1
|
Chen Q, Xu F, Wu H, Xie L, Li H, Jiao C, Zhang H, Chen X. Inhibition of Semaphorin 3A in Hippocampus Alleviates Postpartum Depression-Like Behaviors in Mice. Mol Neurobiol 2025; 62:7723-7737. [PMID: 39934560 PMCID: PMC12078365 DOI: 10.1007/s12035-025-04752-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
Postpartum depression (PPD) is a widespread psychiatric condition affecting up to 20% of postpartum women. Although it is known to be associated with ovarian hormone withdrawal following delivery, current treatments remain limited due to a lack of underlying mechanism. Here, in mice, we identified that semaphorin 3A (sema3A) exhibited a notable increase in expression within the hippocampus of postpartum depression mice, whereas no such upregulation was observed in female mice experiencing depression induced by lipopolysaccharide or chronic restraint stress. The coexpression rate of sema3A and c-Fos was also elevated in the hippocampal CA3 of postpartum depression mice. Importantly, systemic inhibition or genetic knockdown of hippocampal sema3A significantly alleviated the depressive symptoms induced by ovarian hormone withdrawal. Further, overexpression of sema3A in CA3 induced depressive-like behaviors in naïve female mice. In conclusion, our cumulative findings suggest that sema3A in hippocampal CA3 plays a pivotal role in the pathogenesis of postpartum depression, and could serve as a promising treatment target for ameliorating this widespread disorder.
Collapse
Affiliation(s)
- Qing Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Fang Xu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Hui Wu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Linghua Xie
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Hua Li
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Cuicui Jiao
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Honghai Zhang
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310006, China
| | - Xinzhong Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
2
|
Bondy E. Considering the role of estradiol in the psychoneuroimmunology of perimenopausal depression. Brain Behav Immun Health 2024; 40:100830. [PMID: 39161877 PMCID: PMC11331712 DOI: 10.1016/j.bbih.2024.100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/24/2024] [Accepted: 07/20/2024] [Indexed: 08/21/2024] Open
Abstract
In recent years, a burgeoning field of research has focused on women's mental health and psychiatric conditions associated with perinatal and postpartum periods. An emerging trend points to the link between hormone fluctuations during pregnancy and postpartum that have immunologic consequences in cases of perinatal depression and postpartum psychosis. The transition to menopause (or "perimenopause") has garnered comparatively less attention, but existing studies point to the influential interaction of hormonal and immune pathways. Moreover, the role of this cross talk in perturbing neural networks has been implicated in risk for cognitive decline, but relatively less work has focused on the depressed brain during perimenopause. This brief review brings a psychoneuroimmunology lens to depression during the perimenopausal period by providing an overview of existing knowledge and suggestions for future research to intertwine these bodies of work.
Collapse
Affiliation(s)
- Erin Bondy
- Department of Psychiatry, University of North Carolina School of Medicine, USA
| |
Collapse
|
3
|
López Hanotte J, Peralta F, Reggiani PC, Zappa Villar MF. Investigating the Impact of Intracerebroventricular Streptozotocin on Female Rats with and without Ovaries: Implications for Alzheimer's Disease. Neurochem Res 2024; 49:2785-2802. [PMID: 38985243 DOI: 10.1007/s11064-024-04204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
To contribute to research on female models of Alzheimer's disease (AD), our aim was to study the effect of intracerebroventricular (ICV) injection of streptozotocin (STZ) in female rats, and to evaluate a potential neuroprotective action of ovarian steroids against STZ. Female rats were either ovariectomized (OVX) or kept with ovaries (Sham) two weeks before ICV injections. Animals were injected with either vehicle (artificial cerebrospinal fluid, aCSF) or STZ (3 mg/kg) and separated into four experimental groups: Sham + aCSF, Sham + STZ, OVX + aCSF and OVX + STZ. Nineteen days post-injection, we assessed different behavioral aspects: burying, anxiety and exploration, object recognition memory, spatial memory, and depressive-like behavior. Immunohistochemistry and Immunoblot analyses were performed in the hippocampus to examine changes in AD-related proteins and neuronal and microglial populations. STZ affected burying and exploratory behavior depending on ovarian status, and impaired recognition but not spatial memory. STZ and ovariectomy increased depressive-like behavior. Interestingly, STZ did not alter the expression of β-amyloid peptide or Tau phosphorylated forms. STZ affected the neuronal population from the Dentate Gyrus, where immature neurons were more vulnerable to STZ in OVX rats. Regarding microglia, STZ increased reactive cells, and the OVX + STZ group showed an increase in the total cell number. In sum, STZ partially affected female rats, compared to what was previously reported for males. Although AD is more frequent in women, reports about the effect of ICV-STZ in female rats are scarce. Our work highlights the need to deepen into the effects of STZ in the female brain and study possible sex differences.
Collapse
Affiliation(s)
- Juliette López Hanotte
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Facundo Peralta
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Paula Cecilia Reggiani
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina.
- Cátedra de Citología, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina.
| | - María Florencia Zappa Villar
- Instituto de Investigaciones Bioquímicas de La Plata "Profesor Doctor Rodolfo R. Brenner", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina.
| |
Collapse
|
4
|
Chen Y, Schlotterer A, Lin J, Dietrich N, Fleming T, Lanzinger S, Holl RW, Hammes HP. Sex differences in the development of experimental diabetic retinopathy. Sci Rep 2024; 14:22812. [PMID: 39354039 PMCID: PMC11445250 DOI: 10.1038/s41598-024-73279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 09/15/2024] [Indexed: 10/03/2024] Open
Abstract
This study aimed to characterize the role of female sex in the pathogenesis of diabetic retinopathy. In the retinae of female Ins2Akita-diabetic mice (F-IA), ovariectomized female Ins2Akita-diabetic mice (F-IA/OVX), male Ins2Akita-diabetic mice (M-IA), and female STZ-diabetic mice (F-STZ), the formation of reactive metabolites and post-translational modifications, damage to the neurovascular unit, and expression of cellular stress response genes were analyzed. Compared to the male diabetic retina, the concentrations of the glycation adduct fructosyl-lysine, the Maillard product 3-deoxyglucosone, and the reactive metabolite methylglyoxal were significantly reduced in females. In females, there was also less evidence of diabetic damage to the neurovascular unit, as shown by decreased pericyte loss and reduced microglial activation. In the male diabetic retina, the expression of several members of the crystallin gene family (Cryab, Cryaa, Crybb2, Crybb1, and Cryba4) was increased. Clinical data from type 1 diabetic females showed that premenopausal women had a significantly lower prevalence of diabetic retinopathy compared to postmenopausal women stratified for disease duration and glycemic control. These data emphasize the importance of estradiol in protecting the diabetic retina and highlight the pathogenic relevance of sex in diabetic retinopathy.
Collapse
Affiliation(s)
- Ying Chen
- Fifth Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Andrea Schlotterer
- Fifth Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jihong Lin
- Fifth Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nadine Dietrich
- Fifth Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Stefanie Lanzinger
- Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Reinhard W Holl
- Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Hans-Peter Hammes
- Fifth Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
5
|
Machado MMF, Ático EM, Banin RM, Hirata BKS, Kempe PRG, Pedroso AP, Thomaz FM, Oyama LM, Ribeiro EB, Bueno AA, Cerutti SM, Telles MM. Ginkgo biloba extract modulates astrocytic and microglial recruitment in the hippocampus and hypothalamus of menopause-induced ovariectomized rats. Brain Res 2023; 1822:148659. [PMID: 39492489 DOI: 10.1016/j.brainres.2023.148659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
BACKGROUND Changes in steroid hormone levels associated with menopause are known to affect body composition, with increased accumulation of visceral fat and impaired actions of appetite-regulating neuropeptides. Anti-obesogenic, antioxidant, anti-inflammatory and neuromodulatory properties have been attributed to Ginkgo biloba extract (GbE) oral supplementation. HYPOTHESIS/PURPOSE We investigated in menopause-induced ovariectomized rats the effects of GbE oral supplementation on microglial reactivity and astrocyte recruitment in hippocampal and hypothalamic subregions involved in the regulation of feeding behavior and energy homeostasis. STUDY DESIGN/METHODS Ovariectomy (Ovx) or false-Ovx (Sham) surgery were performed in 2-month-old female Wistar rats. Sixty days after surgery, Ovx rats were gavaged daily for 14 days with either saline (Ovx + Veh) or GbE 500 mg/Kg (Ovx + GbE). Rats were subsequently sacrificed, brains harvested and subjected to immunohistochemistry and immunofluorescence analyses. RESULTS Ovx increased microglial reactivity in CA1, CA3 and dentate gyrus (DG) in the dorsal hippocampal formation (dHF), as well as in DG in the ventral hippocampal formation (vHF). Additionally, Ovx reduced astrocyte count in dHF CA3. The disturbances found in Ovx + Veh versus Sham were not found in Ovx + GbE versus Sham. Furthermore, higher astrocyte counts in DG of both dHF and vHF were found in Ovx + GbE as compared to Ovx + Veh. In the hypothalamus, Ovx + Veh showed reduced microglial reactivity in the arcuate (ARC) and ventromedial (VMH) nuclei as compared to Ovx + GbE. Ovx + GbE rats presented higher astrocyte counts in ARC compared to Sham rats. CONCLUSION Our results show for the first time in a rodent model of menopause that GbE supplementation modulates astrocyte and microglial recruitment and reactivity in hippocampal and hypothalamic subregions involved in feeding behavior and energy homeostasis. Future research employing other experimental models may further elucidate whether GbE supplementation possesses therapeutic properties upon glial cell reactivity to potentially alleviate changes in energy homeostasis associated with menopause.
Collapse
Affiliation(s)
- Meira M F Machado
- Post-graduate Program in Chemical Biology, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Esther M Ático
- Post-graduate Program in Chemical Biology, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Renata M Banin
- Discipline of Nutrition Physiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bruna K S Hirata
- Post-graduate Program in Chemical Biology, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Paula R G Kempe
- Laboratory of Nerve Regeneration, Universidade de Campinas, Campinas, Brazil
| | - Amanda P Pedroso
- Discipline of Nutrition Physiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda M Thomaz
- Post-graduate Program in Chemical Biology, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Lila M Oyama
- Discipline of Nutrition Physiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Eliane B Ribeiro
- Discipline of Nutrition Physiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Allain A Bueno
- College of Health, Life and Environmental Sciences, University of Worcester, Worcester WR2 6AJ, United Kingdom.
| | - Suzete M Cerutti
- Post-graduate Program in Chemical Biology, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Mônica M Telles
- Post-graduate Program in Chemical Biology, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil; Discipline of Nutrition Physiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Gannon OJ, Naik JS, Riccio D, Mansour FM, Abi-Ghanem C, Salinero AE, Kelly RD, Brooks HL, Zuloaga KL. Menopause causes metabolic and cognitive impairments in a chronic cerebral hypoperfusion model of vascular contributions to cognitive impairment and dementia. Biol Sex Differ 2023; 14:34. [PMID: 37221553 DOI: 10.1186/s13293-023-00518-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND The vast majority of women with dementia are post-menopausal. Despite clinical relevance, menopause is underrepresented in rodent models of dementia. Before menopause, women are less likely than men to experience strokes, obesity, and diabetes-known risk factors for vascular contributions to cognitive impairment and dementia (VCID). During menopause, ovarian estrogen production stops and the risk of developing these dementia risk factors spikes. Here, we aimed to determine if menopause worsens cognitive impairment in VCID. We hypothesized that menopause would cause metabolic dysfunction and increase cognitive impairment in a mouse model of VCID. METHODS We performed a unilateral common carotid artery occlusion surgery to produce chronic cerebral hypoperfusion and model VCID in mice. We used 4-vinylcyclohexene diepoxide to induce accelerated ovarian failure and model menopause. We evaluated cognitive impairment using behavioral tests including novel object recognition, Barnes maze, and nest building. To assess metabolic changes, we measured weight, adiposity, and glucose tolerance. We explored multiple aspects of brain pathology including cerebral hypoperfusion and white matter changes (commonly observed in VCID) as well as changes to estrogen receptor expression (which may mediate altered sensitivity to VCID pathology post-menopause). RESULTS Menopause increased weight gain, glucose intolerance, and visceral adiposity. VCID caused deficits in spatial memory regardless of menopausal status. Post-menopausal VCID specifically led to additional deficits in episodic-like memory and activities of daily living. Menopause did not alter resting cerebral blood flow on the cortical surface (assessed by laser speckle contrast imaging). In the white matter, menopause decreased myelin basic protein gene expression in the corpus callosum but did not lead to overt white matter damage (assessed by Luxol fast blue). Menopause did not significantly alter estrogen receptor expression (ERα, ERβ, or GPER1) in the cortex or hippocampus. CONCLUSIONS Overall, we have found that the accelerated ovarian failure model of menopause caused metabolic impairment and cognitive deficits in a mouse model of VCID. Further studies are needed to identify the underlying mechanism. Importantly, the post-menopausal brain still expressed estrogen receptors at normal (pre-menopausal) levels. This is encouraging for any future studies attempting to reverse the effects of estrogen loss by activating brain estrogen receptors.
Collapse
Affiliation(s)
- Olivia J Gannon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Janvie S Naik
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - David Riccio
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Febronia M Mansour
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Charly Abi-Ghanem
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Abigail E Salinero
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Richard D Kelly
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Heddwen L Brooks
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA.
| |
Collapse
|
7
|
Muscat SM, Butler MJ, Mackey-Alfonso SE, Barrientos RM. Young adult and aged female rats are vulnerable to amygdala-dependent, but not hippocampus-dependent, memory impairment following short-term high-fat diet. Brain Res Bull 2023; 195:145-156. [PMID: 36870621 PMCID: PMC10257807 DOI: 10.1016/j.brainresbull.2023.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Global populations are increasingly consuming diets high in saturated fats and refined carbohydrates, and such diets have been well-associated with heightened inflammation and neurological dysfunction. Notably, older individuals are particularly vulnerable to the impact of unhealthy diet on cognition, even after a single meal, and pre-clinical rodent studies have demonstrated that short-term consumption of high-fat diet (HFD) induces marked increases in neuroinflammation and cognitive impairment. Unfortunately though, to date, most studies on the topic of nutrition and cognition, especially in aging, have been performed only in male rodents. This is especially concerning given that older females are more vulnerable to develop certain memory deficits and/or severe memory-related pathologies than males. Thus, the aim of the present study was to determine the extent to which short-term HFD consumption impacts memory function and neuroinflammation in female rats. Young adult (3 months) and aged (20-22 months) female rats were fed HFD for 3 days. Using contextual fear conditioning, we found that HFD had no effect on long-term contextual memory (hippocampus-dependent) at either age, but impaired long-term auditory-cued memory (amygdala-dependent) regardless of age. Gene expression of Il-1β was markedly dysregulated in the amygdala, but not hippocampus, of both young and aged rats after 3 days of HFD. Interestingly, modulation of IL-1 signaling via central administration of the IL-1 receptor antagonist (which we have previously demonstrated to be protective in males) had no impact on memory function following the HFD in females. Investigation of the memory-associated gene Pacap and its receptor Pac1r revealed differential effects of HFD on their expression in the hippocampus and amygdala. Specifically, HFD induced increased expression of Pacap and Pac1r in the hippocampus, whereas decreased Pacap was observed in the amygdala. Collectively, these data suggest that both young adult and aged female rats are vulnerable to amygdala-dependent (but not hippocampus-dependent) memory impairments following short-term HFD consumption, and identify potential mechanisms related to IL-1β and PACAP signaling in these differential effects. Notably, these findings are strikingly different than those previously reported in male rats using the same diet regimen and behavioral paradigms, and highlight the importance of examining potential sex differences in the context of neuroimmune-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Michael J Butler
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Sabrina E Mackey-Alfonso
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Sekikawa A, Wharton W, Butts B, Veliky CV, Garfein J, Li J, Goon S, Fort A, Li M, Hughes TM. Potential Protective Mechanisms of S-equol, a Metabolite of Soy Isoflavone by the Gut Microbiome, on Cognitive Decline and Dementia. Int J Mol Sci 2022; 23:11921. [PMID: 36233223 PMCID: PMC9570153 DOI: 10.3390/ijms231911921] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
S-equol, a metabolite of soy isoflavone daidzein transformed by the gut microbiome, is the most biologically potent among all soy isoflavones and their metabolites. Soy isoflavones are phytoestrogens and exert their actions through estrogen receptor-β. Epidemiological studies in East Asia, where soy isoflavones are regularly consumed, show that dietary isoflavone intake is inversely associated with cognitive decline and dementia; however, randomized controlled trials of soy isoflavones in Western countries did not generally show their cognitive benefit. The discrepant results may be attributed to S-equol production capability; after consuming soy isoflavones, 40-70% of East Asians produce S-equol, whereas 20-30% of Westerners do. Recent observational and clinical studies in Japan show that S-equol but not soy isoflavones is inversely associated with multiple vascular pathologies, contributing to cognitive impairment and dementia, including arterial stiffness and white matter lesion volume. S-equol has better permeability to the blood-brain barrier than soy isoflavones, although their affinity to estrogen receptor-β is similar. S-equol is also the most potent antioxidant among all known soy isoflavones. Although S-equol is available as a dietary supplement, no long-term trials in humans have examined the effect of S-equol supplementation on arterial stiffness, cerebrovascular disease, cognitive decline, or dementia.
Collapse
Affiliation(s)
- Akira Sekikawa
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Whitney Wharton
- School of Nursing and Medicine, Emory University, Atlanta, GA 30322, USA
| | - Brittany Butts
- School of Nursing and Medicine, Emory University, Atlanta, GA 30322, USA
| | - Cole V. Veliky
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joshua Garfein
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jiatong Li
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shatabdi Goon
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Annamaria Fort
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mengyi Li
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Timothy M. Hughes
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
9
|
Vega-Rivera NM, González-Monroy E, Morelos-Santana E, Estrada-Camarena E. The relevance of the endocrine condition in microglia morphology and dendrite complexity of doublecortin-associated neurons in young adult and middle-aged female rats exposed to acute stress. Eur J Neurosci 2021; 54:5293-5309. [PMID: 34302304 DOI: 10.1111/ejn.15398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023]
Abstract
Menopause, natural or surgical, might facilitate the onset of psychiatric pathologies. Some reports suggest that their severity could increase if the decline of ovarian hormones occurs abruptly and before natural endocrine senescence. Therefore, we compared the effects of ovariectomy on microglia's morphological alterations, the complexity of newborn neurons, and the animal's ability to cope with stress. Young adult (3 months) and middle-aged (15 months) female Wistar rats were subjected to an ovariectomy (OVX) or were sham-operated. After 3 weeks, animals were assigned to one of the following independent groups: (1) young adult OVX + no stress; (2) young adult sham + no stress; (3) young adult OVX + stress; (4) young adult sham + stress; (5) middle-aged OVX + no stress; (6) middle-aged sham + no stress; (7) middle-aged OVX + stress; (8) middle-aged sham + stress. Acute stress was induced by forced swimming test (FST) exposure. Immobility behavior was scored during FST and 30 min after; animals were euthanized, their brains collected and prepared for immunohistochemical detection of Iba-1 to analyze morphological alterations in microglia, and doublecortin (DCX) detection to evaluate the dendrite complexity of newborn neurons. OVX increased immobility behavior, induced microglia morphological alterations, and reduced dendrite complexity of newborn neurons in young adult rats. FST further increased this effect. In middle-aged rats, the main effects were related to the aging process without OVX or stress exposure. In conclusion, surgical menopause favors in young adult rats, but not in middle-aged, the vulnerability to develop immobility behavior, retracted morphology of microglial cells, and decreased dendrite complexity of newborn neurons.
Collapse
Affiliation(s)
- Nelly Maritza Vega-Rivera
- Laboratory of Neuropsychopharmacology, Division of Neurosciences, National Institute of Psychiatry, Mexico City, Mexico
| | - Edgar González-Monroy
- Laboratory of Neuropsychopharmacology, Division of Neurosciences, National Institute of Psychiatry, Mexico City, Mexico
| | - Erik Morelos-Santana
- Division of Clinical Investigations, National Institute of Psychiatry, Mexico City, Mexico
| | - Erika Estrada-Camarena
- Laboratory of Neuropsychopharmacology, Division of Neurosciences, National Institute of Psychiatry, Mexico City, Mexico
| |
Collapse
|
10
|
Mishra A, Shang Y, Wang Y, Bacon ER, Yin F, Brinton RD. Dynamic Neuroimmune Profile during Mid-life Aging in the Female Brain and Implications for Alzheimer Risk. iScience 2020; 23:101829. [PMID: 33319170 PMCID: PMC7724165 DOI: 10.1016/j.isci.2020.101829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/13/2020] [Accepted: 11/16/2020] [Indexed: 12/24/2022] Open
Abstract
Aging and endocrine transition states can significantly impact inflammation across organ systems. Neuroinflammation is well documented in Alzheimer disease (AD). Herein, we investigated neuroinflammation that emerges during mid-life aging, chronological and endocrinological, in the female brain as an early initiating mechanism driving AD risk later in life. Analyses were conducted in a translational rodent model of mid-life chronological and endocrinological aging followed by validation in transcriptomic profiles from women versus age-matched men. In the translational model, the neuroinflammatory profile of mid-life aging in females was endocrine and chronological state specific, dynamic, anatomically distributed, and persistent. Microarray dataset analyses of aging human hippocampus indicated a sex difference in neuroinflammatory profile in which women exhibited a profile comparable to the pattern discovered in our translational rodent model, whereas age-matched men exhibited a profile consistent with low neuroimmune activation. Translationally, these findings have implications for therapeutic interventions during mid-life to decrease late-onset AD risk.
Collapse
Affiliation(s)
- Aarti Mishra
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Yuan Shang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Yiwei Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Eliza R Bacon
- Department of Medical Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Fei Yin
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Roberta D Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
11
|
McCarthy M, Raval AP. The peri-menopause in a woman's life: a systemic inflammatory phase that enables later neurodegenerative disease. J Neuroinflammation 2020; 17:317. [PMID: 33097048 PMCID: PMC7585188 DOI: 10.1186/s12974-020-01998-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023] Open
Abstract
The peri-menopause or menopausal transition—the time period that surrounds the final years of a woman’s reproductive life—is associated with profound reproductive and hormonal changes in a woman’s body and exponentially increases a woman’s risk of cerebral ischemia and Alzheimer’s disease. Although our understanding of the exact timeline or definition of peri-menopause is limited, it is clear that there are two stages to the peri-menopause. These are the early menopausal transition, where menstrual cycles are mostly regular, with relatively few interruptions, and the late transition, where amenorrhea becomes more prolonged and lasts for at least 60 days, up to the final menstrual period. Emerging evidence is showing that peri-menopause is pro-inflammatory and disrupts estrogen-regulated neurological systems. Estrogen is a master regulator that functions through a network of estrogen receptors subtypes alpha (ER-α) and beta (ER-β). Estrogen receptor-beta has been shown to regulate a key component of the innate immune response known as the inflammasome, and it also is involved in regulation of neuronal mitochondrial function. This review will present an overview of the menopausal transition as an inflammatory event, with associated systemic and central nervous system inflammation, plus regulation of the innate immune response by ER-β-mediated mechanisms.
Collapse
Affiliation(s)
- Micheline McCarthy
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Leonard M. Miller School of Medicine, University of Miami, 1420 NW 9th Avenue, Neurology Research Building, Room # 203H, Miami, FL, 33136, USA. .,Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
12
|
Zhang WY, Guo YJ, Wang KY, Chen LM, Jiang P. Neuroprotective effects of vitamin D and 17ß-estradiol against ovariectomy-induced neuroinflammation and depressive-like state: Role of the AMPK/NF-κB pathway. Int Immunopharmacol 2020; 86:106734. [PMID: 32604067 DOI: 10.1016/j.intimp.2020.106734] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/08/2020] [Accepted: 06/21/2020] [Indexed: 12/24/2022]
Abstract
Estrogen replacement therapy (ERT) has been proven to relieve menopausal-related mental disorders including depression in postmenopausal women. However, the unsafety of ERT hinders its clinical use. In this study, we would evaluate whether vitamin D (VD), a hormone with optimal safety profile, could relieve the depressive-like symptom in ovariectomized (OVX) rats. Furthermore, we would determine whether vitamin D and 17β-estradiol (E2) exert neurological function through their immunomodulatory effect in OVX rats. Middle-aged female SD rats were randomly divided into four groups, namely, control (SHAM), OVX, OVX + VD, and OVX + E2. Vitamin D (calcitriol, 100 ng/kg) and 17β-estradiol (30 μg/kg) had been daily gavaged in the OVX + VD and OVX + E2 group, respectively. After 10-week administration, vitamin D and 17β-estradiol both showed anti-depressive-like activity in the OVX rats. Using the method of immunofluorescent staining and western blot, vitamin D and 17β-estradiol were demonstrated to upregulate each other's receptors, including VDR, ERα, and ERβ in the hippocampus of OVX rats. Additionally, the upregulation of VDR, calbindin-D28k, and calbindin-D9k suggested that the vitamin D signaling system was amplified by vitamin D and 17β-estradiol. Vitamin D and 17β-estradiol showed neuroprotective effects by decreasing OVX-induced apoptosis and neuronal damage, regulating the AMPK/NF-κB signaling pathway, and reducing the proinflammatory cytokines (IL-1β, IL-6, and TNFα), as well as iNOS and COX-2 in the hippocampus of OVX rats. Collectively, the present study demonstrated that vitamin D and 17β-estradiol could upregulate each other's receptors and regulate the AMPK/NF-κB pathway to relieve the OVX-induced depressive-like state. The results could stimulate translational research towards the vitamin D potential for prevention or treatment of menopause-related depression.
Collapse
Affiliation(s)
- Wen-Yuan Zhang
- Department of Pharmacy, Zhongshan Affiliated Hospital of Zhongshan University, Zhongshan, China
| | - Yu-Jin Guo
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Ke-Yi Wang
- Department of MRI, Zhongshan Affiliated Hospital of Zhongshan University, Zhongshan, China
| | - Lin-Mu Chen
- Department of Pharmacy, Zhongshan Affiliated Hospital of Zhongshan University, Zhongshan, China
| | - Pei Jiang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China.
| |
Collapse
|
13
|
Perez-Pouchoulen M, Yu SJ, Roby CR, Bonsavage N, McCarthy MM. Regulatory Control of Microglial Phagocytosis by Estradiol and Prostaglandin E2 in the Developing Rat Cerebellum. THE CEREBELLUM 2020; 18:882-895. [PMID: 31435854 DOI: 10.1007/s12311-019-01071-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Microglia are essential to sculpting the developing brain, and they achieve this in part through the process of phagocytosis which is regulated by microenvironmental signals associated with cell death and synaptic connectivity. In the rat cerebellum, microglial phagocytosis reaches its highest activity during the third postnatal week of development but the factors regulating this activity are unknown. A signaling pathway, involving prostaglandin E2 (PGE2) stimulation of the estrogen synthetic enzyme aromatase, peaks during the 2nd postnatal week and is a critical regulator of Purkinje cell maturation. We explored the relationship between the PGE2-estradiol pathway and microglia in the maturing cerebellum. Toward that end, we treated developing rat pups with pharmacological inhibitors of estradiol and PGE2 synthesis and then stained microglia with the universal marker Iba1 and quantified microglia engaged in phagocytosis as well as phagocytic cups in the vermis and cerebellar hemispheres. Inhibition of aromatase reduced the number of phagocytic cups in the vermis, but not in the cerebellar hemisphere at postnatal day 17. Similar results were found after treatment with nimesulide and indomethacin, inhibitors of the PGE2-producing enzymes cyclooxygenase 1 and 2. In contrast, treatment with estradiol or PGE2 had little effect on microglial phagocytosis in the developing cerebellum. Thus, endogenous estrogens and prostaglandins upregulate the phagocytic activity of microglia during a select window of postnatal cerebellar development, but exogenous treatment with these same signaling molecules does not further increase the already high levels of phagocytosis. This may be due to an upper threshold or evidence of resistance to exogenous perturbation.
Collapse
Affiliation(s)
- Miguel Perez-Pouchoulen
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA.
| | - Stacey J Yu
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA
| | - Clinton R Roby
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA
| | - Nicole Bonsavage
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA
| |
Collapse
|
14
|
Wang Y, Mishra A, Brinton RD. Transitions in metabolic and immune systems from pre-menopause to post-menopause: implications for age-associated neurodegenerative diseases. F1000Res 2020; 9. [PMID: 32047612 PMCID: PMC6993821 DOI: 10.12688/f1000research.21599.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
The brain undergoes two aging programs: chronological and endocrinological. This is particularly evident in the female brain, which undergoes programs of aging associated with reproductive competency. Comprehensive understanding of the dynamic metabolic and neuroinflammatory aging process in the female brain can illuminate windows of opportunities to promote healthy brain aging. Bioenergetic crisis and chronic low-grade inflammation are hallmarks of brain aging and menopause and have been implicated as a unifying factor causally connecting genetic risk factors for Alzheimer's disease and other neurodegenerative diseases. In this review, we discuss metabolic phenotypes of pre-menopausal, peri-menopausal, and post-menopausal aging and their consequent impact on the neuroinflammatory profile during each transition state. A critical aspect of the aging process is the dynamic metabolic neuro-inflammatory profiles that emerge during chronological and endocrinological aging. These dynamic systems of biology are relevant to multiple age-associated neurodegenerative diseases and provide a therapeutic framework for prevention and delay of neurodegenerative diseases of aging. While these findings are based on investigations of the female brain, they have a broader fundamental systems of biology strategy for investigating the aging male brain. Molecular characterization of alterations in fuel utilization and neuroinflammatory mechanisms during these neuro-endocrine transition states can inform therapeutic strategies to mitigate the risk of Alzheimer's disease in women. We further discuss a precision hormone replacement therapy approach to target symptom profiles during endocrine and chronological aging to reduce risk for age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yiwei Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Aarti Mishra
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
15
|
Barrientos RM, Brunton PJ, Lenz KM, Pyter L, Spencer SJ. Neuroimmunology of the female brain across the lifespan: Plasticity to psychopathology. Brain Behav Immun 2019; 79:39-55. [PMID: 30872093 PMCID: PMC6591071 DOI: 10.1016/j.bbi.2019.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/25/2019] [Accepted: 03/09/2019] [Indexed: 02/06/2023] Open
Abstract
The female brain is highly dynamic and can fundamentally remodel throughout the normal ovarian cycle as well as in critical life stages including perinatal development, pregnancy and old-age. As such, females are particularly vulnerable to infections, psychological disorders, certain cancers, and cognitive impairments. We will present the latest evidence on the female brain; how it develops through the neonatal period; how it changes through the ovarian cycle in normal individuals; how it adapts to pregnancy and postpartum; how it responds to illness and disease, particularly cancer; and, finally, how it is shaped by old age. Throughout, we will highlight female vulnerability to and resilience against disease and dysfunction in the face of environmental challenges.
Collapse
Affiliation(s)
- R M Barrientos
- Institute for Behavioral Medicine Research, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Department of Psychiatry and Behavioral Health, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH 43210, United States
| | - P J Brunton
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, UK; Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University School of Medicine, International Campus, Haining, Zhejiang 314400, PR China
| | - K M Lenz
- Institute for Behavioral Medicine Research, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Department of Psychology, Department of Neuroscience, The Ohio State University, Columbus, OH 43210, United States
| | - L Pyter
- Institute for Behavioral Medicine Research, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States; Department of Psychiatry and Behavioral Health, Wexner Medical Centre, The Ohio State University, Columbus, OH 43210, United States
| | - S J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic. 3083, Australia.
| |
Collapse
|
16
|
de Rivero Vaccari JP, Bramlett HM, Perez-Pinzon MA, Raval AP. Estrogen preconditioning: A promising strategy to reduce inflammation in the ischemic brain. CONDITIONING MEDICINE 2019; 2:106-113. [PMID: 32617523 PMCID: PMC7331970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
During the premenopausal phase of a woman's life, estrogen naturally protects against ischemic brain damage and its debilitating consequence of cognitive decline. However, the decline in estrogen at menopause exponentially increases a women's risk for cerebral ischemia and its severity. Supplementation of estrogen during menopause is the most logical solution to abate this increased risk for cerebral ischemia; however, continuous therapy has proven to be contraindicative. Studies from our laboratory over the past decade have shown that a single bolus or long-term periodic 17β-estradiol treatment(s) two days prior to ischemia mimics ischemic preconditioning-conferred protection of the brain in ovariectomized or reproductively senescent female rats. These studies also demonstrated that 17β-estradiol-induced preconditioning (EPC) requires estrogen receptor (ER)-subtype beta (ER-β) activation. ER-β is expressed throughout the brain, including in the hippocampus, which plays a key role in learning and memory. Because periodic activation of ER-β mitigates post-ischemic cognitive decline in ovariectomized female rats, it can be surmised that EPC has the potential to reduce post-ischemic damage and cognitive decline in females. Estrogens are key anti-inflammatory agents; therefore this review discusses the effects of EPC on the inflammasome. Furthermore, as we now clearly know, the brain acts differently in males and females. Indeed, neurodegenerative diseases, including cerebral ischemia, and pharmacological drugs affect males and females in different ways. Thus, inasmuch as the National Institutes of Health and the Stroke Treatment Academic Industry Roundtable (STAIR) consortium mandate inclusion of female experimental animals, this review also discusses the need to close the gap in our knowledge in future studies of EPC in female animal models of cerebral ischemia.
Collapse
Affiliation(s)
| | - Helen M. Bramlett
- Department of Neurological Surgery and The Miami Project to Cure Paralysis
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami
| | - Miguel A. Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33136, U.S.A
| | - Ami P. Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33136, U.S.A
| |
Collapse
|
17
|
Chronic Amyloid β Oligomer Infusion Evokes Sustained Inflammation and Microglial Changes in the Rat Hippocampus via NLRP3. Neuroscience 2019. [DOI: 10.1016/j.neuroscience.2018.02.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Balla B, Sárvári M, Kósa JP, Kocsis-Deák B, Tobiás B, Árvai K, Takács I, Podani J, Liposits Z, Lakatos P. Long-term selective estrogen receptor-beta agonist treatment modulates gene expression in bone and bone marrow of ovariectomized rats. J Steroid Biochem Mol Biol 2019; 188:185-194. [PMID: 30685384 DOI: 10.1016/j.jsbmb.2019.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 01/20/2023]
Abstract
Gonadal hormones including 17β-estradiol exert important protective functions in skeletal homeostasis. However, numerous details of ovarian hormone deficiency in the common bone marrow microenvironment have not yet been revealed and little information is available on the tissue-specific acts either, especially those via estrogen receptor beta (ERβ). The aim of the present study was therefore to examine the bone-related gene expression changes after ovariectomy (OVX) and long-term ERβ agonist diarylpropionitrile (DPN) administration. We found that OVX produced strong and widespread changes of gene expression in both femoral bone and bone marrow. In the bone out of 22 genes, 20 genes were up- and 2 were downregulated after OVX. It is noteworthy that DPN restored mRNA expression of 10 OVX-induced changes (Aldh2, Col1a1, Daam1, Fgf12, Igf1, Il6r, Nfkb1, Notch1, Notch2 and Psen1) suggesting a modulatory role of ERβ in bone physiology. In bone marrow, out of 37 categorized genes, transcription of 25 genes were up- and 12 were downregulated indicating that the marrow is highly responsive to gonadal hormones. DPN modestly affected transcription, only expression of two genes (Nfatc1 and Tgfb1) was restored by DPN action. The PI3K/Akt signaling pathway was the most affected gene cluster following the interventions in bone and bone marrow, as demonstrated by canonical variates analysis (CVA). We suggested that our results contribute to a deeper understanding of alterations in gene expression of bone and bone marrow niche elicited by ERβ and selective ERβ analogs.
Collapse
Affiliation(s)
- Bernadett Balla
- 1st Department of Internal Medicine, Semmelweis University, Budapest, Hungary.
| | - Miklós Sárvári
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - János P Kósa
- 1st Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Barbara Kocsis-Deák
- 1st Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Bálint Tobiás
- 1st Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Kristóf Árvai
- 1st Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - István Takács
- 1st Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - János Podani
- Biological Institute, Eötvös Loránd University, Budapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary; Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Péter Lakatos
- 1st Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
19
|
Whole Body Vibration Therapy after Ischemia Reduces Brain Damage in Reproductively Senescent Female Rats. Int J Mol Sci 2018; 19:ijms19092749. [PMID: 30217051 PMCID: PMC6164360 DOI: 10.3390/ijms19092749] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022] Open
Abstract
A risk of ischemic stroke increases exponentially after menopause. Even a mild-ischemic stroke can result in increased frailty. Frailty is a state of increased vulnerability to adverse outcomes, which subsequently increases risk of cerebrovascular events and severe cognitive decline, particularly after menopause. Several interventions to reduce frailty and subsequent risk of stroke and cognitive decline have been proposed in laboratory animals and patients. One of them is whole body vibration (WBV). WBV improves cerebral function and cognitive ability that deteriorates with increased frailty. The goal of the current study is to test the efficacy of WBV in reducing post-ischemic stroke frailty and brain damage in reproductively senescent female rats. Reproductively senescent Sprague-Dawley female rats were exposed to transient middle cerebral artery occlusion (tMCAO) and were randomly assigned to either WBV or no-WBV groups. Animals placed in the WBV group underwent 30 days of WBV (40 Hz) treatment performed twice daily for 15 min each session, 5 days each week. The motor functions of animals belonging to both groups were tested intermittently and at the end of the treatment period. Brains were then harvested for inflammatory markers and histopathological analysis. The results demonstrate a significant reduction in inflammatory markers and infarct volume with significant increases in brain-derived neurotrophic factor and improvement in functional activity after tMCAO in middle-aged female rats that were treated with WBV as compared to the no-WBV group. Our results may facilitate a faster translation of the WBV intervention for improved outcome after stroke, particularly among frail women.
Collapse
|
20
|
Grković I, Mitrović N, Dragić M, Adžić M, Drakulić D, Nedeljković N. Spatial Distribution and Expression of Ectonucleotidases in Rat Hippocampus After Removal of Ovaries and Estradiol Replacement. Mol Neurobiol 2018; 56:1933-1945. [PMID: 29978426 DOI: 10.1007/s12035-018-1217-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/29/2018] [Indexed: 01/14/2023]
Abstract
Purinergic signaling is the main synaptic and non-synaptic signaling system in brain. ATP acts as a fast excitatory transmitter, while adenosine sets a global inhibitory tone within hippocampal neuronal networks. ATP and adenosine are interconnected by ectonucleotidase enzymes, which convert ATP to adenosine. Existing data point to the converging roles of ovarian steroids and purinergic signaling in synapse formation and refinement and synapse activity in the hippocampus. Therefore, in the present study, we have used enzyme histochemistry and expression analysis to obtain data on spatial distribution and expression of ecto-enzymes NTPDase1, NTPDase2, and ecto-5'-nucleotidase (eN) after removal of ovaries (OVX) and estradiol replacement (E2) in female rat hippocampus. The results show that target ectonucleotidases are predominantly localized in synapse-rich hippocampal layers. The most represented NTPDase in the hippocampal tissue is NTPDase2, being at the same time the mostly affected ectonucleotidase by OVX and E2. Specifically, OVX decreases the expression of NTPDase2 and eN, whereas E2 restores their expression to control level. Impact of OVX and E2 on ectonucleotidase expression was also examined in purified synaptosome (SYN) and gliosome (GLIO) fractions. Data reveal that SYN expresses NTPDase1 and NTPDase2, both of which are reduced following OVX and restored with E2. GLIO exhibits NTPDase2-mediated ATP hydrolysis, which falls in OVX, and recovers by E2. These changes in the activity occur without parallel changes in NTPDase2-protein abundance. The same holds for eN. The lack of correlation between NTPDase2 and eN activities and their respective protein abundances suggest a non-genomic mode of E2 action, which is studied further in primary astrocyte culture. Since ovarian steroids shape hippocampal synaptic networks and regulate ectonucleotidase activities, it is possible that cognitive deficits seen after ovary removal may arise from the loss of E2 modulatory actions on ectonucleotidase expression in the hippocampus.
Collapse
Affiliation(s)
- Ivana Grković
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia.
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia
| | - Milorad Dragić
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 3, Belgrade, 11001, Serbia
| | - Marija Adžić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 3, Belgrade, 11001, Serbia
| | - Dunja Drakulić
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11001, Serbia
| | - Nadežda Nedeljković
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 3, Belgrade, 11001, Serbia
| |
Collapse
|
21
|
Thakkar R, Wang R, Wang J, Vadlamudi RK, Brann DW. 17 β-Estradiol Regulates Microglia Activation and Polarization in the Hippocampus Following Global Cerebral Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4248526. [PMID: 29849895 PMCID: PMC5932444 DOI: 10.1155/2018/4248526] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/16/2018] [Accepted: 02/13/2018] [Indexed: 02/08/2023]
Abstract
17β-Estradiol (E2) is a well-known neuroprotective hormone, but its role in regulation of neuroinflammation is less understood. Recently, our lab demonstrated that E2 could regulate the NLRP3 (NOD-like receptor protein 3) inflammasome pathway in the hippocampus following global cerebral ischemia (GCI). Here, we examined the ability of E2 to regulate activation and polarization of microglia phenotype in the hippocampus after global cerebral ischemia (GCI). Our in vivo study in young adult ovariectomized rats showed that exogenous low-dose E2 profoundly suppressed microglia activation and quantitatively shifted microglia from their "activated," amoeboid morphology to a "resting," ramified morphology after GCI. Further studies using M1 "proinflammatory" and M2 "anti-inflammatory" phenotype markers showed that E2 robustly suppressed the "proinflammatory" M1 phenotype, while enhancing the "anti-inflammatory" M2 microglia phenotype in the hippocampus after GCI. These effects of E2 may be mediated directly upon microglia, as E2 suppressed the M1 while enhancing the M2 microglia phenotype in LPS- (lipopolysaccharide-) activated BV2 microglia cells in vitro. E2 also correspondingly suppressed proinflammatory while enhancing anti-inflammatory cytokine gene expression in the LPS-treated BV2 microglia cells. Finally, E2 treatment abolished the LPS-induced neurotoxic effects of BV2 microglia cells upon hippocampal HT-22 neurons. Collectively, our study findings suggest a novel E2-mediated neuroprotective effect via regulation of microglia activation and promotion of the M2 "anti-inflammatory" phenotype in the brain.
Collapse
Affiliation(s)
- Roshni Thakkar
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ruimin Wang
- Department of Neurobiology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX, USA
| | - Darrell W. Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
22
|
Estrogen-induced neuroimmunomodulation as facilitator of and barrier to reproductive aging in brain and lymphoid organs. J Chem Neuroanat 2018; 95:6-12. [PMID: 29477446 DOI: 10.1016/j.jchemneu.2018.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/22/2018] [Accepted: 02/20/2018] [Indexed: 12/27/2022]
Abstract
Reproductive aging in females is marked by alterations in gonadal hormones, estrogen and progesterone, that facilitate cessation of reproductive cycles and onset of female-specific diseases such as autoimmune and neurodegenerative diseases, hormone-dependent cancers, and osteoporosis. Bidirectional communication between the three homeostatic systems, nervous system, endocrine system, and immune system, is essential for the maintenance of health and any dysfunction in the cross-talk promotes the development of diseases and cancer. The pleiotropic effects of estrogen on neural-immune interactions may promote either neuroprotection or inflammatory conditions depending on the site of action, dose and duration of treatment, type of estrogen receptors and its influence on intracellular signaling pathways, etc. Our studies involving treatment of early middle-aged female rats with low and high doses of estrogen and examining the brain areas, thymus, spleen, and lymph nodes revealed that estrogen-induced changes in neural-immune interactions are markedly affected in thymus followed by spleen and lymph nodes while it confers neuroprotection in the brain areas. These alterations are determined by antioxidant enzyme status, growth factors, intracellular signaling pathways involved in cell survival and inflammation, and metabolic enzymes and thus, may regulate the various stages in female reproductive aging. It is imperative that detailed longitudinal studies are carried out to understand the mechanisms of neuroendocrine-immune interactions in reproductive aging to facilitate healthy aging and for the development of better treatment strategies for female-specific diseases.
Collapse
|
23
|
Zárate S, Stevnsner T, Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci 2018. [PMID: 29311911 DOI: 10.3389/fnagi.2017.00430/xml/nlm] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
24
|
Kabba JA, Xu Y, Christian H, Ruan W, Chenai K, Xiang Y, Zhang L, Saavedra JM, Pang T. Microglia: Housekeeper of the Central Nervous System. Cell Mol Neurobiol 2018; 38:53-71. [PMID: 28534246 PMCID: PMC11481884 DOI: 10.1007/s10571-017-0504-2] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/16/2017] [Indexed: 12/17/2022]
Abstract
Microglia, of myeloid origin, play fundamental roles in the control of immune responses and the maintenance of central nervous system homeostasis. These cells, just like peripheral macrophages, may be activated into M1 pro-inflammatory or M2 anti-inflammatory phenotypes by appropriate stimuli. Microglia do not respond in isolation, but form part of complex networks of cells influencing each other. This review addresses the complex interaction of microglia with each cell type in the brain: neurons, astrocytes, cerebrovascular endothelial cells, and oligodendrocytes. We also highlight the participation of microglia in the maintenance of homeostasis in the brain, and their roles in the development and progression of age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- John Alimamy Kabba
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Yazhou Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Handson Christian
- Department of Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Wenchen Ruan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Kitchen Chenai
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yun Xiang
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, People's Republic of China
| | - Luyong Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC, 20057, USA
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China.
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC, 20057, USA.
| |
Collapse
|
25
|
Zárate S, Stevnsner T, Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci 2017; 9:430. [PMID: 29311911 PMCID: PMC5743731 DOI: 10.3389/fnagi.2017.00430] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
26
|
McGregor C, Riordan A, Thornton J. Estrogens and the cognitive symptoms of schizophrenia: Possible neuroprotective mechanisms. Front Neuroendocrinol 2017; 47:19-33. [PMID: 28673758 DOI: 10.1016/j.yfrne.2017.06.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a complex neuropsychiatric illness with marked sex differences. Women have later onset and lesser symptoms, which has led to the hypothesis that estrogens are protective in schizophrenia. Cognitive dysfunction is a hallmark of the disease and the symptom most correlated with functional outcome. Here we describe a number of mechanisms by which estrogens may be therapeutic in schizophrenia, with a focus on cognitive symptoms. We review the relationship between estrogens and brain derived neurotrophic factor, neuroinflammation, NMDA receptors, GABA receptors, and luteinizing hormone. Exploring these pathways may enable novel treatments for schizophrenia and a greater understanding of this devastating disease.
Collapse
Affiliation(s)
- Claire McGregor
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA.
| | - Alexander Riordan
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA
| | - Janice Thornton
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA
| |
Collapse
|
27
|
Vargas KG, Milic J, Zaciragic A, Wen KX, Jaspers L, Nano J, Dhana K, Bramer WM, Kraja B, van Beeck E, Ikram MA, Muka T, Franco OH. The functions of estrogen receptor beta in the female brain: A systematic review. Maturitas 2016; 93:41-57. [PMID: 27338976 DOI: 10.1016/j.maturitas.2016.05.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 05/31/2016] [Indexed: 01/22/2023]
Abstract
Females have unique and additional risk factors for neurological disorders. Among classical estrogen receptors, estrogen receptor beta (ERβ) has been suggested as a therapeutic target. However, little is known about the role of ERβ in the female brain. Six electronic databases were searched for articles evaluating the role of ERβ in the female brain and the influence of age and menopause on ERβ function. After screening 3186 titles and abstracts, 49 articles were included in the review, all of which were animal studies. Of these, 19 focused on cellular signaling, 7 on neuroendocrine pathways, 8 on neurological disorders, 4 on neuroprotection and 19 on psychological and psychiatric outcomes (6 studies evaluated two or more outcomes). Our findings showed that ERβ phosphorylated and activated intracellular second messenger proteins and regulated protein expression of genes involved in neurological functions. It also promoted neurogenesis, modulated the neuroendocrine regulation of stress response, conferred neuroprotection against ischemia and inflammation, and reduced anxiety- and depression-like behaviors. Targeting ERβ may constitute a novel treatment for menopausal symptoms, including anxiety, depression, and neurological diseases. However, to establish potential therapeutic and preventive strategies targeting ERβ, future studies should be conducted in humans to further our understanding of the importance of ERβ in women's mental and cognitive health.
Collapse
Affiliation(s)
- Kris G Vargas
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Jelena Milic
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Asija Zaciragic
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Ke-Xin Wen
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Loes Jaspers
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Jana Nano
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Klodian Dhana
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Bledar Kraja
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands; Department of Biomedical Sciences, Faculty of Medicine, University of Medicine, Tirana, Albania; University Clinic of Gastrohepatology, University Hospital Center Mother Teresa, Tirana, Albania
| | - Ed van Beeck
- Department of Public Health, Erasmus University Medical Center, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands; Department of Neurology, Erasmus University Medical Center, The Netherlands; Department of Radiology, Erasmus University Medical Center, The Netherlands
| | - Taulant Muka
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
28
|
Ianov L, Kumar A, Foster TC. Epigenetic regulation of estrogen receptor α contributes to age-related differences in transcription across the hippocampal regions CA1 and CA3. Neurobiol Aging 2016; 49:79-85. [PMID: 27776265 DOI: 10.1016/j.neurobiolaging.2016.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 10/20/2022]
Abstract
The expression of estrogen receptor alpha (ERα) varies across brain regions and changes with age and according to the previous history of estradiol exposure. ERα is regulated by a number of mechanisms including the level of mRNA (Esr1) expression. For this study, we took advantage of regional differences in hippocampal ERα expression to investigate DNA ERα promoter methylation at CpG dinucleotide sites as a potential epigenetic mechanism for regulating gene expression. Young and aged female Fischer 344 rats were ovariectomized, and Esr1 expression and ERα promoter methylation were examined in hippocampal regions CA1 and CA3, either 3 or 14 weeks following surgery. The results indicate that reduced Esr1 expression in region CA1 relative to CA3 was associated with an increase in DNA methylation in region CA1, particularly for the first CpG site. Additionally, differential methylation of distal CpG sites, 11-17, was associated with altered Esr1 expression during aging or following long-term hormone deprivation. The results support the idea that methylation of site 1 may be the primary regulatory region for cross-regional patterns in ERα expression, while distal sites are modifiable across the life span and may act as a feedback mechanism for ERα activity.
Collapse
Affiliation(s)
- Lara Ianov
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Genetics and Genomics Program, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Genetics and Genomics Program, Genetics Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
29
|
Abstract
Inflammatory activation of microglia is a hallmark of several disorders of the central nervous system. In addition to protecting the brain against inflammatory insults, microglia are neuroprotective and play a significant role in maintaining neuronal connectivity, but the prolongation of an inflammatory status may limit the beneficial functions of these immune cells. The finding that estrogen receptors are present in monocyte-derived cells and that estrogens prevent and control the inflammatory response raise the question of the role that this sex steroid plays in the manifestation and progression of pathologies that have a clear sex difference in prevalence, such as multiple sclerosis, Parkinson's disease, and Alzheimer's disease. The present review aims to provide a critical review of the current literature on the actions of estrogen in microglia and on the involvement of estrogen receptors in the manifestation of selected neurological disorders. This current understanding highlights a research area that should be expanded to identify appropriate replacement therapies to slow the progression of such diseases.
Collapse
Affiliation(s)
- Alessandro Villa
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Elisabetta Vegeto
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Angelo Poletti
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
30
|
Kipp M, Hochstrasser T, Schmitz C, Beyer C. Female sex steroids and glia cells: Impact on multiple sclerosis lesion formation and fine tuning of the local neurodegenerative cellular network. Neurosci Biobehav Rev 2016; 67:125-36. [DOI: 10.1016/j.neubiorev.2015.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 01/01/2023]
|
31
|
Mahmoud R, Wainwright SR, Chaiton JA, Lieblich SE, Galea LA. Ovarian hormones, but not fluoxetine, impart resilience within a chronic unpredictable stress model in middle-aged female rats. Neuropharmacology 2016; 107:278-293. [DOI: 10.1016/j.neuropharm.2016.01.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 01/30/2023]
|
32
|
Sárvári M, Kalló I, Hrabovszky E, Solymosi N, Rodolosse A, Liposits Z. Long-Term Estrogen Receptor Beta Agonist Treatment Modifies the Hippocampal Transcriptome in Middle-Aged Ovariectomized Rats. Front Cell Neurosci 2016; 10:149. [PMID: 27375434 PMCID: PMC4901073 DOI: 10.3389/fncel.2016.00149] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/27/2016] [Indexed: 11/13/2022] Open
Abstract
Estradiol (E2) robustly activates transcription of a broad array of genes in the hippocampal formation of middle-aged ovariectomized rats via estrogen receptors (ERα, ERβ, and G protein-coupled ER). Selective ERβ agonists also influence hippocampal functions, although their downstream molecular targets and mechanisms are not known. In this study, we explored the effects of long-term treatment with ERβ agonist diarylpropionitrile (DPN, 0.05 mg/kg/day, sc.) on the hippocampal transcriptome in ovariectomized, middle-aged (13 month) rats. Isolated hippocampal formations were analyzed by Affymetrix oligonucleotide microarray and quantitative real-time PCR. Four hundred ninety-seven genes fulfilled the absolute fold change higher than 2 (FC > 2) selection criterion. Among them 370 genes were activated. Pathway analysis identified terms including glutamatergic and cholinergic synapse, RNA transport, endocytosis, thyroid hormone signaling, RNA degradation, retrograde endocannabinoid signaling, and mRNA surveillance. PCR studies showed transcriptional regulation of 58 genes encoding growth factors (Igf2, Igfb2, Igf1r, Fgf1, Mdk, Ntf3, Bdnf), transcription factors (Otx2, Msx1), potassium channels (Kcne2), neuropeptides (Cck, Pdyn), peptide receptors (Crhr2, Oprm1, Gnrhr, Galr2, Sstr1, Sstr3), neurotransmitter receptors (Htr1a, Htr2c, Htr2a, Gria2, Gria3, Grm5, Gabra1, Chrm5, Adrb1), and vesicular neurotransmitter transporters (Slc32a1, Slc17a7). Protein-protein interaction analysis revealed networking of clusters associated with the regulation of growth/troph factor signaling, transcription, translation, neurotransmitter and neurohormone signaling mechanisms and potassium channels. Collectively, the results reveal the contribution of ERβ-mediated processes to the regulation of transcription, translation, neurogenesis, neuromodulation, and neuroprotection in the hippocampal formation of ovariectomized, middle-aged rats and elucidate regulatory channels responsible for DPN-altered functional patterns. These findings support the notion that selective activation of ERβ may be a viable approach for treating the neural symptoms of E2 deficiency in menopause.
Collapse
Affiliation(s)
- Miklós Sárvári
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Imre Kalló
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic UniversityBudapest, Hungary
| | - Erik Hrabovszky
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Norbert Solymosi
- Faculty of Veterinary Science, Szent István University Budapest, Hungary
| | - Annie Rodolosse
- Functional Genomics Core, Institute for Research in Biomedicine Barcelona, Spain
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic UniversityBudapest, Hungary
| |
Collapse
|
33
|
Barabási B, Csondor A, Martín-Pozas T, Pulupa Sánchez A, Antalffy G, Siklós L, Gómez-Pinedo U, Párducz Á, Hoyk Z. Effect of axotomy and 17β-estradiol on P2X7 receptor expression pattern in the hypoglossal nucleus of ovariectomized mice. Neuroscience 2016; 319:107-15. [DOI: 10.1016/j.neuroscience.2016.01.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/19/2016] [Accepted: 01/22/2016] [Indexed: 12/18/2022]
|
34
|
Molnár CS, Sárvári M, Vastagh C, Maurnyi C, Fekete C, Liposits Z, Hrabovszky E. Altered Gene Expression Profiles of the Hypothalamic Arcuate Nucleus of Male Mice Suggest Profound Developmental Changes in Peptidergic Signaling. Neuroendocrinology 2016; 103:369-82. [PMID: 26338351 DOI: 10.1159/000439430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 08/15/2015] [Indexed: 11/19/2022]
Abstract
Neuropeptides of the hypothalamic arcuate nucleus (ARC) regulate important homeostatic and endocrine functions and also play critical roles in pubertal development. The altered peptidergic and aminoacidergic neurotransmission accompanying pubertal maturation of the ARC is not fully understood. Here we studied the developmental shift in the gene expression profile of the ARC of male mice. RNA samples for quantitative RT-PCR studies were isolated from the ARC of 14-day-old infantile and 60-day-old adult male mice with laser capture microdissection. The expression of 18 neuropeptide, 15 neuropeptide receptor, 4 sex steroid receptor and 6 classic neurotransmitter marker mRNAs was compared between the two time points. The adult animals showed increased mRNA levels encoding cocaine- and amphetamine-regulated transcripts, galanin-like peptide, dynorphin, kisspeptin, proopiomelanocortin, proenkephalin and galanin and a reduced expression of mRNAs for pituitary adenylate cyclase-activating peptide, calcitonin gene-related peptide, neuropeptide Y, substance P, agouti-related protein, neurotensin and growth hormone-releasing hormone. From the neuropeptide receptors tested, melanocortin receptor-4 showed the most striking increase (5-fold). Melanocortin receptor-3 and the Y1 and Y5 neuropeptide Y receptors increased 1.5- to 1.8-fold, whereas δ-opioid receptor and neurotensin receptor-1 transcripts were reduced by 27 and 21%, respectively. Androgen receptor, progesterone receptor and α-estrogen receptor transcripts increased by 54-72%. The mRNAs of glutamic acid decarboxylases-65 and -67, vesicular GABA transporter and choline acetyltransferase remained unchanged. Tyrosine hydroxylase mRNA increased by 44%, whereas type-2 vesicular glutamate transporter mRNA decreased by 43% by adulthood. Many of the developmental changes we revealed in this study suggest a reduced inhibitory and/or enhanced excitatory neuropeptidergic drive on fertility in adult animals.
Collapse
Affiliation(s)
- Csilla S Molnár
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
35
|
de Rivero Vaccari JP, Patel HH, Brand FJ, Perez-Pinzon MA, Bramlett HM, Raval AP. Estrogen receptor beta signaling alters cellular inflammasomes activity after global cerebral ischemia in reproductively senescence female rats. J Neurochem 2015; 136:492-6. [PMID: 26490364 DOI: 10.1111/jnc.13404] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/03/2015] [Accepted: 10/09/2015] [Indexed: 01/16/2023]
Abstract
Periodic treatments with estrogen receptor subtype-β (ER-β) agonist reduce post-ischemic hippocampal injury in ovariectomized rats. However, the underlying mechanism of how ER-β agonists protect the brain remains unknown. Global cerebral ischemia activates the innate immune response, and a key component of the innate immune response is the inflammasome. This study tests the hypothesis that ER-β regulates inflammasome activation in the hippocampus, thus reducing ischemic hippocampal damage in reproductively senescent female rats that received periodic ER-β agonist treatments. First, we determined the effect of hippocampal ER-β silencing on the expression of the inflammasome proteins caspase 1, apoptosis-associated speck-like protein containing a CARD (ASC), and interleukin (IL)-1β. Silencing of ER-β attenuated 17β-estradiol mediated decrease in caspase 1, ASC, and IL-1β. Next, we tested the hypothesis that periodic ER-β agonist treatment reduces inflammasome activation and ischemic damage in reproductively senescent female rats. Periodic ER-β agonist treatments significantly decreased inflammasome activation and increased post-ischemic live neuronal counts by 32% (p < 0.05) as compared to the vehicle-treated, reproductively senescent rats. Current findings demonstrated that ER-β activation regulates inflammasome activation and protects the brain from global ischemic damage in reproductively senescent female rats. Further investigation on the role of a periodic ER-β agonist regimen to reduce the innate immune response in the brain could help reduce the incidence and the impact of global cerebral ischemia in post-menopausal women. We propose that estrogen receptor subtype-β (ER-β) activation regulates inflammasome activation and protects the brain from global ischemic damage in reproductively senescent female rats.
Collapse
Affiliation(s)
- Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
| | - Hersila H Patel
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Frank J Brand
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
| | - Miguel A Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA.,Bruce W. Carter Department of Veterans Affairs Medical Center, University of Miami, Miami, Florida, USA
| | - Ami P Raval
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
36
|
Kumari R, Astafurov K, Genis A, Danias J. Differential Effects of C1qa Ablation on Glaucomatous Damage in Two Sexes in DBA/2NNia Mice. PLoS One 2015; 10:e0142199. [PMID: 26544197 PMCID: PMC4636422 DOI: 10.1371/journal.pone.0142199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 10/18/2015] [Indexed: 11/19/2022] Open
Abstract
PURPOSE To determine the sex and age-related effects of C1qa ablation on retinal ganglion cell (RGC) and optic nerve (ON) axonal loss in a mouse model of glaucomatous neurodegeneration. METHODS Congenic C1qa mice were generated in the DBA/2NNia background. Female and male knockout (-/-), heterozygous (+/-), and wild type (+/+) mice were aged up to 14 months and IOPs were recorded in a subset of animals. Retinas of mice from all three groups at 5-6, 9-10 and 11-13 months of age were flat-mounted after retrograde labeling with Fluorogold. Imaged retinas were scored (RGC score) semi-quantitatively on a 10 point scale by two independent observers. A subset of retinas and optic nerves were also used for measurement of total number of RGCs. Semi-thin sections of ON were imaged and graded (ON score) for the amount of axonal damage semi-quantitatively, by two masked observers. Analysis of covariance (ANCOVA) was used for statistical comparisons. Microglial cells in flat-mounted retinas of 5-6 month old C1qa -/- and C1qa +/+ mice were used for assessment of microglial activation utilizing morphological criteria. RESULTS Female C1qa -/- mice had significantly higher IOP (p<0.000001, ANOVA) between 8 and 13 months of age compared to C1qa +/+ animals. No differences in IOPs between animals of the three genotypes were observed in males. At 5-6 months of age, there was no difference in RGC or ON scores between the three genotypes in animals of either sex. At 9-10 months of age, female mice didn't show significant differences in RGC or ON scores between the three genotypes. However, male C1qa -/- and C1qa +/- mice of the same age had better RGC and ON scores (p<0.003 and p<0.05, ANCOVA, for RGC and ON scores, respectively) compared with C1qa +/+ mice. At 11-13 months of age, female C1qa -/- mice had better RGC scores (p<0.006, ANCOVA) compared to C1qa +/+ and C1qa +/- animals. Accordingly, C1qa -/- mice had higher RGC counts (p<0.03, t-test) compared to C1qa +/+ animals. In male mice, there was a tendency for 12 month old C1qa -/- animals to have better RGC scores and higher RGC counts, but this didn't reach statistical significance. ON scores in 11-13 month old animals of either sex were not different between all three genotype. Microglial activation in male 5-6 month old C1qa -/- mice was decreased compared to C1qa +/+ animals; no such effect was seen in females. CONCLUSIONS Absence of C1qa ameliorates RGC and ON loss in the DBA/2NNia strain, but this effect differs between the two sexes. C1q-mediated RGC damage seems to be more potent than IOP-mediated RGC loss. In contrast, C1qa absence provides axonal protection early on, but this protection cannot overcome the effects of significant IOP elevation.
Collapse
Affiliation(s)
- Ruma Kumari
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, New York, United States of America
- State University of New York (SUNY) Eye Institute, Brooklyn, New York, United States of America
- * E-mail: (RK); (JD)
| | - Konstantin Astafurov
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, New York, United States of America
- State University of New York (SUNY) Eye Institute, Brooklyn, New York, United States of America
| | - Alina Genis
- Department of Ophthalmology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, New York, United States of America
- State University of New York (SUNY) Eye Institute, Brooklyn, New York, United States of America
| | - John Danias
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, New York, United States of America
- Department of Ophthalmology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, New York, United States of America
- State University of New York (SUNY) Eye Institute, Brooklyn, New York, United States of America
- * E-mail: (RK); (JD)
| |
Collapse
|
37
|
Sárvári M, Kalló I, Hrabovszky E, Solymosi N, Rodolosse A, Vastagh C, Auer H, Liposits Z. Hippocampal Gene Expression Is Highly Responsive to Estradiol Replacement in Middle-Aged Female Rats. Endocrinology 2015; 156:2632-45. [PMID: 25924104 DOI: 10.1210/en.2015-1109] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the hippocampus, estrogens are powerful modulators of neurotransmission, synaptic plasticity and neurogenesis. In women, menopause is associated with increased risk of memory disturbances, which can be attenuated by timely estrogen therapy. In animal models of menopause, 17β-estradiol (E2) replacement improves hippocampus-dependent spatial memory. Here, we explored the effect of E2 replacement on hippocampal gene expression in a rat menopause model. Middle-aged ovariectomized female rats were treated continuously for 29 days with E2, and then, the hippocampal transcriptome was investigated with Affymetrix expression arrays. Microarray data were analyzed by Bioconductor packages and web-based softwares, and verified with quantitative PCR. At standard fold change selection criterion, 156 genes responded to E2. All alterations but 4 were transcriptional activation. Robust activation (fold change > 10) occurred in the case of transthyretin, klotho, claudin 2, prolactin receptor, ectodin, coagulation factor V, Igf2, Igfbp2, and sodium/sulfate symporter. Classification of the 156 genes revealed major groups, including signaling (35 genes), metabolism (31 genes), extracellular matrix (17 genes), and transcription (16 genes). We selected 33 genes for further studies, and all changes were confirmed by real-time PCR. The results suggest that E2 promotes retinoid, growth factor, homeoprotein, neurohormone, and neurotransmitter signaling, changes metabolism, extracellular matrix composition, and transcription, and induces protective mechanisms via genomic effects. We propose that these mechanisms contribute to effects of E2 on neurogenesis, neural plasticity, and memory functions. Our findings provide further support for the rationale to develop safe estrogen receptor ligands for the maintenance of cognitive performance in postmenopausal women.
Collapse
Affiliation(s)
- Miklós Sárvári
- Laboratory of Endocrine Neurobiology (M.S., I.K., E.H., C.V., Z.L.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Faculty of Information Technology and Bionics (I.K., Z.L.), Pázmány Péter Catholic University, 1083 Budapest, Hungary; Faculty of Veterinary Science (N.S.), Szent István University, 1078 Budapest, Hungary; Functional Genomics Core (A.R.), Institute for Research in Biomedicine, 08028 Barcelona, Spain; and Functional Genomics Consulting (H.A.), 08780 Palleja, Spain
| | - Imre Kalló
- Laboratory of Endocrine Neurobiology (M.S., I.K., E.H., C.V., Z.L.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Faculty of Information Technology and Bionics (I.K., Z.L.), Pázmány Péter Catholic University, 1083 Budapest, Hungary; Faculty of Veterinary Science (N.S.), Szent István University, 1078 Budapest, Hungary; Functional Genomics Core (A.R.), Institute for Research in Biomedicine, 08028 Barcelona, Spain; and Functional Genomics Consulting (H.A.), 08780 Palleja, Spain
| | - Erik Hrabovszky
- Laboratory of Endocrine Neurobiology (M.S., I.K., E.H., C.V., Z.L.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Faculty of Information Technology and Bionics (I.K., Z.L.), Pázmány Péter Catholic University, 1083 Budapest, Hungary; Faculty of Veterinary Science (N.S.), Szent István University, 1078 Budapest, Hungary; Functional Genomics Core (A.R.), Institute for Research in Biomedicine, 08028 Barcelona, Spain; and Functional Genomics Consulting (H.A.), 08780 Palleja, Spain
| | - Norbert Solymosi
- Laboratory of Endocrine Neurobiology (M.S., I.K., E.H., C.V., Z.L.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Faculty of Information Technology and Bionics (I.K., Z.L.), Pázmány Péter Catholic University, 1083 Budapest, Hungary; Faculty of Veterinary Science (N.S.), Szent István University, 1078 Budapest, Hungary; Functional Genomics Core (A.R.), Institute for Research in Biomedicine, 08028 Barcelona, Spain; and Functional Genomics Consulting (H.A.), 08780 Palleja, Spain
| | - Annie Rodolosse
- Laboratory of Endocrine Neurobiology (M.S., I.K., E.H., C.V., Z.L.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Faculty of Information Technology and Bionics (I.K., Z.L.), Pázmány Péter Catholic University, 1083 Budapest, Hungary; Faculty of Veterinary Science (N.S.), Szent István University, 1078 Budapest, Hungary; Functional Genomics Core (A.R.), Institute for Research in Biomedicine, 08028 Barcelona, Spain; and Functional Genomics Consulting (H.A.), 08780 Palleja, Spain
| | - Csaba Vastagh
- Laboratory of Endocrine Neurobiology (M.S., I.K., E.H., C.V., Z.L.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Faculty of Information Technology and Bionics (I.K., Z.L.), Pázmány Péter Catholic University, 1083 Budapest, Hungary; Faculty of Veterinary Science (N.S.), Szent István University, 1078 Budapest, Hungary; Functional Genomics Core (A.R.), Institute for Research in Biomedicine, 08028 Barcelona, Spain; and Functional Genomics Consulting (H.A.), 08780 Palleja, Spain
| | - Herbert Auer
- Laboratory of Endocrine Neurobiology (M.S., I.K., E.H., C.V., Z.L.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Faculty of Information Technology and Bionics (I.K., Z.L.), Pázmány Péter Catholic University, 1083 Budapest, Hungary; Faculty of Veterinary Science (N.S.), Szent István University, 1078 Budapest, Hungary; Functional Genomics Core (A.R.), Institute for Research in Biomedicine, 08028 Barcelona, Spain; and Functional Genomics Consulting (H.A.), 08780 Palleja, Spain
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology (M.S., I.K., E.H., C.V., Z.L.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Faculty of Information Technology and Bionics (I.K., Z.L.), Pázmány Péter Catholic University, 1083 Budapest, Hungary; Faculty of Veterinary Science (N.S.), Szent István University, 1078 Budapest, Hungary; Functional Genomics Core (A.R.), Institute for Research in Biomedicine, 08028 Barcelona, Spain; and Functional Genomics Consulting (H.A.), 08780 Palleja, Spain
| |
Collapse
|