1
|
Corallo D, Dalla Vecchia M, Lazic D, Taschner-Mandl S, Biffi A, Aveic S. The molecular basis of tumor metastasis and current approaches to decode targeted migration-promoting events in pediatric neuroblastoma. Biochem Pharmacol 2023; 215:115696. [PMID: 37481138 DOI: 10.1016/j.bcp.2023.115696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Cell motility is a crucial biological process that plays a critical role in the development of multicellular organisms and is essential for tissue formation and regeneration. However, uncontrolled cell motility can lead to the development of various diseases, including neoplasms. In this review, we discuss recent advances in the discovery of regulatory mechanisms underlying the metastatic spread of neuroblastoma, a solid pediatric tumor that originates in the embryonic migratory cells of the neural crest. The highly motile phenotype of metastatic neuroblastoma cells requires targeting of intracellular and extracellular processes, that, if affected, would be helpful for the treatment of high-risk patients with neuroblastoma, for whom current therapies remain inadequate. Development of new potentially migration-inhibiting compounds and standardized preclinical approaches for the selection of anti-metastatic drugs in neuroblastoma will also be discussed.
Collapse
Affiliation(s)
- Diana Corallo
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Marco Dalla Vecchia
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Daria Lazic
- St. Anna Children's Cancer Research Institute, CCRI, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Sabine Taschner-Mandl
- St. Anna Children's Cancer Research Institute, CCRI, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Woman's and Child Health Department, University of Padova, 35121 Padova, Italy
| | - Sanja Aveic
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy.
| |
Collapse
|
2
|
Yadav N, Babu D, Madigubba S, Panigrahi M, Phanithi PB. Tyrphostin A9 attenuates glioblastoma growth by suppressing PYK2/EGFR-ERK signaling pathway. J Neurooncol 2023; 163:675-692. [PMID: 37415005 DOI: 10.1007/s11060-023-04383-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE Glioblastoma (GBM) is a fatal primary brain tumor with extremely poor clinical outcomes. The anticancer efficiency of tyrosine kinase inhibitors (TKIs) has been shown in GBM and other cancer, with limited therapeutic outcomes. In the current study, we aimed to investigate the clinical impact of active proline-rich tyrosine kinase-2 (PYK2) and epidermal growth factor receptor (EGFR) in GBM and evaluate its druggability by a synthetic TKI-Tyrphostin A9 (TYR A9). METHODS The expression profile of PYK2 and EGFR in astrocytoma biopsies (n = 48) and GBM cell lines were evaluated through quantitative PCR, western blots, and immunohistochemistry. The clinical association of phospho-PYK2 and EGFR was analyzed with various clinicopathological features and the Kaplan-Meier survival curve. The phospho-PYK2 and EGFR druggability and subsequent anticancer efficacy of TYR A9 was evaluated in GBM cell lines and intracranial C6 glioma model. RESULTS Our expression data revealed an increased phospho-PYK2, and EGFR expression aggravates astrocytoma malignancy and is associated with patients' poor survival. The mRNA and protein correlation analysis showed a positive association between phospho-PYK2 and EGFR in GBM tissues. The in-vitro studies demonstrated that TYR A9 reduced GBM cell growth, cell migration, and induced apoptosis by attenuating PYK2/EGFR-ERK signaling. The in-vivo data showed TYR A9 treatment dramatically reduced glioma growth with augmented animal survival by repressing PYK2/EGFR-ERK signaling. CONCLUSION Altogether, this study report that increased phospho-PYK2 and EGFR expression in astrocytoma was associated with poor prognosis. The in-vitro and in-vivo evidence underlined translational implication of TYR A9 by suppressing PYK2/EGFR-ERK modulated signaling pathway. The schematic diagram displayed proof of concept of the current study indicating activated PYK2 either through the Ca2+/Calmodulin-dependent protein kinase II (CAMKII) signaling pathway or autophosphorylation at Tyr402 induces association to the SH2 domain of c-Src that leads to c-Src activation. Activated c-Src in turn activates PYK2 at other tyrosine residues that recruit Grb2/SOS complex and trigger ERK½ activation. Besides, PYK2 interaction with c-Src acts as an upstream of EGFR transactivator that can activate the ERK½ signaling pathway, which induces cell proliferation and cell survival by increasing anti-apoptotic proteins or inhibiting pro-apoptotic proteins. TYR A9 treatment attenuate GBM cell proliferation and migration; and induce GBM cell death by inhibiting PYK2 and EGFR-induced ERK activation.
Collapse
Affiliation(s)
- Neera Yadav
- Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Deepak Babu
- Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Sailaja Madigubba
- Department of Laboratory Medicine, Krishna Institute of Medical Sciences, Secunderabad, Telangana, 500 003, India
| | - Manas Panigrahi
- Department of Neurosurgery, Krishna Institute of Medical Sciences, Secunderabad, Telangana, 500 003, India
| | - Prakash Babu Phanithi
- Neuroscience Laboratory, Department of Biotechnology and Bioinformatics School of Life Sciences, University of Hyderabad, Room No: F-23/F-71, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
3
|
Vogt A, Eicher SL, Myers TD, Hrizo SL, Vollmer LL, Meyer EM, Palladino MJ. A High-Content Screening Assay for Small Molecules That Stabilize Mutant Triose Phosphate Isomerase (TPI) as Treatments for TPI Deficiency. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:1029-1039. [PMID: 34167376 PMCID: PMC8380696 DOI: 10.1177/24725552211018198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Triose phosphate isomerase deficiency (TPI Df) is an untreatable, childhood-onset glycolytic enzymopathy. Patients typically present with frequent infections, anemia, and muscle weakness that quickly progresses with severe neuromusclar dysfunction requiring aided mobility and often respiratory support. Life expectancy after diagnosis is typically ~5 years. There are several described pathogenic mutations that encode functional proteins; however, these proteins, which include the protein resulting from the "common" TPIE105D mutation, are unstable due to active degradation by protein quality control (PQC) pathways. Previous work has shown that elevating mutant TPI levels by genetic or pharmacological intervention can ameliorate symptoms of TPI Df in fruit flies. To identify compounds that increase levels of mutant TPI, we have developed a human embryonic kidney (HEK) stable knock-in model expressing the common TPI Df protein fused with green fluorescent protein (HEK TPIE105D-GFP). To directly address the need for lead TPI Df therapeutics, these cells were developed into an optical drug discovery platform that was implemented for high-throughput screening (HTS) and validated in 3-day variability tests, meeting HTS standards. We initially used this assay to screen the 446-member National Institutes of Health (NIH) Clinical Collection and validated two of the hits in dose-response, by limited structure-activity relationship studies with a small number of analogs, and in an orthogonal, non-optical assay in patient fibroblasts. The data form the basis for a large-scale phenotypic screening effort to discover compounds that stabilize TPI as treatments for this devastating childhood disease.
Collapse
Affiliation(s)
- Andreas Vogt
- Department of Computational & Systems Biology, Drug Discovery Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- UPMC Hillman Cancer Center, 5115 Centre Ave, Pittsburgh, PA 15232
| | - Samantha L. Eicher
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Tracey D. Myers
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Stacy L. Hrizo
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Department of Biology, Slippery Rock University of Pennsylvania, Slippery Rock, PA 16057
| | - Laura L. Vollmer
- Department of Computational & Systems Biology, Drug Discovery Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - E. Michael Meyer
- UPMC Hillman Cancer Center, 5115 Centre Ave, Pittsburgh, PA 15232
| | - Michael J. Palladino
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
4
|
Pimm ML, Hotaling J, Henty-Ridilla JL. Profilin choreographs actin and microtubules in cells and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:155-204. [PMID: 32859370 PMCID: PMC7461721 DOI: 10.1016/bs.ircmb.2020.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Actin and microtubules play essential roles in aberrant cell processes that define and converge in cancer including: signaling, morphology, motility, and division. Actin and microtubules do not directly interact, however shared regulators coordinate these polymers. While many of the individual proteins important for regulating and choreographing actin and microtubule behaviors have been identified, the way these molecules collaborate or fail in normal or disease contexts is not fully understood. Decades of research focus on Profilin as a signaling molecule, lipid-binding protein, and canonical regulator of actin assembly. Recent reports demonstrate that Profilin also regulates microtubule dynamics and polymerization. Thus, Profilin can coordinate both actin and microtubule polymer systems. Here we reconsider the biochemical and cellular roles for Profilin with a focus on the essential cytoskeletal-based cell processes that go awry in cancer. We also explore how the use of model organisms has helped to elucidate mechanisms that underlie the regulatory essence of Profilin in vivo and in the context of disease.
Collapse
Affiliation(s)
- Morgan L Pimm
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Jessica Hotaling
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Jessica L Henty-Ridilla
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States; Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
5
|
Abstract
Profilin is a ubiquitously expressed protein well known as a key regulator of actin polymerisation. The actin cytoskeleton is involved in almost all cellular processes including motility, endocytosis, metabolism, signal transduction and gene transcription. Hence, profilin's role in the cell goes beyond its direct and essential function in regulating actin dynamics. This review will focus on the interactions of Profilin 1 and its ligands at the plasma membrane, in the cytoplasm and the nucleus of the cells and the regulation of profilin activity within those cell compartments. We will discuss the interactions of profilin in cell signalling pathways and highlight the importance of the cell context in the multiple functions that this small essential protein has in conjunction with its role in cytoskeletal organisation and dynamics. We will review some of the mechanisms that control profilin expression and the implications of changed expression of profilin in the light of cancer biology and other pathologies.
Collapse
|
6
|
Almeida FV, Gammon L, Laly AC, Pundel OJ, Bishop CL, Connelly JT. High-Content Analysis of Cell Migration Dynamics within a Micropatterned Screening Platform. ACTA ACUST UNITED AC 2020; 3:e1900011. [PMID: 32648701 DOI: 10.1002/adbi.201900011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/31/2019] [Indexed: 01/04/2023]
Abstract
Cell migration is a fundamental biological process that is dynamically regulated by complex interactions between the microenvironment and intrinsic gene expression programs. Here, a high-throughput cell migration assay is developed using micropatterned and dynamically adhesive polymer brush substrates, which support highly precise and consistent control over cell-matrix interactions within a 96-well cell culture plate format. This system is combined with automated imaging and quantitation of both cell motility and organization of the F-actin cytoskeleton for high-content analysis of cell migration phenotypes. Using this platform to screen a library of 147 epigenetic inhibitors identifies a set of EZH2-specific compounds that promote cytoskeletal remodeling and accelerates keratinocyte migration through derepression of an epithelial to mesenchymal transition-like gene expression program. Together, these studies establish the high-throughput, micropatterned assay as a powerful tool for discovery of novel therapeutic targets and for dissecting complex gene-environment interactions involved in wound repair.
Collapse
Affiliation(s)
- Filipe V Almeida
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Luke Gammon
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ana C Laly
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Oscar J Pundel
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Cleo L Bishop
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - John T Connelly
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
7
|
Wu M, Tan X, Liu P, Yang Y, Huang Y, Liu X, Meng X, Yu B, Wu Y, Jin H. Role of exosomal microRNA-125b-5p in conferring the metastatic phenotype among pancreatic cancer cells with different potential of metastasis. Life Sci 2020; 255:117857. [PMID: 32470446 DOI: 10.1016/j.lfs.2020.117857] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
AIMS To explore the pro-metastatic role of exosomes derived from highly invasive pancreatic cancer cell and the associated aberrant expression of exosomal microRNAs (miRNAs). MAIN METHODS Weakly invasive PC-1 cells were treated with exosomes of highly invasive PC-1.0 cells to determine the pro-metastatic effect of PC-1.0 derived exosomes. The exosomal miRNA profile was further investigated using high-throughput sequencing. The level of miR-125b-5p in highly and weakly invasive pancreatic cancer cells was further determined. Pancreatic cancer cells transfected with miR-125b-5p mimic and inhibitor were used to explore the effect of miR-125b-5p on migration, invasion and epithelial-to-mesenchymal transition (EMT). Treatment with PC-1.0 derived exosome and Western blot assay were performed to validate STARD13 as a target of exosomal miR-125b-5p in pancreatic cancer. KEY FINDINGS PC-1.0 derived exosomes promoted the migration and invasion of weakly invasive PC-1 cells. miRNA sequencing revealed 62 miRNAs upregulated in PC-1.0 derived exosomes. miR-125b-5p most significantly promoted migration and invasion and was associated with metastasis in pancreatic cancer. Further, miR-125b-5p was upregulated in highly invasive pancreatic cancer cells and increased migration, invasion, and EMT. Moreover, its upregulation was associated with activation of MEK2/ERK2 signaling. The tumor suppressor STARD13 was directly targeted by miR-125b-5p in pancreatic cancer, which was associated with good prognosis and was suppressed by exosomes derived from highly invasive cancer cells. SIGNIFICANCE This study explored the pro-metastatic role of exosomes derived from highly invasive pancreatic cancer cells and the associated aberrant expression of exosomal miRNAs, which may help to elucidate the metastatic mechanism of pancreatic cancer.
Collapse
Affiliation(s)
- Mengwei Wu
- Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaodong Tan
- Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Peng Liu
- Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yifan Yang
- Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yinpeng Huang
- Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xinlu Liu
- Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiangli Meng
- Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Boqiang Yu
- Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yunhao Wu
- Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Haoyi Jin
- Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
8
|
Fu Y, Yu W, Cai H, Lu A. Forecast of actin-binding proteins as the oncotarget in osteosarcoma - a review of mechanism, diagnosis and therapy. Onco Targets Ther 2018; 11:1553-1561. [PMID: 29593421 PMCID: PMC5865567 DOI: 10.2147/ott.s159894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma (OS) is the most common bone malignant tumor with a high rate of lung metastasis and principally emerges in children and adolescents. Although neoadjuvant chemotherapy is widely used around the world, a high rate of chemoresistance occurs and frequently generates a poor prognosis. Therefore, finding a new appropriate prognostic marker for OS is a valuable research direction, which will give patients a better chance to receive proper therapy. Actin-binding proteins (ABPs) are a group of proteins that interact with actin cytoskeleton and play a crucial role in the regulation of the cell motility and morphology in eukaryotes. Meanwhile, ABPs also act as a bridge between the cytomembrane and nucleus, which transmit the outside-in and inside-out signals in cytoplasm. Furthermore, ABPs alter the dynamic structure of actin and regulate the invasion and metastasis of cancer. Hence, ABPs have a wide application in predicting the prognosis, and may be new targets, in tumor therapy. This review focuses on a series of ABPs and discusses their modulatory functions. It provides a new insight into the classification of ABPs’ functions in the process of invasion and metastasis in OS and illuminates the potential ability in predicting the prognosis of OS patients.
Collapse
Affiliation(s)
- Yucheng Fu
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Wei Yu
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Hongliu Cai
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Anwei Lu
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
9
|
Carlier MF, Shekhar S. Global treadmilling coordinates actin turnover and controls the size of actin networks. Nat Rev Mol Cell Biol 2017. [PMID: 28248322 DOI: 10.1038/nrm.(2016)172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Various cellular processes (including cell motility) are driven by the regulated, polarized assembly of actin filaments into distinct force-producing arrays of defined size and architecture. Branched, linear, contractile and cytosolic arrays coexist in vivo, and cells intricately control the number, length and assembly rate of filaments in these arrays. Recent in vitro and in vivo studies have revealed novel molecular mechanisms that regulate the number of filament barbed and pointed ends and their respective assembly and disassembly rates, thus defining classes of dynamically different filaments, which coexist in the same cell. We propose that a global treadmilling process, in which a steady-state amount of polymerizable actin monomers is established by the dynamics of each network, is responsible for defining the size and turnover of coexisting actin networks. Furthermore, signal-induced changes in the partitioning of actin to distinct arrays (mediated by RHO GTPases) result in the establishment of various steady-state concentrations of polymerizable monomers, thereby globally influencing the growth rate of actin filaments.
Collapse
Affiliation(s)
- Marie-France Carlier
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Gif-sur-Yvette, Paris 91190, France
| | - Shashank Shekhar
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Gif-sur-Yvette, Paris 91190, France
| |
Collapse
|
10
|
Rinaldi F, Motti D, Ferraiuolo L, Kaspar BK. High content analysis in amyotrophic lateral sclerosis. Mol Cell Neurosci 2017; 80:180-191. [PMID: 27965018 PMCID: PMC5393940 DOI: 10.1016/j.mcn.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/05/2016] [Accepted: 12/09/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating disease characterized by the progressive loss of motor neurons. Neurons, astrocytes, oligodendrocytes and microglial cells all undergo pathological modifications in the onset and progression of ALS. A number of genes involved in the etiopathology of the disease have been identified, but a complete understanding of the molecular mechanisms of ALS has yet to be determined. Currently, people affected by ALS have a life expectancy of only two to five years from diagnosis. The search for a treatment has been slow and mostly unsuccessful, leaving patients in desperate need of better therapies. Until recently, most pre-clinical studies utilized the available ALS animal models. In the past years, the development of new protocols for isolation of patient cells and differentiation into relevant cell types has provided new tools to model ALS, potentially more relevant to the disease itself as they directly come from patients. The use of stem cells is showing promise to facilitate ALS research by expanding our understanding of the disease and help to identify potential new therapeutic targets and therapies to help patients. Advancements in high content analysis (HCA) have the power to contribute to move ALS research forward by combining automated image acquisition along with digital image analysis. With modern HCA machines it is possible, in a period of just a few hours, to observe changes in morphology and survival of cells, under the stimulation of hundreds, if not thousands of drugs and compounds. In this article, we will summarize the major molecular and cellular hallmarks of ALS, describe the advancements provided by the in vitro models developed in the last few years, and review the studies that have applied HCA to the ALS field to date.
Collapse
Affiliation(s)
- Federica Rinaldi
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
| | - Dario Motti
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
| | - Laura Ferraiuolo
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA; Department of Neuroscience, Sheffield Institute of Translational Neuroscience, University of Sheffield, UK
| | - Brian K Kaspar
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
11
|
Alsehli H, Gari M, Abuzinadah M, Abuzenadah A. The emerging importance of high content screening for future therapeutics. J Microsc Ultrastruct 2017. [DOI: 10.1016/j.jmau.2017.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
12
|
Carlier MF, Shekhar S. Global treadmilling coordinates actin turnover and controls the size of actin networks. Nat Rev Mol Cell Biol 2017; 18:389-401. [DOI: 10.1038/nrm.2016.172] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Magalhaes LG, Marques FB, da Fonseca MB, Rogério KR, Graebin CS, Andricopulo AD. Discovery of a Series of Acridinones as Mechanism-Based Tubulin Assembly Inhibitors with Anticancer Activity. PLoS One 2016; 11:e0160842. [PMID: 27508497 PMCID: PMC4980028 DOI: 10.1371/journal.pone.0160842] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/26/2016] [Indexed: 12/16/2022] Open
Abstract
Microtubules play critical roles in vital cell processes, including cell growth, division, and migration. Microtubule-targeting small molecules are chemotherapeutic agents that are widely used in the treatment of cancer. Many of these compounds are structurally complex natural products (e.g., paclitaxel, vinblastine, and vincristine) with multiple stereogenic centers. Because of the scarcity of their natural sources and the difficulty of their partial or total synthesis, as well as problems related to their bioavailability, toxicity, and resistance, there is an urgent need for novel microtubule binding agents that are effective for treating cancer but do not have these disadvantages. In the present work, our lead discovery effort toward less structurally complex synthetic compounds led to the discovery of a series of acridinones inspired by the structure of podophyllotoxin, a natural product with important microtubule assembly inhibitory activity, as novel mechanism-based tubulin assembly inhibitors with potent anticancer properties and low toxicity. The compounds were evaluated in vitro by wound healing assays employing the metastatic and triple negative breast cancer cell line MDA-MB-231. Four compounds with IC50 values between 0.294 and 1.7 μM were identified. These compounds showed selective cytotoxicity against MDA-MB-231 and DU-145 cancer cell lines and promoted cell cycle arrest in G2/M phase and apoptosis. Consistent with molecular modeling results, the acridinones inhibited tubulin assembly in in vitro polymerization assays with IC50 values between 0.9 and 13 μM. Their binding to the colchicine-binding site of tubulin was confirmed through competitive assays.
Collapse
Affiliation(s)
- Luma G. Magalhaes
- Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, 13563–120, São Carlos-SP, Brazil
| | - Fernando B. Marques
- Laboratório de Diversidade Molecular e Química Medicinal, Departamento de Química, Universidade Federal Rural do Rio de Janeiro, 23897–000, Seropédica-RJ, Brazil
| | - Marina B. da Fonseca
- Laboratório de Diversidade Molecular e Química Medicinal, Departamento de Química, Universidade Federal Rural do Rio de Janeiro, 23897–000, Seropédica-RJ, Brazil
| | - Kamilla R. Rogério
- Laboratório de Diversidade Molecular e Química Medicinal, Departamento de Química, Universidade Federal Rural do Rio de Janeiro, 23897–000, Seropédica-RJ, Brazil
| | - Cedric S. Graebin
- Laboratório de Diversidade Molecular e Química Medicinal, Departamento de Química, Universidade Federal Rural do Rio de Janeiro, 23897–000, Seropédica-RJ, Brazil
| | - Adriano D. Andricopulo
- Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, 13563–120, São Carlos-SP, Brazil
- * E-mail:
| |
Collapse
|
14
|
Pernier J, Shekhar S, Jegou A, Guichard B, Carlier MF. Profilin Interaction with Actin Filament Barbed End Controls Dynamic Instability, Capping, Branching, and Motility. Dev Cell 2016; 36:201-14. [PMID: 26812019 PMCID: PMC4729542 DOI: 10.1016/j.devcel.2015.12.024] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/09/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022]
Abstract
Cell motility and actin homeostasis depend on the control of polarized growth of actin filaments. Profilin, an abundant regulator of actin dynamics, supports filament assembly at barbed ends by binding G-actin. Here, we demonstrate how, by binding and destabilizing filament barbed ends at physiological concentrations, profilin also controls motility, cell migration, and actin homeostasis. Profilin enhances filament length fluctuations. Profilin competes with Capping Protein at barbed ends, which generates a lower amount of profilin-actin than expected if barbed ends were tightly capped. Profilin competes with barbed end polymerases, such as formins and VopF, and inhibits filament branching by WASP-Arp2/3 complex by competition for filament barbed ends, accounting for its as-yet-unknown effects on motility and metastatic cell migration observed in this concentration range. In conclusion, profilin is a major coordinator of polarized growth of actin filaments, controlled by competition between barbed end cappers, trackers, destabilizers, and filament branching machineries. The binding of profilin to barbed ends accounts for its effects on cell migration Profilin enhances length fluctuations of actin filaments by destabilizing barbed ends Profilin competes with capping protein at filament barbed ends Profilin competes with polymerases and filament branching machineries at barbed ends
Collapse
Affiliation(s)
- Julien Pernier
- Cytoskeleton Dynamics and Motility Group, I2BC, CNRS, Gif-sur-Yvette 91198, France
| | - Shashank Shekhar
- Cytoskeleton Dynamics and Motility Group, I2BC, CNRS, Gif-sur-Yvette 91198, France
| | - Antoine Jegou
- Cytoskeleton Dynamics and Motility Group, I2BC, CNRS, Gif-sur-Yvette 91198, France
| | - Bérengère Guichard
- Cytoskeleton Dynamics and Motility Group, I2BC, CNRS, Gif-sur-Yvette 91198, France
| | - Marie-France Carlier
- Cytoskeleton Dynamics and Motility Group, I2BC, CNRS, Gif-sur-Yvette 91198, France.
| |
Collapse
|
15
|
Fraietta I, Gasparri F. The development of high-content screening (HCS) technology and its importance to drug discovery. Expert Opin Drug Discov 2016; 11:501-14. [PMID: 26971542 DOI: 10.1517/17460441.2016.1165203] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION High-content screening (HCS) was introduced about twenty years ago as a promising analytical approach to facilitate some critical aspects of drug discovery. Its application has spread progressively within the pharmaceutical industry and academia to the point that it today represents a fundamental tool in supporting drug discovery and development. AREAS COVERED Here, the authors review some of significant progress in the HCS field in terms of biological models and assay readouts. They highlight the importance of high-content screening in drug discovery, as testified by its numerous applications in a variety of therapeutic areas: oncology, infective diseases, cardiovascular and neurodegenerative diseases. They also dissect the role of HCS technology in different phases of the drug discovery pipeline: target identification, primary compound screening, secondary assays, mechanism of action studies and in vitro toxicology. EXPERT OPINION Recent advances in cellular assay technologies, such as the introduction of three-dimensional (3D) cultures, induced pluripotent stem cells (iPSCs) and genome editing technologies (e.g., CRISPR/Cas9), have tremendously expanded the potential of high-content assays to contribute to the drug discovery process. Increasingly predictive cellular models and readouts, together with the development of more sophisticated and affordable HCS readers, will further consolidate the role of HCS technology in drug discovery.
Collapse
Affiliation(s)
- Ivan Fraietta
- a Department of Biology , Nerviano Medical Sciences S.r.l ., Nerviano , Milano , Italy
| | - Fabio Gasparri
- a Department of Biology , Nerviano Medical Sciences S.r.l ., Nerviano , Milano , Italy
| |
Collapse
|
16
|
Shekhar S, Pernier J, Carlier MF. Regulators of actin filament barbed ends at a glance. J Cell Sci 2016; 129:1085-91. [PMID: 26940918 DOI: 10.1242/jcs.179994] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cells respond to external stimuli by rapidly remodeling their actin cytoskeleton. At the heart of this function lies the intricately controlled regulation of individual filaments. The barbed end of an actin filament is the hotspot for the majority of the biochemical reactions that control filament assembly. Assays performed in bulk solution and with single filaments have enabled characterization of a plethora of barbed-end-regulating proteins. Interestingly, many of these regulators work in tandem with other proteins, which increase or decrease their affinity for the barbed end in a spatially and temporally controlled manner, often through simultaneous binding of two regulators at the barbed ends, in addition to standard mutually exclusive binding schemes. In this Cell Science at a Glance and the accompanying poster, we discuss key barbed-end-interacting proteins and the kinetic mechanisms by which they regulate actin filament assembly. We take F-actin capping protein, gelsolin, profilin and barbed-end-tracking polymerases, including formins and WH2-domain-containing proteins, as examples, and illustrate how their activity and competition for the barbed end regulate filament dynamics.
Collapse
Affiliation(s)
- Shashank Shekhar
- Cytoskeleton Dynamics and Cell Motility, I2BC, CNRS, Gif-sur-Yvette 91198, France
| | - Julien Pernier
- Cytoskeleton Dynamics and Cell Motility, I2BC, CNRS, Gif-sur-Yvette 91198, France
| | - Marie-France Carlier
- Cytoskeleton Dynamics and Cell Motility, I2BC, CNRS, Gif-sur-Yvette 91198, France
| |
Collapse
|
17
|
Joshi P, Lee MY. High Content Imaging (HCI) on Miniaturized Three-Dimensional (3D) Cell Cultures. BIOSENSORS 2015; 5:768-90. [PMID: 26694477 PMCID: PMC4697144 DOI: 10.3390/bios5040768] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 12/26/2022]
Abstract
High content imaging (HCI) is a multiplexed cell staining assay developed for better understanding of complex biological functions and mechanisms of drug action, and it has become an important tool for toxicity and efficacy screening of drug candidates. Conventional HCI assays have been carried out on two-dimensional (2D) cell monolayer cultures, which in turn limit predictability of drug toxicity/efficacy in vivo; thus, there has been an urgent need to perform HCI assays on three-dimensional (3D) cell cultures. Although 3D cell cultures better mimic in vivo microenvironments of human tissues and provide an in-depth understanding of the morphological and functional features of tissues, they are also limited by having relatively low throughput and thus are not amenable to high-throughput screening (HTS). One attempt of making 3D cell culture amenable for HTS is to utilize miniaturized cell culture platforms. This review aims to highlight miniaturized 3D cell culture platforms compatible with current HCI technology.
Collapse
Affiliation(s)
- Pranav Joshi
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street Cleveland, Ohio, OH 44115-2214, USA.
| | - Moo-Yeal Lee
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street Cleveland, Ohio, OH 44115-2214, USA.
| |
Collapse
|
18
|
Kamimura M, Scheideler O, Shimizu Y, Yamamoto S, Yamaguchi K, Nakanishi J. Facile preparation of a photoactivatable surface on a 96-well plate: a versatile and multiplex cell migration assay platform. Phys Chem Chem Phys 2015; 17:14159-67. [DOI: 10.1039/c5cp01499a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel photoactivatable 96-well plate based on photocleavable PEG and poly-d-lysine serves as a useful high-throughput cell migration assay platform.
Collapse
Affiliation(s)
- Masao Kamimura
- World Premier International (WPI) Research Center Initiative
- International Center for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Olivia Scheideler
- World Premier International (WPI) Research Center Initiative
- International Center for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Yoshihisa Shimizu
- World Premier International (WPI) Research Center Initiative
- International Center for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Shota Yamamoto
- Department of Chemistry
- Faculty of Science
- Research Institute for Photofunctionalized Materials
- Kanagawa University
- Hiratsuka
| | - Kazuo Yamaguchi
- Department of Chemistry
- Faculty of Science
- Research Institute for Photofunctionalized Materials
- Kanagawa University
- Hiratsuka
| | - Jun Nakanishi
- World Premier International (WPI) Research Center Initiative
- International Center for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| |
Collapse
|
19
|
Karamchandani JR, Gabril MY, Ibrahim R, Scorilas A, Filter E, Finelli A, Lee JY, Ordon M, Pasic M, Romaschin AD, Yousef GM. Profilin-1 expression is associated with high grade and stage and decreased disease-free survival in renal cell carcinoma. Hum Pathol 2014; 46:673-80. [PMID: 25704627 DOI: 10.1016/j.humpath.2014.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 12/18/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is associated with high mortality, although individual outcomes are highly variable. Identification of patients with increased risk of disease progression can guide customizing management plan according to disease severity. Profilin-1 (Pfn1) has been recently identified as overexpressed in metastatic ccRCC compared with primary tumors. We examined Pfn1 expression in a tissue microarray of 384 cases of histologically confirmed primary ccRCC with detailed clinical follow-up. Profilin-1 expression showed both cytoplasmic and nuclear staining patterns. The immunoexpression of Pfn1 was scored in a semiquantitative fashion. There was no significant difference in Pfn1 expression between normal kidney and kidney ccRCC. Our results show that strong cytoplasmic Pfn1 expression is associated with high-grade (P < .001) and high-stage (III-IV) (P = .018) disease. Univariate analysis of the data set showed that higher Pfn1 expression is associated with significantly shorter disease-free survival (hazard ratio 7.36, P = .047) and also lower overall survival. Kaplan-Meier analysis showed that high cytoplasmic expression of Pfn1 was also associated with a statistically significant lower disease-free survival (P = .018). It was also associated with lower overall survival, although this was not statistically significant. Profilin-1 lost its prognostic significance in the multivariate analysis when controlling for grade and stage. Profilin-1 expression was not associated with significant prognostic deference in the subgroup of patients with stage 1 disease. Our results suggest that the evaluation of Pfn1 by immunohistochemistry may help to identify patients with an increased risk of disease progression. We validated our results at the messenger RNA level on an independent patient cohort. Higher messenger RNA expression of Pfn1 is associated with significantly lower survival.
Collapse
Affiliation(s)
- Jason R Karamchandani
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8; Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science at the Li KaShing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1T8
| | | | - Rania Ibrahim
- Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science at the Li KaShing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1T8
| | | | - Emily Filter
- London Health Sciences, London, Ontario, Canada N6A 5A5
| | - Antonio Finelli
- Division of Urologic Oncology, Princess Margaret Hospital, University Health Network, Department of Surgery, University of Toronto, Toronto, Ontario, Canada M5G 2M9
| | - Jason Y Lee
- Division of Urology, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8
| | - Michael Ordon
- Division of Urology, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8
| | - Maria Pasic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8; Department of Laboratory Medicine, St. Joseph's Health Centre, Toronto, Ontario, Canada M6R 1B5
| | - Alexander D Romaschin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8; Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science at the Li KaShing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1T8
| | - George M Yousef
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8; Department of Laboratory Medicine and the Keenan Research Centre for Biomedical Science at the Li KaShing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1T8.
| |
Collapse
|