1
|
Sakurai M, Imaizumi M, Sakai Y, Morimoto M. Rolipram promotes hippocampal regeneration in mice after trimethyltin-induced neurodegeneration. Neuroreport 2024; 35:832-838. [PMID: 38973498 DOI: 10.1097/wnr.0000000000002072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
This study aimed to investigate the effects of rolipram, a phosphodiesterase inhibitor, on brain tissue regeneration. Trimethyltin-injected mice, an animal model of hippocampal tissue regeneration, was created by a single injection of trimethyltin chloride (2.2 mg/kg, intraperitoneally). Daily rolipram administration (10 mg/kg, intraperitoneally) was performed from the day after trimethyltin injection until the day before sampling. In Experiment 1, brain samples were collected on day 7 postinjection of trimethyltin following the forced swim test. In Experiment 2, bromodeoxyuridine (150 mg/kg, intraperitoneally/day) was administered on days 3-5 and sampling was on day 21 postinjection of trimethyltin. Samples were routinely embedded in paraffin and sections were obtained for histopathological investigation. In Experiment 1, rolipram-treated mice showed shortened immobility times in the forced swim test. Histopathology revealed that rolipram treatment had improved the replenishment of neuronal nuclei-positive neurons in the dentate gyrus, which was accompanied by an increase in the percentage of phosphorylated cyclic AMP response element-binding protein-positive cells. In addition, rolipram had decreased the percentage of ionized calcium-binding adapter protein 1-positive microglia with activated morphology and the number of tumor necrosis factor-alpha-expressing cells. In Experiment 2, double immunofluorescence for bromodeoxyuridine/neuronal nuclei revealed an increase of double-positive cells in rolipram-treated mice. These results demonstrate that rolipram effectively promotes brain tissue regeneration by enhancing the survival of newborn neurons and inhibiting neuroinflammation.
Collapse
Affiliation(s)
- Masashi Sakurai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi
| | - Miko Imaizumi
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi
| | - Yusuke Sakai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masahiro Morimoto
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi
| |
Collapse
|
2
|
Madanlal D, Guinard C, Nuñez VP, Becker S, Garnham J, Khayachi A, Léger S, O'Donovan C, Singh S, Stern S, Slaney C, Trappenberg T, Alda M, Nunes A. A pilot study examining the impact of lithium treatment and responsiveness on mnemonic discrimination in bipolar disorder. J Affect Disord 2024; 351:49-57. [PMID: 38280568 DOI: 10.1016/j.jad.2024.01.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/29/2024]
Abstract
INTRODUCTION Mnemonic discrimination (MD), the ability to discriminate new stimuli from similar memories, putatively involves dentate gyrus pattern separation. Since lithium may normalize dentate gyrus functioning in lithium-responsive bipolar disorder (BD), we hypothesized that lithium treatment would be associated with better MD in lithium-responsive BD patients. METHODS BD patients (N = 69; NResponders = 16 [23 %]) performed the Continuous Visual Memory Test (CVMT), which requires discriminating between novel and previously seen images. Before testing, all patients had prophylactic lithium responsiveness assessed over ≥1 year of therapy (with the Alda Score), although only thirty-eight patients were actively prescribed lithium at time of testing (55 %; 12/16 responders, 26/53 nonresponders). We then used computational modelling to extract patient-specific MD indices. Linear models were used to test how (A) lithium treatment, (B) lithium responsiveness via the continuous Alda score, and (C) their interaction, affected MD. RESULTS Superior MD performance was associated with lithium treatment exclusively in lithium-responsive patients (Lithium x AldaScore β = 0.257 [SE 0.078], p = 0.002). Consistent with prior literature, increased age was associated with worse MD (β = -0.03 [SE 0.01], p = 0.005). LIMITATIONS Secondary pilot analysis of retrospectively collected data in a cross-sectional design limits generalizability. CONCLUSION Our study is the first to examine MD performance in BD. Lithium is associated with better MD performance only in lithium responders, potentially due to lithium's effects on dentate gyrus granule cell excitability. Our results may influence the development of behavioural probes for dentate gyrus neuronal hyperexcitability in BD.
Collapse
Affiliation(s)
- Dhanyaasri Madanlal
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Christian Guinard
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Vanessa Pardo Nuñez
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Suzanna Becker
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Julie Garnham
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Anouar Khayachi
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Simon Léger
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Claire O'Donovan
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Selena Singh
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Israel
| | - Claire Slaney
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Thomas Trappenberg
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Abraham Nunes
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
3
|
Basheer N, Smolek T, Hassan I, Liu F, Iqbal K, Zilka N, Novak P. Does modulation of tau hyperphosphorylation represent a reasonable therapeutic strategy for Alzheimer's disease? From preclinical studies to the clinical trials. Mol Psychiatry 2023; 28:2197-2214. [PMID: 37264120 PMCID: PMC10611587 DOI: 10.1038/s41380-023-02113-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 06/03/2023]
Abstract
Protein kinases (PKs) have emerged as one of the most intensively investigated drug targets in current pharmacological research, with indications ranging from oncology to neurodegeneration. Tau protein hyperphosphorylation was the first pathological post-translational modification of tau protein described in Alzheimer's disease (AD), highlighting the role of PKs in neurodegeneration. The therapeutic potential of protein kinase inhibitors (PKIs)) and protein phosphatase 2 A (PP2A) activators in AD has recently been explored in several preclinical and clinical studies with variable outcomes. Where a number of preclinical studies demonstrate a visible reduction in the levels of phospho-tau in transgenic tauopathy models, no reduction in neurofibrillary lesions is observed. Amongst the few PKIs and PP2A activators that progressed to clinical trials, most failed on the efficacy front, with only a few still unconfirmed and potential positive trends. This suggests that robust preclinical and clinical data is needed to unequivocally evaluate their efficacy. To this end, we take a systematic look at the results of preclinical and clinical studies of PKIs and PP2A activators, and the evidence they provide regarding the utility of this approach to evaluate the potential of targeting tau hyperphosphorylation as a disease modifying therapy.
Collapse
Affiliation(s)
- Neha Basheer
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, 845 10, Slovakia
| | - Tomáš Smolek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, 845 10, Slovakia
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, 845 10, Slovakia.
- AXON Neuroscience R&D Services SE, Bratislava, 811 02, Slovakia.
| | - Petr Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, 845 10, Slovakia.
- AXON Neuroscience CRM Services SE, Bratislava, 811 02, Slovakia.
| |
Collapse
|
4
|
Hwang Y, Park JH, Kim HC, Shin EJ. GABA B receptor activation alters astrocyte phenotype changes induced by trimethyltin via ERK signaling in the dentate gyrus of mice. Life Sci 2023; 319:121529. [PMID: 36841471 DOI: 10.1016/j.lfs.2023.121529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
AIMS We examined the effect of γ-aminobutyric acid (GABA)B receptor activation on astrocyte phenotype changes induced by trimethyltin (TMT) in the dentate gyrus of mice. MAIN METHODS Male C57BL/6N mice received TMT (2.6 mg/kg, i.p.), and the expression of GABAB receptors was evaluated in the hippocampus. The GABAB receptor agonist baclofen (2.5, 5, or 10 mg/kg, i.p. × 5 at 12-h intervals) was administered 3-5 days after TMT treatment, and the expression of Iba-1, GFAP, and astrocyte phenotype markers was evaluated 6 days after TMT. SL327 (30 mg/kg, i.p.), an extracellular signal-related kinase (ERK) inhibitor, was administered 1 h after each baclofen treatment. KEY FINDINGS TMT insult significantly induced the astroglial expression of GABAB receptors in the dentate molecular layer. Baclofen significantly promoted the expression of S100A10, EMP1, and CD109, but not that of C3, GGTA1, and MX1 induced by TMT. In addition, baclofen significantly increased the TMT-induced expression of p-ERK in the dentate molecular layer. Interestingly, p-ERK was more colocalized with S100A10 than with C3 after TMT insult, and a significant positive correlation was found between the expression of p-ERK and S100A10. Consistently, SL327 reversed the effect of baclofen on astrocyte phenotype changes. Baclofen also enhanced the TMT-induced astroglial expression of glial cell-derived neurotrophic factor (GDNF), an anti-inflammatory astrocytes-to-microglia mediator, and consequently attenuated Iba-1 expression and delayed apoptotic neuronal death. SIGNIFICANCE Our results suggest that GABAB receptor activation increases S100A10-positive anti-inflammatory astrocytes and astroglial GDNF expression via ERK signaling after TMT excitotoxicity in the dentate molecular layer of mice.
Collapse
Affiliation(s)
- Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jung Hoon Park
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
5
|
Do Autophagy Enhancers/ROS Scavengers Alleviate Consequences of Mild Mitochondrial Dysfunction Induced in Neuronal-Derived Cells? Int J Mol Sci 2021; 22:ijms22115753. [PMID: 34072255 PMCID: PMC8197898 DOI: 10.3390/ijms22115753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/02/2021] [Accepted: 05/19/2021] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial function is at the nexus of pathways regulating synaptic-plasticity and cellular resilience. The involvement of brain mitochondrial dysfunction along with increased reactive oxygen species (ROS) levels, accumulating mtDNA mutations, and attenuated autophagy is implicated in psychiatric and neurodegenerative diseases. We have previously modeled mild mitochondrial dysfunction assumed to occur in bipolar disorder (BPD) using exposure of human neuronal cells (SH-SY5Y) to rotenone (an inhibitor of mitochondrial-respiration complex-I) for 72 and 96 h, which exhibited up- and down-regulation of mitochondrial respiration, respectively. In this study, we aimed to find out whether autophagy enhancers (lithium, trehalose, rapamycin, and resveratrol) and/or ROS scavengers [resveratrol, N-acetylcysteine (NAC), and Mn-Tbap) can ameliorate neuronal mild mitochondrial dysfunction. Only lithium (added for the last 24/48 h of the exposure to rotenone for 72/96 h, respectively) counteracted the effect of rotenone on most of the mitochondrial respiration parameters (measured as oxygen consumption rate (OCR)). Rapamycin, resveratrol, NAC, and Mn-Tbap counteracted most of rotenone's effects on OCR parameters after 72 h, possibly via different mechanisms, which are not necessarily related to their ROS scavenging and/or autophagy enhancement effects. The effect of lithium reversing rotenone's effect on OCR parameters is compatible with lithium's known positive effects on mitochondrial function and is possibly mediated via its effect on autophagy. By-and-large it may be summarized that some autophagy enhancers/ROS scavengers alleviate some rotenone-induced mild mitochondrial changes in SH-SY5Y cells.
Collapse
|
6
|
Gao L, Gao T, Zeng T, Huang P, Wong NK, Dong Z, Li Y, Deng G, Wu Z, Lv Z. Blockade of Indoleamine 2, 3-dioxygenase 1 ameliorates hippocampal neurogenesis and BOLD-fMRI signals in chronic stress precipitated depression. Aging (Albany NY) 2021; 13:5875-5891. [PMID: 33591947 PMCID: PMC7950278 DOI: 10.18632/aging.202511] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/08/2020] [Indexed: 04/13/2023]
Abstract
Indoleamine 2, 3-dioxygenase 1 (IDO1) has been implicated in the pathogenesis of depression, though its molecular mechanism is still poorly understood. We investigated the molecular mechanism of IDO1 in depression by using the chronic unpredictable mild stress (CUMS) model in Ido1-/- mice and WT mice. The brain blood oxygen level dependent (BOLD) signals in mice were collected by functional magnetic resonance imaging (fMRI) technology. IDO1 inhibitor INCB024360 was intervened in dorsal raphe nucleus (DRN) through stereotactic injection. We found an elevation of serum IDO1 activity and decreased 5-HT in CUMS mice, and the serum IDO1 activity was negatively correlated with 5-HT level. Consistently, IDO1 was increased in hippocampus and DRN regions, accompanied by a reduction of hippocampal BDNF levels in mice with CUMS. Specifically, pharmacological inhibition of IDO1 activity in the DRN alleviated depressive-like behaviour with improving hippocampal BDNF expression and neurogenesis in CUMS mice. Furthermore, ablation of Ido1 exerted stress resistance and decreased the sensitivity of depression in CUMS mice with the stable BOLD signals, BDNF expression and neurogenesis in hippocampus. Thus, IDO1 hyperactivity played crucial roles in modulating 5-HT metabolism and BDNF function thereby impacting outcomes of hippocampal neurogenesis and BOLD signals in depressive disorder.
Collapse
Affiliation(s)
- Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Tingting Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Foshan Maternal and Child Health Research Institute, Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China
| | - Nai-Kei Wong
- State Key Discipline of Infectious Diseases, Shenzhen Third People’s Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhaoyang Dong
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yunjia Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Guanghui Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiyong Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Analysis of Differentially Expressed Genes in the Dentate Gyrus and Anterior Cingulate Cortex in a Mouse Model of Depression. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5013565. [PMID: 33628784 PMCID: PMC7892236 DOI: 10.1155/2021/5013565] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/11/2020] [Accepted: 01/23/2021] [Indexed: 12/18/2022]
Abstract
Major depressive disorder (MDD) is a prevalent, chronic, and relapse-prone psychiatric disease. However, the intermediate molecules resulting from stress and neurological impairment in different brain regions are still unclear. To clarify the pathological changes in the dentate gyrus (DG) and anterior cingulate cortex (ACC) regions of the MDD brain, which are the most closely related to the disease, we investigated the published microarray profile dataset GSE84183 to identify unpredictable chronic mild stress- (UCMS-) induced differentially expressed genes (DEGs) in the DG and ACC regions. Based on the DEG data, functional annotation, protein-protein interaction, and transcription factor (TF) analyses were performed. In this study, 1071 DEGs (679 upregulated and 392 downregulated) and 410 DEGs (222 upregulated and 188 downregulated) were identified in DG and ACC, respectively. The pathways and GO terms enriched by the DEGs in the DG, such as cell adhesion, proteolysis, ion transport, transmembrane transport, chemical synaptic transmission, immune system processes, response to lipopolysaccharide, and nervous system development, may reveal the molecular mechanism of MDD. However, the DEGs in the ACC involved metabolic processes, proteolysis, visual learning, DNA methylation, innate immune responses, cell migration, and circadian rhythm. Sixteen hub genes in the DG (Fn1, Col1a1, Anxa1, Penk, Ptgs2, Cdh1, Timp1, Vim, Rpl30, Rps21, Dntt, Ptk2b, Jun, Avp, Slit1, and Sema5a) were identified. Eight hub genes in the ACC (Prkcg, Grin1, Syngap1, Rrp9, Grwd1, Pik3r1, Hnrnpc, and Prpf40a) were identified. In addition, eleven TFs (Chd2, Zmiz1, Myb, Etv4, Rela, Tcf4, Tcf12, Chd1, Mef2a, Ubtf, and Mxi1) were predicted to regulate more than two of these hub genes. The expression levels of ten randomly selected hub genes that were specifically differentially expressed in the MDD-like animal model were verified in the corresponding regions in the human brain. These hub genes and TFs may be regarded as potential targets for future MDD treatment strategies, thus aiding in the development of new therapeutic approaches to MDD.
Collapse
|
8
|
Bortolasci CC, Spolding B, Kidnapillai S, Connor T, Truong TT, Liu ZS, Panizzutti B, Richardson MF, Gray L, Berk M, Dean OM, Walder K. Transcriptional Effects of Psychoactive Drugs on Genes Involved in Neurogenesis. Int J Mol Sci 2020; 21:ijms21218333. [PMID: 33172123 PMCID: PMC7672551 DOI: 10.3390/ijms21218333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Although neurogenesis is affected in several psychiatric diseases, the effects and mechanisms of action of psychoactive drugs on neurogenesis remain unknown and/or controversial. This study aims to evaluate the effects of psychoactive drugs on the expression of genes involved in neurogenesis. Neuronal-like cells (NT2-N) were treated with amisulpride (10 µM), aripiprazole (0.1 µM), clozapine (10 µM), lamotrigine (50 µM), lithium (2.5 mM), quetiapine (50 µM), risperidone (0.1 µM), or valproate (0.5 mM) for 24 h. Genome wide mRNA expression was quantified and analysed using gene set enrichment analysis, with the neurogenesis gene set retrieved from the Gene Ontology database and the Mammalian Adult Neurogenesis Gene Ontology (MANGO) database. Transcription factors that are more likely to regulate these genes were investigated to better understand the biological processes driving neurogenesis. Targeted metabolomics were performed using gas chromatography-mass spectrometry. Six of the eight drugs decreased the expression of genes involved in neurogenesis in both databases. This suggests that acute treatment with these psychoactive drugs negatively regulates the expression of genes involved in neurogenesis in vitro. SOX2 and three of its target genes (CCND1, BMP4, and DKK1) were also decreased after treatment with quetiapine. This can, at least in part, explain the mechanisms by which these drugs decrease neurogenesis at a transcriptional level in vitro. These results were supported by the finding of increased metabolite markers of mature neurons following treatment with most of the drugs tested, suggesting increased proportions of mature relative to immature neurons consistent with reduced neurogenesis.
Collapse
Affiliation(s)
- Chiara C. Bortolasci
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
- Correspondence:
| | - Briana Spolding
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
| | - Srisaiyini Kidnapillai
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
| | - Timothy Connor
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
| | - Trang T.T. Truong
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
| | - Zoe S.J. Liu
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
| | - Bruna Panizzutti
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
| | - Mark F. Richardson
- School of Life and Environmental Sciences, Genomics Centre, Deakin University, Geelong 3220, Australia;
| | - Laura Gray
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville 3052, Australia
- Centre of Youth Mental Health, University of Melbourne, Parkville 3052, Australia
- Orygen Youth Health Research Centre, Parkville 3052, Australia
| | - Olivia M. Dean
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia
| | - Ken Walder
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
| |
Collapse
|
9
|
Hwang Y, Kim HC, Shin EJ. Enhanced neurogenesis is involved in neuroprotection provided by rottlerin against trimethyltin-induced delayed apoptotic neuronal damage. Life Sci 2020; 262:118494. [PMID: 32991881 DOI: 10.1016/j.lfs.2020.118494] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/12/2020] [Accepted: 09/20/2020] [Indexed: 12/26/2022]
Abstract
AIMS We here investigated the effect of late- and post-ictal treatment with rottlerin, a polyphenol compound isolated from Mallotus philippinensis, on delayed apoptotic neuronal death induced by trimethyltin (TMT) in mice. MAIN METHODS Male C57BL/6N mice received a single injection of TMT (2.4 mg/kg, i.p.), and mice were treated with rottlerin after a peak time (i.e., 2 d post-TMT) of convulsive behaviors and apoptotic cell death (5.0 mg/kg, i.p. at 3 and 4 d after TMT injection). Object location test and tail suspension test were performed at 5 d after TMT injection. In addition, changes in the expression of apoptotic and neurogenic markers in the dentate gyrus were examined. KEY FINDINGS Late- and post-ictal treatment with rottlerin suppressed delayed neuronal apoptosis in the dentate gyrus, and attenuated memory impairments (as evaluated by object location test) and depression-like behaviors (as evaluated by tail suspension test) at 5 days after TMT injection in mice. In addition, rottlerin enhanced the expression of Sox2 and DCX, and facilitated p-ERK expression in BrdU-incorporated cells in the dentate gyrus of TMT-treated mice. Rottlerin also increased p-Akt expression, and attenuated the increase in the ratio of pro-apoptotic factors/anti-apoptotic factors, and consequent cytosolic cytochrome c release and caspase-3 cleavage. Rottlerin-mediated action was significantly reversed by SL327, an ERK inhibitor. SIGNIFICANCE Our results suggest that late- and post-ictal treatment with rottlerin attenuates TMT-induced delayed neuronal apoptosis in the dentate gyrus of mice via promotion of neurogenesis and inhibition of an on-going apoptotic process through up-regulation of p-ERK.
Collapse
Affiliation(s)
- Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea.
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea.
| |
Collapse
|
10
|
Autophagy in trimethyltin-induced neurodegeneration. J Neural Transm (Vienna) 2020; 127:987-998. [PMID: 32451631 DOI: 10.1007/s00702-020-02210-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Autophagy is a degradative process playing an important role in removing misfolded or aggregated proteins, clearing damaged organelles, such as mitochondria and endoplasmic reticulum, as well as eliminating intracellular pathogens. The autophagic process is important for balancing sources of energy at critical developmental stages and in response to nutrient stress. Recently, autophagy has been involved in the pathophysiology of neurodegenerative diseases although its beneficial (pro-survival) or detrimental (pro-death) role remains controversial. In the present review, we discuss the role of autophagy following intoxication with trimethyltin (TMT), an organotin compound that induces severe hippocampal neurodegeneration associated with astrocyte and microglia activation. TMT is considered a useful tool to study the molecular mechanisms occurring in human neurodegenerative diseases such as Alzheimer's disease and temporal lobe epilepsy. This is also relevant in the field of environmental safety, since organotin compounds are used as heat stabilizers in polyvinyl chloride polymers, industrial and agricultural biocides, and as industrial chemical catalysts.
Collapse
|
11
|
Bacopa monnieri (L.) Wettst. Extract Improves Memory Performance via Promotion of Neurogenesis in the Hippocampal Dentate Gyrus of Adolescent Mice. Int J Mol Sci 2020; 21:ijms21093365. [PMID: 32397562 PMCID: PMC7247711 DOI: 10.3390/ijms21093365] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/29/2022] Open
Abstract
Bacopa monnieri L. Wettst. (BM) is a botanical component of Ayurvedic medicines and of dietary supplements used worldwide for cognitive health and function. We previously reported that administration of BM alcoholic extract (BME) prevents trimethyltin (TMT)-induced cognitive deficits and hippocampal cell damage and promotes TMT-induced hippocampal neurogenesis. In this study, we demonstrate that administration of BME improves spatial working memory in adolescent (5-week- old) healthy mice but not adult (8-week-old) mice. Moreover, improved spatial working memory was retained even at 4 weeks after terminating 1-week treatment of adolescent mice. One-week BME treatment of adolescent mice significantly enhanced hippocampal BrdU incorporation and expression of genes involved in neurogenesis determined by RNAseq analysis. Cell death, as detected by histochemistry, appeared not to be significant. A significant increase in neurogenesis was observed in the dentate gyrus region 4 weeks after terminating 1-week treatment of adolescent mice with BME. Bacopaside I, an active component of BME, promoted the proliferation of neural progenitor cells in vitro in a concentration-dependent manner via the facilitation of the Akt and ERK1/2 signaling. These results suggest that BME enhances spatial working memory in healthy adolescent mice by promoting hippocampal neurogenesis and that the effects of BME are due, in significant amounts, to bacopaside I.
Collapse
|
12
|
Kin K, Yasuhara T, Kawauchi S, Kameda M, Hosomoto K, Tomita Y, Umakoshi M, Kuwahara K, Kin I, Kidani N, Morimoto J, Sasaki T, Date I. Lithium counteracts depressive behavior and augments the treatment effect of selective serotonin reuptake inhibitor in treatment-resistant depressed rats. Brain Res 2019; 1717:52-59. [DOI: 10.1016/j.brainres.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/24/2019] [Accepted: 04/02/2019] [Indexed: 12/28/2022]
|
13
|
Pham HTN, Phan SV, Tran HN, Phi XT, Le XT, Nguyen KM, Fujiwara H, Yoneyama M, Ogita K, Yamaguchi T, Matsumoto K. Bacopa monnieri (L.) Ameliorates Cognitive Deficits Caused in a Trimethyltin-Induced Neurotoxicity Model Mice. Biol Pharm Bull 2019; 42:1384-1393. [DOI: 10.1248/bpb.b19-00288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | | | | | - Hironori Fujiwara
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama
| | - Masanori Yoneyama
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Kiyokazu Ogita
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Taro Yamaguchi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Kinzo Matsumoto
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama
| |
Collapse
|
14
|
Li + activated nanohydroxyapatite doped with Eu 3+ ions enhances proliferative activity and viability of human stem progenitor cells of adipose tissue and olfactory ensheathing cells. Further perspective of nHAP:Li +, Eu 3+ application in theranostics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:151-162. [PMID: 28575969 DOI: 10.1016/j.msec.2017.04.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 01/30/2023]
Abstract
Spinal cord injuries (SCI) often require simultaneous regeneration of nerve tissue and bone. Hydroxyapatites are described as bioresorbable materials with proper biocompatibility and osteoconductivity, therefore its application for spinal surgery is considered. In this paper, we present repeatable method for developing nanocrystalline calcium hydroxyapatites structurally modified with Li+ ions (nHAP:Li+). Obtained biomaterials were profoundly characterized in terms of their physicochemical properties. Moreover, we have shown that nHAP:Li+ doped with europium (Eu3+) may serve as a theranostic agent, what additionally extend its potential usage for SCI treatment. The biocompatibility of nHAP:Li+ was determined using human olfactory ensheathing cells (hOECs) and adipose tissue-derived multipotent stromal cells (hASCs). Both population of cells are eagerly applied for cell-based therapies in SCI, mainly due to their paracrine activity. The extensive in vitro studies showed that nHAP:Li+ promotes the cells proliferation, viability and cell-cell interactions. Obtained results provides encouraging approach that may have potential application in regenerative medicine and that could fulfil the promise of personalized medicine - important in SCI treatment.
Collapse
|
15
|
Lee S, Yang M, Kim J, Kang S, Kim J, Kim JC, Jung C, Shin T, Kim SH, Moon C. Trimethyltin-induced hippocampal neurodegeneration: A mechanism-based review. Brain Res Bull 2016; 125:187-99. [PMID: 27450702 DOI: 10.1016/j.brainresbull.2016.07.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/19/2016] [Indexed: 12/22/2022]
Abstract
Trimethyltin (TMT), a toxic organotin compound, induces neurodegeneration selectively involving the limbic system and especially prominent in the hippocampus. Neurodegeneration-associated behavioral abnormalities, such as hyperactivity, aggression, cognitive deficits, and epileptic seizures, occur in both exposed humans and experimental animal models. Previously, TMT had been used generally in industry and agriculture, but the use of TMT has been limited because of its dangers to people. TMT has also been used to make a promising in vivo rodent model of neurodegeneration because of its region-specific characteristics. Several studies have demonstrated that TMT-treated animal models of epileptic seizures can be used as tools for researching hippocampus-specific neurotoxicity as well as the molecular mechanisms leading to hippocampal neurodegeneration. This review summarizes the in vivo and in vitro underlying mechanisms of TMT-induced hippocampal neurodegeneration (oxidative stress, inflammatory responses, and neuronal death/survival). Thus, the present review may be helpful to provide general insights into TMT-induced neurodegeneration and approaches to therapeutic interventions for neurodegenerative diseases, including temporal lobe epilepsy.
Collapse
Affiliation(s)
- Sueun Lee
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea
| | - Miyoung Yang
- Department of Anatomy, School of Medicine and Institute for Environmental Science, Wonkwang University, Jeonbuk 54538, South Korea
| | - Jinwook Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea
| | - Juhwan Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea
| | - Jong-Choon Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea
| | - Chaeyong Jung
- Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 63243, South Korea
| | - Sung-Ho Kim
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Departments of Veterinary Anatomy and Veterinary Toxicology, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
16
|
Brzózka MM, Havemann-Reinecke U, Wichert SP, Falkai P, Rossner MJ. Molecular Signatures of Psychosocial Stress and Cognition Are Modulated by Chronic Lithium Treatment. Schizophr Bull 2016; 42 Suppl 1:S22-33. [PMID: 26714764 PMCID: PMC4960433 DOI: 10.1093/schbul/sbv194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chronic psychosocial stress is an important environmental risk factor of psychiatric diseases such as schizophrenia. Social defeat in rodents has been shown to be associated with maladaptive cellular and behavioral consequences including cognitive impairments. Although gene expression changes upon psychosocial stress have been described, a comprehensive transcriptome profiling study at the global level in precisely defined hippocampal subregions which are associated with learning has been lacking. In this study, we exposed adult C57Bl/6N mice for 3 weeks to "resident-intruder" paradigm and combined laser capture microdissection with microarray analyses to identify transcriptomic signatures of chronic psychosocial stress in dentate gyrus and CA3 subregion of the dorsal hippocampus. At the individual transcript level, we detected subregion specific stress responses whereas gene set enrichment analyses (GSEA) identified several common pathways upregulated upon chronic psychosocial stress related to proteasomal function and energy supply. Behavioral profiling revealed stress-associated impairments most prominent in fear memory formation which was prevented by chronic lithium treatment. Thus, we again microdissected the CA3 region and performed global transcriptome analysis to search for molecular signatures altered by lithium treatment in stressed animals. By combining GSEA with unsupervised clustering, we detected pathways that are regulated by stress and lithium in the CA3 region of the hippocampus including proteasomal components, oxidative phosphorylation, and anti-oxidative mechanisms. Our study thus provides insight into hidden molecular phenotypes of chronic psychosocial stress and lithium treatment and proves a beneficial role for lithium treatment as an agent attenuating negative effects of psychosocial stress on cognition.
Collapse
Affiliation(s)
- Magdalena M. Brzózka
- Molecular and Behavioral Neurobiology, Department of Psychiatry, Ludwig-Maximillians-University, Munich, Germany;,*To whom correspondence should be addressed; Molecular and Behavioral Neurobiology, Department of Psychiatry, Ludwigs-Maximilians-University, Nussbaumstr. 7, D-80336 Munich, Germany; tel: +49-89-4400-52743, fax: +49-89-4400-54741, e-mail:
| | - Ursula Havemann-Reinecke
- Department of Psychiatry and CNMPB-DFG Research Center, Georg-August-University, Goettingen, Germany
| | - Sven P. Wichert
- Molecular and Behavioral Neurobiology, Department of Psychiatry, Ludwig-Maximillians-University, Munich, Germany
| | - Peter Falkai
- Molecular and Behavioral Neurobiology, Department of Psychiatry, Ludwig-Maximillians-University, Munich, Germany
| | - Moritz J. Rossner
- Molecular and Behavioral Neurobiology, Department of Psychiatry, Ludwig-Maximillians-University, Munich, Germany;,Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Goettingen, Germany
| |
Collapse
|
17
|
Fabrizi C, Pompili E, Somma F, De Vito S, Ciraci V, Artico M, Lenzi P, Fornai F, Fumagalli L. Lithium limits trimethyltin-induced cytotoxicity and proinflammatory response in microglia without affecting the concurrent autophagy impairment. J Appl Toxicol 2016; 37:207-213. [PMID: 27226005 DOI: 10.1002/jat.3344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/14/2016] [Accepted: 04/14/2016] [Indexed: 12/21/2022]
Abstract
Trimethyltin (TMT) is a highly toxic molecule present as an environmental contaminant causing neurodegeneration particularly of the limbic system both in humans and in rodents. We recently described the occurrence of impairment in the late stages of autophagy in TMT-intoxicated astrocytes. Here we show that similarly to astrocytes also in microglia, TMT induces the precocious block of autophagy indicated by the accumulation of the autophagosome marker, microtubule associated protein light chain 3. Consistent with autophagy impairment we observe in TMT-treated microglia the accumulation of p62/SQSTM1, a protein specifically degraded through this pathway. Lithium has been proved effective in limiting neurodegenerations and, in particular, in ameliorating symptoms of TMT intoxication in rodents. In our in vitro model, lithium displays a pro-survival and anti-inflammatory action reducing both cell death and the proinflammatory response of TMT-treated microglia. In particular, lithium exerts these activities without reducing TMT-induced accumulation of light chain 3 protein. In fact, the autophagic block imposed by TMT is unaffected by lithium administration. These results are of interest as defects in the execution of autophagy are frequently observed in neurodegenerative diseases and lithium is considered a promising therapeutic agent for these pathologies. Thus, it is relevant that this cation can still maintain its pro-survival and anti-inflammatory role in conditions of autophagy block. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Cinzia Fabrizi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy
| | - Elena Pompili
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy
| | - Francesca Somma
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy
| | - Stefania De Vito
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy
| | - Viviana Ciraci
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy
| | - Marco Artico
- Department of Sensory Organs, Sapienza University, Rome, Italy
| | - Paola Lenzi
- Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy
| | - Francesco Fornai
- Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Lorenzo Fumagalli
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy
| |
Collapse
|
18
|
Weig BC, Richardson JR, Lowndes HE, Reuhl KR. Trimethyltin intoxication induces the migration of ventricular/subventricular zone cells to the injured murine hippocampus. Neurotoxicology 2016; 54:72-80. [PMID: 27045884 DOI: 10.1016/j.neuro.2016.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 01/08/2023]
Abstract
Following the postnatal decline of cell proliferation in the mammalian central nervous system, the adult brain retains progenitor cells with stem cell-like properties in the subventricular zone (SVZ) and the subgranular zone (SGZ) of the hippocampus. Brain injury can stimulate proliferation and redirect the migration pattern of SVZ precursor cells to the injury site. Sublethal exposure to the neurotoxicant trimethyltin (TMT) causes dose-dependent necrosis and apoptosis in the hippocampus dentate gyrus and increases SGZ stem cell proliferation to generate new granule cells. To determine whether SVZ cells also contribute to the repopulation of the TMT-damaged dentate gyrus, 6-8 week old male C3H mice were injected with the carbocyanine dye spDiI and bromodeoxyuridine (80mg/kg; ip.) to label ventricular cells prior to TMT exposure. The presence of labeled cells in hippocampus was determined 7 and 28days after TMT exposure. No significant change in the number of BrdU(+) and spDiI(+) cells was observed in the dentate gyrus 7days after TMT treatment. However, 28days after TMT treatment there was a 3-4 fold increase in the number of spDiI-labeled cells in the hippocampal hilus and dentate gyrus. Few spDiI(+) cells stained positive for the mature phenotypic markers NeuN or GFAP, suggesting they may represent undifferentiated cells. A small percentage of migrating cells were BrdU(+)/spDiI(+), indicating some newly produced, SVZ- derived precursors migrated to the hippocampus. Taken together, these data suggest that TMT-induced injury of the hippocampus can stimulate the migration of ventricular zone-derived cells to injured dentate gyrus.
Collapse
Affiliation(s)
- Blair C Weig
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy and Joint Program in Toxicology, Rutgers Biomedical Health Sciences, Piscataway, NJ, United States
| | - Jason R Richardson
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy and Joint Program in Toxicology, Rutgers Biomedical Health Sciences, Piscataway, NJ, United States; Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Herbert E Lowndes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy and Joint Program in Toxicology, Rutgers Biomedical Health Sciences, Piscataway, NJ, United States
| | - Kenneth R Reuhl
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy and Joint Program in Toxicology, Rutgers Biomedical Health Sciences, Piscataway, NJ, United States.
| |
Collapse
|
19
|
Fabrizi C, Pompili E, De Vito S, Somma F, Catizone A, Ricci G, Lenzi P, Fornai F, Fumagalli L. Impairment of the autophagic flux in astrocytes intoxicated by trimethyltin. Neurotoxicology 2015; 52:12-22. [PMID: 26459185 DOI: 10.1016/j.neuro.2015.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/02/2015] [Accepted: 10/05/2015] [Indexed: 01/10/2023]
Abstract
Autophagy is a lysosomal catabolic route for protein aggregates and damaged organelles which in different stress conditions, such as starvation, generally improves cell survival. An impairment of this degradation pathway has been reported to occur in many neurodegenerative processes. Trimethyltin (TMT) is a potent neurotoxin present as an environmental contaminant causing tremors, seizures and learning impairment in intoxicated subjects. The present data show that in rat primary astrocytes autophagic vesicles (AVs) appeared after few hours of TMT treatment. The analysis of the autophagic flux in TMT-treated astrocytes was consistent with a block of the late stages of autophagy and was accompanied by a progressive accumulation of the microtubule associated protein light chain 3 (LC3) and of p62/SQSTM1. Interestingly, an increased immunoreactivity for p62/SQSTM1 was also observed in hippocampal astrocytes detected in brain slices of TMT-intoxicated rats. The time-lapse recordings of AVs in EGFP-mCherry-LC3B transfected astrocytes demonstrated a reduced mobility of autophagosomes after TMT exposure respect to control cells. The observed block of the autophagic flux cannot be overcome by known autophagy inducers such as rapamycin or 0.5mM lithium. Although ineffective when used at 0.5mM, lithium at higher concentrations (2mM) was able to protect astrocyte cultures from TMT toxicity. This effect correlated well with its ability to determine the phosphorylation/inactivation of glycogen kinase synthase-3β (GSK-3β).
Collapse
Affiliation(s)
- Cinzia Fabrizi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy
| | - Elena Pompili
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy
| | - Stefania De Vito
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy
| | - Francesca Somma
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy
| | - Angela Catizone
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Paola Lenzi
- Department of Human Morphology and Applied Biology, Pisa, Italy.
| | - Francesco Fornai
- Department of Human Morphology and Applied Biology, Pisa, Italy; I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Lorenzo Fumagalli
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy
| |
Collapse
|
20
|
Schnell A, Sandrelli F, Ranc V, Ripperger JA, Brai E, Alberi L, Rainer G, Albrecht U. Mice lacking circadian clock components display different mood-related behaviors and do not respond uniformly to chronic lithium treatment. Chronobiol Int 2015; 32:1075-89. [PMID: 26317159 DOI: 10.3109/07420528.2015.1062024] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genomic studies suggest an association of circadian clock genes with bipolar disorder (BD) and lithium response in humans. Therefore, we tested mice mutant in various clock genes before and after lithium treatment in the forced swim test (FST), a rodent behavioral test used for evaluation of depressive-like states. We find that expression of circadian clock components, including Per2, Cry1 and Rev-erbα, is affected by lithium treatment, and thus, these clock components may contribute to the beneficial effects of lithium therapy. In particular, we observed that Cry1 is important at specific times of the day to transmit lithium-mediated effects. Interestingly, the pathways involving Per2 and Cry1, which regulate the behavior in the FST and the response to lithium, are distinct as evidenced by the phosphorylation of GSK3β after lithium treatment and the modulation of dopamine levels in the striatum. Furthermore, we observed the co-existence of depressive and mania-like symptoms in Cry1 knock-out mice, which resembles the so-called mixed state seen in BD patients. Taken together our results strengthen the concept that a defective circadian timing system may impact directly or indirectly on mood-related behaviors.
Collapse
Affiliation(s)
- Anna Schnell
- a Department of Biology, Unit of Biochemistry , University of Fribourg , Fribourg , Switzerland
| | - Federica Sandrelli
- a Department of Biology, Unit of Biochemistry , University of Fribourg , Fribourg , Switzerland .,b Department of Biology , University of Padova , Padova , Italy
| | - Vaclav Ranc
- c Department of Medicine , Unit of Physiology, University of Fribourg , Fribourg , Switzerland , and
| | - Jürgen A Ripperger
- a Department of Biology, Unit of Biochemistry , University of Fribourg , Fribourg , Switzerland
| | - Emanuele Brai
- d Department of Medicine , Unit of Anatomy, University of Fribourg , Fribourg , Switzerland
| | - Lavinia Alberi
- d Department of Medicine , Unit of Anatomy, University of Fribourg , Fribourg , Switzerland
| | - Gregor Rainer
- c Department of Medicine , Unit of Physiology, University of Fribourg , Fribourg , Switzerland , and
| | - Urs Albrecht
- a Department of Biology, Unit of Biochemistry , University of Fribourg , Fribourg , Switzerland
| |
Collapse
|
21
|
Liechti FD, Stüdle N, Theurillat R, Grandgirard D, Thormann W, Leib SL. The mood-stabilizer lithium prevents hippocampal apoptosis and improves spatial memory in experimental meningitis. PLoS One 2014; 9:e113607. [PMID: 25409333 PMCID: PMC4237452 DOI: 10.1371/journal.pone.0113607] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/28/2014] [Indexed: 12/20/2022] Open
Abstract
Pneumococcal meningitis is associated with high morbidity and mortality rates. Brain damage caused by this disease is characterized by apoptosis in the hippocampal dentate gyrus, a morphological correlate of learning deficits in experimental paradigms. The mood stabilizer lithium has previously been found to attenuate brain damage in ischemic and inflammatory diseases of the brain. An infant rat model of pneumococcal meningitis was used to investigate the neuroprotective and neuroregenerative potential of lithium. To assess an effect on the acute disease, LiCl was administered starting five days prior to intracisternal infection with live Streptococcus pneumoniae. Clinical parameters were recorded, cerebrospinal fluid (CSF) was sampled, and the animals were sacrificed 42 hours after infection to harvest the brain and serum. Cryosections of the brains were stained for Nissl substance to quantify brain injury. Hippocampal gene expression of Bcl-2, Bax, p53, and BDNF was analyzed. Lithium concentrations were measured in serum and CSF. The effect of chronic lithium treatment on spatial memory function and cell survival in the dentate gyrus was evaluated in a Morris water maze and by quantification of BrdU incorporation after LiCl treatment during 3 weeks following infection. In the hippocampus, LiCl significantly reduced apoptosis and gene expression of Bax and p53 while it increased expression of Bcl-2. IL-10, MCP-1, and TNF were significantly increased in animals treated with LiCl compared to NaCl. Chronic LiCl treatment improved spatial memory in infected animals. The mood stabilizer lithium may thus be a therapeutic alternative to attenuate neurofunctional deficits as a result of pneumococcal meningitis.
Collapse
Affiliation(s)
- Fabian D. Liechti
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Nicolas Stüdle
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Regula Theurillat
- Clinical Pharmacology Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Wolfgang Thormann
- Clinical Pharmacology Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephen L. Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Biology Division, Spiez Laboratory, Swiss Federal Office for Civil Protection, Spiez, Switzerland
- * E-mail:
| |
Collapse
|
22
|
Yoneyama M, Tanaka M, Hasebe S, Yamaguchi T, Shiba T, Ogita K. Beneficial effect of cilostazol-mediated neuronal repair following trimethyltin-induced neuronal loss in the dentate gyrus. J Neurosci Res 2014; 93:56-66. [PMID: 25139675 DOI: 10.1002/jnr.23472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/05/2014] [Accepted: 07/24/2014] [Indexed: 01/16/2023]
Abstract
Cilostazol acts as an antiplatelet agent and has other pleiotropic effects based on phosphodiesterase-3-dependent mechanisms. We evaluated whether cilostazol would have a beneficial effect on neuronal repair following hippocampal neuronal damage by using a mouse model of trimethyltin (TMT)-induced neuronal loss/self-repair in the hippocampal dentate gyrus [Ogita et al. (2005) J Neurosci Res 82:609-621]; these mice will hereafter be referred to as impaired animals. A single treatment with cilostazol (10 mg/kg, i.p.) produced no significant change in the number of 5-bromo-2'-deoxyuridine (BrdU)-incorporating cells in the dentate granule cell layer (GCL) or subgranular zone on day 3 after TMT treatment. However, chronic treatment with cilostazol on days 3-15 posttreatment resulted in an increase in the number of BrdU-incorporating cells in the dentate GCL of the impaired animals, and these cells were positive for neuronal nuclear antigen or doublecortin. Cilostazol was effective in elevating the level of phosphorylated cyclic adrenosine monophosphate response element-binding protein (pCREB) in the dentate gyrus of impaired animals. The results of a forced swimming test revealed that the chronic treatment with cilostazol improved the depression-like behavior seen in the impaired animals. In the cultures of hippocampal neural stem/progenitor cells, exposure to cilostazol produced not only enhancement of proliferation activity but also elevation of pCREB levels. Taken together, our data suggest that cilostazol has a beneficial effect on neuronal repair following neuronal loss in the dentate gyrus through promotion of proliferation and/or neuronal differentiation of neural progenitor cells in the subgranular zone.
Collapse
Affiliation(s)
- Masanori Yoneyama
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | | | | | | | | | | |
Collapse
|