1
|
Waschke J, Amagai M, Becker C, Delmar M, Duru F, Garrod DR, Gerull B, Green KJ, Hertl M, Kowalczyk AP, Niessen CM, Nusrat A, Schinner C, Schlegel N, Sivasankar S, Vielmuth F, Spindler V. Meeting report - Alpine desmosome disease meeting 2024: advances and emerging topics in desmosomes and related diseases. J Cell Sci 2025; 138:JCS263796. [PMID: 39838950 PMCID: PMC11972074 DOI: 10.1242/jcs.263796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Desmosomes are adhesive cell contacts abundant in tissues exposed to mechanical strain, such as the stratified and simple epithelia of the epidermis and mucous membranes, as well as the myocardium. Besides their role in mechanical cell cohesion, desmosomes also modulate pathways important for tissue differentiation, wound healing and immune responses. Dysfunctional desmosomes, resulting from pathogenic variants in genes encoding desmosomal components, autoantibodies targeting desmosomal adhesion molecules or inflammation, cause the life-threatening diseases arrhythmogenic cardiomyopathy and pemphigus and contribute to the pathogenesis of inflammatory bowel diseases. The Alpine Desmosome Disease Meeting 2024 (ADDM 2024), held in Grainau, Germany in October 2024, connected international researchers from basic sciences with clinical experts from dermatology, cardiology, gastroenterology and surgery. The participants discussed recent advances, identified hot topics in desmosome biology and disease and provided new concepts for pathogenesis and treatment approaches.
Collapse
Affiliation(s)
- Jens Waschke
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität LMU Munich, 80336 Munich, Germany
| | - Masayuki Amagai
- Department of Dermatology, Keio University, 160-8582 Tokyo, Japan
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen-Nürnberg, Germany
| | - Mario Delmar
- The Leon H Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Firat Duru
- Department of Cardiac Arrhythmia and Electrophysiology, Clinic for Cardiology, University Heart Center Zurich and Center for Translational and Experimental Cardiology (CTEC), University of Zurich, 8952 Zurich, Switzerland
| | - David R. Garrod
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Brenda Gerull
- Comprehensive Heart Failure Center, Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Kathleen J. Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-University Marburg 35043, Marburg, Germany
| | - Andrew P. Kowalczyk
- Department of Dermatology, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Carien M. Niessen
- Department Cell Biology of the Skin, Cologne Excellence Cluster for Stress Responses in Ageing-associated diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, University of Cologne, Joseph Stelzmannstrasse 26, 50931 Cologne, Germany
| | - Asma Nusrat
- Mucosal Biology and Inflammation Research Group, Department of Pathology, University of Michigan, 109 Zina Pitcher Place, 4057 Biomedical Science Research Building, Ann Arbor, MI 48109-2200, USA
| | - Camilla Schinner
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of Cardiology, University Hospital Bern, 3008 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Paediatric Surgery University Hospital Würzburg, Wuerzburg 97080, Germany
| | - Sanjeevi Sivasankar
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Franziska Vielmuth
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität LMU Munich, 80336 Munich, Germany
| | - Volker Spindler
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
2
|
Dean WF, Albert RM, Nawara TJ, Ubil M, Beggs RR, Mattheyses AL. Dsg2 ectodomain organization increases throughout desmosome assembly. Cell Adh Migr 2024; 18:1-13. [PMID: 38566311 PMCID: PMC10993919 DOI: 10.1080/19336918.2024.2333366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Desmosomes are intercellular junctions that regulate mechanical integrity in epithelia and cardiac muscle. Dynamic desmosome remodeling is essential for wound healing and development, yet the mechanisms governing junction assembly remain elusive. While we and others have shown that cadherin ectodomains are highly organized, how this ordered architecture emerges during assembly is unknown. Using fluorescence polarization microscopy, we show that desmoglein 2 (Dsg2) ectodomain order gradually increases during 8 h of assembly, coinciding with increasing adhesive strength. In a scratch wound assay, we observed a similar increase in order in desmosomes assembling at the leading edge of migratory cells. Together, our findings indicate that cadherin organization is a hallmark of desmosome maturity and may play a role in conferring adhesive strength.
Collapse
Affiliation(s)
- William F. Dean
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rose M. Albert
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tomasz J. Nawara
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Melanie Ubil
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Reena R. Beggs
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexa L. Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
3
|
Zimmer SE, Giang W, Levental I, Kowalczyk AP. The transmembrane domain of the desmosomal cadherin desmoglein-1 governs lipid raft association to promote desmosome adhesive strength. Mol Biol Cell 2024; 35:ar152. [PMID: 39504468 PMCID: PMC11656464 DOI: 10.1091/mbc.e24-05-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024] Open
Abstract
Cholesterol- and sphingolipid-enriched domains called lipid rafts are hypothesized to selectively coordinate protein complex assembly within the plasma membrane to regulate cellular functions. Desmosomes are mechanically resilient adhesive junctions that associate with lipid raft membrane domains, yet the mechanisms directing raft association of the desmosomal proteins, particularly the transmembrane desmosomal cadherins, are poorly understood. We identified the desmoglein-1 (DSG1) transmembrane domain (TMD) as a key determinant of desmoglein lipid raft association and designed a panel of DSG1TMD variants to assess the contribution of TMD physicochemical properties (length, bulkiness, and palmitoylation) to DSG1 lipid raft association. Sucrose gradient fractionations revealed that TMD length and bulkiness, but not palmitoylation, govern DSG1 lipid raft association. Further, DSG1 raft association determines plakoglobin recruitment to raft domains. Super-resolution imaging and functional assays uncovered a strong relationship between the efficiency of DSG1TMD lipid raft association and the formation of morphologically and functionally robust desmosomes. Lipid raft association regulated both desmosome assembly dynamics and DSG1 cell surface stability, indicating that DSG1 lipid raft association is required for both desmosome formation and maintenance. These studies identify the biophysical properties of desmoglein transmembrane domains as key determinants of lipid raft association and desmosome adhesive function.
Collapse
Affiliation(s)
- Stephanie E. Zimmer
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - William Giang
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903
| | - Andrew P. Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
4
|
Zimmer SE, Kowalczyk AP. The desmosome as a dynamic membrane domain. Curr Opin Cell Biol 2024; 90:102403. [PMID: 39079221 DOI: 10.1016/j.ceb.2024.102403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 09/14/2024]
Abstract
Cell junctions integrate extracellular signals with intracellular responses to polarize tissues, pattern organs, and maintain tissue architecture by promoting cell-cell adhesion and communication. In this review, we explore the mechanisms whereby the adhesive junctions, adherens junctions and desmosomes, co-assemble and then segregate into unique plasma membrane domains. In addition, we highlight emerging evidence that these junctions are spatially and functionally integrated with the endoplasmic reticulum to mediate stress sensing and calcium homeostasis. We conclude with a discussion of the role of the endoplasmic reticulum in the mechanical stress response and how disruption of these connections may cause disease.
Collapse
Affiliation(s)
- Stephanie E Zimmer
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Andrew P Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
5
|
Bharathan NK, Mattheyses AL, Kowalczyk AP. The desmosome comes into focus. J Cell Biol 2024; 223:e202404120. [PMID: 39120608 PMCID: PMC11317759 DOI: 10.1083/jcb.202404120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The desmosome is a cell-cell adhesive junction that provides integrity and mechanical resistance to tissues through its attachment to the intermediate filament cytoskeleton. Defects in desmosomes cause diseases impacting the heart, epidermis, and other epithelia. In this review, we provide a historical perspective on the discovery of the desmosome and how the evolution of cellular imaging technologies revealed insights into desmosome structure and function. We also discuss recent findings using contemporary imaging approaches that have informed the molecular order, three-dimensional architecture, and associations of desmosomes with organelles such as the endoplasmic reticulum. Finally, we provide an updated model of desmosome molecular organization and speculate upon novel functions of this cell junction as a signaling center for sensing mechanical and other forms of cell stress.
Collapse
Affiliation(s)
- Navaneetha Krishnan Bharathan
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew P Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| |
Collapse
|
6
|
Perl AL, Pokorny JL, Green KJ. Desmosomes at a glance. J Cell Sci 2024; 137:jcs261899. [PMID: 38940346 PMCID: PMC11234380 DOI: 10.1242/jcs.261899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
Desmosomes are relatives of ancient cadherin-based junctions, which emerged late in evolution to ensure the structural integrity of vertebrate tissues by coupling the intermediate filament cytoskeleton to cell-cell junctions. Their ability to dynamically counter the contractile forces generated by actin-associated adherens junctions is particularly important in tissues under high mechanical stress, such as the skin and heart. Much more than the simple cellular 'spot welds' depicted in textbooks, desmosomes are in fact dynamic structures that can sense and respond to changes in their mechanical environment and external stressors like ultraviolet light and pathogens. These environmental signals are transmitted intracellularly via desmosome-dependent mechanochemical pathways that drive the physiological processes of morphogenesis and differentiation. This Cell Science at a Glance article and the accompanying poster review desmosome structure and assembly, highlight recent insights into how desmosomes integrate chemical and mechanical signaling in the epidermis, and discuss desmosomes as targets in human disease.
Collapse
Affiliation(s)
- Abbey L. Perl
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jenny L. Pokorny
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kathleen J. Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
7
|
Zimmer SE, Giang W, Levental I, Kowalczyk AP. The transmembrane domain of the desmosomal cadherin desmoglein-1 governs lipid raft association to promote desmosome adhesive strength. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590936. [PMID: 38712246 PMCID: PMC11071526 DOI: 10.1101/2024.04.24.590936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cholesterol- and sphingolipid-enriched domains called lipid rafts are hypothesized to selectively coordinate protein complex assembly within the plasma membrane to regulate cellular functions. Desmosomes are mechanically resilient adhesive junctions that associate with lipid raft membrane domains, yet the mechanisms directing raft association of the desmosomal proteins, particularly the transmembrane desmosomal cadherins, are poorly understood. We identified the desmoglein-1 (DSG1) transmembrane domain (TMD) as a key determinant of desmoglein lipid raft association and designed a panel of DSG1 TMD variants to assess the contribution of TMD physicochemical properties (length, bulkiness, and palmitoylation) to DSG1 lipid raft association. Sucrose gradient fractionations revealed that TMD length and bulkiness, but not palmitoylation, govern DSG1 lipid raft association. Further, DSG1 raft association determines plakoglobin recruitment to raft domains. Super-resolution imaging and functional assays uncovered a strong relationship between the efficiency of DSG1 TMD lipid raft association and the formation of morphologically and functionally robust desmosomes. Lipid raft association regulated both desmosome assembly dynamics and DSG1 cell surface stability, indicating that DSG1 lipid raft association is required for both desmosome formation and maintenance. These studies identify the biophysical properties of desmoglein transmembrane domains as key determinants of lipid raft association and desmosome adhesive function.
Collapse
|
8
|
Ghorai T, Sarkar A, Roy A, Bhowmick B, Nayak D, Das S. Role of auto-antibodies in the mechanisms of dengue pathogenesis and its progression: a comprehensive review. Arch Microbiol 2024; 206:214. [PMID: 38616229 DOI: 10.1007/s00203-024-03954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
A complex interaction among virulence factors, host-genes and host immune system is considered to be responsible for dengue virus (DENV) infection and disease progression. Generation of auto-antibodies during DENV infection is a major phenomenon that plays a role in the pathophysiology of dengue hemorrhagic fever and dengue shock syndrome. Hemostasis, thrombocytopenia, hepatic endothelial dysfunction, and autoimmune blistering skin disease (pemphigus) are different clinical manifestations of dengue pathogenesis; produced due to the molecular mimicry of DENV proteins with self-antigens like coagulation factors, platelets and endothelial cell proteins. This review elaborately describes the current advancements in auto-antibody-mediated immunopathogenesis which inhibits coagulation cascade and promotes hyperfibrinolysis. Auto-antibodies like anti-endothelial cell antibodies-mediated hepatic inflammation during severe DENV infection have also been discussed. Overall, this comprehensive review provides insight to target auto-antibodies that may act as potential biomarkers for disease severity, and a ground for the development of therapeutic strategy against DENV.
Collapse
Affiliation(s)
- Tanusree Ghorai
- Virology Laboratory, DAC Regional Research Institute, Kolkata, India
| | - Avipsha Sarkar
- Virology Laboratory, DAC Regional Research Institute, Kolkata, India
| | - Anirban Roy
- Virology Laboratory, DAC Regional Research Institute, Kolkata, India
| | - Bijita Bhowmick
- Virology Laboratory, DAC Regional Research Institute, Kolkata, India
| | | | - Satadal Das
- Virology Laboratory, DAC Regional Research Institute, Kolkata, India.
- Peerless Hospital and B.K. Roy Research Centre, Kolkata, India.
| |
Collapse
|
9
|
Rosa JB, Nassman KY, Sagasti A. Sensory axons induce epithelial lipid microdomain remodeling and determine the distribution of junctions in the epidermis. Mol Biol Cell 2023; 34:ar5. [PMID: 36322392 PMCID: PMC9816649 DOI: 10.1091/mbc.e22-09-0396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Epithelial cell properties are determined by the polarized distribution of membrane lipids, the cytoskeleton, and adhesive junctions. Epithelia are often profusely innervated, but little work has addressed how neurites affect epithelial organization. We previously found that basal keratinocytes in the zebrafish epidermis enclose axons in ensheathment channels sealed by autotypic junctions. Here we characterized how axons remodel cell membranes, the cytoskeleton, and junctions in basal keratinocytes. At the apical surface of basal keratinocytes, axons organized lipid microdomains quantitatively enriched in reporters for PI(4,5)P2 and liquid-ordered (Lo) membranes. Lipid microdomains supported the formation of cadherin-enriched, F-actin protrusions, which wrapped around axons, likely initiating ensheathment. In the absence of axons, cadherin-enriched microdomains formed on basal cells but did not organize into contiguous domains. Instead, these isolated domains formed heterotypic junctions with periderm cells, a distinct epithelial cell type. Thus, axon endings dramatically remodel polarized epithelial components and regulate epidermal adhesion.
Collapse
Affiliation(s)
- Jeffrey B. Rosa
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Khaled Y. Nassman
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Alvaro Sagasti
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
10
|
Moch M, Schieren J, Leube RE. Cortical tension regulates desmosomal morphogenesis. Front Cell Dev Biol 2022; 10:946190. [PMID: 36268507 PMCID: PMC9577410 DOI: 10.3389/fcell.2022.946190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
Mechanical stability is a fundamental and essential property of epithelial cell sheets. It is in large part determined by cell-cell adhesion sites that are tightly integrated by the cortical cytoskeleton. An intimate crosstalk between the adherens junction-associated contractile actomyosin system and the desmosome-anchored keratin intermediate filament system is decisive for dynamic regulation of epithelial mechanics. A major question in the field is whether and in which way mechanical stress affects junctional plasticity. This is especially true for the desmosome-keratin scaffold whose role in force-sensing is virtually unknown. To examine this question, we inactivated the actomyosin system in human keratinocytes (HaCaT) and canine kidney cells (MDCK) and monitored changes in desmosomal protein turnover. Partial inhibition of myosin II by para-nitro-blebbistatin led to a decrease of the cells' elastic modulus and to reduced desmosomal protein turnover in regions where nascent desmosomes are formed and, to a lower degree, in regions where larger, more mature desmosomes are present. Interestingly, desmosomal proteins are affected differently: a significant decrease in turnover was observed for the desmosomal plaque protein desmoplakin I (DspI), which links keratin filaments to the desmosomal core, and the transmembrane cadherin desmoglein 2 (Dsg2). On the other hand, the turnover of another type of desmosomal cadherin, desmocollin 2 (Dsc2), was not significantly altered under the tested conditions. Similarly, the turnover of the adherens junction-associated E-cadherin was not affected by the low doses of para-nitro-blebbistatin. Inhibition of actin polymerization by low dose latrunculin B treatment and of ROCK-driven actomyosin contractility by Y-27632 treatment also induced a significant decrease in desmosomal DspI turnover. Taken together, we conclude that changes in the cortical force balance affect desmosome formation and growth. Furthermore, they differentially modulate desmosomal protein turnover resulting in changes of desmosome composition. We take the observations as evidence for a hitherto unknown desmosomal mechanosensing and mechanoresponse pathway responding to an altered force balance.
Collapse
|
11
|
Egu DT, Schmitt T, Waschke J. Mechanisms Causing Acantholysis in Pemphigus-Lessons from Human Skin. Front Immunol 2022; 13:884067. [PMID: 35720332 PMCID: PMC9205406 DOI: 10.3389/fimmu.2022.884067] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune bullous skin disease caused primarily by autoantibodies (PV-IgG) against the desmosomal adhesion proteins desmoglein (Dsg)1 and Dsg3. PV patient lesions are characterized by flaccid blisters and ultrastructurally by defined hallmarks including a reduction in desmosome number and size, formation of split desmosomes, as well as uncoupling of keratin filaments from desmosomes. The pathophysiology underlying the disease is known to involve several intracellular signaling pathways downstream of PV-IgG binding. Here, we summarize our studies in which we used transmission electron microscopy to characterize the roles of signaling pathways in the pathogenic effects of PV-IgG on desmosome ultrastructure in a human ex vivo skin model. Blister scores revealed inhibition of p38MAPK, ERK and PLC/Ca2+ to be protective in human epidermis. In contrast, inhibition of Src and PKC, which were shown to be protective in cell cultures and murine models, was not effective for human skin explants. The ultrastructural analysis revealed that for preventing skin blistering at least desmosome number (as modulated by ERK) or keratin filament insertion (as modulated by PLC/Ca2+) need to be ameliorated. Other pathways such as p38MAPK regulate desmosome number, size, and keratin insertion indicating that they control desmosome assembly and disassembly on different levels. Taken together, studies in human skin delineate target mechanisms for the treatment of pemphigus patients. In addition, ultrastructural analysis supports defining the specific role of a given signaling molecule in desmosome turnover at ultrastructural level.
Collapse
|
12
|
Vanslembrouck B, Chen JH, Larabell C, van Hengel J. Microscopic Visualization of Cell-Cell Adhesion Complexes at Micro and Nanoscale. Front Cell Dev Biol 2022; 10:819534. [PMID: 35517500 PMCID: PMC9065677 DOI: 10.3389/fcell.2022.819534] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/21/2022] [Indexed: 12/25/2022] Open
Abstract
Considerable progress has been made in our knowledge of the morphological and functional varieties of anchoring junctions. Cell-cell adhesion contacts consist of discrete junctional structures responsible for the mechanical coupling of cytoskeletons and allow the transmission of mechanical signals across the cell collective. The three main adhesion complexes are adherens junctions, tight junctions, and desmosomes. Microscopy has played a fundamental role in understanding these adhesion complexes on different levels in both physiological and pathological conditions. In this review, we discuss the main light and electron microscopy techniques used to unravel the structure and composition of the three cell-cell contacts in epithelial and endothelial cells. It functions as a guide to pick the appropriate imaging technique(s) for the adhesion complexes of interest. We also point out the latest techniques that have emerged. At the end, we discuss the problems investigators encounter during their cell-cell adhesion research using microscopic techniques.
Collapse
Affiliation(s)
- Bieke Vanslembrouck
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Anatomy, University of San Francisco, San Francisco, CA, United States
- *Correspondence: Bieke Vanslembrouck, ; Jolanda van Hengel,
| | - Jian-hua Chen
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Anatomy, University of San Francisco, San Francisco, CA, United States
| | - Carolyn Larabell
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Anatomy, University of San Francisco, San Francisco, CA, United States
| | - Jolanda van Hengel
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- *Correspondence: Bieke Vanslembrouck, ; Jolanda van Hengel,
| |
Collapse
|
13
|
Zakrzewicz A, Würth C, Beckert B, Feldhoff S, Vanderheyden K, Foss S, Andersen JT, de Haard H, Verheesen P, Bobkov V, Tikkanen R. Stabilization of Keratinocyte Monolayer Integrity in the Presence of Anti-Desmoglein-3 Antibodies through FcRn Blockade with Efgartigimod: Novel Treatment Paradigm for Pemphigus? Cells 2022; 11:cells11060942. [PMID: 35326398 PMCID: PMC8946243 DOI: 10.3390/cells11060942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 12/21/2022] Open
Abstract
Pemphigus vulgaris is an autoimmune blistering disease of the epidermis, caused by autoantibodies against desmosomal proteins, mainly desmogleins 1 and 3, which induce an impairment of desmosomal adhesion and blister formation. Recent findings have shown that inhibition of immunoglobulin G binding on the neonatal Fc receptor, FcRn, results in reduced autoantibody recycling and shortens their half-life, providing a valid treatment option for PV. We have here analyzed the role of FcRn in human keratinocytes treated with antibodies isolated from pemphigus vulgaris patient or with recombinant anti-desmoglein-3 antibodies that induce pathogenic changes in desmosomes, such as loss of monolayer integrity, aberrant desmoglein-3 localization and degradation of desmoglein-3. We show that blocking IgG binding on FcRn by efgartigimod, a recombinant Fc fragment undergoing clinical studies for pemphigus, stabilizes the keratinocyte monolayer, whereas the loss of desmoglein-3 is not prevented by efgartigimod. Our data show that FcRn may play a direct role in the pathogenesis of pemphigus at the level of the autoantibody target cells, the epidermal keratinocytes. Our data suggest that in keratinocytes, FcRn may have functions different from its known function in IgG recycling. Therefore, stabilization of keratinocyte adhesion by FcRn blocking entities may provide a novel treatment paradigm for pemphigus.
Collapse
Affiliation(s)
- Anna Zakrzewicz
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (A.Z.); (C.W.); (B.B.); (S.F.)
| | - Celina Würth
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (A.Z.); (C.W.); (B.B.); (S.F.)
| | - Benedikt Beckert
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (A.Z.); (C.W.); (B.B.); (S.F.)
| | - Simon Feldhoff
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (A.Z.); (C.W.); (B.B.); (S.F.)
| | - Katrien Vanderheyden
- Argenx BV, Industriepark Zwijnaarde 7, 9052 Ghent, Belgium; (K.V.); (H.d.H.); (P.V.); (V.B.)
| | - Stian Foss
- Department of Immunology, University of Oslo and Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway; (S.F.); (J.T.A.)
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Jan Terje Andersen
- Department of Immunology, University of Oslo and Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway; (S.F.); (J.T.A.)
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Hans de Haard
- Argenx BV, Industriepark Zwijnaarde 7, 9052 Ghent, Belgium; (K.V.); (H.d.H.); (P.V.); (V.B.)
| | - Peter Verheesen
- Argenx BV, Industriepark Zwijnaarde 7, 9052 Ghent, Belgium; (K.V.); (H.d.H.); (P.V.); (V.B.)
| | - Vladimir Bobkov
- Argenx BV, Industriepark Zwijnaarde 7, 9052 Ghent, Belgium; (K.V.); (H.d.H.); (P.V.); (V.B.)
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (A.Z.); (C.W.); (B.B.); (S.F.)
- Correspondence:
| |
Collapse
|
14
|
Zimmer SE, Takeichi T, Conway DE, Kubo A, Suga Y, Akiyama M, Kowalczyk AP. Differential Pathomechanisms of Desmoglein 1 Transmembrane Domain Mutations in Skin Disease. J Invest Dermatol 2022; 142:323-332.e8. [PMID: 34352264 PMCID: PMC9109890 DOI: 10.1016/j.jid.2021.07.154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 02/03/2023]
Abstract
Dominant and recessive mutations in the desmosomal cadherin, desmoglein (DSG) 1, cause the skin diseases palmoplantar keratoderma (PPK) and severe dermatitis, multiple allergies, and metabolic wasting (SAM) syndrome, respectively. In this study, we compare two dominant missense mutations in the DSG1 transmembrane domain (TMD), G557R and G562R, causing PPK (DSG1PPK-TMD) and SAM syndrome (DSG1SAM-TMD), respectively, to determine the differing pathomechanisms of these mutants. Expressing the DSG1TMD mutants in a DSG-null background, we use cellular and biochemical assays to reveal the differences in the mechanistic behavior of each mutant. Super-resolution microscopy and functional assays showed a failure by both mutants to assemble desmosomes due to reduced membrane trafficking and lipid raft targeting. DSG1SAM-TMD maintained normal expression levels and turnover relative to wildtype DSG1, but DSG1PPK-TMD lacked stability, leading to increased turnover through lysosomal and proteasomal pathways and reduced expression levels. These results differentiate the underlying pathomechanisms of these disorders, suggesting that DSG1SAM-TMD acts dominant negatively, whereas DSG1PPK-TMD is a loss-of-function mutation causing the milder PPK disease phenotype. These mutants portray the importance of the DSG TMD in desmosome function and suggest that a greater understanding of the desmosomal cadherin TMDs will further our understanding of the role that desmosomes play in epidermal pathophysiology.
Collapse
Affiliation(s)
- Stephanie E Zimmer
- Department of Dermatology, Penn State College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA; Biochemistry, Cell and Developmental Biology Graduate Program, Emory School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Takuya Takeichi
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daniel E Conway
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Akiharu Kubo
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasushi Suga
- Department of Dermatology, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Andrew P Kowalczyk
- Department of Dermatology, Penn State College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA; Department of Cellular & Molecular Physiology, Penn State College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA.
| |
Collapse
|
15
|
Hegazy M, Perl AL, Svoboda SA, Green KJ. Desmosomal Cadherins in Health and Disease. ANNUAL REVIEW OF PATHOLOGY 2022; 17:47-72. [PMID: 34425055 PMCID: PMC8792335 DOI: 10.1146/annurev-pathol-042320-092912] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Desmosomal cadherins are a recent evolutionary innovation that make up the adhesive core of highly specialized intercellular junctions called desmosomes. Desmosomal cadherins, which are grouped into desmogleins and desmocollins, are related to the classical cadherins, but their cytoplasmic domains are tailored for anchoring intermediate filaments instead of actin to sites of cell-cell adhesion. The resulting junctions are critical for resisting mechanical stress in tissues such as the skin and heart. Desmosomal cadherins also act as signaling hubs that promote differentiation and facilitate morphogenesis, creating more complex and effective tissue barriers in vertebrate tissues. Interference with desmosomal cadherin adhesive and supra-adhesive functions leads to a variety of autoimmune, hereditary, toxin-mediated, and malignant diseases. We review our current understanding of how desmosomal cadherins contribute to human health and disease, highlight gaps in our knowledge about their regulation and function, and introduce promising new directions toward combatting desmosome-related diseases.
Collapse
Affiliation(s)
- Marihan Hegazy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Abbey L. Perl
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Sophia A. Svoboda
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Kathleen J. Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA,Department of Dermatology, Feinberg School of Medicine, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
16
|
Vietri Rudan M, Watt FM. Mammalian Epidermis: A Compendium of Lipid Functionality. Front Physiol 2022; 12:804824. [PMID: 35095565 PMCID: PMC8791442 DOI: 10.3389/fphys.2021.804824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian epidermis is a striking example of the role of lipids in tissue biology. In this stratified epithelium, highly specialized structures are formed that leverage the hydrophobic properties of lipids to form an impermeable barrier and protect the humid internal environment of the body from the dry outside. This is achieved through tightly regulated lipid synthesis that generates the molecular species unique to the tissue. Beyond their fundamental structural role, lipids are involved in the active protection of the body from external insults. Lipid species present on the surface of the body possess antimicrobial activity and directly contribute to shaping the commensal microbiota. Lipids belonging to a variety of classes are also involved in the signaling events that modulate the immune responses to environmental stress as well as differentiation of the epidermal keratinocytes themselves. Recently, high-resolution methods are beginning to provide evidence for the involvement of newly identified specific lipid molecules in the regulation of epidermal homeostasis. In this review we give an overview of the wide range of biological functions of mammalian epidermal lipids.
Collapse
|
17
|
Beggs RR, Rao TC, Dean WF, Kowalczyk AP, Mattheyses AL. Desmosomes undergo dynamic architectural changes during assembly and maturation. Tissue Barriers 2022; 10:2017225. [PMID: 34983311 PMCID: PMC9621066 DOI: 10.1080/21688370.2021.2017225] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Desmosomes are macromolecular cell-cell junctions critical for maintaining adhesion and resisting mechanical stress in epithelial tissue. Desmosome assembly and the relationship between maturity and molecular architecture are not well understood. To address this, we employed a calcium switch assay to synchronize assembly followed by quantification of desmosome nanoscale organization using direct Stochastic Optical Reconstruction Microscopy (dSTORM). We found that the organization of the desmoplakin rod/C-terminal junction changed over the course of maturation, as indicated by a decrease in the plaque-to-plaque distance, while the plaque length increased. In contrast, the desmoplakin N-terminal domain and plakoglobin organization (plaque-to-plaque distance) were constant throughout maturation. This structural rearrangement of desmoplakin was concurrent with desmosome maturation measured by E-cadherin exclusion and increased adhesive strength. Using two-color dSTORM, we showed that while the number of individual E-cadherin containing junctions went down with the increasing time in high Ca2+, they maintained a wider desmoplakin rod/C-terminal plaque-to-plaque distance. This indicates that the maturation state of individual desmosomes can be identified by their architectural organization. We confirmed these architectural changes in another model of desmosome assembly, cell migration. Desmosomes in migrating cells, closest to the scratch where they are assembling, were shorter, E-cadherin enriched, and had wider desmoplakin rod/C-terminal plaque-to-plaque distances compared to desmosomes away from the wound edge. Key results were demonstrated in three cell lines representing simple, transitional, and stratified epithelia. Together, these data suggest that there is a set of architectural programs for desmosome maturation, and we hypothesize that desmoplakin architecture may be a contributing mechanism to regulating adhesive strength.
Collapse
Affiliation(s)
- Reena R Beggs
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tejeshwar C Rao
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William F Dean
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew P Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
18
|
Schmitt T, Waschke J. Autoantibody-Specific Signalling in Pemphigus. Front Med (Lausanne) 2021; 8:701809. [PMID: 34434944 PMCID: PMC8381052 DOI: 10.3389/fmed.2021.701809] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Pemphigus is a severe autoimmune disease impairing barrier functions of epidermis and mucosa. Autoantibodies primarily target the desmosomal adhesion molecules desmoglein (Dsg) 1 and Dsg 3 and induce loss of desmosomal adhesion. Strikingly, autoantibody profiles in pemphigus correlate with clinical phenotypes. Mucosal-dominant pemphigus vulgaris (PV) is characterised by autoantibodies (PV-IgG) against Dsg3 whereas epidermal blistering in PV and pemphigus foliaceus (PF) is associated with autoantibodies against Dsg1. Therapy in pemphigus is evolving towards specific suppression of autoantibody formation and autoantibody depletion. Nevertheless, during the acute phase and relapses of the disease additional treatment options to stabilise desmosomes and thereby rescue keratinocyte adhesion would be beneficial. Therefore, the mechanisms by which autoantibodies interfere with adhesion of desmosomes need to be characterised in detail. Besides direct inhibition of Dsg adhesion, autoantibodies engage signalling pathways interfering with different steps of desmosome turn-over. With this respect, recent data indicate that autoantibodies induce separate signalling responses in keratinocytes via specific signalling complexes organised by Dsg1 and Dsg3 which transfer the signal of autoantibody binding into the cell. This hypothesis may also explain the different clinical pemphigus phenotypes.
Collapse
Affiliation(s)
- Thomas Schmitt
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Munich, Germany
| | - Jens Waschke
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Munich, Germany
| |
Collapse
|
19
|
Lynn KS, Easley KF, Martinez FJ, Reed RC, Schlingmann B, Koval M. Asymmetric distribution of dynamin-2 and β-catenin relative to tight junction spikes in alveolar epithelial cells. Tissue Barriers 2021; 9:1929786. [PMID: 34107845 DOI: 10.1080/21688370.2021.1929786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Tight junctions between lung alveolar epithelial cells maintain an air-liquid barrier necessary for healthy lung function. Previously, we found that rearrangement of tight junctions from a linear, cortical orientation into perpendicular protrusions (tight junction spikes) is associated with a decrease in alveolar barrier function, especially in alcoholic lung syndrome. Using quantitative super-resolution microscopy, we found that spikes in control cells were enriched for claudin-18 as compared with alcohol-exposed cells. Moreover, using an in situ method to measure barrier function, tight junction spikes were not associated with localized increases in permeability. This suggests that tight junction spikes have a regulatory role as opposed to causing a physical weakening of the epithelial barrier. We found that tight junction spikes form at cell-cell junctions oriented away from pools of β-catenin associated with actin filaments, suggesting that adherens junctions determine the directionality of tight junction spikes. Dynamin-2 was associated with junctional claudin-18 and ZO-1, but showed little localization with β-catenin and tight junction spikes. Treatment with Dynasore decreased the number of tight junction spikes/cell, increased tight junction spike length, and stimulated actin to redistribute to cortical tight junctions. By contrast, Dynole 34-2 and MiTMAB altered β-catenin localization, and reduced tight junction spike length. These data suggest a novel role for dynamin-2 in tight junction spike formation by reorienting junction-associated actin. Moreover, the greater spatial separation of adherens and tight junctions in squamous alveolar epithelial cells as compared with columnar epithelial cells facilitates analysis of molecular regulation of the apical junctional complex.
Collapse
Affiliation(s)
- K Sabrina Lynn
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Kristen F Easley
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Francisco J Martinez
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Ryan C Reed
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Barbara Schlingmann
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA.,Department of Cell Biology, Emory University School of Medicine, Atlanta, USA
| |
Collapse
|
20
|
Hiermaier M, Kliewe F, Schinner C, Stüdle C, Maly IP, Wanuske MT, Rötzer V, Endlich N, Vielmuth F, Waschke J, Spindler V. The Actin-Binding Protein α-Adducin Modulates Desmosomal Turnover and Plasticity. J Invest Dermatol 2020; 141:1219-1229.e11. [PMID: 33098828 DOI: 10.1016/j.jid.2020.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/01/2023]
Abstract
Intercellular adhesion is essential for tissue integrity and homeostasis. Desmosomes are abundant in the epidermis and the myocardium-tissues, which are under constantly changing mechanical stresses. Yet, it is largely unclear whether desmosomal adhesion can be rapidly adapted to changing demands, and the mechanisms underlying desmosome turnover are only partially understood. In this study we show that the loss of the actin-binding protein α-adducin resulted in reduced desmosome numbers and prevented the ability of cultured keratinocytes or murine epidermis to withstand mechanical stress. This effect was not primarily caused by decreased levels or impaired adhesive properties of desmosomal molecules but rather by altered desmosome turnover. Mechanistically, reduced cortical actin density in α-adducin knockout keratinocytes resulted in increased mobility of the desmosomal adhesion molecule desmoglein 3 and impaired interactions with E-cadherin, a crucial step in desmosome formation. Accordingly, the loss of α-adducin prevented increased membrane localization of desmoglein 3 in response to cyclic stretch or shear stress. Our data demonstrate the plasticity of desmosomal molecules in response to mechanical stimuli and unravel a mechanism of how the actin cytoskeleton indirectly shapes intercellular adhesion by restricting the membrane mobility of desmosomal molecules.
Collapse
Affiliation(s)
- Matthias Hiermaier
- Department of Biomedicine, University of Basel, Basel, Switzerland; Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Camilla Schinner
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Chiara Stüdle
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - I Piotr Maly
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marie-Therès Wanuske
- Department of Biomedicine, University of Basel, Basel, Switzerland; Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Vera Rötzer
- Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Franziska Vielmuth
- Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Jens Waschke
- Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Volker Spindler
- Department of Biomedicine, University of Basel, Basel, Switzerland; Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| |
Collapse
|
21
|
Vietri Rudan M, Mishra A, Klose C, Eggert US, Watt FM. Human epidermal stem cell differentiation is modulated by specific lipid subspecies. Proc Natl Acad Sci U S A 2020; 117:22173-22182. [PMID: 32843345 PMCID: PMC7486749 DOI: 10.1073/pnas.2011310117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
While the lipids of the outer layers of mammalian epidermis and their contribution to barrier formation have been extensively described, the role of individual lipid species in the onset of keratinocyte differentiation remains unknown. A lipidomic analysis of primary human keratinocytes revealed accumulation of numerous lipid species during suspension-induced differentiation. A small interfering RNA screen of 258 lipid-modifying enzymes identified two genes that on knockdown induced epidermal differentiation: ELOVL1, encoding elongation of very long-chain fatty acids protein 1, and SLC27A1, encoding fatty acid transport protein 1. By intersecting lipidomic datasets from suspension-induced differentiation and knockdown keratinocytes, we pinpointed candidate bioactive lipid subspecies as differentiation regulators. Several of these-ceramides and glucosylceramides-induced differentiation when added to primary keratinocytes in culture. Our results reveal the potential of lipid subspecies to regulate exit from the epidermal stem cell compartment.
Collapse
Affiliation(s)
- Matteo Vietri Rudan
- Centre for Stem Cells and Regenerative Medicine, King's College London, SE1 9RT London, United Kingdom
| | - Ajay Mishra
- Centre for Stem Cells and Regenerative Medicine, King's College London, SE1 9RT London, United Kingdom
- European Bioinformatics Institute, CB10 1SD Hinxton, United Kingdom
| | | | - Ulrike S Eggert
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, United Kingdom
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, SE1 9RT London, United Kingdom;
| |
Collapse
|
22
|
Lynn KS, Peterson RJ, Koval M. Ruffles and spikes: Control of tight junction morphology and permeability by claudins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183339. [PMID: 32389670 DOI: 10.1016/j.bbamem.2020.183339] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
Epithelial barrier function is regulated by a family of transmembrane proteins known as claudins. Functional tight junctions are formed when claudins interact with other transmembrane proteins, cytosolic scaffold proteins and the actin cytoskeleton. The predominant scaffold protein, zonula occludens-1 (ZO-1), directly binds to most claudin C-terminal domains, crosslinking them to the actin cytoskeleton. When imaged by immunofluorescence microscopy, tight junctions most frequently are linear structures that form between tricellular junctions. However, tight junctions also adapt non-linear architectures exhibiting either a ruffled or spiked morphology, which both are responses to changes in claudin engagement of actin filaments. Other terms for ruffled tight junctions include wavy, tortuous, undulating, serpentine or zig-zag junctions. Ruffling is under the control of hypoxia induced factor (HIF) and integrin-mediated signaling, as well as direct mechanical stimulation. Tight junction ruffling is specifically enhanced by claudin-2, antagonized by claudin-1 and requires claudin binding to ZO-1. Tight junction spikes are sites of active vesicle budding and fusion that appear as perpendicular projections oriented towards the nucleus. Spikes share molecular features with focal adherens junctions and tubulobulbar complexes found in Sertoli cells. Lung epithelial cells under stress form spikes due to an increase in claudin-5 expression that directly disrupts claudin-18/ZO-1 interactions. Together this suggests that claudins are not simply passive cargoes controlled by scaffold proteins. We propose a model where claudins specifically influence tight junction scaffold proteins to control interactions with the cytoskeleton as a mechanism that regulates tight junction assembly and function.
Collapse
Affiliation(s)
- K Sabrina Lynn
- Division of Pulmonary, Allergy Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Raven J Peterson
- Division of Pulmonary, Allergy Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael Koval
- Division of Pulmonary, Allergy Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
23
|
Zimmer SE, Kowalczyk AP. The desmosome as a model for lipid raft driven membrane domain organization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183329. [PMID: 32376221 DOI: 10.1016/j.bbamem.2020.183329] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 01/14/2023]
Abstract
Desmosomes are cadherin-based adhesion structures that mechanically couple the intermediate filament cytoskeleton of adjacent cells to confer mechanical stress resistance to tissues. We have recently described desmosomes as mesoscale lipid raft membrane domains that depend on raft dynamics for assembly, function, and disassembly. Lipid raft microdomains are regions of the plasma membrane enriched in sphingolipids and cholesterol. These domains participate in membrane domain heterogeneity, signaling and membrane trafficking. Cellular structures known to be dependent on raft dynamics include the post-synaptic density in neurons, the immunological synapse, and intercellular junctions, including desmosomes. In this review, we discuss the current state of the desmosome field and put forward new hypotheses for the role of lipid rafts in desmosome adhesion, signaling and epidermal homeostasis. Furthermore, we propose that differential lipid raft affinity of intercellular junction proteins is a central driving force in the organization of the epithelial apical junctional complex.
Collapse
Affiliation(s)
- Stephanie E Zimmer
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322, United States of America; Department of Cell Biology, Emory University, Atlanta, GA 30322, United States of America
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University, Atlanta, GA 30322, United States of America; Department of Dermatology, Emory University, Atlanta, GA 30322, United States of America.
| |
Collapse
|
24
|
Stoffel W, Schmidt-Soltau I, Binczek E, Thomas A, Thevis M, Wegner I. Dietary ω3-and ω6-Polyunsaturated fatty acids reconstitute fertility of Juvenile and adult Fads2-Deficient mice. Mol Metab 2020; 36:100974. [PMID: 32272092 PMCID: PMC7153284 DOI: 10.1016/j.molmet.2020.100974] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 01/17/2023] Open
Abstract
Objective Polyunsaturated fatty acids (PUFAs), including essential fatty acids linoleic and α-linolenic acid and derived long chain and very long chain ω3-and ω6-polyunsaturated fatty acids, are vital structures in mammalian membrane systems and signaling molecules, pivotal in brain development, lipid, and energy metabolism and in female and male fertility during human evolution. Numerous nutritional studies suggest imbalance of PUFA metabolism as a critical factor in the pathogenesis of several human lifestyle diseases: dyslipoproteinemia, obesity, cardiovascular and neurodegenerative diseases, and infertility. The lack of unbiased animal models impedes molecular interpretation of the role of synthesized and dietary supplied PUFAs in these conditions. In this study, we used a Δ6 fatty acid desaturase (FADS2) deficient mouse mutant lacking key enzyme activity in the biosynthesis of ω3-and ω6-PUFAs from EFAs to address the molecular role of PUFAs in female and male fertility. Infertility is a hallmark of the pleiotropic but auxotrophic fads2−/− phenotype and is therefore helpful for stringent dietary studies on the role of individual PUFAs. Methods Feeding regimens: Age- and gender-matched infertile fads2−/− mice were maintained on defined diets, normal diet containing essential fatty acids, and supplemented with ω6-arachidonic acid, ω3-docosahexaenoic acid, and arachidonic/docosahexaenoic acid, starting (a) after weaning and (b) initiated in 4-month-old female and male fads2−/− mice. Phospho- and sphingolipidomes of ovarian and testicular membrane lipid bilayers in each cohort were established and the impact on the expression and topology of membrane marker proteins, membrane morphology, germ cell development, and female and male fertility in the respective cohorts was elaborated. Results PUFA synthesis deficiency caused a halt to folliculogenesis, atresia of oocytes, and infertility of fads2−/− female mice. A PUFA-deficient membrane lipid bilayer core structure led to the disassembly of the gap junction network of the follicular granulosa cells. In fads2−/− testis, the blood-testis barrier was disrupted and spermatogenesis arrested, leading to infertility. Sustained supply of combined AA and DHA remodeled the PUFA-deficient ovarian and testicular membrane lipidomes, facilitating the reassembly of the functional gap junction network for regular ovarian cycles and the reconstitution of the blood-testis barrier in Sertoli cells, reconstituting fertility not only in developing newborns, but surprisingly also in adult infertile fads2−/− mice. Conclusions These findings demonstrate the previously unrecognized membrane structure-based molecular link between nutrient ω3-and ω6-PUFAs, gonadal membrane structures, and female and male fertility and might foster studies of the pivotal role of dietary PUFAs in human fertility. PUFA-depletion disrupts membrane lipid scaffolds of ovarian GJ- and TJ-complexes of the testicular BTB Nutrient AA/DHA reconstitute the gonadal membrane bilayer architecture in auxotrophioc fads2-/- mice AA/DHA replenished lipid-bilayers promote the assembly of follicular GJ- and BTB-protein complexes in fads2-/- mice Nutrient AA/DHA release arrest of oo- and spermatogenesis, restoring fertility of newborn and adult fads2-/- mice
Collapse
Affiliation(s)
- Wilhelm Stoffel
- Laboratory of Molecular Neuroscience, Institute of Biochemistry, University of Cologne, 50931, Cologne, Germany; CMMC (Center for Molecular Medicine), Faculty of Medicine, University of Cologne, 50931, Cologne, Germany; CECAD (Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases), University of Cologne, 50931, Cologne, Germany.
| | - Inga Schmidt-Soltau
- CMMC (Center for Molecular Medicine), Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
| | - Erika Binczek
- Laboratory of Molecular Neuroscience, Institute of Biochemistry, University of Cologne, 50931, Cologne, Germany
| | - Andreas Thomas
- Institute of Biochemistry, Deutsche Sporthochschule Cologne, 50933, Cologne, Germany
| | - Mario Thevis
- Institute of Biochemistry, Deutsche Sporthochschule Cologne, 50933, Cologne, Germany
| | - Ina Wegner
- Laboratory of Molecular Neuroscience, Institute of Biochemistry, University of Cologne, 50931, Cologne, Germany
| |
Collapse
|
25
|
Moch M, Schwarz N, Windoffer R, Leube RE. The keratin-desmosome scaffold: pivotal role of desmosomes for keratin network morphogenesis. Cell Mol Life Sci 2020; 77:543-558. [PMID: 31243490 PMCID: PMC7010626 DOI: 10.1007/s00018-019-03198-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/09/2019] [Accepted: 06/17/2019] [Indexed: 11/29/2022]
Abstract
Desmosome-anchored keratin intermediate filaments (KFs) are essential for epithelial coherence. Yet, desmosomal KF attachment and network organization are still unexplored in vivo. We, therefore, monitored KF network morphogenesis in fluorescent keratin 8 knock-in murine embryos revealing keratin enrichment at newly formed desmosomes followed by KF formation, KF elongation and KF fusion. To examine details of this process and its coupling to desmosome formation, we studied fluorescent keratin and desmosomal protein reporter dynamics in the periphery of expanding HaCaT keratinocyte colonies. Less than 3 min after the start of desmosomal proteins clustering non-filamentous keratin enriched at these sites followed by KF formation and elongation. Subsequently, desmosome-anchored KFs merged into stable bundles generating a rim-and-spokes system consisting of subcortical KFs connecting desmosomes to each other and radial KFs connecting desmosomes to the cytoplasmic KF network. We conclude that desmosomes are organizing centers for the KF cytoskeleton with a hitherto unknown nucleation capacity.
Collapse
Affiliation(s)
- Marcin Moch
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| |
Collapse
|
26
|
Green KJ, Jaiganesh A, Broussard JA. Desmosomes: Essential contributors to an integrated intercellular junction network. F1000Res 2019; 8. [PMID: 31942240 PMCID: PMC6944264 DOI: 10.12688/f1000research.20942.1] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
The development of adhesive connections between cells was critical for the evolution of multicellularity and for organizing cells into complex organs with discrete compartments. Four types of intercellular junction are present in vertebrates: desmosomes, adherens junctions, tight junctions, and gap junctions. All are essential for the development of the embryonic layers and organs as well as adult tissue homeostasis. While each junction type is defined as a distinct entity, it is now clear that they cooperate physically and functionally to create a robust and functionally diverse system. During evolution, desmosomes first appeared in vertebrates as highly specialized regions at the plasma membrane that couple the intermediate filament cytoskeleton at points of strong cell–cell adhesion. Here, we review how desmosomes conferred new mechanical and signaling properties to vertebrate cells and tissues through their interactions with the existing junctional and cytoskeletal network.
Collapse
Affiliation(s)
- Kathleen J Green
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Avinash Jaiganesh
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joshua A Broussard
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| |
Collapse
|
27
|
Cho A, Caldara AL, Ran NA, Menne Z, Kauffman RC, Affer M, Llovet A, Norwood C, Scanlan A, Mantus G, Bradley B, Zimmer S, Schmidt T, Hertl M, Payne AS, Feldman R, Kowalczyk AP, Wrammert J. Single-Cell Analysis Suggests that Ongoing Affinity Maturation Drives the Emergence of Pemphigus Vulgaris Autoimmune Disease. Cell Rep 2019; 28:909-922.e6. [PMID: 31340153 PMCID: PMC6684256 DOI: 10.1016/j.celrep.2019.06.066] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/22/2019] [Accepted: 06/18/2019] [Indexed: 11/29/2022] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune disease characterized by blistering sores on skin and mucosal membranes, caused by autoantibodies primarily targeting the cellular adhesion protein, desmoglein-3 (Dsg3). To better understand how Dsg3-specific autoantibodies develop and cause disease in humans, we performed a cross-sectional study of PV patients before and after treatment to track relevant cellular responses underlying disease pathogenesis, and we provide an in-depth analysis of two patients by generating a panel of mAbs from single Dsg3-specific memory B cells (MBCs). Additionally, we analyzed a paired sample from one patient collected 15-months prior to disease diagnosis. We find that Dsg3-specific MBCs have an activated phenotype and show signs of ongoing affinity maturation and clonal selection. Monoclonal antibodies (mAbs) with pathogenic activity primarily target epitopes in the extracellular domains EC1 and EC2 of Dsg3, though they can also bind to the EC4 domain. Combining antibodies targeting different epitopes synergistically enhances in vitro pathogenicity.
Collapse
Affiliation(s)
- Alice Cho
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Amber L Caldara
- Department of Cell Biology, Emory University, Atlanta, GA, USA; Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nina A Ran
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zach Menne
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert C Kauffman
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Maurizio Affer
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexandra Llovet
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Carson Norwood
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Aaron Scanlan
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Grace Mantus
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Bridget Bradley
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | - Stephanie Zimmer
- Department of Cell Biology, Emory University, Atlanta, GA, USA; Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | - Thomas Schmidt
- Department of Dermatology and Allergology, Philipps-University, Marburg, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-University, Marburg, Germany
| | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ron Feldman
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University, Atlanta, GA, USA; Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jens Wrammert
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
28
|
Beckert B, Panico F, Pollmann R, Eming R, Banning A, Tikkanen R. Immortalized Human hTert/KER-CT Keratinocytes a Model System for Research on Desmosomal Adhesion and Pathogenesis of Pemphigus Vulgaris. Int J Mol Sci 2019; 20:ijms20133113. [PMID: 31247885 PMCID: PMC6651391 DOI: 10.3390/ijms20133113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/18/2022] Open
Abstract
Pemphigus Vulgaris is an autoimmune disease that results in blister formation in the epidermis and in mucosal tissues due to antibodies recognizing desmosomal cadherins, mainly desmoglein-3 and -1. Studies on the molecular mechanisms of Pemphigus have mainly been carried out using the spontaneously immortalized human keratinocyte cell line HaCaT or in primary keratinocytes. However, both cell systems have suboptimal features, with HaCaT cells exhibiting a large number of chromosomal aberrations and mutated p53 tumor suppressor, whereas primary keratinocytes are short-lived, heterogeneous and not susceptible to genetic modifications due to their restricted life-span. We have here tested the suitability of the commercially available human keratinocyte cell line hTert/KER-CT as a model system for research on epidermal cell adhesion and Pemphigus pathomechanisms. We here show that hTert cells exhibit a calcium dependent expression of desmosomal cadherins and are well suitable for typical assays used for studies on Pemphigus, such as sequential detergent extraction and Dispase-based dissociation assay. Treatment with Pemphigus auto-antibodies results in loss of monolayer integrity and altered localization of desmoglein-3, as well as loss of colocalization with flotillin-2. Our findings demonstrate that hTert cells are well suitable for studies on epidermal cell adhesion and Pemphigus pathomechanisms.
Collapse
Affiliation(s)
- Benedikt Beckert
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Francesca Panico
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Robert Pollmann
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| |
Collapse
|
29
|
Resnik N, de Luca GMR, Sepčić K, Romih R, Manders E, Veranič P. Depletion of the cellular cholesterol content reduces the dynamics of desmosomal cadherins and interferes with desmosomal strength. Histochem Cell Biol 2019; 152:195-206. [DOI: 10.1007/s00418-019-01797-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2019] [Indexed: 12/20/2022]
|
30
|
Lewis JD, Caldara AL, Zimmer SE, Stahley SN, Seybold A, Strong NL, Frangakis AS, Levental I, Wahl JK, Mattheyses AL, Sasaki T, Nakabayashi K, Hata K, Matsubara Y, Ishida-Yamamoto A, Amagai M, Kubo A, Kowalczyk AP. The desmosome is a mesoscale lipid raft-like membrane domain. Mol Biol Cell 2019; 30:1390-1405. [PMID: 30943110 PMCID: PMC6724694 DOI: 10.1091/mbc.e18-10-0649] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Desmogleins (Dsgs) are cadherin family adhesion molecules essential for epidermal integrity. Previous studies have shown that desmogleins associate with lipid rafts, but the significance of this association was not clear. Here, we report that the desmoglein transmembrane domain (TMD) is the primary determinant of raft association. Further, we identify a novel mutation in the DSG1 TMD (G562R) that causes severe dermatitis, multiple allergies, and metabolic wasting syndrome. Molecular modeling predicts that this G-to-R mutation shortens the DSG1 TMD, and experiments directly demonstrate that this mutation compromises both lipid raft association and desmosome incorporation. Finally, cryo-electron tomography indicates that the lipid bilayer within the desmosome is ∼10% thicker than adjacent regions of the plasma membrane. These findings suggest that differences in bilayer thickness influence the organization of adhesion molecules within the epithelial plasma membrane, with cadherin TMDs recruited to the desmosome via the establishment of a specialized mesoscale lipid raft-like membrane domain.
Collapse
Affiliation(s)
- Joshua D Lewis
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322.,Department of Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Amber L Caldara
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322.,Department of Graduate Program in Cancer Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Stephanie E Zimmer
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322.,Department of Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Sara N Stahley
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322.,Department of Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Anna Seybold
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60323 Frankfurt, Germany.,Institute for Biophysics, Goethe University Frankfurt, 60323 Frankfurt, Germany
| | - Nicole L Strong
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Achilleas S Frangakis
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60323 Frankfurt, Germany.,Institute for Biophysics, Goethe University Frankfurt, 60323 Frankfurt, Germany
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - James K Wahl
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE 68583
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Takashi Sasaki
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | - Kenichiro Hata
- National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yoichi Matsubara
- National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akemi Ishida-Yamamoto
- Department of Dermatology, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Akiharu Kubo
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322.,Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322.,Department of Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322.,Department of Graduate Program in Cancer Biology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
31
|
Aasen T, Johnstone S, Vidal-Brime L, Lynn KS, Koval M. Connexins: Synthesis, Post-Translational Modifications, and Trafficking in Health and Disease. Int J Mol Sci 2018; 19:ijms19051296. [PMID: 29701678 PMCID: PMC5983588 DOI: 10.3390/ijms19051296] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 02/06/2023] Open
Abstract
Connexins are tetraspan transmembrane proteins that form gap junctions and facilitate direct intercellular communication, a critical feature for the development, function, and homeostasis of tissues and organs. In addition, a growing number of gap junction-independent functions are being ascribed to these proteins. The connexin gene family is under extensive regulation at the transcriptional and post-transcriptional level, and undergoes numerous modifications at the protein level, including phosphorylation, which ultimately affects their trafficking, stability, and function. Here, we summarize these key regulatory events, with emphasis on how these affect connexin multifunctionality in health and disease.
Collapse
Affiliation(s)
- Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| | - Scott Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VI 22908, USA.
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK.
| | - Laia Vidal-Brime
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| | - K Sabrina Lynn
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
32
|
Ventrella R, Kaplan N, Hoover P, Perez White BE, Lavker RM, Getsios S. EphA2 Transmembrane Domain Is Uniquely Required for Keratinocyte Migration by Regulating Ephrin-A1 Levels. J Invest Dermatol 2018; 138:2133-2143. [PMID: 29705292 DOI: 10.1016/j.jid.2018.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022]
Abstract
EphA2 receptor tyrosine kinase is activated by ephrin-A1 ligand, which harbors a glycosylphosphatidylinositol anchor that enhances lipid raft localization. Although EphA2 and ephrin-A1 modulate keratinocyte migration and differentiation, the ability of this cell-cell communication complex to localize to different membrane regions in keratinocytes remains unknown. Using a combination of biochemical and imaging approaches, we provide evidence that ephrin-A1 and a ligand-activated form of EphA2 partition outside of lipid raft domains in response to calcium-mediated cell-cell contact stabilization in normal human epidermal keratinocytes. EphA2 transmembrane domain swapping with a shorter and molecularly distinct transmembrane domain of EphA1 resulted in decreased localization of this receptor tyrosine kinase at cell-cell junctions and increased expression of ephrin-A1, which is a negative regulator of keratinocyte migration. Accordingly, altered EphA2 membrane distribution at cell-cell contacts limited the ability of keratinocytes to seal linear scratch wounds in vitro in an ephrin-A1-dependent manner. Collectively, these studies highlight a key role for the EphA2 transmembrane domain in receptor-ligand membrane distribution at cell-cell contacts that modulates ephrin-A1 levels to allow for efficient keratinocyte migration with relevance for cutaneous wound healing.
Collapse
Affiliation(s)
- Rosa Ventrella
- Department of Dermatology, 303 East Chicago Avenue, Ward 9, Northwestern University, Chicago, Illinois, USA
| | - Nihal Kaplan
- Department of Dermatology, 303 East Chicago Avenue, Ward 9, Northwestern University, Chicago, Illinois, USA
| | - Paul Hoover
- Department of Dermatology, 303 East Chicago Avenue, Ward 9, Northwestern University, Chicago, Illinois, USA
| | - Bethany E Perez White
- Department of Dermatology, 303 East Chicago Avenue, Ward 9, Northwestern University, Chicago, Illinois, USA
| | - Robert M Lavker
- Department of Dermatology, 303 East Chicago Avenue, Ward 9, Northwestern University, Chicago, Illinois, USA
| | - Spiro Getsios
- Department of Dermatology, 303 East Chicago Avenue, Ward 9, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
33
|
Schlögl E, Radeva MY, Vielmuth F, Schinner C, Waschke J, Spindler V. Keratin Retraction and Desmoglein3 Internalization Independently Contribute to Autoantibody-Induced Cell Dissociation in Pemphigus Vulgaris. Front Immunol 2018; 9:858. [PMID: 29922278 PMCID: PMC5996934 DOI: 10.3389/fimmu.2018.00858] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/06/2018] [Indexed: 01/12/2023] Open
Abstract
Pemphigus vulgaris (PV) is a potentially lethal autoimmune disease characterized by blister formation of the skin and mucous membranes and is caused by autoantibodies against desmoglein (Dsg) 1 and Dsg3. Dsg1 and Dsg3 are linked to keratin filaments in desmosomes, adhering junctions abundant in tissues exposed to high levels of mechanical stress. The binding of the autoantibodies leads to internalization of Dsg3 and a collapse of the keratin cytoskeleton-yet, the relevance and interdependence of these changes for loss of cell-cell adhesion and blistering is poorly understood. In live-cell imaging studies, loss of the keratin network at the cell periphery was detectable starting after 60 min of incubation with immunoglobulin G fractions of PV patients (PV-IgG). These rapid changes correlated with loss of cell-cell adhesion detected by dispase-based dissociation assays and were followed by a condensation of keratin filaments into thick bundles after several hours. Dsg3 internalization started at 90 min of PV-IgG treatment, thus following the early keratin changes. By inhibiting casein kinase 1 (CK-1), we provoked keratin alterations resembling the effects of PV-IgG. Although CK-1-induced loss of peripheral keratin network correlated with loss of cell cohesion and Dsg3 clustering in the membrane, it was not sufficient to trigger the internalization of Dsg3. However, additional incubation with PV-IgG was effective to promote Dsg3 loss at the membrane, indicating that Dsg3 internalization is independent from keratin alterations. Vice versa, inhibiting Dsg3 internalization did not prevent PV-IgG-induced keratin retraction and only partially rescued cell cohesion. Together, keratin changes appear very early after autoantibody binding and temporally overlap with loss of cell cohesion. These early alterations appear to be distinct from Dsg3 internalization, suggesting a crucial role for initial loss of cell cohesion in PV.
Collapse
Affiliation(s)
- Elisabeth Schlögl
- Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Franziska Vielmuth
- Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Camilla Schinner
- Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Volker Spindler
- Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig Maximilian University of Munich, Munich, Germany.,Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
34
|
HDL biogenesis revisited: how desmocollin-1 could sabotage reverse cholesterol transport in the arterial wall. Eur Heart J 2018; 39:1203-1206. [DOI: 10.1093/eurheartj/ehx496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
35
|
Abstract
IgG4 autoimmune diseases are characterized by the presence of antigen-specific autoantibodies of the IgG4 subclass and contain well-characterized diseases such as muscle-specific kinase myasthenia gravis, pemphigus, and thrombotic thrombocytopenic purpura. In recent years, several new diseases were identified, and by now 14 antigens targeted by IgG4 autoantibodies have been described. The IgG4 subclass is considered immunologically inert and functionally monovalent due to structural differences compared to other IgG subclasses. IgG4 usually arises after chronic exposure to antigen and competes with other antibody species, thus "blocking" their pathogenic effector mechanisms. Accordingly, in the context of IgG4 autoimmunity, the pathogenicity of IgG4 is associated with blocking of enzymatic activity or protein-protein interactions of the target antigen. Pathogenicity of IgG4 autoantibodies has not yet been systematically analyzed in IgG4 autoimmune diseases. Here, we establish a modified classification system based on Witebsky's postulates to determine IgG4 pathogenicity in IgG4 autoimmune diseases, review characteristics and pathogenic mechanisms of IgG4 in these disorders, and also investigate the contribution of other antibody entities to pathophysiology by additional mechanisms. As a result, three classes of IgG4 autoimmune diseases emerge: class I where IgG4 pathogenicity is validated by the use of subclass-specific autoantibodies in animal models and/or in vitro models of pathogenicity; class II where IgG4 pathogenicity is highly suspected but lack validation by the use of subclass specific antibodies in in vitro models of pathogenicity or animal models; and class III with insufficient data or a pathogenic mechanism associated with multivalent antigen binding. Five out of the 14 IgG4 antigens were validated as class I, five as class II, and four as class III. Antibodies of other IgG subclasses or immunoglobulin classes were present in several diseases and could contribute additional pathogenic mechanisms.
Collapse
Affiliation(s)
- Inga Koneczny
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
36
|
Spindler V, Waschke J. Pemphigus-A Disease of Desmosome Dysfunction Caused by Multiple Mechanisms. Front Immunol 2018; 9:136. [PMID: 29449846 PMCID: PMC5799217 DOI: 10.3389/fimmu.2018.00136] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/16/2018] [Indexed: 02/01/2023] Open
Abstract
Pemphigus is a severe autoimmune-blistering disease of the skin and mucous membranes caused by autoantibodies reducing desmosomal adhesion between epithelial cells. Autoantibodies against the desmosomal cadherins desmogleins (Dsgs) 1 and 3 as well as desmocollin 3 were shown to be pathogenic, whereas the role of other antibodies is unclear. Dsg3 interactions can be directly reduced by specific autoantibodies. Autoantibodies also alter the activity of signaling pathways, some of which regulate cell cohesion under baseline conditions and alter the turnover of desmosomal components. These pathways include Ca2+, p38MAPK, PKC, Src, EGFR/Erk, and several others. In this review, we delineate the mechanisms relevant for pemphigus pathogenesis based on the histology and the ultrastructure of patients’ lesions. We then dissect the mechanisms which can explain the ultrastructural hallmarks detectable in pemphigus patient skin. Finally, we reevaluate the concept that the spectrum of mechanisms, which induce desmosome dysfunction upon binding of pemphigus autoantibodies, finally defines the clinical phenotype.
Collapse
Affiliation(s)
- Volker Spindler
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jens Waschke
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW The major cardio-protective function of HDL is to remove excess cellular cholesterol in the process of HDL particle formation and maturation. The HDL biogenic procedure requiring protein-lipid interactions has been incompletely understood, and here we discuss recent progress and insights into the mechanism of HDL biogenesis. RECENT FINDINGS The initial and rate-limiting step of HDL biogenesis is the interaction between apoA-I and plasma membrane microdomains created by ATP-binding cassette transporter A1 (ABCA1) transporter. Computer simulation of molecular dynamics suggests that ABCA1 translocates phospholipids from the inner to the outer leaflet of the plasma membrane to create a transbilayer density gradient leading to the formation of an exovesiculated plasma membrane microdomain. The cryo-electron microscopy structure of ABCA1 suggests that an elongated hydrophobic tunnel formed by the extracellular domain of ABCA1 may function as a passageway to deliver lipids to apoA-I. In contrast to ABCA1-created plasma membrane microdomains, desmocollin 1 (DSC1) contained in a cholesterol-rich plasma membrane microdomain binds apoA-I to prevent HDL biogenesis. The identification of DSC1-containing plasma membrane microdomains as a negative regulator of HDL biogenesis may offer potential therapeutic avenues. SUMMARY Isolation and characterization of plasma membrane microdomains involved in HDL biogenesis may lead to a better understanding of the molecular mechanism of HDL biogenesis.
Collapse
Affiliation(s)
- Jacques Genest
- Division of Cardiology, Research Institute of the McGill University Health Center, Montréal, Québec, Canada
| | | | | |
Collapse
|
38
|
Bartle EI, Rao TC, Urner TM, Mattheyses AL. Bridging the gap: Super-resolution microscopy of epithelial cell junctions. Tissue Barriers 2018; 6:e1404189. [PMID: 29420122 PMCID: PMC5823550 DOI: 10.1080/21688370.2017.1404189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 02/02/2023] Open
Abstract
Cell junctions are critical for cell adhesion and communication in epithelial tissues. It is evident that the cellular distribution, size, and architecture of cell junctions play a vital role in regulating function. These details of junction architecture have been challenging to elucidate in part due to the complexity and size of cell junctions. A major challenge in understanding these features is attaining high resolution spatial information with molecular specificity. Fluorescence microscopy allows localization of specific proteins to junctions, but with a resolution on the same scale as junction size, rendering internal protein organization unobtainable. Super-resolution microscopy provides a bridge between fluorescence microscopy and nanoscale approaches, utilizing fluorescent tags to reveal protein organization below the resolution limit. Here we provide a brief introduction to super-resolution microscopy and discuss novel findings into the organization, structure and function of epithelial cell junctions.
Collapse
Affiliation(s)
- Emily I. Bartle
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tejeshwar C. Rao
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tara M. Urner
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexa L. Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
39
|
Najle SR, Molina MC, Ruiz-Trillo I, Uttaro AD. Sterol metabolism in the filasterean Capsaspora owczarzaki has features that resemble both fungi and animals. Open Biol 2017; 6:rsob.160029. [PMID: 27383626 PMCID: PMC4967820 DOI: 10.1098/rsob.160029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/15/2016] [Indexed: 11/13/2022] Open
Abstract
Sterols are essential for several physiological processes in most eukaryotes. Sterols regulate membrane homeostasis and participate in different signalling pathways not only as precursors of steroid hormones and vitamins, but also through its role in the formation of lipid rafts. Two major types of sterols, cholesterol and ergosterol, have been described so far in the opisthokonts, the clade that comprise animals, fungi and their unicellular relatives. Cholesterol predominates in derived bilaterians, whereas ergosterol is what generally defines fungi. We here characterize, by a combination of bioinformatic and biochemical analyses, the sterol metabolism in the filasterean Capsaspora owczarzaki, a close unicellular relative of animals that is becoming a model organism. We found that C. owczarzaki sterol metabolism combines enzymatic activities that are usually considered either characteristic of fungi or exclusive to metazoans. Moreover, we observe a differential transcriptional regulation of this metabolism across its life cycle. Thus, C. owczarzaki alternates between synthesizing 7-dehydrocholesterol de novo, which happens at the cystic stage, and the partial conversion—via a novel pathway—of incorporated cholesterol into ergosterol, the characteristic fungal sterol, in the filopodial and aggregative stages.
Collapse
Affiliation(s)
- Sebastián R Najle
- Instituto de Biología Molecular y Celular de Rosario (IBR) CONICET and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda s/n, Rosario S2000FHQ, Argentina Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain
| | - María Celeste Molina
- Instituto de Biología Molecular y Celular de Rosario (IBR) CONICET and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda s/n, Rosario S2000FHQ, Argentina
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Passeig Marítim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain Departament de Genètica, Universitat de Barcelona, Av. Diagonal, 645, Barcelona 08028, Catalonia, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, Barcelona 08010, Catalonia, Spain
| | - Antonio D Uttaro
- Instituto de Biología Molecular y Celular de Rosario (IBR) CONICET and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda s/n, Rosario S2000FHQ, Argentina
| |
Collapse
|
40
|
Gurjar M, Raychaudhuri K, Mahadik S, Reddy D, Atak A, Shetty T, Rao K, Karkhanis MS, Gosavi P, Sehgal L, Gupta S, Dalal SN. Plakophilin3 increases desmosome assembly, size and stability by increasing expression of desmocollin2. Biochem Biophys Res Commun 2017; 495:768-774. [PMID: 29146182 DOI: 10.1016/j.bbrc.2017.11.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/11/2017] [Indexed: 11/15/2022]
Abstract
Previous reports show that the desmosomal plaque protein plakophilin3 (PKP3) is essential for desmosome formation. Here, we report that PKP3 over-expression decreases calcium dependency for de novo desmosome formation and makes existing cell-cell adhesion junctions more resilient in low calcium medium due to an increase in desmocollin2 expression. PKP3 overexpression increases the stability of other desmosomal proteins independently of the increase in DSC2 levels and regulates desmosome formation and stability by a multimodal mechanism affecting transcription, protein stability and cell border localization of desmosomal proteins.
Collapse
Affiliation(s)
- Mansa Gurjar
- KS-215, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Kumarkrishna Raychaudhuri
- KS-215, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Snehal Mahadik
- KS-215, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Divya Reddy
- Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Apurva Atak
- KS-215, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Trupti Shetty
- KS-215, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Kruthi Rao
- KS-215, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Mansi S Karkhanis
- KS-215, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Prajakta Gosavi
- KS-215, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Lalit Sehgal
- KS-215, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Sanjay Gupta
- Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Sorab N Dalal
- KS-215, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India.
| |
Collapse
|
41
|
Dowland SN, Madawala RJ, Poon CE, Lindsay LA, Murphy CR. Prominin-2 Prevents the Formation of Caveolae in Normal and Ovarian Hyperstimulated Pregnancy. Reprod Sci 2017; 25:1231-1242. [PMID: 29113580 DOI: 10.1177/1933719117737842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During early pregnancy, uterine epithelial cells (UECs) become less adherent to the underlying basal lamina and are subsequently removed so the blastocyst can invade the underlying stroma. This process involves the removal of focal adhesions from the basal plasma membrane of UECs. These focal adhesions are thought to be internalized by caveolae, which significantly increase in abundance at the time of blastocyst implantation. A recent in vitro study indicated that prominin-2 prevents the formation of caveolae by sequestering membrane cholesterol. The present study examines whether prominin-2 affects the formation of caveolae and loss of focal adhesions in UECs during normal and ovarian hyperstimulation (OH) pregnancy in the rat. At the time of fertilization during normal pregnancy, prominin-2 is distributed throughout the basolateral plasma membrane. However, at the time of implantation and coincident with an increase in caveolae, prominin-2 is lost from the basal plasma membrane. In contrast, prominin-2 remains in the basolateral plasma membrane throughout OH pregnancy. Transmission electron microscopy showed that this membrane contained few caveolae throughout OH pregnancy. Our results indicate that prominin-2 prevents the formation of caveolae. We suggest the retention of prominin-2 in the basal plasma membrane during OH pregnancy prevents the formation of caveolae and is responsible for the retention of focal adhesions in this membrane, thereby contributing to the reduced implantation rate observed after such treatments.
Collapse
Affiliation(s)
- Samson N Dowland
- 1 Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology) and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Romanthi J Madawala
- 1 Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology) and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Connie E Poon
- 1 Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology) and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Laura A Lindsay
- 1 Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology) and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Christopher R Murphy
- 1 Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology) and The Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
42
|
Spindler V, Eming R, Schmidt E, Amagai M, Grando S, Jonkman MF, Kowalczyk AP, Müller EJ, Payne AS, Pincelli C, Sinha AA, Sprecher E, Zillikens D, Hertl M, Waschke J. Mechanisms Causing Loss of Keratinocyte Cohesion in Pemphigus. J Invest Dermatol 2017; 138:32-37. [PMID: 29037765 DOI: 10.1016/j.jid.2017.06.022] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 11/28/2022]
Abstract
The autoimmune blistering skin disease pemphigus is caused by IgG autoantibodies against desmosomal cadherins, but the precise mechanisms are in part a matter of controversial discussions. This review focuses on the currently existing models of the disease and highlights the relevance of desmoglein-specific versus nondesmoglein autoantibodies, the contribution of nonautoantibody factors, and the mechanisms leading to cell dissociation and blister formation in response to autoantibody binding. As the review brings together the majority of laboratories currently working on pemphigus pathogenesis, it aims to serve as a solid basis for further investigations for the entire field.
Collapse
Affiliation(s)
- Volker Spindler
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany.
| | - Rüdiger Eming
- Department of Dermatology, University of Marburg, Marburg, Germany
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany; Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Sergei Grando
- Institute for Immunology and Departments of Dermatology and Biological Chemistry, University of California, Irvine, California, USA
| | - Marcel F Jonkman
- Department of Dermatology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Andrew P Kowalczyk
- Departments of Cell Biology and Dermatology, Emory University, Atlanta, Georgia, USA
| | - Eliane J Müller
- Vetsuisse Faculty, Molecular Dermatology and Stem Cell Research, Institute of Animal Pathology, Bern, Switzerland; Vetsuisse Faculty, DermFocus, Bern, Switzerland; Department of Dermatology, University Hospital of Bern, Bern, Switzerland
| | - Aimee S Payne
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carlo Pincelli
- Laboratory of Cutaneous Biology, University of Modena and Reggio Emilia, Modena, Italy
| | - Animesh A Sinha
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Michael Hertl
- Department of Dermatology, University of Marburg, Marburg, Germany
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
43
|
Mound A, Lozanova V, Warnon C, Hermant M, Robic J, Guere C, Vie K, Lambert de Rouvroit C, Tyteca D, Debacq-Chainiaux F, Poumay Y. Non-senescent keratinocytes organize in plasma membrane submicrometric lipid domains enriched in sphingomyelin and involved in re-epithelialization. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:958-971. [DOI: 10.1016/j.bbalip.2017.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/26/2017] [Accepted: 06/03/2017] [Indexed: 12/22/2022]
|
44
|
Ludwig RJ, Vanhoorelbeke K, Leypoldt F, Kaya Z, Bieber K, McLachlan SM, Komorowski L, Luo J, Cabral-Marques O, Hammers CM, Lindstrom JM, Lamprecht P, Fischer A, Riemekasten G, Tersteeg C, Sondermann P, Rapoport B, Wandinger KP, Probst C, El Beidaq A, Schmidt E, Verkman A, Manz RA, Nimmerjahn F. Mechanisms of Autoantibody-Induced Pathology. Front Immunol 2017; 8:603. [PMID: 28620373 PMCID: PMC5449453 DOI: 10.3389/fimmu.2017.00603] [Citation(s) in RCA: 327] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Autoantibodies are frequently observed in healthy individuals. In a minority of these individuals, they lead to manifestation of autoimmune diseases, such as rheumatoid arthritis or Graves' disease. Overall, more than 2.5% of the population is affected by autoantibody-driven autoimmune disease. Pathways leading to autoantibody-induced pathology greatly differ among different diseases, and autoantibodies directed against the same antigen, depending on the targeted epitope, can have diverse effects. To foster knowledge in autoantibody-induced pathology and to encourage development of urgently needed novel therapeutic strategies, we here categorized autoantibodies according to their effects. According to our algorithm, autoantibodies can be classified into the following categories: (1) mimic receptor stimulation, (2) blocking of neural transmission, (3) induction of altered signaling, triggering uncontrolled (4) microthrombosis, (5) cell lysis, (6) neutrophil activation, and (7) induction of inflammation. These mechanisms in relation to disease, as well as principles of autoantibody generation and detection, are reviewed herein.
Collapse
Affiliation(s)
- Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel, Germany
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
- Department of Neurology, University of Kiel, Kiel, Germany
| | - Ziya Kaya
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, United States
| | - Lars Komorowski
- Institute for Experimental Immunology, Affiliated to Euroimmun AG, Lübeck, Germany
| | - Jie Luo
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA, United States
| | | | | | - Jon M. Lindstrom
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA, United States
| | - Peter Lamprecht
- Department of Rheumatology, University of Lübeck, Lübeck, Germany
| | - Andrea Fischer
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | | | - Claudia Tersteeg
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | | | - Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, United States
| | - Klaus-Peter Wandinger
- Department of Neurology, Institute of Clinical Chemistry, University Medical-Centre Schleswig-Holstein, Lübeck, Germany
| | - Christian Probst
- Institute for Experimental Immunology, Affiliated to Euroimmun AG, Lübeck, Germany
| | - Asmaa El Beidaq
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Alan Verkman
- Department of Medicine, University of California, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, CA, United States
| | - Rudolf A. Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
45
|
Furue M, Kadono T. Pemphigus, a pathomechanism of acantholysis. Australas J Dermatol 2017; 58:171-173. [PMID: 28211055 DOI: 10.1111/ajd.12562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/13/2016] [Indexed: 12/16/2022]
Abstract
Autoantibodies to the desmosomal proteins desmoglein 1 and 3 cause pemphigus foliaceus and pemphigus vulgaris, which are characterised by keratinocyte dissociation (acantholysis) and intraepidermal blister formation. The passive transfer of pathogenic anti-desmoglein antibodies induces blisters in mice in vivo and the loss of keratinocyte adhesion in vitro. The pathogenetic mechanisms of acantholysis due to anti-desmoglein autoantibodies are not fully understood. However, recent studies have revealed that signalling-dependent and signalling-independent pathways are operative in the loss of cell adhesion. In this review, we focus on the pathomechanism of acantholysis due to autoantibodies to desmogleins and recent therapeutic approaches.
Collapse
Affiliation(s)
- Masutaka Furue
- Department of Dermatology, Kyushu University, Fukuoka, Japan
| | - Takafumi Kadono
- Department of Dermatology, St Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
46
|
Cadwell CM, Su W, Kowalczyk AP. Cadherin tales: Regulation of cadherin function by endocytic membrane trafficking. Traffic 2016; 17:1262-1271. [PMID: 27624909 DOI: 10.1111/tra.12448] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/09/2016] [Accepted: 09/09/2016] [Indexed: 12/17/2022]
Abstract
Cadherins are the primary adhesion molecules in adherens junctions and desmosomes and play essential roles in embryonic development. Although significant progress has been made in understanding cadherin structure and function, we lack a clear vision of how cells confer plasticity upon adhesive junctions to allow for cellular rearrangements during development, wound healing and metastasis. Endocytic membrane trafficking has emerged as a fundamental mechanism by which cells confer a dynamic state to adhesive junctions. Recent studies indicate that the juxtamembrane domain of classical cadherins contains multiple endocytic motifs, or "switches," that can be used by cellular membrane trafficking machinery to regulate adhesion. The cadherin-binding protein p120-catenin (p120) appears to be the master regulator of access to these switches, thereby controlling cadherin endocytosis and turnover. This review focuses on p120 and other cadherin-binding proteins, ubiquitin ligases, and growth factors as key modulators of cadherin membrane trafficking.
Collapse
Affiliation(s)
- Chantel M Cadwell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Wenji Su
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia.,Biochemistry, Cell, and Developmental Biology Graduate Training Program, Emory University, Atlanta, Georgia
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia.,Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
47
|
Roberts BJ, Svoboda RA, Overmiller AM, Lewis JD, Kowalczyk AP, Mahoney MG, Johnson KR, Wahl JK. Palmitoylation of Desmoglein 2 Is a Regulator of Assembly Dynamics and Protein Turnover. J Biol Chem 2016; 291:24857-24865. [PMID: 27703000 DOI: 10.1074/jbc.m116.739458] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/08/2016] [Indexed: 01/09/2023] Open
Abstract
Desmosomes are prominent adhesive junctions present between many epithelial cells as well as cardiomyocytes. The mechanisms controlling desmosome assembly and remodeling in epithelial and cardiac tissue are poorly understood. We recently identified protein palmitoylation as a mechanism regulating desmosome dynamics. In this study, we have focused on the palmitoylation of the desmosomal cadherin desmoglein-2 (Dsg2) and characterized the role that palmitoylation of Dsg2 plays in its localization and stability in cultured cells. We identified two cysteine residues in the juxtamembrane (intracellular anchor) domain of Dsg2 that, when mutated, eliminate its palmitoylation. These cysteine residues are conserved in all four desmoglein family members. Although mutant Dsg2 localizes to endogenous desmosomes, there is a significant delay in its incorporation into junctions, and the mutant is also present in a cytoplasmic pool. Triton X-100 solubility assays demonstrate that mutant Dsg2 is more soluble than wild-type protein. Interestingly, trafficking of the mutant Dsg2 to the cell surface was delayed, and a pool of the non-palmitoylated Dsg2 co-localized with lysosomal markers. Taken together, these data suggest that palmitoylation of Dsg2 regulates protein transport to the plasma membrane. Modulation of the palmitoylation status of desmosomal cadherins can affect desmosome dynamics.
Collapse
Affiliation(s)
- Brett J Roberts
- From the Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| | - Robert A Svoboda
- From the Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| | - Andrew M Overmiller
- the Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Joshua D Lewis
- the Departments of Cell Biology and Dermatology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Andrew P Kowalczyk
- the Departments of Cell Biology and Dermatology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - My G Mahoney
- the Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Keith R Johnson
- From the Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska 68583.,the Eppley Institute for Research in Cancer and Allied Diseases, Omaha, Nebraska 68198
| | - James K Wahl
- From the Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska 68583,
| |
Collapse
|
48
|
Cao Y, Li R, Li Y, Zhang T, Wu N, Zhang J, Guo Z. Identification of Transcription Factor-Gene Regulatory Network in Acute Myocardial Infarction. Heart Lung Circ 2016; 26:343-353. [PMID: 27746059 DOI: 10.1016/j.hlc.2016.06.1209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/25/2016] [Accepted: 06/10/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a common disease with serious mortality and morbidity, worldwide. The present study aimed to identify differentially expressed genes (DEGs) and construct a transcription factor-gene regulatory network to further study the early diagnosis of AMI. METHODS The integrated analysis of publicly available Gene Expression Omnibus datasets of AMI was performed. Differentially expressed genes were identified between AMI and normal blood samples. Gene Ontology enrichment analyses, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and the transcription factor-gene regulatory network were used to obtain insights into the functions of DEGs. Quantitative real-time polymerase chain reactions (qRT-PCR) were performed to validate the expression level of DEGs. RESULTS A total of 2,502 DEGs, including 917 up-regulated genes and 1,585 down-regulated genes, were identified between AMI and normal blood samples by integrating four expression profiles of AMI. Differentially expressed genes were significantly enriched in pathways including complement and coagulation cascades, Staphylococcus aureus infection, and cell adhesion molecules. Transcription factors were screened and performed to construct the regulatory network. The transcription factor-gene regulatory network consisted of 871 interactions between 80 transcription factors and 716 DEGs. ETS homologous factor (EHF) was one of transcription factors that had high connectivity with DEGs and regulated CACNB4 in the network. Verification by qRT-PCR revealed that EHF, KRT6A and DSG3 were significantly up-regulated, while CACNG4 was significantly down-regulated in AMI. Furthermore, CACNG6, CACNB4 and CLDN18 had a tendency to be down-regulated, and CALML3 had a tendency to be up-regulated in AMI. CONCLUSIONS The identification of important differentially expressed transcription factors and genes in the development of AMI would be the groundwork for the early diagnosis and early intervention of AMI.
Collapse
Affiliation(s)
- Yuejuan Cao
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China.
| | - Rongqing Li
- Department of Cardiac Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yangchun Li
- Department of Vascular surgery, Tianjin Union Medical Center, Tianjin, China
| | - Tao Zhang
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Nan Wu
- Department of Cardiac Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Jianyan Zhang
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Zhaozeng Guo
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
49
|
Schlingmann B, Overgaard CE, Molina SA, Lynn KS, Mitchell LA, Dorsainvil White S, Mattheyses AL, Guidot DM, Capaldo CT, Koval M. Regulation of claudin/zonula occludens-1 complexes by hetero-claudin interactions. Nat Commun 2016; 7:12276. [PMID: 27452368 PMCID: PMC4962485 DOI: 10.1038/ncomms12276] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/15/2016] [Indexed: 01/06/2023] Open
Abstract
Claudins are tetraspan transmembrane tight-junction proteins that regulate epithelial barriers. In the distal airspaces of the lung, alveolar epithelial tight junctions are crucial to regulate airspace fluid. Chronic alcohol abuse weakens alveolar tight junctions, priming the lung for acute respiratory distress syndrome, a frequently lethal condition caused by airspace flooding. Here we demonstrate that in response to alcohol, increased claudin-5 paradoxically accompanies an increase in paracellular leak and rearrangement of alveolar tight junctions. Claudin-5 is necessary and sufficient to diminish alveolar epithelial barrier function by impairing the ability of claudin-18 to interact with a scaffold protein, zonula occludens 1 (ZO-1), demonstrating that one claudin affects the ability of another claudin to interact with the tight-junction scaffold. Critically, a claudin-5 peptide mimetic reverses the deleterious effects of alcohol on alveolar barrier function. Thus, claudin controlled claudin-scaffold protein interactions are a novel target to regulate tight-junction permeability.
Collapse
Affiliation(s)
- Barbara Schlingmann
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 205 Whitehead Building, 615 Michael Street, Atlanta, Georgia 30322, USA
- Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia 30322, USA
| | - Christian E. Overgaard
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 205 Whitehead Building, 615 Michael Street, Atlanta, Georgia 30322, USA
- Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia 30322, USA
| | - Samuel A. Molina
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 205 Whitehead Building, 615 Michael Street, Atlanta, Georgia 30322, USA
- Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia 30322, USA
| | - K. Sabrina Lynn
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 205 Whitehead Building, 615 Michael Street, Atlanta, Georgia 30322, USA
- Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia 30322, USA
| | - Leslie A. Mitchell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 205 Whitehead Building, 615 Michael Street, Atlanta, Georgia 30322, USA
| | - StevenClaude Dorsainvil White
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 205 Whitehead Building, 615 Michael Street, Atlanta, Georgia 30322, USA
- Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia 30322, USA
| | | | - David M. Guidot
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 205 Whitehead Building, 615 Michael Street, Atlanta, Georgia 30322, USA
- Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia 30322, USA
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia 30033, USA
| | | | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 205 Whitehead Building, 615 Michael Street, Atlanta, Georgia 30322, USA
- Emory Alcohol and Lung Biology Center, Emory University, Atlanta, Georgia 30322, USA
- Department of Cell Biology, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
50
|
Völlner F, Ali J, Kurrle N, Exner Y, Eming R, Hertl M, Banning A, Tikkanen R. Loss of flotillin expression results in weakened desmosomal adhesion and Pemphigus vulgaris-like localisation of desmoglein-3 in human keratinocytes. Sci Rep 2016; 6:28820. [PMID: 27346727 PMCID: PMC4922016 DOI: 10.1038/srep28820] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 06/09/2016] [Indexed: 01/01/2023] Open
Abstract
Desmosomes are adhesion plaques that mediate cell-cell adhesion in many tissues, including the epidermis, and generate mechanical resistance to tissues. The extracellular domains of desmosomal cadherin proteins, desmogleins and desmocollins, are required for the interaction with cadherins of the neighbouring cells, whereas their cytoplasmic tails associate with cytoplasmic proteins which mediate connection to intermediate filaments. Disruption of desmosomal adhesion by mutations, autoantibodies or bacterial toxins results in severe human disorders of e.g. the skin and the heart. Despite the vital role of desmosomes in various tissues, the details of their molecular assembly are not clear. We here show that the two members of the flotillin protein family directly interact with the cytoplasmic tails of desmogleins. Depletion of flotillins in human keratinocytes results in weakened desmosomal adhesion and reduced expression of desmoglein-3, most likely due to a reduction in the desmosomal pool due to increased turnover. In the absence of flotillins, desmoglein-3 shows an altered localisation pattern in the cell-cell junctions of keratinocytes, which is highly similar to the localisation observed upon treatment with pemphigus vulgaris autoantibodies. Thus, our data show that flotillins, which have previously been connected to the classical cadherins, are also of importance for the desmosomal cell adhesion.
Collapse
Affiliation(s)
- Frauke Völlner
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Jawahir Ali
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Nina Kurrle
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Yvonne Exner
- Department of Dermatology and Allergology, Philipps University of Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Philipps University of Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University of Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | - Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| |
Collapse
|