1
|
Kumar A, Nader MA, Deep G. Emergence of Extracellular Vesicles as "Liquid Biopsy" for Neurological Disorders: Boom or Bust. Pharmacol Rev 2024; 76:199-227. [PMID: 38351075 PMCID: PMC10877757 DOI: 10.1124/pharmrev.122.000788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 02/16/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as an attractive liquid biopsy approach in the diagnosis and prognosis of multiple diseases and disorders. The feasibility of enriching specific subpopulations of EVs from biofluids based on their unique surface markers has opened novel opportunities to gain molecular insight from various tissues and organs, including the brain. Over the past decade, EVs in bodily fluids have been extensively studied for biomarkers associated with various neurological disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, bipolar disorder, major depressive disorders, substance use disorders, human immunodeficiency virus-associated neurocognitive disorder, and cancer/treatment-induced neurodegeneration. These studies have focused on the isolation and cargo characterization of either total EVs or brain cells, such as neuron-, astrocyte-, microglia-, oligodendrocyte-, pericyte-, and endothelial-derived EVs from biofluids to achieve early diagnosis and molecular characterization and to predict the treatment and intervention outcomes. The findings of these studies have demonstrated that EVs could serve as a repetitive and less invasive source of valuable molecular information for these neurological disorders, supplementing existing costly neuroimaging techniques and relatively invasive measures, like lumbar puncture. However, the initial excitement surrounding blood-based biomarkers for brain-related diseases has been tempered by challenges, such as lack of central nervous system specificity in EV markers, lengthy protocols, and the absence of standardized procedures for biological sample collection, EV isolation, and characterization. Nevertheless, with rapid advancements in the EV field, supported by improved isolation methods and sensitive assays for cargo characterization, brain cell-derived EVs continue to offer unparallel opportunities with significant translational implications for various neurological disorders. SIGNIFICANCE STATEMENT: Extracellular vesicles present a less invasive liquid biopsy approach in the diagnosis and prognosis of various neurological disorders. Characterizing these vesicles in biofluids holds the potential to yield valuable molecular information, thereby significantly impacting the development of novel biomarkers for various neurological disorders. This paper has reviewed the methodology employed to isolate extracellular vesicles derived from various brain cells in biofluids, their utility in enhancing the molecular understanding of neurodegeneration, and the potential challenges in this research field.
Collapse
Affiliation(s)
- Ashish Kumar
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| | - Michael A Nader
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| | - Gagan Deep
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| |
Collapse
|
2
|
Sheykhhasan M, Heidari F, Farsani ME, Azimzadeh M, Kalhor N, Ababzadeh S, Seyedebrahimi R. Dual Role of Exosome in Neurodegenerative Diseases: A Review Study. Curr Stem Cell Res Ther 2024; 19:852-864. [PMID: 37496136 DOI: 10.2174/1574888x18666230726161035] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Extracellular vesicles (EVs) are one of the crucial means of intercellular communication, which takes many different forms. They are heterogeneous, secreted by a range of cell types, and can be generally classified into microvesicles and exosomes depending on their location and function. Exosomes are small EVs with diameters of about 30-150 nm and diverse cell sources. METHODS The MEDLINE/PubMed database was reviewed for papers written in English and publication dates of recent years, using the search string "Exosome" and "Neurodegenerative diseases." RESULTS The exosomes have attracted interest as a significant biomarker for a better understanding of disease development, gene silencing delivery, and alternatives to stem cell-based therapy because of their low-invasive therapeutic approach, repeatable distribution in the central nervous system (CNS), and high efficiency. Also, they are nanovesicles that carry various substances, which can have an impact on neural plasticity and cognitive functioning in both healthy and pathological circumstances. Therefore, exosomes are conceived as nanovesicles containing proteins, lipids, and nucleic acids. However, their composition varies considerably depending on the cells from which they are produced. CONCLUSION In the present review, we discuss several techniques for the isolation of exosomes from different cell sources. Furthermore, reviewing research on exosomes' possible functions as carriers of bioactive substances implicated in the etiology of neurodegenerative illnesses, we further examine them. We also analyze the preclinical and clinical research that shows exosomes to have therapeutic potential.
Collapse
Affiliation(s)
- Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom, Iran
| | - Fatemeh Heidari
- Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Eslami Farsani
- Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Maryam Azimzadeh
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Naser Kalhor
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom, Iran
| | - Shima Ababzadeh
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Tissue Engineering, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Reihaneh Seyedebrahimi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
3
|
Ogura K, Endo M, Hase T, Negami H, Tsuchiya K, Nishiuchi T, Suzuki T, Ogai K, Sanada H, Okamoto S, Sugama J. Potential biomarker proteins for aspiration pneumonia detected by shotgun proteomics using buccal mucosa samples: a cross-sectional case-control study. Clin Proteomics 2023; 20:9. [PMID: 36894881 PMCID: PMC9996945 DOI: 10.1186/s12014-023-09398-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Aspiration pneumonia (AP), which is a major cause of death in the elderly, does present with typical symptoms in the early stages of onset, thus it is difficult to detect and treat at an early stage. In this study, we identified biomarkers that are useful for the detection of AP and focused on salivary proteins, which may be collected non-invasively. Because expectorating saliva is often difficult for elderly people, we collected salivary proteins from the buccal mucosa. METHODS We collected samples from the buccal mucosa of six patients with AP and six control patients (no AP) in an acute-care hospital. Following protein precipitation using trichloroacetic acid and washing with acetone, the samples were analyzed by liquid chromatography and tandem mass spectrometry (LC-MS/MS). We also determined the levels of cytokines and chemokines in non-precipitated samples from buccal mucosa. RESULTS Comparative quantitative analysis of LC-MS/MS spectra revealed 55 highly (P values < 0.10) abundant proteins with high FDR confidence (q values < 0.01) and high coverage (> 50%) in the AP group compared with the control group. Among the 55 proteins, the protein abundances of four proteins (protein S100-A7A, eukaryotic translation initiation factor 1, Serpin B4, and peptidoglycan recognition protein 1) in the AP group showed a negative correlation with the time post-onset; these proteins are promising AP biomarker candidates. In addition, the abundance of C-reactive protein (CRP) in oral samples was highly correlated with serum CRP levels, suggesting that oral CRP levels may be used as a surrogate to predict serum CRP in AP patients. A multiplex cytokine/chemokine assay revealed that MCP-1 tended to be low, indicating unresponsiveness of MCP-1 and its downstream immune pathways in AP. CONCLUSION Our findings suggest that oral salivary proteins, which are obtained non-invasively, can be utilized for the detection of AP.
Collapse
Affiliation(s)
- Kohei Ogura
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, 9200942, Japan
| | - Maho Endo
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, 9200942, Japan.,Nursing Department, Fujita Health University Hospital, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake, Aichi, 4701192, Japan
| | - Takashi Hase
- Department of Oral and Maxillofacial Surgery, Noto General Hospital, 6-4 Fujibashi, Nanao, Ishikawa, 9260816, Japan
| | - Hitomi Negami
- Department of Oral and Maxillofacial Surgery, Noto General Hospital, 6-4 Fujibashi, Nanao, Ishikawa, 9260816, Japan
| | - Kohsuke Tsuchiya
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University. Kakuma-Cho, Kanazawa, Ishikawa, 9201164, Japan
| | - Takumi Nishiuchi
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Ishikawa, 9200934, Japan
| | - Takeshi Suzuki
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University. Kakuma-Cho, Kanazawa, Ishikawa, 9201164, Japan
| | - Kazuhiro Ogai
- Institute of Medical, Pharmaceutical and Health Sciences, AI Hospital/Macro Signal Dynamics Research and Development Center, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, 9200942, Japan
| | - Hiromi Sanada
- Ishikawa Prefectural Nursing University, 1-1 Gakuendai, Kahoku, Ishikawa, 929-1210, Japan
| | - Shigefumi Okamoto
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, 9200942, Japan. .,Department of Clinical Laboratory Sciences, Faculty of Health Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, 9200942, Japan.
| | - Junko Sugama
- Research Center for Implementation Nursing Science Initiative, Innovation Promotion Division, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake, Aichi, 4701192, Japan
| |
Collapse
|
4
|
McNicholas K, François M, Liu JW, Doecke JD, Hecker J, Faunt J, Maddison J, Johns S, Pukala TL, Rush RA, Leifert WR. Salivary inflammatory biomarkers are predictive of mild cognitive impairment and Alzheimer's disease in a feasibility study. Front Aging Neurosci 2022; 14:1019296. [PMID: 36438010 PMCID: PMC9685799 DOI: 10.3389/fnagi.2022.1019296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/26/2022] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) is an insidious disease. Its distinctive pathology forms over a considerable length of time without symptoms. There is a need to detect this disease, before even subtle changes occur in cognition. Hallmark AD biomarkers, tau and amyloid-β, have shown promising results in CSF and blood. However, detecting early changes in these biomarkers and others will involve screening a wide group of healthy, asymptomatic individuals. Saliva is a feasible alternative. Sample collection is economical, non-invasive and saliva is an abundant source of proteins including tau and amyloid-β. This work sought to extend an earlier promising untargeted mass spectrometry study in saliva from individuals with mild cognitive impairment (MCI) or AD with age- and gender-matched cognitively normal from the South Australian Neurodegenerative Disease cohort. Five proteins, with key roles in inflammation, were chosen from this study and measured by ELISA from individuals with AD (n = 16), MCI (n = 15) and cognitively normal (n = 29). The concentrations of Cystatin-C, Interleukin-1 receptor antagonist, Stratifin, Matrix metalloproteinase 9 and Haptoglobin proteins had altered abundance in saliva from AD and MCI, consistent with the earlier study. Receiver operating characteristic analysis showed that combinations of these proteins demonstrated excellent diagnostic accuracy for distinguishing both MCI (area under curve = 0.97) and AD (area under curve = 0.97) from cognitively normal. These results provide evidence for saliva being a valuable source of biomarkers for early detection of cognitive impairment in individuals on the AD continuum and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Kym McNicholas
- Molecular Diagnostic Solutions Group, Human Health Program, CSIRO Health and Biosecurity, Adelaide, SA, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Maxime François
- Molecular Diagnostic Solutions Group, Human Health Program, CSIRO Health and Biosecurity, Adelaide, SA, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Jian-Wei Liu
- CSIRO Land and Water, Black Mountain Research and Innovation Park, Canberra, ACT, Australia
| | - James D. Doecke
- Australian e-Health Research Centre, CSIRO, Herston, QLD, Australia
| | - Jane Hecker
- Department of Internal Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Jeff Faunt
- Department of General Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - John Maddison
- Aged Care Rehabilitation and Palliative Care, SA Health, Modbury Hospital, Modbury, SA, Australia
| | - Sally Johns
- Aged Care Rehabilitation and Palliative Care, SA Health, Modbury Hospital, Modbury, SA, Australia
| | - Tara L. Pukala
- School of Physical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | | | - Wayne R. Leifert
- Molecular Diagnostic Solutions Group, Human Health Program, CSIRO Health and Biosecurity, Adelaide, SA, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
5
|
Cohn W, Zhu C, Campagna J, Bilousova T, Spilman P, Teter B, Li F, Guo R, Elashoff D, Cole GM, Avidan A, Faull KF, Whitelegge J, Wong DTW, John V. Integrated Multiomics Analysis of Salivary Exosomes to Identify Biomarkers Associated with Changes in Mood States and Fatigue. Int J Mol Sci 2022; 23:5257. [PMID: 35563647 PMCID: PMC9105576 DOI: 10.3390/ijms23095257] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023] Open
Abstract
Fatigue and other deleterious mood alterations resulting from prolonged efforts such as a long work shift can lead to a decrease in vigilance and cognitive performance, increasing the likelihood of errors during the execution of attention-demanding activities such as piloting an aircraft or performing medical procedures. Thus, a method to rapidly and objectively assess the risk for such cognitive fatigue would be of value. The objective of the study was the identification in saliva-borne exosomes of molecular signals associated with changes in mood and fatigue that may increase the risk of reduced cognitive performance. Using integrated multiomics analysis of exosomes from the saliva of medical residents before and after a 12 h work shift, we observed changes in the abundances of several proteins and miRNAs that were associated with various mood states, and specifically fatigue, as determined by a Profile of Mood States questionnaire. The findings herein point to a promising protein biomarker, phosphoglycerate kinase 1 (PGK1), that was associated with fatigue and displayed changes in abundance in saliva, and we suggest a possible biological mechanism whereby the expression of the PGK1 gene is regulated by miR3185 in response to fatigue. Overall, these data suggest that multiomics analysis of salivary exosomes has merit for identifying novel biomarkers associated with changes in mood states and fatigue. The promising biomarker protein presents an opportunity for the development of a rapid saliva-based test for the assessment of these changes.
Collapse
Affiliation(s)
- Whitaker Cohn
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, University of California Los Angeles, Los Angeles, CA 90095, USA; (W.C.); (C.Z.); (J.C.); (T.B.); (P.S.); (B.T.)
| | - Chunni Zhu
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, University of California Los Angeles, Los Angeles, CA 90095, USA; (W.C.); (C.Z.); (J.C.); (T.B.); (P.S.); (B.T.)
| | - Jesus Campagna
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, University of California Los Angeles, Los Angeles, CA 90095, USA; (W.C.); (C.Z.); (J.C.); (T.B.); (P.S.); (B.T.)
| | - Tina Bilousova
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, University of California Los Angeles, Los Angeles, CA 90095, USA; (W.C.); (C.Z.); (J.C.); (T.B.); (P.S.); (B.T.)
| | - Patricia Spilman
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, University of California Los Angeles, Los Angeles, CA 90095, USA; (W.C.); (C.Z.); (J.C.); (T.B.); (P.S.); (B.T.)
| | - Bruce Teter
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, University of California Los Angeles, Los Angeles, CA 90095, USA; (W.C.); (C.Z.); (J.C.); (T.B.); (P.S.); (B.T.)
| | - Feng Li
- Center for Oral/Head & Neck Oncology Research, Laboratory of Salivary Diagnostics, School of Dentistry, 10833 Le Conte Avenue, University of California Los Angeles, Los Angeles, CA 90095, USA; (F.L.); (D.T.W.W.)
| | - Rong Guo
- Department of Medicine Statistics Core, David Geffen School of Medicine, 1100 Glendon Avenue, University of California Los Angeles, Los Angeles, CA 90095, USA; (R.G.); (D.E.)
| | - David Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine, 1100 Glendon Avenue, University of California Los Angeles, Los Angeles, CA 90095, USA; (R.G.); (D.E.)
| | - Greg M. Cole
- Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.M.C.); (A.A.)
| | - Alon Avidan
- Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.M.C.); (A.A.)
| | - Kym Francis Faull
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, 760 Westwood Plaza, University of California Los Angeles, Los Angeles, CA 90095, USA; (K.F.F.); (J.W.)
| | - Julian Whitelegge
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, 760 Westwood Plaza, University of California Los Angeles, Los Angeles, CA 90095, USA; (K.F.F.); (J.W.)
| | - David T. W. Wong
- Center for Oral/Head & Neck Oncology Research, Laboratory of Salivary Diagnostics, School of Dentistry, 10833 Le Conte Avenue, University of California Los Angeles, Los Angeles, CA 90095, USA; (F.L.); (D.T.W.W.)
| | - Varghese John
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, University of California Los Angeles, Los Angeles, CA 90095, USA; (W.C.); (C.Z.); (J.C.); (T.B.); (P.S.); (B.T.)
| |
Collapse
|
6
|
Xue J, Chen J, Wang S, Li W, Zhu J, Wang F, Li Z, Wang W, Li Q. Assessing brain activity in male heroin-dependent individuals under methadone maintenance treatment: A resting-state fMRI study. Psychiatry Res Neuroimaging 2022; 320:111431. [PMID: 35007942 DOI: 10.1016/j.pscychresns.2021.111431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
Methadone maintenance treatment (MMT) is recognized as an effective and mainstream alternative treatment for heroin addiction. However, the effect of long-term MMT on the local and global brain activity of heroin-dependent individuals during resting state remains unknown. Twenty-five heroin-dependent individuals under MMT, 26 heroin-dependent individuals after short-term abstinence (HA) and 42 healthy controls (HC) were included in the resting-state functional magnetic resonance imaging study. The craving before and after heroin cue exposure were evaluated among HA and MMT subjects. The difference in craving, regional homogeneity (ReHo) and related functional connectivity were analyzed among the three groups. We found that the craving before and after heroin cue exposure of MMT group was significantly lower than that of HA group. Compared with HA group, the MMT group showed higher ReHo value in the right orbitofrontal cortex and bilateral posterior central cortex. No significant difference in global brain connectivity based on differential ReHo regions was found among the three groups. This study demonstrated the long-term MMT could improve the local activity of executive control and somatosensory brain regions in heroin-dependent individuals. It suggested that MMT might be beneficial to restoring executive control and somatosensory function in the direction towards that of healthy controls.
Collapse
Affiliation(s)
- Jiuhua Xue
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; Department of Radiology, xian NO.1 hospital, Xi'an, Shaanxi, China
| | - Jiajie Chen
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shu Wang
- Canon Medical Systems (China) Co., LTD, MR Division, Xi'an, Shaanxi, China
| | - Wei Li
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jia Zhu
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fan Wang
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhe Li
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Wang
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Qiang Li
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Chivero ET, Dagur RS, Peeples ES, Sil S, Liao K, Ma R, Chen L, Gurumurthy CB, Buch S, Hu G. Biogenesis, physiological functions and potential applications of extracellular vesicles in substance use disorders. Cell Mol Life Sci 2021; 78:4849-4865. [PMID: 33821293 PMCID: PMC10563196 DOI: 10.1007/s00018-021-03824-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/02/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Substance use disorder (SUD) is a growing health problem that affects several millions of people worldwide, resulting in negative socioeconomic impacts and increased health care costs. Emerging evidence suggests that extracellular vesicles (EVs) play a crucial role in SUD pathogenesis. EVs, including exosomes and microvesicles, are membrane-encapsulated particles that are released into the extracellular space by most types of cells. EVs are important players in mediating cell-to-cell communication through transfer of cargo such as proteins, lipids and nucleic acids. The EV cargo can alter the status of recipient cells, thereby contributing to both physiological and pathological processes; some of these play critical roles in SUD. Although the functions of EVs under several pathological conditions have been extensively reviewed, EV functions and potential applications in SUD remain less studied. In this review, we provide an overview of the current knowledge of the role of EVs in SUD, including alcohol, cocaine, heroin, marijuana, nicotine and opiate abuse. The review will focus on the biogenesis and cargo composition of EVs as well as the potential use of EVs as biomarkers of SUD or therapeutic targets in SUD.
Collapse
Affiliation(s)
- Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Raghubendra Singh Dagur
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68105, USA
| | - Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Rong Ma
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, Guangdong, China
- Key Laboratory of Intelligent Manufacturing Technology, Ministry of Education, Shantou University, Shantou, Guangdong, China
| | - Channabasavaiah B Gurumurthy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
8
|
Huang L, Shao D, Wang Y, Cui X, Li Y, Chen Q, Cui J. Human body-fluid proteome: quantitative profiling and computational prediction. Brief Bioinform 2021; 22:315-333. [PMID: 32020158 PMCID: PMC7820883 DOI: 10.1093/bib/bbz160] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/22/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Empowered by the advancement of high-throughput bio technologies, recent research on body-fluid proteomes has led to the discoveries of numerous novel disease biomarkers and therapeutic drugs. In the meantime, a tremendous progress in disclosing the body-fluid proteomes was made, resulting in a collection of over 15 000 different proteins detected in major human body fluids. However, common challenges remain with current proteomics technologies about how to effectively handle the large variety of protein modifications in those fluids. To this end, computational effort utilizing statistical and machine-learning approaches has shown early successes in identifying biomarker proteins in specific human diseases. In this article, we first summarized the experimental progresses using a combination of conventional and high-throughput technologies, along with the major discoveries, and focused on current research status of 16 types of body-fluid proteins. Next, the emerging computational work on protein prediction based on support vector machine, ranking algorithm, and protein-protein interaction network were also surveyed, followed by algorithm and application discussion. At last, we discuss additional critical concerns about these topics and close the review by providing future perspectives especially toward the realization of clinical disease biomarker discovery.
Collapse
Affiliation(s)
- Lan Huang
- College of Computer Science and Technology in the Jilin University
| | - Dan Shao
- College of Computer Science and Technology in the Jilin University
- College of Computer Science and Technology in Changchun University
| | - Yan Wang
- College of Computer Science and Technology in the Jilin University
| | - Xueteng Cui
- College of Computer Science and Technology in the Changchun University
| | - Yufei Li
- College of Computer Science and Technology in the Changchun University
| | - Qian Chen
- College of Computer Science and Technology in the Jilin University
| | - Juan Cui
- Department of Computer Science and Engineering in the University of Nebraska-Lincoln
| |
Collapse
|
9
|
Kumar A, Kim S, Su Y, Sharma M, Kumar P, Singh S, Lee J, Furdui CM, Singh R, Hsu FC, Kim J, Whitlow CT, Nader MA, Deep G. Brain cell-derived exosomes in plasma serve as neurodegeneration biomarkers in male cynomolgus monkeys self-administrating oxycodone. EBioMedicine 2021; 63:103192. [PMID: 33418508 PMCID: PMC7804975 DOI: 10.1016/j.ebiom.2020.103192] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/16/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Background The United States is currently facing an opioid crisis. Novel tools to better comprehend dynamic molecular changes in the brain associated with the opioid abuse are limited. Recent studies have suggested the usefulness of plasma exosomes in better understanding CNS disorders. However, no study has ever characterized exosomes (small extracellular vesicles of endocytic origin) secreted by brain cells to understand the potential neurodegenerative effects of long-term oxycodone self-administration (SA). Methods MRI of Cynomolgus monkeys (Macaca fascicularis) was performed to assess alterations in gray matter volumes with oxycodone SA. We isolated total exosomes (TE) from the plasma of these monkeys; from TE, we pulled-out neuron-derived exosomes (NDE), astrocytes-derived exosomes (ADE), and microglia-derived exosomes (MDE) using surface biomarkers L1CAM (L1 cell adhesion molecule), GLAST (Glutamate aspartate transporter) and TMEM119 (transmembrane protein119), respectively. Findings We observed a significantly lower gray matter volume of specific lobes of the brain (frontal and parietal lobes, and right putamen) in monkeys with ∼3 years of oxycodone SA compared to controls. Higher expression of neurodegenerative biomarkers (NFL and α-synuclein) correlates well with the change in brain lobe volumes in control and oxycodone SA monkeys. We also identified a strong effect of oxycodone SA on the loading of specific miRNAs and proteins associated with neuro-cognitive disorders. Finally, exosomes subpopulation from oxycodone SA group activated NF-κB activity in THP1- cells. Interpretation These results provide evidence for the utility of brain cells-derived exosomes from plasma in better understanding and predicting the pro-inflammatory and neurodegenerative consequence of oxycodone SA. Funding NIH
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Cancer Biology, Wake Forest Baptist Medical Center, United States
| | - Susy Kim
- Department of Cancer Biology, Wake Forest Baptist Medical Center, United States
| | - Yixin Su
- Department of Cancer Biology, Wake Forest Baptist Medical Center, United States
| | - Mitu Sharma
- Department of Cancer Biology, Wake Forest Baptist Medical Center, United States
| | - Pawan Kumar
- Department of Cancer Biology, Wake Forest Baptist Medical Center, United States
| | - Sangeeta Singh
- Department of Cancer Biology, Wake Forest Baptist Medical Center, United States
| | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, United States; Proteomics and Metabolomics Shared Resource, Wake Forest Baptist Health, United States
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, United States; Proteomics and Metabolomics Shared Resource, Wake Forest Baptist Health, United States; Comprehensive Cancer Center, Wake Forest Baptist Health, United States
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest Baptist Medical Center, United States; Comprehensive Cancer Center, Wake Forest Baptist Health, United States
| | - Fang-Chi Hsu
- Comprehensive Cancer Center, Wake Forest Baptist Health, United States; Biostatistics and Data Science, Wake Forest Baptist Health, United States
| | - Jeongchul Kim
- Radiology Informatics and Image Processing Laboratory, Wake Forest School of Medicine, United States; Department of Radiology, Section of Neuroradiology, Wake Forest School of Medicine, United States
| | - Christopher T Whitlow
- Comprehensive Cancer Center, Wake Forest Baptist Health, United States; Biostatistics and Data Science, Wake Forest Baptist Health, United States; Radiology Informatics and Image Processing Laboratory, Wake Forest School of Medicine, United States; Department of Radiology, Section of Neuroradiology, Wake Forest School of Medicine, United States; Department of Biomedical Engineering, Wake Forest School of Medicine, United States; Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, United States
| | - Michael A Nader
- Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, United States; Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, NRC 546, Winston-Salem, NC 27157, United States.
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest Baptist Medical Center, United States; Comprehensive Cancer Center, Wake Forest Baptist Health, United States; Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, United States; Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
10
|
Lyu Y, Kopcho S, Mohan M, Okeoma CM. Long-Term Low-Dose Delta-9-Tetrahydrocannbinol (THC) Administration to Simian Immunodeficiency Virus (SIV) Infected Rhesus Macaques Stimulates the Release of Bioactive Blood Extracellular Vesicles (EVs) that Induce Divergent Structural Adaptations and Signaling Cues. Cells 2020; 9:E2243. [PMID: 33036231 PMCID: PMC7599525 DOI: 10.3390/cells9102243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
Blood extracellular vesicles (BEVs) carry bioactive cargo (proteins, genetic materials, lipids, licit, and illicit drugs) that regulate diverse functions in target cells. The cannabinoid drug delta-9-tetrahydrocannabinol (THC) is FDA approved for the treatment of anorexia and weight loss in people living with HIV. However, the effect of THC on BEV characteristics in the setting of HIV/SIV infection needs to be determined. Here, we used the SIV-infected rhesus macaque model of AIDS to evaluate the longitudinal effects of THC (THC/SIV) or vehicle (VEH/SIV) treatment in HIV/SIV infection on the properties of BEVs. While BEV concentrations increased longitudinally (pre-SIV (0), 30, and 150 days post-SIV infection (DPI)) in VEH/SIV macaques, the opposite trend was observed with THC/SIV macaques. SIV infection altered BEV membrane properties and cargo composition late in infection, since i) the electrostatic surface properties (zeta potential, ζ potential) showed that RM BEVs carried negative surface charge, but at 150 DPI, SIV infection significantly changed BEV ζ potential; ii) BEVs from the VEH/SIV group altered tetraspanin CD9 and CD81 levels compared to the THC/SIV group. Furthermore, VEH/SIV and THC/SIV BEVs mediated divergent changes in monocyte gene expression, morphometrics, signaling, and function. These include altered tetraspanin and integrin β1 expression; altered levels and distribution of polymerized actin, FAK/pY397 FAK, pERK1/2, cleaved caspase 3, proapoptotic Bid and truncated tBid; and altered adhesion of monocytes to collagen I. These data indicate that HIV/SIV infection and THC treatment result in the release of bioactive BEVs with potential to induce distinct structural adaptations and signaling cues to instruct divergent cellular responses to infection.
Collapse
Affiliation(s)
- Yuan Lyu
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651, USA; (Y.L.); (S.K.)
| | - Steven Kopcho
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651, USA; (Y.L.); (S.K.)
| | - Mahesh Mohan
- Host Pathogen Interaction, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Chioma M. Okeoma
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651, USA; (Y.L.); (S.K.)
| |
Collapse
|
11
|
Perioperative neurocognitive dysfunction: thinking from the gut? Aging (Albany NY) 2020; 12:15797-15817. [PMID: 32805716 PMCID: PMC7467368 DOI: 10.18632/aging.103738] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
With the aging of the world population, and improvements in medical and health technologies, there are increasing numbers of elderly patients undergoing anaesthesia and surgery. Perioperative neurocognitive dysfunction has gradually attracted increasing attention from academics. Very recently, 6 well-known journals jointly recommended that the term perioperative neurocognitive dysfunction (defined according to the Diagnostic and Statistical Manual of Mental Disorders, fifth edition) should be adopted to improve the quality and consistency of academic communications. Perioperative neurocognitive dysfunction currently includes preoperatively diagnosed cognitive decline, postoperative delirium, delayed neurocognitive recovery, and postoperative cognitive dysfunction. Increasing evidence shows that the gut microbiota plays a pivotal role in neuropsychiatric diseases, and in central nervous system functions via the microbiota-gut-brain axis. We recently reported that abnormalities in the composition of the gut microbiota might underlie the mechanisms of postoperative cognitive dysfunction and postoperative delirium, suggesting a critical role for the gut microbiota in perioperative neurocognitive dysfunction. This article therefore reviewed recent findings on the linkage between the gut microbiota and the underlying mechanisms of perioperative neurocognitive dysfunction.
Collapse
|
12
|
Nahand JS, Bokharaei-Salim F, Karimzadeh M, Moghoofei M, Karampoor S, Mirzaei HR, Tbibzadeh A, Jafari A, Ghaderi A, Asemi Z, Mirzaei H, Hamblin MR. MicroRNAs and exosomes: key players in HIV pathogenesis. HIV Med 2020; 21:246-278. [PMID: 31756034 PMCID: PMC7069804 DOI: 10.1111/hiv.12822] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES HIV infection is well known to cause impairment of the human immune system, and until recently was a leading cause of death. It has been shown that T lymphocytes are the main targets of HIV. The virus inactivates T lymphocytes by interfering with a wide range of cellular and molecular targets, leading to suppression of the immune system. The objective of this review is to investigate to what extent microRNAs (miRNAs) are involved in HIV pathogenesis. METHODS The scientific literature (Pubmed and Google scholar) for the period 1988-2019 was searched. RESULTS Mounting evidence has revealed that miRNAs are involved in viral replication and immune response, whether by direct targeting of viral transcripts or through indirect modulation of virus-related host pathways. In addition, exosomes have been found to act as nanoscale carriers involved in HIV pathogenesis. These nanovehicles target their cargos (i.e. DNA, RNA, viral proteins and miRNAs) leading to alteration of the behaviour of recipient cells. CONCLUSIONS miRNAs and exosomes are important players in HIV pathogenesis. Additionally, there are potential diagnostic applications of miRNAs as biomarkers in HIV infection.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Karampoor
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Tbibzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA
| |
Collapse
|
13
|
Deatherage Kaiser BL, Jacobs JM, Schepmoes AA, Brewer HM, Webb-Robertson BJM, Valtier S, Bebarta VS, Adkins JN. Assessment of the Utility of the Oral Fluid and Plasma Proteomes for Hydrocodone Exposure. J Med Toxicol 2019; 16:49-60. [PMID: 31677050 DOI: 10.1007/s13181-019-00731-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 08/04/2019] [Accepted: 08/14/2019] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Non-medical use and abuse of prescription opioids is a growing problem in both the civilian and military communities, with minimal technologies for detecting hydrocodone use. This study explored the proteomic changes that occur in the oral fluid and blood plasma following controlled hydrocodone administration in 20 subjects. METHODS The global proteomic profile was determined for samples taken at four time points per subject: pre-exposure and 4, 6, or 168 hours post-exposure. The oral fluid samples analyzed herein provided greater differentiation between baseline and response time points than was observed with blood plasma, at least partially due to significant person-to-person relative variability in the plasma proteome. RESULTS A total of 399 proteins were identified from oral fluid samples, and the abundance of 118 of those proteins was determined to be significantly different upon metabolism of hydrocodone (4 and 6 hour time points) as compared to baseline levels in the oral fluid (pre-dose and 168 hours). CONCLUSIONS We present an assessment of the oral fluid and plasma proteome following hydrocodone administration, which demonstrates the potential of oral fluid as a noninvasive sample that may reveal features of hydrocodone in opioid use, and with additional study, may be useful for other opioids and in settings of misuse.
Collapse
Affiliation(s)
- Brooke L Deatherage Kaiser
- Chemical and Biological Signature Sciences Group, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jon M Jacobs
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Athena A Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Heather M Brewer
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Sandra Valtier
- Science and Technology, 59th Medical Wing, JBSA-Lackland AFB, San Antonio, TX, USA
| | | | - Joshua N Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
14
|
Amado F, Calheiros-Lobo MJ, Ferreira R, Vitorino R. Sample Treatment for Saliva Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1073:23-56. [DOI: 10.1007/978-3-030-12298-0_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Welch JL, Stapleton JT, Okeoma CM. Vehicles of intercellular communication: exosomes and HIV-1. J Gen Virol 2019; 100:350-366. [PMID: 30702421 PMCID: PMC7011712 DOI: 10.1099/jgv.0.001193] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022] Open
Abstract
The terms extracellular vesicles, microvesicles, oncosomes, or exosomes are often used interchangeably as descriptors of particles that are released from cells and comprise a lipid membrane that encapsulates nucleic acids and proteins. Although these entities are defined based on a specific size range and/or mechanism of release, the terminology is often ambiguous. Nevertheless, these vesicles are increasingly recognized as important modulators of intercellular communication. The generic characterization of extracellular vesicles could also be used as a descriptor of enveloped viruses, highlighting the fact that extracellular vesicles and enveloped viruses are similar in both composition and function. Their high degree of similarity makes differentiating between vesicles and enveloped viruses in biological specimens particularly difficult. Because viral particles and extracellular vesicles are produced simultaneously in infected cells, it is necessary to separate these populations to understand their independent functions. We summarize current understanding of the similarities and differences of extracellular vesicles, which henceforth we will refer to as exosomes, and the enveloped retrovirus, HIV-1. Here, we focus on the presence of these particles in semen, as these are of particular importance during HIV-1 sexual transmission. While there is overlap in the terminology and physical qualities between HIV-1 virions and exosomes, these two types of intercellular vehicles may differ depending on the bio-fluid source. Recent data have demonstrated that exosomes from human semen serve as regulators of HIV-1 infection that may contribute to the remarkably low risk of infection per sexual exposure.
Collapse
Affiliation(s)
- Jennifer L. Welch
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242-1109, USA
- Medical Service, Iowa City Veterans Affairs Medical Center, University of Iowa, 604 Highway 6, Iowa City, IA 52246-2208, USA
| | - Jack T. Stapleton
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242-1109, USA
- Medical Service, Iowa City Veterans Affairs Medical Center, University of Iowa, 604 Highway 6, Iowa City, IA 52246-2208, USA
| | - Chioma M. Okeoma
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Pharmacologic Sciences, Basic Sciences Tower, Rm 8-142, Stony Brook, University School of Medicine, Stony Brook, NY 11794-8651, USA
| |
Collapse
|
16
|
Saxena R, Vekariya U, Tripathi R. HIV-1 Nef and host proteome analysis: Current perspective. Life Sci 2019; 219:322-328. [PMID: 30664855 DOI: 10.1016/j.lfs.2019.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 01/23/2023]
Abstract
Proteome represents the set of proteins being produced by an organism at a given time. Comparative proteomic profiling of a healthy and diseased state is likely to reflect the dynamics of a disease process. Proteomic techniques are widely used to discover novel biomarkers and decipher mechanisms of HIV-1 pathogenesis. Proteomics is thus emerging as an indispensable tool of monitoring a disease process and intense interactions between HIV-1 and host. Nef is known to regulate various functions in the host to establish the state of infection. This review gives an overview of all proteomic studies done on HIV infection and HIV associated disorders including recent developments in Nef-host proteomic profiling. Here, we propose an emphasis on Nef based proteomic studies. We also discuss the future prospects and the technical and biological challenges involved in proteomic studies. Future studies with Nef related proteomic investigation are likely to identify more targets for diagnosis and therapy.
Collapse
Affiliation(s)
- Reshu Saxena
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Umeshkumar Vekariya
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Rajkamal Tripathi
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow 226031, U.P., India.
| |
Collapse
|
17
|
Cheruiyot C, Pataki Z, Ramratnam B, Li M. Proteomic Analysis of Exosomes and Its Application in HIV-1 Infection. Proteomics Clin Appl 2018; 12:e1700142. [PMID: 29687643 DOI: 10.1002/prca.201700142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 03/23/2018] [Indexed: 12/21/2022]
Abstract
Exosomes are 30-100 nm extracellular vesicles secreted from late endosomes by various types of cells. Numerous studies have suggested that exosomes play significant roles in human immunodeficiency virus 1 (HIV-1) biogenesis. Proteomics coupled with exosome fractionation has been successfully used to identify various exosomal proteins and helped to uncover the interactions between exosomes and HIV-1. To inform the current progress in the intersection of exosome, proteomics, and HIV-1, this review is focused on: i) analyzing different exosome isolation, purification methods, and their implications in HIV-1 studies; ii) evaluating the roles of various proteomic techniques in defining exosomal contents; iii) discussing the research and clinical applications of proteomics and exosome in HIV-1 biology.
Collapse
Affiliation(s)
- Collins Cheruiyot
- Department of Medicine, Division of Infectious Diseases, Laboratory of Retrovirology, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Zemplen Pataki
- Department of Medicine, Division of Infectious Diseases, Laboratory of Retrovirology, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Bharat Ramratnam
- Department of Medicine, Division of Infectious Diseases, Laboratory of Retrovirology, Alpert Medical School of Brown University, Providence, RI, 02903, USA.,Centers of Biomedical Research Excellence, Center for Cancer Research, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA.,Clinical Research Center of Lifespan, Providence, RI, 02903, USA
| | - Ming Li
- Department of Medicine, Division of Infectious Diseases, Laboratory of Retrovirology, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| |
Collapse
|
18
|
Castagnola M, Scarano E, Passali GC, Messana I, Cabras T, Iavarone F, Di Cintio G, Fiorita A, De Corso E, Paludetti G. Salivary biomarkers and proteomics: future diagnostic and clinical utilities. ACTA OTORHINOLARYNGOLOGICA ITALICA 2018; 37:94-101. [PMID: 28516971 PMCID: PMC5463528 DOI: 10.14639/0392-100x-1598] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022]
Abstract
Saliva testing is a non-invasive and inexpensive test that can serve as a source of information useful for diagnosis of disease. As we enter the era of genomic technologies and -omic research, collection of saliva has increased. Recent proteomic platforms have analysed the human salivary proteome and characterised about 3000 differentially expressed proteins and peptides: in saliva, more than 90% of proteins in weight are derived from the secretion of three couples of "major" glands; all the other components are derived from minor glands, gingival crevicular fluid, mucosal exudates and oral microflora. The most common aim of proteomic analysis is to discriminate between physiological and pathological conditions. A proteomic protocol to analyze the whole saliva proteome is not currently available. It is possible distinguish two type of proteomic platforms: top-down proteomics investigates intact naturally-occurring structure of a protein under examination; bottom-up proteomics analyses peptide fragments after pre-digestion (typically with trypsin). Because of this heterogeneity, many different biomarkers may be proposed for the same pathology. The salivary proteome has been characterised in several diseases: oral squamous cell carcinoma and oral leukoplakia, chronic graft-versus-host disease Sjögren's syndrome and other autoimmune disorders such as SAPHO, schizophrenia and bipolar disorder, and genetic diseases like Down's Syndrome and Wilson disease. The results of research reported herein suggest that in the near future human saliva will be a relevant diagnostic fluid for clinical diagnosis and prognosis.
Collapse
Affiliation(s)
- M Castagnola
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Istituto di Chimica del Riconoscimento Molecolare C.N.R. Rome, Italy
| | - E Scarano
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - G C Passali
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - I Messana
- Life and Enviromental Sciences Department, University of Cagliari, and Istituto di Chimica del Riconoscimento Molecolare C.N.R. Rome, Italy
| | - T Cabras
- Life and Enviromental Sciences Department, University of Cagliari, Italy
| | - F Iavarone
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - G Di Cintio
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - A Fiorita
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - E De Corso
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - G Paludetti
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| |
Collapse
|
19
|
Ellwanger JH, Veit TD, Chies JAB. Exosomes in HIV infection: A review and critical look. INFECTION GENETICS AND EVOLUTION 2017; 53:146-154. [PMID: 28546080 DOI: 10.1016/j.meegid.2017.05.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/16/2017] [Accepted: 05/22/2017] [Indexed: 02/06/2023]
Abstract
Exosomes are nanovesicles released into the extracellular medium by different cell types. These vesicles carry a variety of protein and RNA cargos, and have a central role in cellular signaling and regulation. A PubMed search using the term "exosomes" finds 67 articles published in 2006. Ten years later, the same search returns approximately 1200 results for 2016 alone. The growing interest in exosomes within the scientific community reflects the different roles exerted by extracellular vesicles in biological systems and diseases. However, the increase in academic production addressing the biological function of exosomes causes much confusion, especially where the focus is on the role of exosomes in pathological situations. In this review, we critically interpret the current state of the research on exosomes and HIV infection. It is plausible to assume that exosomes influence the pathogenesis of HIV infection through their biological cargo (primarily membrane proteins and microRNAs). On the other hand, evidence for a usurpation of the exosomal budding and trafficking machinery by HIV during infection is limited, although such a mechanism cannot be ruled out. This review also discusses several biological aspects of exosomal function in the immune system. Finally, the limitations of current exosome research are pointed out.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Tiago Degani Veit
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
20
|
Licier R, Miranda E, Serrano H. A Quantitative Proteomics Approach to Clinical Research with Non-Traditional Samples. Proteomes 2016; 4:proteomes4040031. [PMID: 28248241 PMCID: PMC5260964 DOI: 10.3390/proteomes4040031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 01/13/2023] Open
Abstract
The proper handling of samples to be analyzed by mass spectrometry (MS) can guarantee excellent results and a greater depth of analysis when working in quantitative proteomics. This is critical when trying to assess non-traditional sources such as ear wax, saliva, vitreous humor, aqueous humor, tears, nipple aspirate fluid, breast milk/colostrum, cervical-vaginal fluid, nasal secretions, bronco-alveolar lavage fluid, and stools. We intend to provide the investigator with relevant aspects of quantitative proteomics and to recognize the most recent clinical research work conducted with atypical samples and analyzed by quantitative proteomics. Having as reference the most recent and different approaches used with non-traditional sources allows us to compare new strategies in the development of novel experimental models. On the other hand, these references help us to contribute significantly to the understanding of the proportions of proteins in different proteomes of clinical interest and may lead to potential advances in the emerging field of precision medicine.
Collapse
Affiliation(s)
- Rígel Licier
- Department of Medicine, San Juan Bautista School of Medicine, Caguas 00727, Puerto Rico.
- Quantitative Proteomics Laboratory, Comprehensive Cancer Center of Puerto Rico, San Juan 00936, Puerto Rico.
| | - Eric Miranda
- Quantitative Proteomics Laboratory, Comprehensive Cancer Center of Puerto Rico, San Juan 00936, Puerto Rico.
- Department of Internal Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico.
| | - Horacio Serrano
- Quantitative Proteomics Laboratory, Comprehensive Cancer Center of Puerto Rico, San Juan 00936, Puerto Rico.
- Department of Internal Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico.
| |
Collapse
|
21
|
Wang L, Wu N, Zhao TY, Li J. The potential biomarkers of drug addiction: proteomic and metabolomics challenges. Biomarkers 2016; 21:678-685. [PMID: 27328859 DOI: 10.1080/1354750x.2016.1201530] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Drug addiction places a significant burden on society and individuals. Proteomics and metabolomics approaches pave the road for searching potential biomarkers to assist the diagnosis and treatment. This review summarized putative drug addiction-related biomarkers in proteomics and metabolomics studies and discussed challenges and prospects in future studies. Alterations of several hundred proteins and metabolites were reported when exposure to abused drug, which enriched in energy metabolism, oxidative stress response, protein modification and degradation, synaptic function and neurotrasmission, etc. Hsp70, peroxiredoxin-6 and α- and β-synuclein, as well as n-methylserotonin and purine metabolites, were promising as potential biomarker for drug addiction.
Collapse
Affiliation(s)
- Lv Wang
- a State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Ning Wu
- a State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Tai-Yun Zhao
- a State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| | - Jin Li
- a State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology , Beijing Institute of Pharmacology and Toxicology , Beijing , China
| |
Collapse
|
22
|
Wormwood KL, Aslebagh R, Channaveerappa D, Dupree EJ, Borland MM, Ryan JP, Darie CC, Woods AG. Salivary proteomics and biomarkers in neurology and psychiatry. Proteomics Clin Appl 2015; 9:899-906. [PMID: 25631118 DOI: 10.1002/prca.201400153] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/04/2014] [Accepted: 01/27/2015] [Indexed: 12/30/2022]
Abstract
Biomarkers are greatly needed in the fields of neurology and psychiatry, to provide objective and earlier diagnoses of CNS conditions. Proteomics and other omics MS-based technologies are tools currently being utilized in much recent CNS research. Saliva is an interesting alternative biomaterial for the proteomic study of CNS disorders, with several advantages. Collection is noninvasive and saliva has many proteins. It is easier to collect than blood and can be collected by professionals without formal medical training. For psychiatric and neurological patients, supplying a saliva sample is less anxiety-provoking than providing a blood sample, and is less embarrassing than producing a urine specimen. The use of saliva as a biomaterial has been researched for the diagnosis of and greater understanding of several CNS conditions, including neurodegenerative diseases, autism, and depression. Salivary biomarkers could be used to rule out nonpsychiatric conditions that are often mistaken for psychiatric/neurological conditions, such as fibromyalgia, and potentially to assess cognitive ability in individuals with compromised brain function. As MS and omics technology advances, the sensitivity and utility of assessing CNS conditions using distal human biomaterials such as saliva is becoming increasingly possible.
Collapse
Affiliation(s)
- Kelly L Wormwood
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Roshanak Aslebagh
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Devika Channaveerappa
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Emmalyn J Dupree
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Megan M Borland
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Jeanne P Ryan
- Department of Psychology, SUNY Plattsburgh, Plattsburgh, NY, USA
| | - Costel C Darie
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Alisa G Woods
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA.,Center for Neurobehavioral Health, SUNY Plattsburgh, Plattsburgh, NY, USA
| |
Collapse
|
23
|
Kumar A, Baycin-Hizal D, Shiloach J, Bowen MA, Betenbaugh MJ. Coupling enrichment methods with proteomics for understanding and treating disease. Proteomics Clin Appl 2015; 9:33-47. [PMID: 25523641 DOI: 10.1002/prca.201400097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/12/2014] [Accepted: 12/15/2014] [Indexed: 12/17/2022]
Abstract
Owing to recent advances in proteomics analytical methods and bioinformatics capabilities there is a growing trend toward using these capabilities for the development of drugs to treat human disease, including target and drug evaluation, understanding mechanisms of drug action, and biomarker discovery. Currently, the genetic sequences of many major organisms are available, which have helped greatly in characterizing proteomes in model animal systems and humans. Through proteomics, global profiles of different disease states can be characterized (e.g. changes in types and relative levels as well as changes in PTMs such as glycosylation or phosphorylation). Although intracellular proteomics can provide a broad overview of physiology of cells and tissues, it has been difficult to quantify the low abundance proteins which can be important for understanding the diseased states and treatment progression. For this reason, there is increasing interest in coupling comparative proteomics methods with subcellular fractionation and enrichment techniques for membranes, nucleus, phosphoproteome, glycoproteome as well as low abundance serum proteins. In this review, we will provide examples of where the utilization of different proteomics-coupled enrichment techniques has aided target and biomarker discovery, understanding the drug targeting mechanism, and mAb discovery. Taken together, these improvements will help to provide a better understanding of the pathophysiology of various diseases including cancer, autoimmunity, inflammation, cardiovascular disease, and neurological conditions, and in the design and development of better medicines for treating these afflictions.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Antibody Discovery and Protein Engineering, MedImmune LLC, One MedImmune Way, Gaithersburg, MD, USA; Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|