1
|
Guza M, Dzwolak W. Acetone-induced structural variant of insulin amyloid fibrils. Int J Biol Macromol 2024; 257:128680. [PMID: 38071871 DOI: 10.1016/j.ijbiomac.2023.128680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
Self-propagating polymorphism of amyloid fibrils is a distinct manifestation of non-equilibrium conditions under which protein aggregation typically occurs. Structural variants of fibrils can often be accessed through physicochemical perturbations of the de novo aggregation process. On the other hand, tiny changes in the amino acid sequence of the parent protein may also result in structurally distinguishable amyloid fibrils. Here, we show that in the presence of acetone, the low-pH fibrillization pathway of bovine insulin (BI) leads to a new type of amyloid with the infrared features (split amide I' band with the maximum at 1623 cm-1) bearing a striking resemblance to those of the previously reported fibrils from recombinant LysB31-ArgB32 human insulin analog formed in the absence of the co-solvent. Insulin fibrils formed in the presence ([BI-ace]) and absence ([BI]) of acetone cross-seed each other and pass their infrared features to the daughter generations of fibrils. We have used dimethyl sulfoxide (DMSO) coupled to in situ infrared spectroscopy measurements to probe the stability of fibrils against chemical denaturation. While both types of fibrils eventually undergo DMSO-induced disassembly coupled to a β-sheet→coil transition, in the case of [BI-ace] amyloid, the denaturation is preceded by the fibrils transiently acquiring the [BI]-like infrared characteristics. We argue that this effect is caused by DMSO-induced dehydration of [BI-ace]. In support to this hypothesis, we show that, even in the absence of DMSO, the infrared features of [BI-ace] disappear upon drying. We discuss this very peculiar aspect of [BI-ace] fibrils in the context of recently accessed in silico models of plausible structural variants of insulin protofilaments.
Collapse
Affiliation(s)
- Marcin Guza
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 1 Pasteur Str., 02-093 Warsaw, Poland
| | - Wojciech Dzwolak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 1 Pasteur Str., 02-093 Warsaw, Poland.
| |
Collapse
|
2
|
Fortunka M, Dec R, Puławski W, Guza M, Dzwolak W. Self-Assembly of Insulin-Derived Chimeric Peptides into Two-Component Amyloid Fibrils: The Role of Coulombic Interactions. J Phys Chem B 2023; 127:6597-6607. [PMID: 37492019 PMCID: PMC10405213 DOI: 10.1021/acs.jpcb.3c00976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/05/2023] [Indexed: 07/27/2023]
Abstract
Canonical amyloid fibrils are composed of covalently identical polypeptide chains. Here, we employ kinetic assays, atomic force microscopy, infrared spectroscopy, circular dichroism, and molecular dynamics simulations to study fibrillization patterns of two chimeric peptides, ACC1-13E8 and ACC1-13K8, in which a potent amyloidogenic stretch derived from the N-terminal segment of the insulin A-chain (ACC1-13) is coupled to octaglutamate or octalysine segments, respectively. While large electric charges prevent aggregation of either peptide at neutral pH, stoichiometric mixing of ACC1-13E8 and ACC1-13K8 triggers rapid self-assembly of two-component fibrils driven by favorable Coulombic interactions. The low-symmetry nonpolar ACC1-13 pilot sequence is crucial in enforcing the fibrillar structure consisting of parallel β-sheets as the self-assembly of free poly-E and poly-K chains under similar conditions results in amorphous antiparallel β-sheets. Interestingly, ACC1-13E8 forms highly ordered fibrils also when paired with nonpolypeptide polycationic amines such as branched polyethylenimine, instead of ACC1-13K8. Such synthetic polycations are more effective in triggering the fibrillization of ACC1-13E8 than poly-K (or poly-E in the case of ACC1-13K8). The high conformational flexibility of these polyamines makes up for the apparent mismatch in periodicity of charged groups. The results are discussed in the context of mechanisms of heterogeneous disease-related amyloidogenesis.
Collapse
Affiliation(s)
- Mateusz Fortunka
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteur Street 1, 02-093 Warsaw, Poland
| | - Robert Dec
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteur Street 1, 02-093 Warsaw, Poland
| | - Wojciech Puławski
- Bioinformatics
Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinski Street 5, 02-106 Warsaw, Poland
| | - Marcin Guza
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteur Street 1, 02-093 Warsaw, Poland
| | - Wojciech Dzwolak
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteur Street 1, 02-093 Warsaw, Poland
| |
Collapse
|
3
|
Kim Y, Yoon T, Park WB, Na S. Predicting mechanical properties of silk from its amino acid sequences via machine learning. J Mech Behav Biomed Mater 2023; 140:105739. [PMID: 36871478 DOI: 10.1016/j.jmbbm.2023.105739] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
The silk fiber is increasingly being sought for its superior mechanical properties, biocompatibility, and eco-friendliness, making it promising as a base material for various applications. One of the characteristics of protein fibers, such as silk, is that their mechanical properties are significantly dependent on the amino acid sequence. Numerous studies have been conducted to determine the specific relationship between the amino acid sequence of silk and its mechanical properties. Still, the relationship between the amino acid sequence of silk and its mechanical properties is yet to be clarified. Other fields have adopted machine learning (ML) to establish a relationship between the inputs, such as the ratio of different input material compositions and the resulting mechanical properties. We have proposed a method to convert the amino acid sequence into numerical values for input and succeeded in predicting the mechanical properties of silk from its amino acid sequences. Our study sheds light on predicting mechanical properties of silk fiber from respective amino acid sequences.
Collapse
|
4
|
Alraawi Z, Banerjee N, Mohanty S, Kumar TKS. Amyloidogenesis: What Do We Know So Far? Int J Mol Sci 2022; 23:ijms232213970. [PMID: 36430450 PMCID: PMC9695042 DOI: 10.3390/ijms232213970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The study of protein aggregation, and amyloidosis in particular, has gained considerable interest in recent times. Several neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD) show a characteristic buildup of proteinaceous aggregates in several organs, especially the brain. Despite the enormous upsurge in research articles in this arena, it would not be incorrect to say that we still lack a crystal-clear idea surrounding these notorious aggregates. In this review, we attempt to present a holistic picture on protein aggregation and amyloids in particular. Using a chronological order of discoveries, we present the case of amyloids right from the onset of their discovery, various biophysical techniques, including analysis of the structure, the mechanisms and kinetics of the formation of amyloids. We have discussed important questions on whether aggregation and amyloidosis are restricted to a subset of specific proteins or more broadly influenced by the biophysiochemical and cellular environment. The therapeutic strategies and the significant failure rate of drugs in clinical trials pertaining to these neurodegenerative diseases have been also discussed at length. At a time when the COVID-19 pandemic has hit the globe hard, the review also discusses the plausibility of the far-reaching consequences posed by the virus, such as triggering early onset of amyloidosis. Finally, the application(s) of amyloids as useful biomaterials has also been discussed briefly in this review.
Collapse
Affiliation(s)
- Zeina Alraawi
- Department of Chemistry and Biochemistry, Fulbright College of Art and Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Nayan Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Srujana Mohanty
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata 741246, India
| | | |
Collapse
|
5
|
Pintado-Grima C, Bárcenas O, Manglano-Artuñedo Z, Vilaça R, Macedo-Ribeiro S, Pallarès I, Santos J, Ventura S. CARs-DB: A Database of Cryptic Amyloidogenic Regions in Intrinsically Disordered Proteins. Front Mol Biosci 2022; 9:882160. [PMID: 35898309 PMCID: PMC9309178 DOI: 10.3389/fmolb.2022.882160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 12/20/2022] Open
Abstract
Proteome-wide analyses suggest that most globular proteins contain at least one amyloidogenic region, whereas these aggregation-prone segments are thought to be underrepresented in intrinsically disordered proteins (IDPs). In recent work, we reported that intrinsically disordered regions (IDRs) indeed sustain a significant amyloid load in the form of cryptic amyloidogenic regions (CARs). CARs are widespread in IDRs, but they are necessarily exposed to solvent, and thus they should be more polar and have a milder aggregation potential than conventional amyloid regions protected inside globular proteins. CARs are connected with IDPs function and, in particular, with the establishment of protein-protein interactions through their IDRs. However, their presence also appears associated with pathologies like cancer or Alzheimer’s disease. Given the relevance of CARs for both IDPs function and malfunction, we developed CARs-DB, a database containing precomputed predictions for all CARs present in the IDPs deposited in the DisProt database. This web tool allows for the fast and comprehensive exploration of previously unnoticed amyloidogenic regions embedded within IDRs sequences and might turn helpful in identifying disordered interacting regions. It contains >8,900 unique CARs identified in a total of 1711 IDRs. CARs-DB is freely available for users and can be accessed at http://carsdb.ppmclab.com. To validate CARs-DB, we demonstrate that two previously undescribed CARs selected from the database display full amyloidogenic potential. Overall, CARs-DB allows easy access to a previously unexplored amyloid sequence space.
Collapse
Affiliation(s)
- Carlos Pintado-Grima
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Oriol Bárcenas
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Zoe Manglano-Artuñedo
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rita Vilaça
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, Porto, Portugal
| | - Irantzu Pallarès
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaime Santos
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Choi B, Kim NH, Jin GY, Kim YS, Kim YH, Eom K. Sequence-dependent aggregation-prone conformations of islet amyloid polypeptide. Phys Chem Chem Phys 2021; 23:22532-22542. [PMID: 34590645 DOI: 10.1039/d1cp01061a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Amyloid proteins, which aggregate to form highly ordered structures, play a crucial role in various disease pathologies. Despite many previous studies on amyloid fibrils, which are an end product of protein aggregation, the structural characteristics of amyloid proteins in the early stage of aggregation and their related aggregation mechanism still remain elusive. The role of the amino acid sequence in the aggregation-prone structures of amyloid proteins at such a stage is not understood. Here, we have studied the sequence-dependent structural characteristics of islet amyloid polypeptide based on atomistic simulations and spectroscopic experiments. We show that the amino acid sequence determines non-bonded interactions that play a leading role in the formation of aggregation-prone conformations. Specifically, a single point mutation critically changes the population of aggregation-prone conformations, resulting in a change of the aggregation mechanism. Our simulation results were supported by experimental results suggesting that mutation affects the kinetics of aggregation and the structural characteristics of amyloid aggregates. Our study provides an insight into the role of sequence-dependent aggregation-prone conformations in the underlying mechanisms of amyloid aggregation.
Collapse
Affiliation(s)
- Bumjoon Choi
- Biomechanics Laboratory, College of Sport Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Nam Hyeong Kim
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Geun Young Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Yung Sam Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Yong Ho Kim
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea. .,Department of Nano Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Kilho Eom
- Biomechanics Laboratory, College of Sport Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| |
Collapse
|
7
|
In Silico Therapeutic Peptide Design Against Pathogenic Domain Swapped Human Cystatin C Dimer. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10191-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Chang HJ, Choi H, Na S. Predicting the self-assembly film structure of class II hydrophobin NC2 and estimating its structural characteristics. Colloids Surf B Biointerfaces 2020; 195:111269. [DOI: 10.1016/j.colsurfb.2020.111269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 11/24/2022]
|
9
|
Pogostin BH, Linse S, Olsson U. Fibril Charge Affects α-Synuclein Hydrogel Rheological Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16536-16544. [PMID: 31724872 DOI: 10.1021/acs.langmuir.9b02516] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this paper, we have investigated the interactions between α-synuclein fibrils at different pH values and how this relates to hydrogel formation and gel properties. Using a combination of rheology, small-angle X-ray scattering, Raman spectroscopy, and cryo-transmission electron microscopy (cryo-TEM) experiments, we have been able to investigate the relationship between protein net charge, fibril-fibril interactions, and hydrogel properties, and have explored the potential for α-synuclein to form hydrogels at various conditions. We have found that α-synuclein can form hydrogels at lower concentrations (50-300 μM) and over a wider pH range (6.0-7.5) than previously reported. Over this pH range and at 300 μM, the fibril network is electrostatically stabilized. Decreasing the pH to 5.5 results in the precipitation of fibrils. A maximum in gel stiffness was observed at pH 6.5 (∼1300 Pa), which indicates that significant attractive interactions operate at this pH and cause an increase in the density of hydrophobic contacts between the otherwise negatively charged fibrils. We conclude that fibril-fibril interactions under these conditions involve both long-range electrostatic repulsion and a short-range hydrophobic attractive (sticky) component. These results may provide a basis for potential applications and add to the understanding of amyloids.
Collapse
Affiliation(s)
- Brett H Pogostin
- Department of Bioengineering , Rice University , MS-142, 6100 Main Street , Houston , Texas 77005 , United States
| | | | | |
Collapse
|
10
|
Lee J, Lee JH, Paik SR, Yeom B, Char K. Thermally triggered self-assembly of κ-casein amyloid nanofibrils and their nanomechanical properties. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Grasso G, Rebella M, Morbiducci U, Tuszynski JA, Danani A, Deriu MA. The Role of Structural Polymorphism in Driving the Mechanical Performance of the Alzheimer's Beta Amyloid Fibrils. Front Bioeng Biotechnol 2019; 7:83. [PMID: 31106199 PMCID: PMC6499180 DOI: 10.3389/fbioe.2019.00083] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/03/2019] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's Disease (AD) is related with the abnormal aggregation of amyloid β-peptides Aβ1−40 and Aβ1−42, the latter having a polymorphic character which gives rise to U- or S-shaped fibrils. Elucidating the role played by the nanoscale-material architecture on the amyloid fibril stability is a crucial breakthrough to better understand the pathological nature of amyloid structures and to support the rational design of bio-inspired materials. The computational study here presented highlights the superior mechanical behavior of the S-architecture, characterized by a Young's modulus markedly higher than the U-shaped architecture. The S-architecture showed a higher mechanical resistance to the enforced deformation along the fibril axis, consequence of a better interchain hydrogen bonds' distribution. In conclusion, this study, focusing the attention on the pivotal multiscale relationship between molecular phenomena and material properties, suggests the S-shaped Aβ1−42 species as a target of election in computational screen/design/optimization of effective aggregation modulators.
Collapse
Affiliation(s)
- Gianvito Grasso
- Istituto Dalle Molle di studi sull'Intelligenza Artificiale, Scuola Universitaria Professionale della Svizzera Italiana, Università della Svizzera Italiana, Manno, Switzerland
| | - Martina Rebella
- Polito BioMEDLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- Polito BioMEDLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Jack A Tuszynski
- Polito BioMEDLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,Department of Physics, University of Alberta, Edmonton AB, Canada
| | - Andrea Danani
- Istituto Dalle Molle di studi sull'Intelligenza Artificiale, Scuola Universitaria Professionale della Svizzera Italiana, Università della Svizzera Italiana, Manno, Switzerland
| | - Marco A Deriu
- Istituto Dalle Molle di studi sull'Intelligenza Artificiale, Scuola Universitaria Professionale della Svizzera Italiana, Università della Svizzera Italiana, Manno, Switzerland
| |
Collapse
|
12
|
Atomic force microscopy-based cancer diagnosis by detecting cancer-specific biomolecules and cells. Biochim Biophys Acta Rev Cancer 2019; 1871:367-378. [DOI: 10.1016/j.bbcan.2019.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
|
13
|
Computer Simulation of Protein Materials at Multiple Length Scales: From Single Proteins to Protein Assemblies. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42493-018-00009-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
14
|
Kakinen A, Sun Y, Javed I, Faridi A, Pilkington EH, Faridi P, Purcell AW, Zhou R, Ding F, Lin S, Chun Ke P, Davis TP. Physical and Toxicological Profiles of Human IAPP Amyloids and Plaques. Sci Bull (Beijing) 2018; 64:26-35. [PMID: 30662791 DOI: 10.1016/j.scib.2018.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although much has been learned about the fibrillization kinetics, structure and toxicity of amyloid proteins, the properties of amyloid fibrils beyond the saturation phase are often perceived as chemically and biologically inert, despite evidence suggesting otherwise. To fill this knowledge gap, we examined the physical and biological characteristics of human islet amyloid polypeptide (IAPP) fibrils that were aged up to two months. Not only did aging decrease the toxicity of IAPP fibrils, but the fibrils also sequestered fresh IAPP and suppressed their toxicity in an embryonic zebrafish model. The mechanical properties of IAPP fibrils in different aging stages were probed by atomic force microscopy and sonication, which displayed comparable stiffness but age-dependent fragmentation, followed by self-assembly of such fragments into the largest lamellar amyloid structures reported to date. The dynamic structural and toxicity profiles of amyloid fibrils and plaques suggest that they play active, long-term roles in cell degeneration and may be a therapeutic target for amyloid diseases.
Collapse
Affiliation(s)
- Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Ibrahim Javed
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia.,College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Ava Faridi
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Emily H Pilkington
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Pouya Faridi
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program & Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program & Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Ruhong Zhou
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York, 10598, USA.,Department of Chemistry, Columbia University, New York, New York, 10027, USA
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Sijie Lin
- College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| |
Collapse
|
15
|
Lu L, Deng Y, Li X, Li H, Karniadakis GE. Understanding the Twisted Structure of Amyloid Fibrils via Molecular Simulations. J Phys Chem B 2018; 122:11302-11310. [PMID: 30106299 DOI: 10.1021/acs.jpcb.8b07255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Accumulation and aggregation of amyloid are associated with the pathogenesis of many human diseases, such as Alzheimer's disease and Type 2 diabetes mellitus. Therefore, a quantitative understanding of the molecular mechanisms causing different aggregated structures and biomechanical properties of amyloid fibrils could shed some light into the progression of these diseases. In this work, we develop coarse-grained molecular dynamics (CGMD) models to simulate the dynamic self-assembly of two types of amyloids (amylin and amyloid β (Aβ)). We investigate the structural and mechanical properties of different types of aggregated amyloid fibrils. Our simulations demonstrate that amyloid fibrils could result from longitudinal growth of protofilament bundles, confirming one of the hypotheses on the fibril formation. In addition, we find that the persistence length of amylin fibrils increases concurrently with their pitch length, suggesting that the bending stiffness of amylin fibrils becomes larger when the amylin fibrils are less twisted. Similar results are observed for Aβ fibrils. These findings quantify the connection between the structural and the biomechanical properties of the fibrils. The CGMD models developed in this work can be potentially used to examine efficacy of anti-aggregation drugs, which could help in developing new treatments.
Collapse
Affiliation(s)
- Lu Lu
- Division of Applied Mathematics , Brown University , Providence , Rhode Island 02912 , United States
| | - Yixiang Deng
- School of Engineering , Brown University , Providence , Rhode Island 02912 , United States
| | - Xuejin Li
- Division of Applied Mathematics , Brown University , Providence , Rhode Island 02912 , United States
| | - He Li
- Division of Applied Mathematics , Brown University , Providence , Rhode Island 02912 , United States
| | - George Em Karniadakis
- Division of Applied Mathematics , Brown University , Providence , Rhode Island 02912 , United States
| |
Collapse
|
16
|
Lee G, Lee W, Baik S, Kim YH, Eom K, Kwon T. Correlation between the hierarchical structures and nanomechanical properties of amyloid fibrils. NANOTECHNOLOGY 2018; 29:295701. [PMID: 29644980 DOI: 10.1088/1361-6528/aabd8a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Amyloid fibrils have recently been highlighted due to their excellent mechanical properties, which not only play a role in their biological functions but also imply their applications in biomimetic material design. Despite recent efforts to unveil how the excellent mechanical properties of amyloid fibrils originate, it has remained elusive how the anisotropic nanomechanical properties of hierarchically structured amyloid fibrils are determined. Here, we characterize the anisotropic nanomechanical properties of hierarchically structured amyloid fibrils using atomic force microscopy experiments and atomistic simulations. It is shown that the hierarchical structure of amyloid fibrils plays a crucial role in determining their radial elastic property but does not make any effect on their bending elastic property. This is attributed to the role of intermolecular force acting between the filaments (constituting the fibril) on the radial elastic modulus of amyloid fibrils. Our finding illustrates how the hierarchical structure of amyloid fibrils encodes their anisotropic nanomechanical properties. Our study provides key design principles of amyloid fibrils, which endow valuable insight into the underlying mechanisms of amyloid mechanics.
Collapse
Affiliation(s)
- Gyudo Lee
- School of Public Health, Harvard University, Boston, MA 02115, United States of America
| | | | | | | | | | | |
Collapse
|
17
|
Lee M, Kim JI, Na S, Eom K. Metal ions affect the formation and stability of amyloid β aggregates at multiple length scales. Phys Chem Chem Phys 2018; 20:8951-8961. [PMID: 29557445 DOI: 10.1039/c7cp05072k] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Amyloid β (Aβ) aggregates, which are a hallmark for neurodegenerative disease, are formed through a self-assembly process such as aggregation of Aβ peptide chains. This aggregation process depends on the solvent conditions under which the proteins are aggregated. Nevertheless, the underlying mechanism of the ionic effect on the formation and stability of amyloid aggregates has not been fully understood. Here, we report how metal ions play a role in the formation and stability of Aβ aggregates at different length scales, i.e. oligomers and fibrils. It is shown that the metal (i.e. zinc or copper) ion increases the stability of Aβ oligomers, whereas the metal ion reduces the stability of Aβ fibrils. In addition, we found that zinc ions are able to more effectively destabilize fibril structures than copper ions. Metal ion-mediated (de)stabilization of Aβ oligomers (or fibrils) is attributed to the critical effect of the metal ion on the β-sheet rich crystalline structure of the amyloid aggregate and the status of hydrogen bonds within the aggregate. Our study sheds light on the role of the metal ion in stabilizing the amyloid oligomers known as a toxic agent (to functional cells), which is consistent with clinical observation that high concentrations of metal ions are found in patients suffering from neurodegenerative diseases.
Collapse
Affiliation(s)
- Myeongsang Lee
- Institute of Advanced Machinery Design Technology, Korea University, Seoul 02481, Republic of Korea
| | - Jae In Kim
- Department of Mechanical Engineering, Korea University, Seoul 02481, Republic of Korea.
| | - Sungsoo Na
- Department of Mechanical Engineering, Korea University, Seoul 02481, Republic of Korea.
| | - Kilho Eom
- Biomechanics Laboratory, College of Sport Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| |
Collapse
|
18
|
Cheng B, Li Y, Ma L, Wang Z, Petersen RB, Zheng L, Chen Y, Huang K. Interaction between amyloidogenic proteins and biomembranes in protein misfolding diseases: Mechanisms, contributors, and therapy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1876-1888. [PMID: 29466701 DOI: 10.1016/j.bbamem.2018.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
The toxic deposition of misfolded amyloidogenic proteins is associated with more than fifty protein misfolding diseases (PMDs), including Alzheimer's disease, Parkinson's disease and type 2 diabetes mellitus. Protein deposition is a multi-step process modulated by a variety of factors, in particular by membrane-protein interaction. The interaction results in permeabilization of biomembranes contributing to the cytotoxicity that leads to PMDs. Different biological and physiochemical factors, such as protein sequence, lipid composition, and chaperones, are known to affect the membrane-protein interaction. Here, we provide a comprehensive review of the mechanisms and contributing factors of the interaction between biomembranes and amyloidogenic proteins, and a summary of the therapeutic approaches to PMDs that target this interaction. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Biao Cheng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China; Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Yang Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Ma
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuoyi Wang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI 48858, USA
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan 430072, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
19
|
Choi B, Kim T, Ahn ES, Lee SW, Eom K. Mechanical Deformation Mechanisms and Properties of Prion Fibrils Probed by Atomistic Simulations. NANOSCALE RESEARCH LETTERS 2017; 12:228. [PMID: 28359138 PMCID: PMC5371578 DOI: 10.1186/s11671-017-1966-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 02/28/2017] [Indexed: 06/07/2023]
Abstract
Prion fibrils, which are a hallmark for neurodegenerative diseases, have recently been found to exhibit the structural diversity that governs disease pathology. Despite our recent finding concerning the role of the disease-specific structure of prion fibrils in determining their elastic properties, the mechanical deformation mechanisms and fracture properties of prion fibrils depending on their structures have not been fully characterized. In this work, we have studied the tensile deformation mechanisms of prion and non-prion amyloid fibrils by using steered molecular dynamics simulations. Our simulation results show that the elastic modulus of prion fibril, which is formed based on left-handed β-helical structure, is larger than that of non-prion fibril constructed based on right-handed β-helix. However, the mechanical toughness of prion fibril is found to be less than that of non-prion fibril, which indicates that infectious prion fibril is more fragile than non-infectious (non-prion) fibril. Our study sheds light on the role of the helical structure of amyloid fibrils, which is related to prion infectivity, in determining their mechanical deformation mechanisms and properties.
Collapse
Affiliation(s)
- Bumjoon Choi
- Department of Biomedical Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Taehee Kim
- College of Sport Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Eue Soo Ahn
- College of Sport Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| | - Sang Woo Lee
- Department of Biomedical Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Kilho Eom
- Biomechanics Laboratory, College of Sport Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| |
Collapse
|
20
|
Capping effects on polymorphic Aβ 16-21 amyloids depend on their size: A molecular dynamics simulation study. Biophys Chem 2017; 232:1-11. [PMID: 29046256 DOI: 10.1016/j.bpc.2017.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 11/24/2022]
Abstract
Understanding Aβ amyloid oligomers associated with neuro-degenerative diseases is needed due to their toxic characteristics and mediation of amyloid fibril growth. Depending on various physiological circumstances such as ionic strength, metal ion, and point-residue mutation, oligomeric amyloids exhibit polymorphic behavior and structural stabilities, i.e. showing different conformation and stabilities. Specifically, experimental and computational researchers have found that the capping modulates the physical and chemical properties of amyloids by preserving electrostatic energy interactions, which is one of the dominant factors for amyloid stability. Still, there is no detailed knowledge for the polymorphic amyloids with reflecting the terminal capping effects. In the present study, we investigated the role of terminal capping (i.e. N-terminal acetylation and C-terminal amidation) on polymorphic Aβ16-21 amyloid oligomer and protofibrils via molecular dynamics (MD) simulations. We found that the capping effects have differently altered the conformation of polymorphic antiparallel-homo and -hetero Aβ16-21 amyloid oligomer, but not Aβ16-21 amyloid protofibrils. However, regardless of polymorphic composition of the amyloids, the capping induces the thermodynamic instabilities of Aβ16-21 amyloid oligomers, but does not show any distinct affect on Aβ16-21 amyloid protofibrils. Specifically, among the molecular mechanic factors, electrostatic energy dominantly contributes the thermodynamic stability of the Aβ16-21 amyloids. We hope that our computation study about the role of the capping effects on the polymorphic amyloids will facilitate additional efforts to enhance degradation of amyloids and to design a selective drug in the future.
Collapse
|
21
|
No YH, Kim NH, Gnapareddy B, Choi B, Kim YT, Dugasani SR, Lee OS, Kim KH, Ko YS, Lee S, Lee SW, Park SH, Eom K, Kim YH. Nature-Inspired Construction of Two-Dimensionally Self-Assembled Peptide on Pristine Graphene. J Phys Chem Lett 2017; 8:3734-3739. [PMID: 28749677 DOI: 10.1021/acs.jpclett.7b00996] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Peptide assemblies have received significant attention because of their important role in biology and applications in bionanotechnology. Despite recent efforts to elucidate the principles of peptide self-assembly for developing novel functional devices, peptide self-assembly on two-dimensional nanomaterials has remained challenging. Here, we report nature-inspired two-dimensional peptide self-assembly on pristine graphene via optimization of peptide-peptide and peptide-graphene interactions. Two-dimensional peptide self-assembly was designed based on statistical analyses of >104 protein structures existing in nature and atomistic simulation-based structure predictions. We characterized the structures and surface properties of the self-assembled peptide formed on pristine graphene. Our study provides insights into the formation of peptide assemblies coupled with two-dimensional nanomaterials for further development of nanobiocomposite devices.
Collapse
Affiliation(s)
- Young Hyun No
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University , Suwon 16419, Republic of Korea
| | - Nam Hyeong Kim
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University , Suwon 16419, Republic of Korea
| | | | - Bumjoon Choi
- Department of Biomedical Engineering, Yonsei University , Wonju 26493, Republic of Korea
| | - Yong-Tae Kim
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University , Suwon 16419, Republic of Korea
| | | | - One-Sun Lee
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University , P.O. Box 5825, Doha, Qatar
| | - Kook-Han Kim
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University , Suwon 16419, Republic of Korea
| | - Young-Seon Ko
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University , Suwon 16419, Republic of Korea
| | - Seungwoo Lee
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University , Suwon 16419, Republic of Korea
| | - Sang Woo Lee
- Department of Biomedical Engineering, Yonsei University , Wonju 26493, Republic of Korea
| | - Sung Ha Park
- Department of Physics, Sungkyunkwan University , Suwon 16419, Republic of Korea
| | - Kilho Eom
- Biomechanics Laboratory, College of Sport Science, Sungkyunkwan University , Suwon 16419, Republic of Korea
| | - Yong Ho Kim
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University , Suwon 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University , Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS) , Suwon 16419, Republic of Korea
| |
Collapse
|
22
|
Kim Y, Lee M, Choi H, Baek I, Kim JI, Na S. Mechanical features of various silkworm crystalline considering hydration effect via molecular dynamics simulations. J Biomol Struct Dyn 2017; 36:1360-1368. [DOI: 10.1080/07391102.2017.1323015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yoonjung Kim
- Department of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Myeongsang Lee
- Institute of Advanced Machinery Design & Technology, Korea University, Seoul 02841, Republic of Korea
| | - Hyunsung Choi
- Department of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Inchul Baek
- Department of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jae in Kim
- Department of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sungsoo Na
- Department of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
23
|
Chang HJ, Lee M, Kim JI, Yoon G, Na S. Mechanical and vibrational characterization of amyloid-like HET-s nanosheets based on the skewed plate theory. Phys Chem Chem Phys 2017; 19:11492-11501. [PMID: 28425516 DOI: 10.1039/c7cp01418j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pathological amyloidogenic prion proteins have a toxic effect on functional cells in the human cerebrum because of poor degradability and the tendency to accumulate in an uncontrolled manner under physiological conditions. HET-s, a fungal prion protein, is known to undergo conformational variations from fibrillar to nanosheet structures during a change from low to high pH conditions. It has been said that this conformational change can lead to self-propagation by nucleating on the lateral surface of singlet fibrils. Efforts have been made toward the mechanical characterization of fibrillar amyloids, but a global understanding of amyloid-like HET-s nanosheet structures is lacking. In this study, we analyzed the mechanical and vibrational characteristics of the skewed HET-s nanosheet structures that developed under neutral pH conditions by performing various molecular dynamics simulations. By applying the skewed plate theory to HET-s nanosheets for various length scales with numerous pores inside the structures, we found that the skewed HET-s nanosheet structure has mechanical properties comparable to those of previously reported biological film materials and nanomaterials. Considering the inherent characteristics of structural stability, our observation provides valuable and detailed structural information on skewed amyloid-like HET-s nanosheets.
Collapse
Affiliation(s)
- Hyun Joon Chang
- Department of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea.
| | | | | | | | | |
Collapse
|
24
|
Choi H, Chang HJ, Lee M, Na S. Characterizing Structural Stability of Amyloid Motif Fibrils Mediated by Water Molecules. Chemphyschem 2017; 18:817-827. [PMID: 28160391 DOI: 10.1002/cphc.201601327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/12/2017] [Indexed: 11/12/2022]
Abstract
In biological systems, structural confinements of amyloid fibrils can be mediated by the role of water molecules. However, the underlying effect of the dynamic behavior of water molecules on structural stabilities of amyloid fibrils is still unclear. By performing molecular dynamics simulations, we investigate the dynamic features and the effect of interior water molecules on conformations and mechanical characteristics of various amyloid fibrils. We find that a specific mechanism induced by the dynamic properties of interior water molecules can affect diffusion of water molecules inside amyloid fibrils, inducing their different structural stabilities. The conformation of amyloid fibrils induced by interior water molecules show the fibrils' different mechanical features. We elucidate the role of confined and movable interior water molecules in structural stabilities of various amyloid fibrils. Our results offer insights not only in further understanding of mechanical features of amyloids as mediated by water molecules, but also in the fine-tuning of the functional abilities of amyloid fibrils for applications.
Collapse
Affiliation(s)
- Hyunsung Choi
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyun Joon Chang
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Myeongsang Lee
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sungsoo Na
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
25
|
Lee M, Chang HJ, Baek I, Na S. Structural analysis of oligomeric and protofibrillar Aβ amyloid pair structures considering F20L mutation effects using molecular dynamics simulations. Proteins 2016; 85:580-592. [PMID: 28019690 DOI: 10.1002/prot.25232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/12/2016] [Accepted: 11/23/2016] [Indexed: 12/20/2022]
Abstract
Aβ amyloid proteins are involved in neuro-degenerative diseases such as Alzheimer's, Parkinson's, and so forth. Because of its structurally stable feature under physiological conditions, Aβ amyloid protein disrupts the normal cell function. Because of these concerns, understanding the structural feature of Aβ amyloid protein in detail is crucial. There have been some efforts on lowering the structural stabilities of Aβ amyloid fibrils by decreasing the aromatic residues characteristic and hydrophobic effect. Yet, there is a lack of understanding of Aβ amyloid pair structures considering those effects. In this study, we provide the structural characteristics of wildtype (WT) and phenylalanine residue mutation to leucine (F20L) Aβ amyloid pair structures using molecular dynamics simulation in detail. We also considered the polymorphic feature of F20L and WT Aβ pair amyloids based on the facing β-strand directions between the amyloid pairs. As a result, we were able to observe the varying effects of mutation, polymorphism, and protofibril lengths on the structural stability of pair amyloids. Furthermore, we have also found that opposite structural stability exists on a certain polymorphic Aβ pair amyloids depending on its oligomeric or protofibrillar state, which can be helpful for understanding the amyloid growth mechanism via repetitive fragmentation and elongation mechanism. Proteins 2017; 85:580-592. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Myeongsang Lee
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyun Joon Chang
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Inchul Baek
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sungsoo Na
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
26
|
Lee M, Kwon J, Na S. Mechanical behavior comparison of spider and silkworm silks using molecular dynamics at atomic scale. Phys Chem Chem Phys 2016; 18:4814-21. [PMID: 26806791 DOI: 10.1039/c5cp06809f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spider and silkworm silk proteins have received much attention owing to their inherent structural stability, biodegradability, and biocompatibility. These silk protein materials have various mechanical characteristics such as elastic modulus, ultimate strength and fracture toughness. While the considerable mechanical characteristics of the core crystalline regions of spider silk proteins at the atomistic scale have been investigated through several experimental techniques and computational studies, there is a lack of comparison between spider and silkworm fibroins in the atomistic scale. In this study, we investigated the differences between the mechanical characteristics of spider and silkworm fibroin structures by applying molecular dynamics and steered molecular dynamics. We found that serine amino acids in silkworm fibroins not only increased the number of hydrogen bonds, but also altered their structural characteristics and mechanical properties.
Collapse
Affiliation(s)
- Myeongsang Lee
- Department of Mechanical Engineering Korea University, Seoul 02841, Republic of Korea.
| | - Junpyo Kwon
- Department of Mechanical Engineering Korea University, Seoul 02841, Republic of Korea.
| | - Sungsoo Na
- Department of Mechanical Engineering Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
27
|
Bleem A, Daggett V. Structural and functional diversity among amyloid proteins: Agents of disease, building blocks of biology, and implications for molecular engineering. Biotechnol Bioeng 2016; 114:7-20. [PMID: 27474784 DOI: 10.1002/bit.26059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 12/23/2022]
Abstract
Amyloids have long been associated with protein dysfunction and neurodegenerative diseases, but recent research has demonstrated that some organisms utilize the unique properties of the amyloid fold to create functional structures with important roles in biological processes. Additionally, new engineering approaches have taken advantage of amyloid structures for implementation in a wide variety of materials and devices. In this review, the role of amyloid in human disease is discussed and compared to the functional amyloids, which serve a largely structural purpose. We then consider the use of amyloid constructs in engineering applications, including their utility as building blocks for synthetic biology and molecular engineering. Biotechnol. Bioeng. 2017;114: 7-20. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alissa Bleem
- Department of Bioengineering, University of Washington, Box 355013, Seattle, Washington, 98195-5013
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Box 355013, Seattle, Washington, 98195-5013
| |
Collapse
|
28
|
Kim JI, Kwon J, Baek I, Na S. Biophysical characterization of cofilin-induced extension–torsion coupling in actin filaments. J Biomech 2016; 49:1831-1835. [DOI: 10.1016/j.jbiomech.2016.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 11/27/2022]
|
29
|
Conformational changes of Aβ (1-42) monomers in different solvents. J Mol Graph Model 2016; 65:8-14. [PMID: 26896721 DOI: 10.1016/j.jmgm.2016.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 01/16/2016] [Accepted: 02/06/2016] [Indexed: 11/21/2022]
Abstract
Amyloid proteins are known to be the main cause of numerous degenerative and neurodegenerative diseases. In general, amyloids are misfolded from monomers and they tend to have β-strand formations. These misfolded monomers are then transformed into oligomers, fibrils, and plaques. It is important to understand the forming mechanism of amyloids in order to prevent degenerative diseases to occur. Aβ protein is a highly noticeable protein which causes Alzheimer's disease. It is reported that solvents affect the forming mechanism of Aβ amyloids. In this research, Aβ1-42 was analyzed using an all-atom MD simulation with the consideration of effects induced by two disparate solvents: water and DMSO. As a result, two different conformation changes of Aβ1-42 were exhibited in each solvent. It was found that salt-bridge of Asp23 and Lys28 in Aβ1-42 was the key for amyloid folding based on the various analysis including hydrogen bond, electrostatic interaction energy and salt-bridge distance. Since this salt-bridge region plays a crucial role in initiating the misfolding of Aβ1-42, this research may shed a light for studies related in amyloid folding and misfolding.
Collapse
|
30
|
|
31
|
Choi H, Lee M, Park HS, Na S. The effect of structural heterogeneity on the conformation and stability of Aβ–tau mixtures. RSC Adv 2016. [DOI: 10.1039/c6ra09467h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Oligomeric and fibrillar amyloids, which cause neurodegenerative diseases, are typically formed through repetitive fracture and elongation processes involving single homogeneous amyloid monomers.
Collapse
Affiliation(s)
- Hyunsung Choi
- Department of Mechanical Engineering
- Korea University
- Seoul 02841
- Republic of Korea
| | - Myeongsang Lee
- Department of Mechanical Engineering
- Korea University
- Seoul 02841
- Republic of Korea
| | - Harold S. Park
- Department of Mechanical Engineering
- Boston University
- Boston
- USA
| | - Sungsoo Na
- Department of Mechanical Engineering
- Korea University
- Seoul 02841
- Republic of Korea
| |
Collapse
|
32
|
Baek I, Lee M, Na S. Understanding structural characteristics of out-of-register hIAPP amyloid proteins via molecular dynamics. RSC Adv 2016. [DOI: 10.1039/c6ra19100b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We investigated characteristics of out-of-register (OOR) hIAPP amyloids. By varying the length size of OOR hIAPP, we found 8 layers is most stable. In addition, OOR hIAPP has relative structural instability than in-register hAIPP.
Collapse
Affiliation(s)
- Inchul Baek
- Department of Mechanical Engineering
- Korea University
- Seoul 02841
- Republic of Korea
| | - Myeongsang Lee
- Department of Mechanical Engineering
- Korea University
- Seoul 02841
- Republic of Korea
| | - Sungsoo Na
- Department of Mechanical Engineering
- Korea University
- Seoul 02841
- Republic of Korea
| |
Collapse
|
33
|
Yoon G, Lee M, Kim K, In Kim J, Joon Chang H, Baek I, Eom K, Na S. Morphology and mechanical properties of multi-stranded amyloid fibrils probed by atomistic and coarse-grained simulations. Phys Biol 2015; 12:066021. [DOI: 10.1088/1478-3975/12/6/066021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Lee M, Na S. End Capping Alters the Structural Characteristics and Mechanical Properties of Transthyretin (105-115) Amyloid Protofibrils. Chemphyschem 2015; 17:425-32. [DOI: 10.1002/cphc.201500945] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/16/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Myeongsang Lee
- Department of Mechanical Engineering; Korea University; Seoul 02841 Republic of Korea
| | - Sungsoo Na
- Department of Mechanical Engineering; Korea University; Seoul 02841 Republic of Korea
| |
Collapse
|
35
|
Lee G, Lee W, Lee H, Lee CY, Eom K, Kwon T. Self-assembled amyloid fibrils with controllable conformational heterogeneity. Sci Rep 2015; 5:16220. [PMID: 26592772 PMCID: PMC4655422 DOI: 10.1038/srep16220] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 10/12/2015] [Indexed: 12/29/2022] Open
Abstract
Amyloid fibrils are a hallmark of neurodegenerative diseases and exhibit a conformational diversity that governs their pathological functions. Despite recent findings concerning the pathological role of their conformational diversity, the way in which the heterogeneous conformations of amyloid fibrils can be formed has remained elusive. Here, we show that microwave-assisted chemistry affects the self-assembly process of amyloid fibril formation, which results in their conformational heterogeneity. In particular, microwave-assisted chemistry allows for delicate control of the thermodynamics of the self-assembly process, which enabled us to tune the molecular structure of β-lactoglobulin amyloid fibrils. The heterogeneous conformations of amyloid fibrils, which can be tuned with microwave-assisted chemistry, are attributed to the microwave-driven thermal energy affecting the electrostatic interaction during the self-assembly process. Our study demonstrates how microwave-assisted chemistry can be used to gain insight into the origin of conformational heterogeneity of amyloid fibrils as well as the design principles showing how the molecular structures of amyloid fibrils can be controlled.
Collapse
Affiliation(s)
- Gyudo Lee
- School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Wonseok Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Hyungbeen Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Chang Young Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kilho Eom
- Biomechanics Laboratory, College of Sport Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Taeyun Kwon
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
36
|
Lee M, Baek I, Choi H, Kim JI, Na S. Effects of lysine residues on structural characteristics and stability of tau proteins. Biochem Biophys Res Commun 2015; 466:486-92. [DOI: 10.1016/j.bbrc.2015.09.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 09/11/2015] [Indexed: 11/26/2022]
|
37
|
Chang HJ, Baek I, Lee M, Na S. Influence of Aromatic Residues on the Material Characteristics of Aβ Amyloid Protofibrils at the Atomic Scale. Chemphyschem 2015; 16:2403-14. [DOI: 10.1002/cphc.201500244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/27/2015] [Indexed: 11/06/2022]
|
38
|
Kim JI, Lee M, Baek I, Yoon G, Na S. The mechanical response of hIAPP nanowires based on different bending direction simulations. Phys Chem Chem Phys 2015; 16:18493-500. [PMID: 25073067 DOI: 10.1039/c4cp02494j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amyloid proteins, implicated in numerous aging-related diseases, possess remarkable mechanical properties. Polymorphism leads to different arrangements of β sheets in amyloid fibrils, which changes the characteristics of the hydrogen bond network that determines their mechanical properties and structural characteristics. We performed bending simulations using molecular dynamics methods under constant-velocity conditions in different bending directions. Two different fibril structures, parallel/homo and parallel/hetero, of hIAPP amyloids were considered. Though the bending configuration influences the toughness of the material, our results indicate that the basic material behavior is affected by the β-sheet arrangement that is determined by the type of polymorphism in amyloid fibrils.
Collapse
Affiliation(s)
- J I Kim
- Department of Mechanical Engineering, Korea University, Seoul 136-701, Republic of Korea.
| | | | | | | | | |
Collapse
|
39
|
Relationship between structural composition and material properties of polymorphic hIAPP fibrils. Biophys Chem 2015; 199:1-8. [PMID: 25682214 DOI: 10.1016/j.bpc.2015.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/14/2015] [Accepted: 02/02/2015] [Indexed: 01/21/2023]
Abstract
Amyloid proteins are misfolded, denatured proteins that are responsible for causing several degenerative and neuro-degenerative diseases. Determining the mechanical stability of these amyloids is crucial for understanding the disease mechanisms, which will guide us in treatment. Furthermore, many research groups recognized amyloid proteins as functional biological materials that can be used in nanosensors, bacterial biofilms, coatings, etc. Many in vitro studies have been carried out to determine the characteristics of amyloid proteins via force spectroscopy methods, atomic force microscopy, and optical tweezers. However, computational methods (e.g. molecular dynamics and elastic network model) not only reveal the mechanical properties of the amyloid proteins, but also provide more in-depth information about the amyloids by presenting a visualization of their conformational changes. In this study, we evaluated the various material properties and behaviors of four different polymorphic structures of human islet amyloid polypeptide (hIAPP) by using steered molecular dynamics (SMD) simulations under tensile conditions. From our results, we examined how these mechanical properties may differ with respect to the structural formation of amyloid proteins.
Collapse
|
40
|
Mora AK, Murudkar S, Singh PK, Nath S. Effect of fibrillation on the excited state dynamics of tryptophan in serum protein – A time-resolved fluorescence study. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2014.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Wineman-Fisher V, Atsmon-Raz Y, Miller Y. Orientations of residues along the β-arch of self-assembled amylin fibril-like structures lead to polymorphism. Biomacromolecules 2014; 16:156-65. [PMID: 25420121 DOI: 10.1021/bm501326y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amylin is an endocrine hormone peptide that consists of 37 residues and is the main component of extracellular amyloid deposits found in the pancreas of most type 2 diabetes patients. Amylin peptides are self-assembled to form oligomers and fibrils. So far, four different molecular structures of the self-assembled amylin fibrils have been observed experimentally: two ssNMR models and two crystal models. This study reveals, for the first time, that there are four self-assembled amylin forms that differ in the orientations of the side chains along the β-arch and are all derived from the two ssNMR models. The two ssNMR models are composed of these four different self-assembled forms of amylin, and the two crystal models are composed of two different self-assembled forms of amylin. This study illustrates at the atomic level the differences among the four experimental models and proposes eight new models of self-assembled amylin that are also composed of the four different self-assembled forms of amylin. Our results show polymorphism of the self-assembled fibril-like amylin, with a slight preference of some of the newly constructed models over the experimental models. Finally, we propose that two different self-assembled fibril-like forms of amylin can interact to form a new fibril-like amylin. We investigated this argument and found that some fibril-like amylin prefers to interact to form stable fibril-like structures, whereas others disfavor it. Our work provides new insights that may suggest strategies for future pharmacological studies that aim to find ways to ameliorate the interactions between polymorphic oligomers and fibrils of amylin.
Collapse
Affiliation(s)
- Vered Wineman-Fisher
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| | | | | |
Collapse
|
42
|
Choi B, Yoon G, Lee SW, Eom K. Mechanical deformation mechanisms and properties of amyloid fibrils. Phys Chem Chem Phys 2014; 17:1379-89. [PMID: 25426573 DOI: 10.1039/c4cp03804e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyloid fibrils have recently received attention due to their remarkable mechanical properties, which are highly correlated with their biological functions. We have studied the mechanical deformation mechanisms and properties of amyloid fibrils as a function of their length scales by using atomistic simulations. It is shown that the length of amyloid fibrils plays a role in their deformation and fracture mechanisms in such a way that the competition between shear and bending deformations is highly dependent on the fibril length, and that as the fibril length increases, so does the bending strength of the fibril while its shear strength decreases. The dependence of rupture force for amyloid fibrils on their length is elucidated using the Bell model, which suggests that the rupture force of the fibril is determined from the hydrogen bond rupture mechanism that critically depends on the fibril length. We have measured the toughness of amyloid fibrils, which is shown to depend on the fibril length. In particular, the toughness of the fibril with its length of ∼3 nm is estimated to be ∼30 kcal mol(-1) nm(-3), comparable to that of a spider silk crystal with its length of ∼2 nm. Moreover, we have shown the important effect of the pulling rate on the mechanical deformation mechanisms and properties of amyloid fibril. It is found that as the pulling rate increases, so does the contribution of the shear effect to the elastic deformation of the amyloid fibril with its length of <10 nm. However, we found that the deformation mechanism of the amyloid fibril with its length of >15 nm is almost independent of the pulling rate. Our study sheds light on the role of the length scale of amyloid fibrils and the pulling rate in their mechanical behaviors and properties, which may provide insights into how the excellent mechanical properties of protein fibrils can be determined.
Collapse
Affiliation(s)
- Bumjoon Choi
- Department of Biomedical Engineering, Yonsei University, Wonju 220-710, Republic of Korea
| | | | | | | |
Collapse
|
43
|
Berhanu WM, Hansmann UHE. Stability of amyloid oligomers. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 96:113-41. [PMID: 25443956 DOI: 10.1016/bs.apcsb.2014.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Molecular simulations are now commonly used to complement experimental techniques in investigating amyloids and their role in human diseases. In this chapter, we will summarize techniques and approaches often used in amyloid simulations and will present recent success stories. Our examples will be focused on lessons learned from molecular dynamics simulations in aqueous environments that start from preformed aggregates. These studies explore the limitations that arise from the choice of force field, the role of mutations in the growth of amyloid aggregates, segmental polymorphism, and the importance of cross-seeding. Furthermore, they give evidence for potential toxicity mechanisms. We finally discuss the role of molecular simulations in the search for aggregation inhibitors.
Collapse
Affiliation(s)
- Workalemahu M Berhanu
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Ulrich H E Hansmann
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma, USA.
| |
Collapse
|
44
|
|