1
|
Arany ES, Olimpio C, Paramonov I, Horvath R. Modifier variants in metabolic pathways are associated with an increased penetrance of Leber's Hereditary Optic Neuropathy. Eur J Hum Genet 2025:10.1038/s41431-025-01860-7. [PMID: 40346165 DOI: 10.1038/s41431-025-01860-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/16/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is a debilitating mitochondrial disease characterised by bilateral painless vision loss. Despite being the most prevalent mitochondrial disorder, the precise pathophysiological mechanisms underlying the penetrance of LHON remain poorly understood. Nuclear modifier genes have been long suspected to affect phenotype-severity, however, specific cellular pathways implicated in the disease penetrance have been only suggested recently. In recent years, autosomal recessive variants in nuclear genes involved in complex I function and metabolic pathways were recognised to cause a typical LHON phenotype. This was proposed as a new autosomal recessive disease mechanism for LHON (arLHON). The association between nuclear variants and the LHON phenotype makes the nuclear pathways disrupted in arLHON the strongest candidates to act as modifiers of mitochondrial LHON (mLHON). In this study we systematically investigated a large cohort of 23 symptomatic and 28 asymptomatic individuals carrying one of the three primary mitochondrial LHON variants. We identified several heterozygous pathogenic nuclear variants amongst the affected individuals that were consistently linked to metabolic and complex I related pathways, mirroring those disrupted in arLHON. Our findings are consistent with the presence of a second hit in specific biological pathways impairing ATP production. We propose that in addition to the primary mitochondrial variants, disruption in these nuclear-encoded pathways drives the clinical manifestation of LHON. Genes involved in the same pathways also emerge as exciting candidates for future association with arLHON. The present study deepens our understanding of LHON's pathophysiology and provides a new framework for identifying novel disease-modifying targets.
Collapse
Affiliation(s)
| | - Catarina Olimpio
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ida Paramonov
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Akula M, McNamee SM, Love Z, Nasraty N, Chan NPM, Whalen M, Avola MO, Olivares AM, Leehy BD, Jelcick AS, Singh P, Upadhyay AK, Chen DF, Haider NB. Retinoic acid related orphan receptor α is a genetic modifier that rescues retinal degeneration in a mouse model of Stargardt disease and Dry AMD. Gene Ther 2024; 31:413-421. [PMID: 38755404 PMCID: PMC11257945 DOI: 10.1038/s41434-024-00455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Degeneration of the macula is associated with several overlapping diseases including age-related macular degeneration (AMD) and Stargardt Disease (STGD). Mutations in ATP Binding Cassette Subfamily A Member 4 (ABCA4) are associated with late-onset dry AMD and early-onset STGD. Additionally, both forms of macular degeneration exhibit deposition of subretinal material and photoreceptor degeneration. Retinoic acid related orphan receptor α (RORA) regulates the AMD inflammation pathway that includes ABCA4, CD59, C3 and C5. In this translational study, we examined the efficacy of RORA at attenuating retinal degeneration and improving the inflammatory response in Abca4 knockout (Abca4-/-) mice. AAV5-hRORA-treated mice showed reduced deposits, restored CD59 expression and attenuated amyloid precursor protein (APP) expression compared with untreated eyes. This molecular rescue correlated with statistically significant improvement in photoreceptor function. This is the first study evaluating the impact of RORA modifier gene therapy on rescuing retinal degeneration. Our studies demonstrate efficacy of RORA in improving STGD and dry AMD-like disease.
Collapse
Affiliation(s)
- M Akula
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - S M McNamee
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Z Love
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - N Nasraty
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - N P M Chan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - M Whalen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - M O Avola
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - A M Olivares
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - B D Leehy
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - A S Jelcick
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - P Singh
- Ocugen, Inc., Malvern, PA, USA
| | | | - D F Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - N B Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
McNamee SM, Chan NP, Akula M, Avola MO, Whalen M, Nystuen K, Singh P, Upadhyay AK, DeAngelis MM, Haider NB. Preclinical dose response study shows NR2E3 can attenuate retinal degeneration in the retinitis pigmentosa mouse model Rho P23H+/. Gene Ther 2024; 31:255-262. [PMID: 38273095 PMCID: PMC11090815 DOI: 10.1038/s41434-024-00440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024]
Abstract
Retinitis pigmentosa (RP) is a heterogeneous disease and the main cause of vision loss within the group of inherited retinal diseases (IRDs). IRDs are a group of rare disorders caused by mutations in one or more of over 280 genes which ultimately result in blindness. Modifier genes play a key role in modulating disease phenotypes, and mutations in them can affect disease outcomes, rate of progression, and severity. Our previous studies have demonstrated that the nuclear hormone receptor 2 family e, member 3 (Nr2e3) gene reduced disease progression and loss of photoreceptor cell layers in RhoP23H-/- mice. This follow up, pharmacology study evaluates a longitudinal NR2E3 dose response in the clinically relevant heterozygous RhoP23H mouse. Reduced retinal degeneration and improved retinal morphology was observed 6 months following treatment evaluating three different NR2E3 doses. Histological and immunohistochemical analysis revealed regions of photoreceptor rescue in the treated retinas of RhoP23H+/- mice. Functional assessment by electroretinogram (ERG) showed attenuated photoreceptor degeneration with all doses. This study demonstrates the effectiveness of different doses of NR2E3 at reducing retinal degeneration and informs dose selection for clinical trials of RhoP23H-associated RP.
Collapse
Affiliation(s)
- Shannon M McNamee
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Natalie P Chan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Monica Akula
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Marielle O Avola
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Maiya Whalen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Kaden Nystuen
- University of Massachusetts Amherst, Amherst, MA, USA
| | | | | | - Margaret M DeAngelis
- Department of Ophthalmology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Neena B Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Zhang S, Wang T, Wang H, Gao B, Sun C. Identification of potential biomarkers of myopia based on machine learning algorithms. BMC Ophthalmol 2023; 23:388. [PMID: 37740201 PMCID: PMC10517464 DOI: 10.1186/s12886-023-03119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/31/2023] [Indexed: 09/24/2023] Open
Abstract
PURPOSE This study aims to identify potential myopia biomarkers using machine learning algorithms, enhancing myopia diagnosis and prognosis prediction. METHODS GSE112155 and GSE15163 datasets from the GEO database were analyzed. We used "limma" for differential expression analysis and "GO plot" and "clusterProfiler" for functional and pathway enrichment analyses. The LASSO and SVM-RFE algorithms were employed to screen myopia-related biomarkers, followed by ROC curve analysis for diagnostic performance evaluation. Single-gene GSEA enrichment analysis was executed using GSEA 4.1.0. RESULTS The functional analysis of differentially expressed genes indicated their role in carbohydrate generation and polysaccharide synthesis. We identified 23 differentially expressed genes associated with myopia, four of which were highly effective diagnostic biomarkers. Single gene GSEA results showed these genes control the ubiquitin-mediated protein hydrolysis pathway. CONCLUSION Our study identifies four key myopia biomarkers, providing a foundation for future clinical and experimental validation studies.
Collapse
Affiliation(s)
- Shengnan Zhang
- Department of Ophthalmology, Zibo Central Hospital, No.54, Gongqingtuan West Road, Zhangdian District, Zibo, 255000 Shandong Province PR China
| | - Tao Wang
- Sanitary Inspection Center, Zibo Center for Disease Control and Prevention, Zibo, 255000 PR China
| | - Huaihua Wang
- Department of Ophthalmology, Zibo Central Hospital, No.54, Gongqingtuan West Road, Zhangdian District, Zibo, 255000 Shandong Province PR China
| | - Bingfang Gao
- Department of Pathology, Zibo Hospital of Integrated Traditional Chinese and Western Medicine Zibo, Zibo, 255000 PR China
| | - Chao Sun
- Department of Ophthalmology, Zibo Central Hospital, No.54, Gongqingtuan West Road, Zhangdian District, Zibo, 255000 Shandong Province PR China
| |
Collapse
|
5
|
Toms M, Ward N, Moosajee M. Nuclear Receptor Subfamily 2 Group E Member 3 (NR2E3): Role in Retinal Development and Disease. Genes (Basel) 2023; 14:1325. [PMID: 37510230 PMCID: PMC10379133 DOI: 10.3390/genes14071325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
NR2E3 is a nuclear hormone receptor gene required for the correct development of the retinal rod photoreceptors. Expression of NR2E3 protein in rod cell precursors suppresses cone-specific gene expression and, in concert with other transcription factors including NRL, activates the expression of rod-specific genes. Pathogenic variants involving NR2E3 cause a spectrum of retinopathies, including enhanced S-cone syndrome, Goldmann-Favre syndrome, retinitis pigmentosa, and clumped pigmentary retinal degeneration, with limited evidence of genotype-phenotype correlations. A common feature of NR2E3-related disease is an abnormally high number of cone photoreceptors that are sensitive to short wavelength light, the S-cones. This characteristic has been supported by mouse studies, which have also revealed that loss of Nr2e3 function causes photoreceptors to develop as cells that are intermediate between rods and cones. While there is currently no available cure for NR2E3-related retinopathies, there are a number of emerging therapeutic strategies under investigation, including the use of viral gene therapy and gene editing, that have shown promise for the future treatment of patients with NR2E3 variants and other inherited retinal diseases. This review provides a detailed overview of the current understanding of the role of NR2E3 in normal development and disease, and the associated clinical phenotypes, animal models, and therapeutic studies.
Collapse
Affiliation(s)
- Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Natasha Ward
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
6
|
Choudhary M, Malek G. Potential therapeutic targets for age-related macular degeneration: The nuclear option. Prog Retin Eye Res 2023; 94:101130. [PMID: 36220751 PMCID: PMC10082136 DOI: 10.1016/j.preteyeres.2022.101130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/18/2022] [Accepted: 09/18/2022] [Indexed: 02/07/2023]
Abstract
The functions and activities of nuclear receptors, the largest family of transcription factors in the human genome, have classically focused on their ability to act as steroid and hormone sensors in endocrine organs. However, they are responsible for a diverse array of physiological functions, including cellular homeostasis and metabolism, during development and aging. Though the eye is not a traditional endocrine organ, recent studies have revealed high expression levels of nuclear receptors in cells throughout the posterior pole. These findings have precipitated an interest in investigating the role of these transcription factors in the eye as a function of age and ocular disease, in particular age-related macular degeneration (AMD). As the leading cause of vision impairment in the elderly, identifying signaling pathways that may be targeted for AMD therapy is of great importance, given the lack of therapeutic options for over 85% of patients with this disease. Herein we review this relatively new field and recent findings supporting the hypothesis that the eye is a secondary endocrine organ, in which nuclear receptors serve as the bedrock for biological processes in cells vulnerable in AMD, including retinal pigment epithelial and choroidal endothelial cells, and discuss the therapeutic potential of targeting these receptors for AMD.
Collapse
Affiliation(s)
- Mayur Choudhary
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Goldis Malek
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
7
|
Chew LA, Iannaccone A. Gene-agnostic approaches to treating inherited retinal degenerations. Front Cell Dev Biol 2023; 11:1177838. [PMID: 37123404 PMCID: PMC10133473 DOI: 10.3389/fcell.2023.1177838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Most patients with inherited retinal degenerations (IRDs) have been waiting for treatments that are "just around the corner" for decades, with only a handful of seminal breakthroughs happening in recent years. Highlighting the difficulties in the quest for curative therapeutics, Luxturna required 16 years of development before finally obtaining United States Food and Drug Administration (FDA) approval and its international equivalents. IRDs are both genetically and phenotypically heterogeneous. While this diversity offers many opportunities for gene-by-gene precision medicine-based approaches, it also poses a significant challenge. For this reason, alternative (or parallel) strategies to identify more comprehensive, across-the-board therapeutics for the genetically and phenotypically diverse IRD patient population are very appealing. Even when gene-specific approaches may be available and become approved for use, many patients may have reached a disease stage whereby these approaches may no longer be viable. Thus, alternate visual preservation or restoration therapeutic approaches are needed at these stages. In this review, we underscore several gene-agnostic approaches that are being developed as therapeutics for IRDs. From retinal supplementation to stem cell transplantation, optogenetic therapy and retinal prosthetics, these strategies would bypass at least in part the need for treating every individual gene or mutation or provide an invaluable complement to them. By considering the diverse patient population and treatment strategies suited for different stages and patterns of retinal degeneration, gene agnostic approaches are very well poised to impact favorably outcomes and prognosis for IRD patients.
Collapse
Affiliation(s)
- Lindsey A. Chew
- Duke Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Alessandro Iannaccone
- Duke Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
8
|
Leong YC, Sowden JC. Modeling Retinitis Pigmentosa with Patient-Derived iPSCs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:555-563. [PMID: 37440086 DOI: 10.1007/978-3-031-27681-1_81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Retinitis pigmentosa (RP) causes blindness in 1 out of 3000-4000 individuals worldwide. Understanding the disease mechanism underlying the death of photoreceptors in RP patient is crucial for the discovery and development of therapies to prevent and stop the progression of retinal degeneration. Despite having provided valuable insight into RP pathology, several shortcomings of animal models warrant the need for a better modeling system. This review discusses the current use of patient-derived induced pluripotent stem cells (iPSCs) to model RP and its advantages over animal models. Further improvement to enhance the representativeness of iPSC RP models is also discussed.
Collapse
Affiliation(s)
- Yeh Chwan Leong
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Jane C Sowden
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
9
|
Peavey J, Parmar VM, Malek G. Nuclear Receptor Atlases of Choroidal Tissues Reveal Candidate Receptors Associated with Age-Related Macular Degeneration. Cells 2022; 11:2386. [PMID: 35954227 PMCID: PMC9367936 DOI: 10.3390/cells11152386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/06/2022] [Accepted: 07/28/2022] [Indexed: 01/27/2023] Open
Abstract
The choroid is a vulnerable tissue site in the eye, impacted in several blinding diseases including age related macular degeneration (AMD), which is the leading cause of central vision loss in the aging population. Choroidal thinning and choriocapillary dropout are features of the early form of AMD, and endothelial dysfunction and vascular changes are primary characteristics of the neovascular clinical sub-type of AMD. Given the importance, the choroidal endothelium and outer vasculature play in supporting visual function, a better understanding of baseline choroidal signaling pathways engaged in tissue and cellular homeostasis is needed. Nuclear receptors are a large family of transcription factors responsible for maintaining various cellular processes during development, aging and disease. Herein we developed a comprehensive nuclear receptor atlas of human choroidal endothelial cells and freshly isolated choroidal tissue by examining the expression levels of all members of this transcription family using quantitative real time PCR. Given the close relationship between the choroid and retinal pigment epithelium (RPE), this data was cross-referenced with the expression profile of nuclear receptors in human RPE cells, to discover potential overlap versus cell-specific nuclear receptor expression. Finally, to identify candidate receptors that may participate in the pathobiology of AMD, we cataloged nuclear receptor expression in a murine model of wet AMD, from which we discovered a subset of nuclear receptors differentially regulated following neovascularization. Overall, these databases serve as useful resources establishing the influence of nuclear receptor signaling pathways on the outer vascular tissue of the eye, while providing a list of receptors, for more focused investigations in the future, to determine their suitability as potential therapeutic targets for diseases, in which the choroid is affected.
Collapse
Affiliation(s)
- Jeremy Peavey
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA; (J.P.); (V.M.P.)
| | - Vipul M. Parmar
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA; (J.P.); (V.M.P.)
| | - Goldis Malek
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA; (J.P.); (V.M.P.)
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
10
|
Bery A, Bagchi U, Bergen AA, Felder-Schmittbuhl MP. Circadian clocks, retinogenesis and ocular health in vertebrates: new molecular insights. Dev Biol 2022; 484:40-56. [DOI: 10.1016/j.ydbio.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/22/2022]
|
11
|
Lopes‐Marques M, Pacheco AR, Peixoto MJ, Cardoso AR, Serrano C, Amorim A, Prata MJ, Cooper DN, Azevedo L. Common polymorphic OTC variants can act as genetic modifiers of enzymatic activity. Hum Mutat 2021; 42:978-989. [PMID: 34015158 PMCID: PMC8362079 DOI: 10.1002/humu.24221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/05/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022]
Abstract
Understanding the role of common polymorphisms in modulating the clinical phenotype when they co‐occur with a disease‐causing lesion is of critical importance in medical genetics. We explored the impact of apparently neutral common polymorphisms, using the gene encoding the urea cycle enzyme, ornithine transcarbamylase (OTC), as a model system. Distinct combinations of genetic backgrounds embracing two missense polymorphisms were created in cis with the pathogenic p.Arg40His replacement. In vitro enzymatic assays revealed that the polymorphic variants were able to modulate OTC activity both in the presence or absence of the pathogenic lesion. First, we found that the combination of the minor alleles of polymorphisms p.Lys46Arg and p.Gln270Arg significantly enhanced enzymatic activity in the wild‐type protein. Second, enzymatic assays revealed that the minor allele of the p.Gln270Arg polymorphism was capable of ameliorating OTC activity when combined in cis with the pathogenic p.Arg40His replacement. Structural analysis predicted that the minor allele of the p.Gln270Arg polymorphism would serve to stabilize the OTC wild‐type protein, thereby corroborating the results of the experimental assays. Our findings demonstrate the potential importance of cis‐interactions between common polymorphic variants and pathogenic missense mutations and illustrate how standing genetic variation can modulate protein function.
Collapse
Affiliation(s)
- Mónica Lopes‐Marques
- i3S‐Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution GroupUniversidade do PortoPortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and Immunology, Population Genetics and Evolution GroupUniversity of PortoPortoPortugal
- Faculty of Sciences, Department of BiologyUniversity of PortoPortoPortugal
| | - Ana Rita Pacheco
- i3S‐Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution GroupUniversidade do PortoPortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and Immunology, Population Genetics and Evolution GroupUniversity of PortoPortoPortugal
| | - Maria João Peixoto
- ICVS‐ Life and Health Sciences Research Institute, School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's‐PT Government Associate LaboratoryBragaGuimarãesPortugal
| | - Ana Rita Cardoso
- i3S‐Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution GroupUniversidade do PortoPortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and Immunology, Population Genetics and Evolution GroupUniversity of PortoPortoPortugal
- Faculty of Sciences, Department of BiologyUniversity of PortoPortoPortugal
| | - Catarina Serrano
- i3S‐Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution GroupUniversidade do PortoPortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and Immunology, Population Genetics and Evolution GroupUniversity of PortoPortoPortugal
- Faculty of Sciences, Department of BiologyUniversity of PortoPortoPortugal
| | - António Amorim
- i3S‐Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution GroupUniversidade do PortoPortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and Immunology, Population Genetics and Evolution GroupUniversity of PortoPortoPortugal
- Faculty of Sciences, Department of BiologyUniversity of PortoPortoPortugal
| | - Maria João Prata
- i3S‐Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution GroupUniversidade do PortoPortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and Immunology, Population Genetics and Evolution GroupUniversity of PortoPortoPortugal
- Faculty of Sciences, Department of BiologyUniversity of PortoPortoPortugal
| | - David N. Cooper
- Institute of Medical Genetics; School of MedicineCardiff UniversityCardiffUK
| | - Luísa Azevedo
- i3S‐Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution GroupUniversidade do PortoPortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and Immunology, Population Genetics and Evolution GroupUniversity of PortoPortoPortugal
- Faculty of Sciences, Department of BiologyUniversity of PortoPortoPortugal
| |
Collapse
|
12
|
Li S, Datta S, Brabbit E, Love Z, Woytowicz V, Flattery K, Capri J, Yao K, Wu S, Imboden M, Upadhyay A, Arumugham R, Thoreson WB, DeAngelis MM, Haider NB. Nr2e3 is a genetic modifier that rescues retinal degeneration and promotes homeostasis in multiple models of retinitis pigmentosa. Gene Ther 2021; 28:223-241. [PMID: 32123325 PMCID: PMC7483267 DOI: 10.1038/s41434-020-0134-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/21/2022]
Abstract
Recent advances in viral vector engineering, as well as an increased understanding of the cellular and molecular mechanism of retinal diseases, have led to the development of novel gene therapy approaches. Furthermore, ease of accessibility and ocular immune privilege makes the retina an ideal target for gene therapies. In this study, the nuclear hormone receptor gene Nr2e3 was evaluated for efficacy as broad-spectrum therapy to attenuate early to intermediate stages of retinal degeneration in five unique mouse models of retinitis pigmentosa (RP). RP is a group of heterogenic inherited retinal diseases associated with over 150 gene mutations, affecting over 1.5 million individuals worldwide. RP varies in age of onset, severity, and rate of progression. In addition, ~40% of RP patients cannot be genetically diagnosed, confounding the ability to develop personalized RP therapies. Remarkably, Nr2e3 administered therapy resulted in reduced retinal degeneration as observed by increase in photoreceptor cells, improved electroretinogram, and a dramatic molecular reset of key transcription factors and associated gene networks. These therapeutic effects improved retinal homeostasis in diseased tissue. Results of this study provide evidence that Nr2e3 can serve as a broad-spectrum therapy to treat multiple forms of RP.
Collapse
Affiliation(s)
- Sujun Li
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Shyamtanu Datta
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Emily Brabbit
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Zoe Love
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Victoria Woytowicz
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Kyle Flattery
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Jessica Capri
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Katie Yao
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Siqi Wu
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Alsalamah AK, Khan AO, Bakar AA, Schatz P, Nowilaty SR. Recognizable Patterns of Submacular Fibrosis in Enhanced S-Cone Syndrome. Ophthalmol Retina 2021; 5:918-927. [PMID: 33819700 DOI: 10.1016/j.oret.2021.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To highlight recognizable patterns of subretinal fibrosis in enhanced S-cone syndrome (ESCS). DESIGN Retrospective case series. PARTICIPANTS Forty-seven patients with subretinal fibrosis identified from 101 patients with clinically diagnosed ESCS, confirmed by full-field electroretinography (35/47), genetic testing (34/47), or both. METHODS Multimodal retinal imaging, electroretinography, and genetic analysis. MAIN OUTCOME MEASURES Patterns of subretinal fibrosis with angiographic, OCT, and genetic correlations. RESULTS Eighty-five eyes of 47 patients (24 male patients; 36 unrelated consanguineous families) had subretinal fibrosis. Mean age at presentation was 14 years. Best-corrected visual acuity ranged from 20/20 to hand movements. All 34 genetically tested patients were homozygous for pathogenic NR2E3 variants. Subretinal fibrosis was always in the macular area, although it extended beyond in some patients. Six recurrent patterns of submacular fibrosis were noted: central unifocal nodular, circumferential unifocal nodular, multifocal nodular, arcuate, helicoid, and thick geographic. Some patients showed a combination of patterns. Previous misdiagnosis as inflammatory disease was common. Fibrosis was fairly symmetrical in a given patient but not always present or identical in other affected individuals with a given homozygous mutation from the same or other families. CONCLUSIONS These recognizable patterns of submacular fibrosis are part of the ESCS phenotypic spectrum and strongly suggest the disease. In addition to facilitating diagnosis, recognition of these patterns can spare patients unnecessary workup for an inflammatory cause.
Collapse
Affiliation(s)
- Abrar K Alsalamah
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Arif O Khan
- Pediatric Ophthalmology Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia; Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates; Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western University, Cleveland, Ohio
| | - Abdullah Abu Bakar
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia; Ophthalmology Service, King Khaled Hospital, Najran, Saudi Arabia
| | - Patrik Schatz
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia; Department of Ophthalmology, Clinical Sciences, Skane County University Hospital, Lund University, Lund, Sweden
| | - Sawsan R Nowilaty
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia.
| |
Collapse
|
14
|
de Carvalho ER, Robson AG, Arno G, Boon CJF, Webster AA, Michaelides M. Enhanced S-Cone Syndrome: Spectrum of Clinical, Imaging, Electrophysiologic, and Genetic Findings in a Retrospective Case Series of 56 Patients. Ophthalmol Retina 2021; 5:195-214. [PMID: 32679203 PMCID: PMC7861019 DOI: 10.1016/j.oret.2020.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE To describe the detailed phenotype, long-term clinical course, clinical variability, and genotype of patients with enhanced S-cone syndrome (ESCS). DESIGN Retrospective case series. PARTICIPANTS Fifty-six patients with ESCS. METHODS Clinical history, examination, imaging, and electrophysiologic findings of 56 patients (age range, 1-75 years) diagnosed with ESCS were reviewed. Diagnosis was established by molecular confirmation of disease-causing variants in the NR2E3 gene (n = 38) or by diagnostic full-field electroretinography findings (n = 18). MAIN OUTCOME MEASURES Age at onset of visual symptoms, best-corrected visual acuity (BCVA), quantitative age-related electrophysiologic decline, and imaging findings. RESULTS Mean age at onset of visual symptoms was 4.0 years, and median age at presentation was 20.5 years, with mean follow-up interval being 6.1 years. Six patients were assessed once. Disease-causing variants in NR2E3 were identified in 38 patients. Mean BCVA of the better-seeing eye was 0.32 logarithm of the minimum angle of resolution (logMAR) at baseline and 0.39 logMAR at follow-up. In most eyes (76% [76/100]), BCVA remained stable, with a mean BCVA change of 0.07 logMAR during follow-up. Nyctalopia was the most common initial symptom, reported in 92.9% of patients (52/56). Clinical findings were highly variable and included foveomacular schisis (41.1% [26/56]), yellow-white dots (57.1% [32/56]), nummular pigmentation (85.7% [48/56]), torpedo-like lesions (10.7% [6/56]), and circumferential subretinal fibrosis (7.1% [4/56]). Macular and peripheral patterns of autofluorescence were classified as (1) minimal change, (2) hypoautofluorescent (mild diffuse, moderate speckled, moderate diffuse, or advanced), or (3) hyperautofluorescent flecks. One patient showed undetectable electroretinography findings; quantification of main electroretinography components in all other patients revealed amplitude and peak time variability but with pathognomonic electroretinography features. The main electroretinography components showed evidence of age-related worsening over 6.7 decades, at a rate indistinguishable from that seen in unaffected control participants. Eighteen sequence variants in NR2E3 were identified, including 4 novel missense changes. CONCLUSIONS Enhanced S-cone syndrome has a highly variable phenotype with relative clinical and imaging stability over time. Most electroretinography findings have pathognomonic features, but quantitative assessment reveals variability and a normal mean rate of age-related decline, consistent with largely nonprogressive peripheral retinal dysfunction.
Collapse
Affiliation(s)
- Emanuel R de Carvalho
- Moorfields Eye Hospital, London, United Kingdom; Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Anthony G Robson
- Moorfields Eye Hospital, London, United Kingdom; Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Gavin Arno
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, The Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew A Webster
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Michel Michaelides
- Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| |
Collapse
|
15
|
Iannaccone A, Brabbit E, Lopez-Miro C, Love Z, Griffiths V, Kedrov M, Haider NB. Interspecies Correlations between Human and Mouse NR2E3-Associated Recessive Disease. J Clin Med 2021; 10:jcm10030475. [PMID: 33513943 PMCID: PMC7865474 DOI: 10.3390/jcm10030475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
NR2E3-associated recessive disease in humans is historically defined by congenital night blinding retinopathy, characterized by an initial increase in short-wavelength (S)-cone sensitivity and progressive loss of rod and cone function. The retinal degeneration 7 (rd7) murine model, harboring a recessive mutation in the mouse ortholog of NR2E3, has been a well-studied disease model and recently evaluated as a therapeutic model for NR2E3-associated retinal degenerations. This study aims to draw parallels between human and mouse NR2E3-related disease through examination of spectral domain optical coherence tomography (SD-OCT) imaging between different stage of human disease and its murine counterpart. We propose that SD-OCT is a useful non-invasive diagnostic tool to compare human clinical dystrophy presentation with that of the rd7 mouse and make inference that may be of therapeutically relevance. Additionally, a longitudinal assessment of rd7 disease progression, utilizing available clinical data from our patients as well as extensive retrospective analysis of visual acuity data from published cases of human NR2E3-related disease, was curated to identify further valuable correlates between human and mouse Nr2e3 disease. Results of this study validate the slow progression of NR2E3-associated disease in humans and the rd7 mice and identify SD-OCT characteristics in patients at or near the vascular arcades that correlate well with the whorls and rosettes that are seen also in the rd7 mouse and point to imaging features that appear to be associated with better preserved S-cone mediated retinal function. The correlation of histological findings between rd7 mice and human imaging provides a solid foundation for diagnostic use of pathophysiological and prognostic information to further define characteristics and a relevant timeline for therapeutic intervention in the field of NR2E3-associated retinopathies.
Collapse
Affiliation(s)
- Alessandro Iannaccone
- Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC 27710, USA; (C.L.-M.); (V.G.); (M.K.)
- Correspondence: (A.I.); (N.B.H.)
| | - Emily Brabbit
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (E.B.); (Z.L.)
| | - Christiaan Lopez-Miro
- Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC 27710, USA; (C.L.-M.); (V.G.); (M.K.)
| | - Zoe Love
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (E.B.); (Z.L.)
| | - Victoria Griffiths
- Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC 27710, USA; (C.L.-M.); (V.G.); (M.K.)
| | - Marina Kedrov
- Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC 27710, USA; (C.L.-M.); (V.G.); (M.K.)
| | - Neena B. Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (E.B.); (Z.L.)
- Correspondence: (A.I.); (N.B.H.)
| |
Collapse
|
16
|
Al-khuzaei S, Broadgate S, Halford S, Jolly JK, Shanks M, Clouston P, Downes SM. Novel Pathogenic Sequence Variants in NR2E3 and Clinical Findings in Three Patients. Genes (Basel) 2020; 11:E1288. [PMID: 33138239 PMCID: PMC7716234 DOI: 10.3390/genes11111288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 01/08/2023] Open
Abstract
A retrospective review of the clinical records of patients seen at the Oxford Eye Hospital identified as having NR2E3 mutations was performed. The data included symptoms, best-corrected visual acuity, multimodal retinal imaging, visual fields and electrophysiology testing. Three participants were identified with biallelic NR2E3 pathogenic sequence variants detected using a targeted NGS gene panel, two of which were novel. Participant I was a Nepalese male aged 68 years, and participants II and III were white Caucasian females aged 69 and 10 years old, respectively. All three had childhood onset nyctalopia, a progressive decrease in central vision, and visual field loss. Patients I and III had photopsia, patient II had photosensitivity and patient III also had photophobia. Visual acuities in patients I and II were preserved even into the seventh decade, with the worst visual acuity measured at 6/36. Visual field constriction was severe in participant I, less so in II, and fields were full to bright targets targets in participant III. Electrophysiology testing in all three demonstrated loss of rod function. The three patients share some of the typical distinctive features of NR2E3 retinopathies, as well as a novel clinical observation of foveal ellipsoid thickening.
Collapse
Affiliation(s)
- Saoud Al-khuzaei
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-k.); (J.K.J.)
| | - Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (S.H.)
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (S.H.)
| | - Jasleen K. Jolly
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-k.); (J.K.J.)
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (S.H.)
| | - Morag Shanks
- Oxford Medical Genetics Laboratory, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK; (M.S.); (P.C.)
| | - Penny Clouston
- Oxford Medical Genetics Laboratory, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK; (M.S.); (P.C.)
| | - Susan M. Downes
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-k.); (J.K.J.)
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (S.H.)
| |
Collapse
|
17
|
Collin GB, Gogna N, Chang B, Damkham N, Pinkney J, Hyde LF, Stone L, Naggert JK, Nishina PM, Krebs MP. Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss. Cells 2020; 9:E931. [PMID: 32290105 PMCID: PMC7227028 DOI: 10.3390/cells9040931] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated. The progression of PR cell loss with postnatal age was documented in mutant alleles of genes grouped by biological function. As anticipated, a wide range in the onset and rate of cell loss was observed among the reported models. The analysis underscored relationships between RD genes and ciliary function, transcription-coupled DNA damage repair, and cellular chloride homeostasis. Comparing the mouse gene list to human RD genes identified in the RetNet database revealed that mouse models are available for 40% of the known human diseases, suggesting opportunities for future research. This work may provide insight into the molecular players and pathways through which PR degenerative disease occurs and may be useful for planning translational studies.
Collapse
Affiliation(s)
- Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Navdeep Gogna
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Nattaya Damkham
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jai Pinkney
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lillian F. Hyde
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Jürgen K. Naggert
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| |
Collapse
|
18
|
Musilova Z, Indermaur A, Bitja‐Nyom AR, Omelchenko D, Kłodawska M, Albergati L, Remišová K, Salzburger W. Evolution of the visual sensory system in cichlid fishes from crater lake Barombi Mbo in Cameroon. Mol Ecol 2019; 28:5010-5031. [DOI: 10.1111/mec.15217] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Zuzana Musilova
- Department of Zoology Charles University in Prague Prague Czech Republic
- Zoological Institute University of Basel Basel Switzerland
| | | | - Arnold Roger Bitja‐Nyom
- Department of Biological Sciences University of Ngaoundéré Ngaoundéré Cameroon
- Department of Management of Fisheries and Aquatic Ecosystems University of Douala Douala Cameroon
| | - Dmytro Omelchenko
- Department of Zoology Charles University in Prague Prague Czech Republic
| | - Monika Kłodawska
- Department of Zoology Charles University in Prague Prague Czech Republic
| | - Lia Albergati
- Zoological Institute University of Basel Basel Switzerland
| | - Kateřina Remišová
- Department of Physiology Charles University in Prague Prague Czech Republic
| | | |
Collapse
|
19
|
Milićević N, Mazzaro N, de Bruin I, Wils E, Ten Brink J, Asbroek AT, Mendoza J, Bergen A, Felder-Schmittbuhl MP. Rev-Erbα and Photoreceptor Outer Segments modulate the Circadian Clock in Retinal Pigment Epithelial Cells. Sci Rep 2019; 9:11790. [PMID: 31409842 PMCID: PMC6692399 DOI: 10.1038/s41598-019-48203-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022] Open
Abstract
Retinal photoreceptor outer segments (POS) are renewed daily through phagocytosis by the adjacent retinal pigment epithelial (RPE) monolayer. Phagocytosis is mainly driven by the RPE circadian clock but the underlying molecular mechanisms remain elusive. Using ARPE-19 (human RPE cell-line) dispersed and monolayer cell cultures, we investigated the influence of cellular organization on the RPE clock and phagocytosis genes. PCR analysis revealed rhythmic expression of clock and phagocytosis genes in all ARPE-19 cultures. Monolayers had a tendency for higher amplitudes of clock gene oscillations. In all conditions ARNTL, CRY1, PER1-2, REV-ERBα, ITGB5, LAMP1 and PROS1 were rhythmically expressed with REV-ERBα being among the clock genes whose expression showed most robust rhythms in ARPE-19 cells. Using RPE-choroid explant preparations of the mPer2Luc knock-in mice we found that Rev-Erbα deficiency induced significantly longer periods and earlier phases of PER2-bioluminescence oscillations. Furthermore, early phagocytosis factors β5-Integrin and FAK and the lysosomal marker LAMP1 protein levels are rhythmic. Finally, POS incubation affects clock and clock-controlled phagocytosis gene expression in RPE monolayers in a time-dependent manner suggesting that POS can reset the RPE clock. These results shed some light on the complex interplay between POS, the RPE clock and clock-controlled phagocytosis machinery which is modulated by Rev-Erbα.
Collapse
Affiliation(s)
- Nemanja Milićević
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), 67000, Strasbourg, France.,Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nadia Mazzaro
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), 67000, Strasbourg, France
| | - Ivanka de Bruin
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Esmée Wils
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jacoline Ten Brink
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Anneloor Ten Asbroek
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jorge Mendoza
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), 67000, Strasbourg, France
| | - Arthur Bergen
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Netherlands Institute for Neuroscience (NIN-KNAW), Amsterdam, The Netherlands
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), 67000, Strasbourg, France.
| |
Collapse
|
20
|
Roman AJ, Powers CA, Semenov EP, Sheplock R, Aksianiuk V, Russell RC, Sumaroka A, Garafalo AV, Cideciyan AV, Jacobson SG. Short-Wavelength Sensitive Cone (S-cone) Testing as an Outcome Measure for NR2E3 Clinical Treatment Trials. Int J Mol Sci 2019; 20:ijms20102497. [PMID: 31117170 PMCID: PMC6566804 DOI: 10.3390/ijms20102497] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/08/2019] [Accepted: 05/17/2019] [Indexed: 11/16/2022] Open
Abstract
Recessively-inherited NR2E3 gene mutations cause an unusual retinopathy with abnormally-increased short-wavelength sensitive cone (S-cone) function, in addition to reduced rod and long/middle-wavelength sensitive cone (L/M-cone) function. Progress toward clinical trials to treat patients with this otherwise incurable retinal degeneration prompted the need to determine efficacy outcome measures. Comparisons were made between three computerized perimeters available in the clinic. These perimeters could deliver short-wavelength stimuli on longer-wavelength adapting backgrounds to measure whether S-cone vision can be quantified. Results from a cohort of normal subjects were compared across the three perimeters to determine S-cone isolation and test-retest variability. S-cone perimetry data from NR2E3-ESCS (enhanced S-cone syndrome) patients were examined and determined to have five stages of disease severity. Using these stages, strategies were proposed for monitoring efficacy of either a focal or retina-wide intervention. This work sets the stage for clinical trials.
Collapse
Affiliation(s)
- Alejandro J Roman
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, USA.
| | - Christian A Powers
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, USA.
| | - Evelyn P Semenov
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, USA.
| | - Rebecca Sheplock
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, USA.
| | - Valeryia Aksianiuk
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, USA.
| | - Robert C Russell
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, USA.
| | - Alexander Sumaroka
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, USA.
| | - Alexandra V Garafalo
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, USA.
| | - Artur V Cideciyan
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, USA.
| | - Samuel G Jacobson
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, USA.
| |
Collapse
|
21
|
Felder-Schmittbuhl MP, Buhr ED, Dkhissi-Benyahya O, Hicks D, Peirson SN, Ribelayga CP, Sandu C, Spessert R, Tosini G. Ocular Clocks: Adapting Mechanisms for Eye Functions and Health. Invest Ophthalmol Vis Sci 2019; 59:4856-4870. [PMID: 30347082 PMCID: PMC6181243 DOI: 10.1167/iovs.18-24957] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vision is a highly rhythmic function adapted to the extensive changes in light intensity occurring over the 24-hour day. This adaptation relies on rhythms in cellular and molecular processes, which are orchestrated by a network of circadian clocks located within the retina and in the eye, synchronized to the day/night cycle and which, together, fine-tune detection and processing of light information over the 24-hour period and ensure retinal homeostasis. Systematic or high throughput studies revealed a series of genes rhythmically expressed in the retina, pointing at specific functions or pathways under circadian control. Conversely, knockout studies demonstrated that the circadian clock regulates retinal processing of light information. In addition, recent data revealed that it also plays a role in development as well as in aging of the retina. Regarding synchronization by the light/dark cycle, the retina displays the unique property of bringing together light sensitivity, clock machinery, and a wide range of rhythmic outputs. Melatonin and dopamine play a particular role in this system, being both outputs and inputs for clocks. The retinal cellular complexity suggests that mechanisms of regulation by light are diverse and intricate. In the context of the whole eye, the retina looks like a major determinant of phase resetting for other tissues such as the retinal pigmented epithelium or cornea. Understanding the pathways linking the cell-specific molecular machineries to their cognate outputs will be one of the major challenges for the future.
Collapse
Affiliation(s)
- Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Ethan D Buhr
- Department of Ophthalmology, University of Washington Medical School, Seattle, Washington, United States
| | - Ouria Dkhissi-Benyahya
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - David Hicks
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States
| | - Cristina Sandu
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Rainer Spessert
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology & Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
22
|
Garafalo AV, Calzetti G, Cideciyan AV, Roman AJ, Saxena S, Sumaroka A, Choi W, Wright AF, Jacobson SG. Cone Vision Changes in the Enhanced S-Cone Syndrome Caused by NR2E3 Gene Mutations. Invest Ophthalmol Vis Sci 2019; 59:3209-3219. [PMID: 29971438 DOI: 10.1167/iovs.18-24518] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine the progression of cone vision loss in patients with recessive disease from NR2E3 gene mutations. Methods Patients with NR2E3 mutations (n = 37) were studied as a retrospective observational case series clinically and with chromatic static perimetry. Patients were investigated cross-sectionally, and a subset was followed longitudinally. Results Patients showed a range of visual acuities; there was no clear relationship to age. With kinetic perimetry (V4e target), a full field could be retained over many years. Other patients showed progression from a full field, with or without pericentral scotomas, to a small central island. Three patterns of S-cone function were defined, based on percentage of hypersensitive S-cone loci in the field. From occupying most of the visual field, hyperfunctioning S-cone loci could diminish in percent, remaining largely in the periphery. Normal S-cone functioning then dominates, followed by the appearance of an annular region of abnormal S-cone loci approximately 10° to 40° from the fovea. Overall, S-cone sensitivity declined 2.6 times faster than L/M-cone sensitivity. Conclusions Murine proof-of-concept studies suggest that clinical trials of patients with NR2E3 mutations may be forthcoming. Patterns of S-cone hyperfunction across the field would serve as a means to categorize patients as entry criteria or cohort selection in clinical trials. S-cone perimetry can be measured in the clinic and would be the logical efficacy monitor for therapeutic strategies. Given further understanding of the natural history of the disease, targeting the annular region of S-cone dysfunction for a focal therapy or for monitoring in a retina-wide intervention warrants consideration.
Collapse
Affiliation(s)
- Alexandra V Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Giacomo Calzetti
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alejandro J Roman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Supna Saxena
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Windy Choi
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alan F Wright
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
23
|
Cehajic-Kapetanovic J, Cottriall CL, Jolly JK, Shanks M, Clouston P, Charbel Issa P, MacLaren RE. Electrophysiological verification of enhanced S-cone syndrome caused by a novel c.755T>C NR2E3 missense variant. Ophthalmic Genet 2019; 40:29-33. [PMID: 30466340 DOI: 10.1080/13816810.2018.1547912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Nuclear hormone receptor gene, NR2E3, plays a critical role in retinogenesis and determination of the rod photoreceptor phenotype. Mutations in NR2E3 typically lead to recessive enhanced S-cone syndrome (ESCS), where affected individuals show higher sensitivity to short wavelength light and early onset rod dysfunction. Patients with ESCS present in early childhood with nyctalopia, enhanced sensitivity to blue light and display a very heterogeneic retinal phenotype with varying degrees of clumped pigmentation and occasional retinoschisis. PURPOSE To confirm the pathogenicity of a novel mutation in NR2E3 using electrophysiological studies. MATERIALS AND METHODS Patient underwent detailed clinical evaluation and ophthalmic imaging followed by next generation sequencing analysis and electrophysiological studies. RESULTS We describe a case of a young man of Greek descent with a family history of retinal degeneration. His fundal features at presentation were atypical of ESCS, with striking macular involvement in both eyes, including fibrotic subretinal material overlying the pigment epithelial detachment in one eye and schisis in the other. Genetic testing revealed a novel homozygous variant in NR2E3 gene of uncertain pathogenicity. Instead of performing further genetic analyses, electrophysiological studies showed pathognomonic changes in the S-cone response. CONCLUSIONS With the recent clinical endorsement of a gene therapy for RPE65 related-inherited retinal degeneration it is of paramount importance to correctly identify the pathogenic genetic mutation. In this particular syndrome, we highlight the value of electrophysiology to confirm the pathogenicity of a novel mutation in NR2E3 and aid the diagnosis of ESCS, with potential for gene therapy in the future.
Collapse
Affiliation(s)
- Jasmina Cehajic-Kapetanovic
- a Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences , Oxford University , Oxford , UK
- b Oxford Eye Hospital , Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| | - Charles L Cottriall
- a Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences , Oxford University , Oxford , UK
- b Oxford Eye Hospital , Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| | - Jasleen K Jolly
- a Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences , Oxford University , Oxford , UK
- b Oxford Eye Hospital , Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| | - Morag Shanks
- c Oxford Medical Genetics Laboratories , Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| | - Penny Clouston
- c Oxford Medical Genetics Laboratories , Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| | - Peter Charbel Issa
- a Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences , Oxford University , Oxford , UK
- b Oxford Eye Hospital , Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| | - Robert E MacLaren
- a Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences , Oxford University , Oxford , UK
- b Oxford Eye Hospital , Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| |
Collapse
|
24
|
Meyer KJ, Anderson MG. Genetic modifiers as relevant biological variables of eye disorders. Hum Mol Genet 2017; 26:R58-R67. [PMID: 28482014 DOI: 10.1093/hmg/ddx180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022] Open
Abstract
From early in the study of mammalian genetics, it was clear that modifiers can have a striking influence on phenotypes. Today, several modifiers have now been studied in enough detail to allow a glimpse of how they function and influence our perspective of disease. With respect to diseases of the eye, some modifiers are an important source of phenotypic variation that can elucidate how genes function in networks to collectively shape ocular anatomy and physiology, thus influencing our understanding of basic biology. Other modifiers represent an opportunity for new therapeutic targets, whose manipulation could be used to mitigate ophthalmic disease. Here, we review progress in the study of genetic modifiers of eye disorders, with examples from mice and humans that together illustrate the ubiquitous nature of genetic modifiers and why they are relevant biological variables in experimental design. Special emphasis is given to ophthalmic modifiers in mice, especially those relevant to selection of genetic background and those that might inadvertently be a source of experimental variability. These modifiers are capable of influencing interpretations of many experiments using targeted genome manipulations such as knockouts or transgenics. Whereas there are fewer examples of modifiers of eye disorders in humans with a molecular identification, there is ample evidence that they exist and should be considered as a relevant biological variable in human genetic studies as well.
Collapse
Affiliation(s)
- Kacie J Meyer
- Department of Molecular Physiology and Biophysics.,Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Michael G Anderson
- Department of Molecular Physiology and Biophysics.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA.,Center for Prevention and Treatment of Visual Loss, Iowa City Veterans Administration Medical Center, Iowa City, IA 52242, USA
| |
Collapse
|
25
|
Llavona P, Pinelli M, Mutarelli M, Marwah VS, Schimpf-Linzenbold S, Thaler S, Yoeruek E, Vetter J, Kohl S, Wissinger B. Allelic Expression Imbalance in the Human Retinal Transcriptome and Potential Impact on Inherited Retinal Diseases. Genes (Basel) 2017; 8:genes8100283. [PMID: 29053642 PMCID: PMC5664133 DOI: 10.3390/genes8100283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 01/19/2023] Open
Abstract
Inherited retinal diseases (IRDs) are often associated with variable clinical expressivity (VE) and incomplete penetrance (IP). Underlying mechanisms may include environmental, epigenetic, and genetic factors. Cis-acting expression quantitative trait loci (cis-eQTLs) can be implicated in the regulation of genes by favoring or hampering the expression of one allele over the other. Thus, the presence of such loci elicits allelic expression imbalance (AEI) that can be traced by massive parallel sequencing techniques. In this study, we performed an AEI analysis on RNA-sequencing (RNA-seq) data, from 52 healthy retina donors, that identified 194 imbalanced single nucleotide polymorphisms(SNPs) in 67 IRD genes. Focusing on SNPs displaying AEI at a frequency higher than 10%, we found evidence of AEI in several IRD genes regularly associated with IP and VE (BEST1, RP1, PROM1, and PRPH2). Based on these SNPs commonly undergoing AEI, we performed pyrosequencing in an independent sample set of 17 healthy retina donors in order to confirm our findings. Indeed, we were able to validate CDHR1, BEST1, and PROM1 to be subjected to cis-acting regulation. With this work, we aim to shed light on differentially expressed alleles in the human retina transcriptome that, in the context of autosomal dominant IRD cases, could help to explain IP or VE.
Collapse
Affiliation(s)
- Pablo Llavona
- Institute for Ophthalmic Research, Centre for Ophthalmology, 72076 Tuebingen, Germany.
| | - Michele Pinelli
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy.
| | | | - Veer Singh Marwah
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy.
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| | | | - Sebastian Thaler
- Center for Ophthalmology, 72076 Tuebingen, Germany. --unituebingen-i09f.de
| | - Efdal Yoeruek
- Center for Ophthalmology, 72076 Tuebingen, Germany.
- Augenklinik Mülheim, 45468 Mülheim an der Ruhr, Germany.
| | - Jan Vetter
- Universitäts-Augenklinik, 55131 Mainz, Germany.
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, 72076 Tuebingen, Germany.
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, 72076 Tuebingen, Germany.
| |
Collapse
|
26
|
CLINICAL PROGRESS IN INHERITED RETINAL DEGENERATIONS: GENE THERAPY CLINICAL TRIALS AND ADVANCES IN GENETIC SEQUENCING. Retina 2017; 37:417-423. [PMID: 27753762 DOI: 10.1097/iae.0000000000001341] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE Inherited retinal dystrophies are a significant cause of vision loss and are characterized by the loss of photoreceptors and the retinal pigment epithelium (RPE). Mutations in approximately 250 genes cause inherited retinal degenerations with a high degree of genetic heterogeneity. New techniques in next-generation sequencing are allowing the comprehensive analysis of all retinal disease genes thus changing the approach to the molecular diagnosis of inherited retinal dystrophies. This review serves to analyze clinical progress in genetic diagnostic testing and implications for retinal gene therapy. METHODS A literature search of PubMed and OMIM was conducted to relevant articles in inherited retinal dystrophies. RESULTS Next-generation genetic sequencing allows the simultaneous analysis of all the approximately 250 genes that cause inherited retinal dystrophies. Reported diagnostic rates range are high and range from 51% to 57%. These new sequencing tools are highly accurate with sensitivities of 97.9% and specificities of 100%. Retinal gene therapy clinical trials are underway for multiple genes including RPE65, ABCA4, CHM, RS1, MYO7A, CNGA3, CNGB3, ND4, and MERTK for which a molecular diagnosis may be beneficial for patients. CONCLUSION Comprehensive next-generation genetic sequencing of all retinal dystrophy genes is changing the paradigm for how retinal specialists perform genetic testing for inherited retinal degenerations. Not only are high diagnostic yields obtained, but mutations in genes with novel clinical phenotypes are also identified. In the era of retinal gene therapy clinical trials, identifying specific genetic defects will increasingly be of use to identify patients who may enroll in clinical studies and benefit from novel therapies.
Collapse
|
27
|
The nuclear hormone receptor gene Nr2c1 (Tr2) is a critical regulator of early retina cell patterning. Dev Biol 2017; 429:343-355. [DOI: 10.1016/j.ydbio.2017.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023]
|
28
|
Riordan JD, Nadeau JH. From Peas to Disease: Modifier Genes, Network Resilience, and the Genetics of Health. Am J Hum Genet 2017; 101:177-191. [PMID: 28777930 PMCID: PMC5544383 DOI: 10.1016/j.ajhg.2017.06.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Phenotypes are rarely consistent across genetic backgrounds and environments, but instead vary in many ways depending on allelic variants, unlinked genes, epigenetic factors, and environmental exposures. In the extreme, individuals carrying the same causal DNA sequence variant but on different backgrounds can be classified as having distinct conditions. Similarly, some individuals that carry disease alleles are nevertheless healthy despite affected family members in the same environment. These genetic background effects often result from the action of so-called "modifier genes" that modulate the phenotypic manifestation of target genes in an epistatic manner. While complicating the prospects for gene discovery and the feasibility of mechanistic studies, such effects are opportunities to gain a deeper understanding of gene interaction networks that provide organismal form and function as well as resilience to perturbation. Here, we review the principles of modifier genetics and assess progress in studies of modifier genes and their targets in both simple and complex traits. We propose that modifier effects emerge from gene interaction networks whose structure and function vary with genetic background and argue that these effects can be exploited as safe and effective ways to prevent, stabilize, and reverse disease and dysfunction.
Collapse
Affiliation(s)
- Jesse D Riordan
- Pacific Northwest Research Institute, Seattle, WA 98122, USA.
| | - Joseph H Nadeau
- Pacific Northwest Research Institute, Seattle, WA 98122, USA.
| |
Collapse
|
29
|
Achermann JC, Schwabe J, Fairall L, Chatterjee K. Genetic disorders of nuclear receptors. J Clin Invest 2017; 127:1181-1192. [PMID: 28368288 DOI: 10.1172/jci88892] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Following the first isolation of nuclear receptor (NR) genes, genetic disorders caused by NR gene mutations were initially discovered by a candidate gene approach based on their known roles in endocrine pathways and physiologic processes. Subsequently, the identification of disorders has been informed by phenotypes associated with gene disruption in animal models or by genetic linkage studies. More recently, whole exome sequencing has associated pathogenic genetic variants with unexpected, often multisystem, human phenotypes. To date, defects in 20 of 48 human NR genes have been associated with human disorders, with different mutations mediating phenotypes of varying severity or several distinct conditions being associated with different changes in the same gene. Studies of individuals with deleterious genetic variants can elucidate novel roles of human NRs, validating them as targets for drug development or providing new insights into structure-function relationships. Importantly, human genetic discoveries enable definitive disease diagnosis and can provide opportunities to therapeutically manage affected individuals. Here we review germline changes in human NR genes associated with "monogenic" conditions, including a discussion of the structural basis of mutations that cause distinctive changes in NR function and the molecular mechanisms mediating pathogenesis.
Collapse
|
30
|
Choudhary M, Malek G. Rethinking Nuclear Receptors as Potential Therapeutic Targets for Retinal Diseases. ACTA ACUST UNITED AC 2016; 21:1007-1018. [PMID: 27455994 DOI: 10.1177/1087057116659856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Collectively, retinal diseases, including age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy, result in severe vision impairment worldwide. The absence and/or limited availability of successful drug therapies for these blinding disorders necessitates further understanding their pathobiology and identifying new targetable signaling pathways. Nuclear receptors are transcription regulators of many key aspects of human physiology, as well as pathophysiology, with reported roles in development, aging, and disease. Some of the pathways regulated by nuclear receptors include, but are not limited to, angiogenesis, inflammation, and lipid metabolic dysregulation, mechanisms also important in the initiation and development of several retinal diseases. Herein, we present an overview of the biology of three diseases affecting the posterior eye, summarize a growing body of evidence that suggests direct or indirect involvement of nuclear receptors in disease progression, and discuss the therapeutic potential of targeting nuclear receptors for treatment.
Collapse
Affiliation(s)
- Mayur Choudhary
- 1 Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Goldis Malek
- 1 Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA.,2 Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
31
|
Ait-Hmyed Hakkari O, Acar N, Savier E, Spinnhirny P, Bennis M, Felder-Schmittbuhl MP, Mendoza J, Hicks D. Rev-Erbα modulates retinal visual processing and behavioral responses to light. FASEB J 2016; 30:3690-3701. [PMID: 27440795 DOI: 10.1096/fj.201600414r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/05/2016] [Indexed: 01/16/2023]
Abstract
The circadian clock is thought to adjust retinal sensitivity to ambient light levels, yet the involvement of specific clock genes is poorly understood. We explored the potential role of the nuclear receptor subfamily 1, group D, member 1 (REV-ERBα; or NR1D1) in this respect. In light-evoked behavioral tests, compared with wild-type littermates, Rev-Erbα-/- mice showed enhanced negative masking at low light levels (0.1 lx). Rev-Erbα-/- mouse retinas displayed significantly higher numbers of intrinsically photosensitive retinal ganglion cells (ipRGCs; 62% more compared with wild-type) and more intense melanopsin immunostaining of individual ipRGCs. In agreement with a pivotal role for melanopsin, negative masking at low light intensities was abolished in Rev-Erbα-/- Opn4-/- (melanopsin gene) double-null mice. Rev-Erbα-/- mice showed shortened latencies of both a and b electroretinogram waves, modified scotopic and photopic b-wave and scotopic threshold responses, and increased pupillary constriction, all of which suggested increased light sensitivity. However, wild-type and Rev-Erbα-/- mice displayed no detectable differences by in vivo fundus imaging, retinal histology, or expression of cell type-specific markers for major retinal cell populations. We conclude that REV-ERBα plays a major role in retinal information processing, and we speculate that REV-ERBα and melanopsin set sensitivity levels of the rod-mediated ipRGC pathway to coordinate activity with ambient light.-Ait-Hmyed Hakkari, O., Acar, N., Savier, E., Spinnhirny, P., Bennis, M., Felder-Schmittbuhl, M.-P., Mendoza, J., Hicks, D. Rev-Erbα modulates retinal visual processing and behavioral responses to light.
Collapse
Affiliation(s)
- Ouafa Ait-Hmyed Hakkari
- Department of Neurobiology of Rhythms, Centre National de la Recherche Scientifique, Unités Propres de Recherche 3212, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.,Université Cadi Ayad, Département de Biologie, Laboratoire de Pharmacologie, Neurobiologie et Comportement, Marrakech, Morocco
| | - Niyazi Acar
- Centre National de la Recherche Scientifique, Unités Mixtes de Recherche 6265, Centre des Sciences du Goût et de l'Alimentation, Dijon, France.,Institut National de la Recherche Agronomique, Unités Mixtes de Recherche 324, Centre des Sciences du Goût et de l'Alimentation, Dijon, France.,Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation, Dijon, France
| | - Elise Savier
- Department of Neurobiology of Rhythms, Centre National de la Recherche Scientifique, Unités Propres de Recherche 3212, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Perrine Spinnhirny
- Department of Neurobiology of Rhythms, Centre National de la Recherche Scientifique, Unités Propres de Recherche 3212, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Mohammed Bennis
- Université Cadi Ayad, Département de Biologie, Laboratoire de Pharmacologie, Neurobiologie et Comportement, Marrakech, Morocco
| | - Marie-Paule Felder-Schmittbuhl
- Department of Neurobiology of Rhythms, Centre National de la Recherche Scientifique, Unités Propres de Recherche 3212, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Jorge Mendoza
- Department of Neurobiology of Rhythms, Centre National de la Recherche Scientifique, Unités Propres de Recherche 3212, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - David Hicks
- Department of Neurobiology of Rhythms, Centre National de la Recherche Scientifique, Unités Propres de Recherche 3212, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France;
| |
Collapse
|
32
|
Olivares AM, Moreno-Ramos OA, Haider NB. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases. J Exp Neurosci 2016; 9:93-121. [PMID: 27168725 PMCID: PMC4859451 DOI: 10.4137/jen.s25480] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/13/2022] Open
Abstract
The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration.
Collapse
Affiliation(s)
- Ana Maria Olivares
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Oscar Andrés Moreno-Ramos
- Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Autosomal recessive retinitis pigmentosa with homozygous rhodopsin mutation E150K and non-coding cis-regulatory variants in CRX-binding regions of SAMD7. Sci Rep 2016; 6:21307. [PMID: 26887858 PMCID: PMC4758057 DOI: 10.1038/srep21307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/19/2016] [Indexed: 01/17/2023] Open
Abstract
The aim of this study was to unravel the molecular pathogenesis of an unusual retinitis pigmentosa (RP) phenotype observed in a Turkish consanguineous family. Homozygosity mapping revealed two candidate genes, SAMD7 and RHO. A homozygous RHO mutation c.448G > A, p.E150K was found in two affected siblings, while no coding SAMD7 mutations were identified. Interestingly, four non-coding homozygous variants were found in two SAMD7 genomic regions relevant for binding of the retinal transcription factor CRX (CRX-bound regions, CBRs) in these affected siblings. Three variants are located in a promoter CBR termed CBR1, while the fourth is located more downstream in CBR2. Transcriptional activity of these variants was assessed by luciferase assays and electroporation of mouse retinal explants with reporter constructs of wild-type and variant SAMD7 CBRs. The combined CBR2/CBR1 variant construct showed significantly decreased SAMD7 reporter activity compared to the wild-type sequence, suggesting a cis-regulatory effect on SAMD7 expression. As Samd7 is a recently identified Crx-regulated transcriptional repressor in retina, we hypothesize that these SAMD7 variants might contribute to the retinal phenotype observed here, characterized by unusual, recognizable pigment deposits, differing from the classic spicular intraretinal pigmentation observed in other individuals homozygous for p.E150K, and typically associated with RP in general.
Collapse
|
34
|
Kunst S, Wolloscheck T, Kelleher DK, Wolfrum U, Sargsyan SA, Iuvone PM, Baba K, Tosini G, Spessert R. Pgc-1α and Nr4a1 Are Target Genes of Circadian Melatonin and Dopamine Release in Murine Retina. Invest Ophthalmol Vis Sci 2016; 56:6084-94. [PMID: 26393668 DOI: 10.1167/iovs.15-17503] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
PURPOSE The neurohormones melatonin and dopamine mediate clock-dependent/circadian regulation of inner retinal neurons and photoreceptor cells and in this way promote their functional adaptation to time of day and their survival. To fulfill this function they act on melatonin receptor type 1 (MT1 receptors) and dopamine D4 receptors (D4 receptors), respectively. The aim of the present study was to screen transcriptional regulators important for retinal physiology and/or pathology (Dbp, Egr-1, Fos, Nr1d1, Nr2e3, Nr4a1, Pgc-1α, Rorβ) for circadian regulation and dependence on melatonin signaling/MT1 receptors or dopamine signaling/D4 receptors. METHODS This was done by gene profiling using quantitative polymerase chain reaction in mice deficient in MT1 or D4 receptors. RESULTS The data obtained determined Pgc-1α and Nr4a1 as transcriptional targets of circadian melatonin and dopamine signaling, respectively. CONCLUSIONS The results suggest that Pgc-1α and Nr4a1 represent candidate genes for linking circadian neurohormone release with functional adaptation and healthiness of retina and photoreceptor cells.
Collapse
Affiliation(s)
- Stefanie Kunst
- Institute of Functional and Clinical Anatomy University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany 2Department of Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University, Mainz, Germany
| | - Tanja Wolloscheck
- Institute of Functional and Clinical Anatomy University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Debra K Kelleher
- Institute of Functional and Clinical Anatomy University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Uwe Wolfrum
- Department of Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University, Mainz, Germany
| | - S Anna Sargsyan
- Departments of Ophthalmology and Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - P Michael Iuvone
- Departments of Ophthalmology and Pharmacology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Kenkichi Baba
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Rainer Spessert
- Institute of Functional and Clinical Anatomy University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
35
|
Grishchuk Y, Stember KG, Matsunaga A, Olivares AM, Cruz NM, King VE, Humphrey DM, Wang SL, Muzikansky A, Betensky RA, Thoreson WB, Haider N, Slaugenhaupt SA. Retinal Dystrophy and Optic Nerve Pathology in the Mouse Model of Mucolipidosis IV. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:199-209. [PMID: 26608452 DOI: 10.1016/j.ajpath.2015.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/31/2015] [Accepted: 09/10/2015] [Indexed: 11/19/2022]
Abstract
Mucolipidosis IV is a debilitating developmental lysosomal storage disorder characterized by severe neuromotor retardation and progressive loss of vision, leading to blindness by the second decade of life. Mucolipidosis IV is caused by loss-of-function mutations in the MCOLN1 gene, which encodes the transient receptor potential channel protein mucolipin-1. Ophthalmic pathology in patients includes corneal haze and progressive retinal and optic nerve atrophy. Herein, we report ocular pathology in Mcoln1(-/-) mouse, a good phenotypic model of the disease. Early, but non-progressive, thinning of the photoreceptor layer, reduced levels of rhodopsin, disrupted rod outer segments, and widespread accumulation of the typical storage inclusion bodies were the major histological findings in the Mcoln1(-/-) retina. Electroretinograms showed significantly decreased functional response (scotopic a- and b-wave amplitudes) in the Mcoln1(-/-) mice. At the ultrastructural level, we observed formation of axonal spheroids and decreased density of axons in the optic nerve of the aged (6-month-old) Mcoln1(-/-) mice, which indicates progressive axonal degeneration. Our data suggest that mucolipin-1 plays a role in postnatal development of photoreceptors and provides a set of outcome measures that can be used for ocular therapy development for mucolipidosis IV.
Collapse
Affiliation(s)
- Yulia Grishchuk
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts.
| | - Katherine G Stember
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts
| | - Aya Matsunaga
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts
| | - Ana M Olivares
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Nelly M Cruz
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Victoria E King
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts
| | - Daniel M Humphrey
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts
| | - Shirley L Wang
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts
| | - Alona Muzikansky
- Massachusetts General Hospital Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Rebecca A Betensky
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Wallace B Thoreson
- Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Neena Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Susan A Slaugenhaupt
- Department of Neurology, Center for Human Genetic Research, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|