X, López-Marijuan I, Rozas-Dennis GS, Diosque P, de Castro AM, Robello C, Rodríguez JS, Altcheh J, Salazar-Schettino PM, Bucio MI, Espinoza B, Guérin DMA, Silva MS. Seroprevalence of Triatoma virus (Dicistroviridae: Cripaviridae) antibodies in Chagas disease patients. Parasit Vectors 2015; 8:29. [PMID: 25595198 PMCID: PMC4351825 DOI: 10.1186/s13071-015-0632-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/31/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chagas disease is caused by Trypanosoma cruzi, and humans acquire the parasite by exposure to contaminated feces from hematophagous insect vectors known as triatomines. Triatoma virus (TrV) is the sole viral pathogen of triatomines, and is transmitted among insects through the fecal-oral route and, as it happens with T. cruzi, the infected insects release the virus when defecating during or after blood uptake. METHODS In this work, we analysed the occurrence of anti-TrV antibodies in human sera from Chagas disease endemic and non-endemic countries, and developed a mathematical model to estimate the transmission probability of TrV from insects to man, which ranged between 0.00053 and 0.0015. RESULTS Our results confirm that people with Chagas disease living in Bolivia, Argentina and Mexico have been exposed to TrV, and that TrV is unable to replicate in human hosts. CONCLUSIONS We presented the first experimental evidence of antibodies against TrV structural proteins in human sera.
Collapse
Affiliation(s)
- Jailson F B Querido
- Centre for Malaria and Tropical Diseases, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.
| | - María G Echeverría
- Cátedra de Virología, Facultad de Ciencias Veterinarias Universidad Nacional de La Plata (UNLP-CONICET), La Plata, Argentina.
| | - Gerardo A Marti
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT- La Plata -CONICET - UNLP), La Plata, Argentina.
| | - Rita Medina Costa
- Centre for Malaria and Tropical Diseases, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.
| | - María L Susevich
- Cátedra de Virología, Facultad de Ciencias Veterinarias Universidad Nacional de La Plata (UNLP-CONICET), La Plata, Argentina.
| | - Jorge E Rabinovich
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT- La Plata -CONICET - UNLP), La Plata, Argentina.
| | - Aydee Copa
- Laboratorio de Biología Molecular IIBISMED, Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia.
| | - Nair A Montaño
- Laboratorio de Biología Molecular IIBISMED, Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia.
| | - Lineth Garcia
- Laboratorio de Biología Molecular IIBISMED, Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia.
| | - Marisol Cordova
- Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia.
| | - Faustino Torrico
- Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia.
| | | | | | | | | | - Gabriela S Rozas-Dennis
- Departamento de Biología, Bioquímica y Farmacia, and Grupo Biofísica, Departamento de Física, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| | - Patricio Diosque
- Unidad de Epidemiología Molecular del Instituto de Patología Experimental, Facultad de Ciencias de la Salud, Universidad Nacional de Salta, Salta, Argentina.
| | - Ana M de Castro
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiania, Brazil.
| | - Carlos Robello
- Unidad de Biología Molecular Instituto Pasteur de Montevideo, Mataojo 2020, CP11400, Montevideo, Uruguay.
| | | | - Jaime Altcheh
- Parasitologia-Chagas, Hospital de Niños R. Gutierrez, Buenos Aires, Argentina.
| | - Paz M Salazar-Schettino
- Departamento de Microbiología y Parasitología, Facultad de Medicina (LBP-DMP-FM), Universidad Nacional Autónoma de México, Mexico City, DF, México.
| | - Marta I Bucio
- Departamento de Microbiología y Parasitología, Facultad de Medicina (LBP-DMP-FM), Universidad Nacional Autónoma de México, Mexico City, DF, México.
| | - Bertha Espinoza
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Autónoma de México, Mexico City, DF, México.
| | - Diego M A Guérin
- Unidad de Biofísica (UBF, CSIC, UPV-EHU), Leioa, Bizkaia, Spain. .,Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco (EHU/UPV), Bizkaia, Spain.
| | - Marcelo Sousa Silva
- Centre for Malaria and Tropical Diseases, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal. .,Programa de Pós-graduação em Bioquímica, Departamento Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|