1
|
Gao P, Kajiya M, Motoike S, Ikeya M, Yang J. Application of mesenchymal stem/stromal cells in periodontal regeneration: Opportunities and challenges. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:95-108. [PMID: 38314143 PMCID: PMC10837070 DOI: 10.1016/j.jdsr.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Guided tissue regeneration (GTR) has been widely used in the periodontal treatment of intrabony and furcation defects for nearly four decades. The treatment outcomes have shown effectiveness in reducing pocket depth, improving attachment gain and bone filling in periodontal tissue. Although applying GTR could reconstruct the periodontal tissue, the surgical indications are relatively narrow, and some complications and race ethic problems bring new challenges. Therefore, it is challenging to achieve a consensus concerning the clinical benefits of GTR. With the appearance of stem cell-based regenerative medicine, mesenchymal stem/stromal cells (MSCs) have been considered a promising cell resource for periodontal regeneration. In this review, we highlight preclinical and clinical periodontal regeneration using MSCs derived from distinct origins, including non-odontogenic and odontogenic tissues and induced pluripotent stem cells, and discuss the transplantation procedures, therapeutic mechanisms, and concerns to evaluate the effectiveness of MSCs.
Collapse
Affiliation(s)
- Pan Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Souta Motoike
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Jingmei Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
2
|
Xu C, Cao JF, Pei Y, Kim Y, Moon H, Fan CQ, Liao MC, Wang XY, Yao F, Zhang YJ, Zhang SH, Zhang J, Li JZ, Kim JS, Ma L, Xie ZJ. Injectable hydrogel harnessing foreskin mesenchymal stem cell-derived extracellular vesicles for treatment of chronic diabetic skin wounds. J Control Release 2024; 370:339-353. [PMID: 38685383 DOI: 10.1016/j.jconrel.2024.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Chronic skin wounds are a serious complication of diabetes with a high incidence rate, which can lead to disability or even death. Previous studies have shown that mesenchymal stem cells derived extracellular vesicles (EVs) have beneficial effects on wound healing. However, the human foreskin mesenchymal stem cell (FSMSCs)-derived extracellular vesicle (FM-EV) has not yet been isolated and characterized. Furthermore, the limited supply and short lifespan of EVs also hinder their practical use. In this study, we developed an injectable dual-physical cross-linking hydrogel (PSiW) with self-healing, adhesive, and antibacterial properties, using polyvinylpyrrolidone and silicotungstic acid to load FM-EV. The EVs were evenly distributed in the hydrogel and continuously released. In vivo and vitro tests demonstrated that the synergistic effect of EVs and hydrogel could significantly promote the repair of diabetic wounds by regulating macrophage polarization, promoting angiogenesis, and improving the microenvironment. Overall, the obtained EVs-loaded hydrogels developed in this work exhibited promising applicability for the repair of chronic skin wounds in diabetes patients.
Collapse
Affiliation(s)
- Chang Xu
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China
| | - Jin-Feng Cao
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
| | - Yue Pei
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China
| | - Yujin Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Huiyeon Moon
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chui-Qin Fan
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China
| | - Mao-Chuan Liao
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China
| | - Xing-Yu Wang
- Department of Emergency, ChangYang Tujia Autonomous County People's Hospital, Yichang 443000, China
| | - Fei Yao
- Eye Center of Xiangya Hospital, Central South University, Changsha 410000, China
| | - Yu-Jun Zhang
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China
| | - Shao-Hui Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jian Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jian-Zhang Li
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Lian Ma
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China; Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China; Department of Pediatrics, The Third Affifiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| | - Zhong-Jian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China; Shenzhen International Institute for Biomedical Research, Shenzhen 518116, Guangdong, China.
| |
Collapse
|
3
|
Rampazzo S, Ferrari M, Sotgiu MA, Piu G, Solinas MG, Usai N, Bulla A, Serra PL, Grieco F, Montella A, Mazzarello V, Rubino C. Objective Non-Invasive Bio-Parametric Evaluation of Regenerated Skin: A Comparison of Two Acellular Dermal Substitutes. Life (Basel) 2024; 14:121. [PMID: 38255736 PMCID: PMC10817643 DOI: 10.3390/life14010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Several dermal substitutes are available on the market, but there is no precise indication that helps surgeons choose the proper one. Few studies have tried to compare different xenogeneic bioengineered products, but no objective bio-parametric comparison has been made yet. Fifteen patients who underwent skin reconstruction with Integra® or Pelnac® were retrospectively evaluated. After at least 12 months of follow-up, an objective and quantitative assessment of several skin biophysical properties, such as color, texture, elasticity, hydration, glossiness and trans-epidermal water loss, were measured with non-invasive skin measurement devices. The grafted skin showed a reduction of the superficial hydration level and a tendency to lower values of trans-epidermal water loss with both dermal substitutes. Melanic and hemoglobin pigmentation were higher in comparison to the donor site in both groups, while a melanic pigmentation increase versus the surrounding skin was seen just with Integra®. Finally, the skin was found to be more elastic when reconstructed with Integra®. The skin barrier appeared to be intact in both groups. Hence, these substitutes are valuable means of skin regeneration. Integra® seems to be more advantageous for reconstructing areas that need more skin flexibility.
Collapse
Affiliation(s)
- Silvia Rampazzo
- Plastic Surgery Unit, University Hospital Trust of Sassari, 07100 Sassari, Italy; (N.U.); (A.B.); (P.L.S.); (F.G.); (C.R.)
- Plastic, Reconstructive and Aesthetic Surgery Training Program, University of Sassari, 07100 Sassari, Italy
| | - Marco Ferrari
- Skinlab, Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.P.); (V.M.)
| | - Maria Alessandra Sotgiu
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy; (M.A.S.); (M.G.S.); (A.M.)
| | - Gabriella Piu
- Skinlab, Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.P.); (V.M.)
| | - Maria Giuliana Solinas
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy; (M.A.S.); (M.G.S.); (A.M.)
| | - Noemi Usai
- Plastic Surgery Unit, University Hospital Trust of Sassari, 07100 Sassari, Italy; (N.U.); (A.B.); (P.L.S.); (F.G.); (C.R.)
- Plastic, Reconstructive and Aesthetic Surgery Training Program, University of Sassari, 07100 Sassari, Italy
| | - Antonio Bulla
- Plastic Surgery Unit, University Hospital Trust of Sassari, 07100 Sassari, Italy; (N.U.); (A.B.); (P.L.S.); (F.G.); (C.R.)
| | - Pietro Luciano Serra
- Plastic Surgery Unit, University Hospital Trust of Sassari, 07100 Sassari, Italy; (N.U.); (A.B.); (P.L.S.); (F.G.); (C.R.)
- Plastic, Reconstructive and Aesthetic Surgery Training Program, University of Sassari, 07100 Sassari, Italy
| | - Federica Grieco
- Plastic Surgery Unit, University Hospital Trust of Sassari, 07100 Sassari, Italy; (N.U.); (A.B.); (P.L.S.); (F.G.); (C.R.)
- Plastic, Reconstructive and Aesthetic Surgery Training Program, University of Sassari, 07100 Sassari, Italy
| | - Andrea Montella
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy; (M.A.S.); (M.G.S.); (A.M.)
| | - Vittorio Mazzarello
- Skinlab, Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.P.); (V.M.)
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy; (M.A.S.); (M.G.S.); (A.M.)
| | - Corrado Rubino
- Plastic Surgery Unit, University Hospital Trust of Sassari, 07100 Sassari, Italy; (N.U.); (A.B.); (P.L.S.); (F.G.); (C.R.)
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
4
|
Rui C, Chan MKS, Skutella T. Stem Cell Therapies and Ageing: Unlocking the Potential of Regenerative Medicine. Subcell Biochem 2024; 107:117-128. [PMID: 39693022 DOI: 10.1007/978-3-031-66768-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A multifaceted biological process of ageing culminates in the gradual decline of tissue and organ functions, escalating vulnerability to age-related diseases. Stem cell therapies, standing at the frontier of regenerative medicine, hold the potential to mitigate the challenges induced by ageing. By harnessing the unique regenerative capabilities of stem cells, these therapies aim to renew and heal ageing or damaged cells and tissues, thereby bolstering their function. In this chapter, we explore the potential of stem cell-based interventions against age-related degeneration, emphasising their underlying mechanisms, challenges, and future possibilities. As elucidated by the Buck Institute for Research on Aging, ageing is characterised by an accrual of macromolecular damage, genomic instability, and loss of heterochromatin (Campisi et al. Nature 571:183-192, 2019). These aspects culminate in stem cell fatigue and a dwindling tissue regenerative capacity. However, with the advent of stem cell therapy and regenerative medicine, we now hold the tools to reverse these age-induced changes by rejuvenating stem cells, the keystones of tissue regeneration, and fostering their proliferation and differentiation.
Collapse
Affiliation(s)
- Chen Rui
- Reproductive Medicine Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Thomas Skutella
- Group for Regeneration and Reprogramming, Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
5
|
Liu H, Yang R, Zhao S, Zhou F, Liu Y, Zhou Z, Chen L, Xie J. Collagen scaffolds derived from bovine skin loaded with MSC optimized M1 macrophages remodeling and chronic diabetic wounds healing. Bioeng Transl Med 2023; 8:e10467. [PMID: 37206210 PMCID: PMC10189465 DOI: 10.1002/btm2.10467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Owing to the persistent inflammatory microenvironment and unsubstantial dermal tissues, chronic diabetic wounds do not heal easily and their recurrence rate is high. Therefore, a dermal substitute that can induce rapid tissue regeneration and inhibit scar formation is urgently required to address this concern. In this study, we established biologically active dermal substitutes (BADS) by combining novel animal tissue-derived collagen dermal-replacement scaffolds (CDRS) and bone marrow mesenchymal stem cells (BMSCs) for the healing and recurrence treatments of chronic diabetic wounds. The collagen scaffolds derived from bovine skin (CBS) displayed good physicochemical properties and superior biocompatibility. CBS loaded with BMSCs (CBS-MCSs) could inhibit M1 macrophage polarization in vitro. Decreased MMP-9 and increased Col3 at the protein level were detected in CBS-MSCs-treated M1 macrophages, which may be attributed to the suppression of the TNF-α/NF-κB signaling pathway (downregulating phospho-IKKα/β/total IKKα/β, phospho-IκB/total IκB, and phospho-NFκB/total NFκB) in M1 macrophages. Moreover, CBS-MSCs could benefit the transformation of M1 (downregulating iNOS) to M2 (upregulating CD206) macrophages. Wound-healing evaluations demonstrated that CBS-MSCs regulated the polarization of macrophages and the balance of inflammatory factors (pro-inflammatory: IL-1β, TNF-α, and MMP-9; anti-inflammatory: IL-10 and TGF-β3) in db/db mice. Furthermore, CBS-MSCs facilitated the noncontractile and re-epithelialized processes, granulation tissue regeneration, and neovascularization of chronic diabetic wounds. Thus, CBS-MSCs have a potential value for clinical application in promoting the healing of chronic diabetic wounds and preventing the recurrence of ulcers.
Collapse
Affiliation(s)
- Hengdeng Liu
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Ronghua Yang
- Department of Burn and Plastic SurgeryGuangzhou First People's Hospital, South China University of TechnologyGuangzhouGuangdongChina
| | - Shixin Zhao
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Fei Zhou
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Yiling Liu
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Ziheng Zhou
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Lei Chen
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Julin Xie
- Department of Burns, Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of ProductsSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Institute of Precision Medicine, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
6
|
Development of gelatin hydrogel nonwoven fabrics (Genocel®) as a novel skin substitute in murine skin defects. Regen Ther 2022; 21:96-103. [PMID: 35785040 PMCID: PMC9233192 DOI: 10.1016/j.reth.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/02/2022] [Accepted: 06/01/2022] [Indexed: 11/14/2022] Open
Abstract
Introduction Genocel is an emerging material, used in cell culture, with high mechanical strength and good cytocompatibility. Based on these characteristics, Genocel is considered a promising skin substitute for wound healing. In this study, we explored the possibility of using Genocel as a skin substitute for murine skin defects and compared it with a conventional skin substitute. Methods Sheets of Genocel and Pelnac were applied to skin defects created on the backs of mice. On days 7, 14, and 21, the remaining wound area was evaluated and specimens were harvested for HE, Azan, anti-CD31, CD68, and CD163 staining to assess neoepithelialization, granulation tissue, capillary formation, and macrophage infiltration. Results No significant differences in the wound area or neoepithelium length were observed between groups. The number of newly formed capillaries in the Genocel group was significantly higher than that in the Pelnac group on day 7 (p < 0.05). In contrast, granulation tissue formation in the Pelnac group was greater than that in the Genocel group on day 14 (p < 0.05). Regarding macrophage infiltration, the pan-macrophage number, M2 macrophage number, and M2 ratio in the Pelnac group were higher than those in the Genocel group on day 14 (p < 0.05). In other aspects, the two materials displayed comparable behavior. Conclusions Genocel can be used as a skin substitute equivalent to the conventional one. In addition, Genocel accelerated capillary formation, which is more appropriate than conventional treatments for chronic skin ulcers, such as diabetic ulcers. Gelatin hydrogel nonwoven fabrics, Genocel was used for the first time as a skin substitute for murine skin defects. Genocel displayed comparable behavior with Pelnac and accelerated capillary formation in the early phase. However, the Pelnac group produced more granulation tissue and more macrophages than the Genocel group on day 14.
Collapse
|
7
|
Comparison of Wound Healing Effect of Skin Micrograft Impregnated into Two Kinds of Artificial Dermis in a Murine Wound Model. Plast Reconstr Surg Glob Open 2022; 10:e4636. [PMID: 36348754 PMCID: PMC9633088 DOI: 10.1097/gox.0000000000004636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/08/2022] [Indexed: 12/27/2022]
Abstract
A micrograft (MG) suspension produced by the Rigenera protocol has been used to stimulate tissue regeneration. Recently, a combination therapy of an artificial dermis and skin MG has been used to promote angiogenesis and granulation tissue formation in the artificial dermis. There are no reports comparing the differences in MG impregnation efficiency between different artificial dermis products. Therefore, we compared the impregnation of skin MG in Pelnac Gplus and Integra. Methods Skin MG was prepared from the skin of C57BL/6JJcl mice using Rigeneracons and administered onto Pelnac Gplus and Integra sheets. The amount of MG suspension impregnated in Pelnac Gplus and Integra was evaluated. Pelnac Gplus and Integra sheets combined with MG were applied to murine defects, and wound area, neoepithelium length, granulation tissue formation, and newly formed capillaries were compared with the control groups on days 7 and 14. Results The weight percentage of the MG absorbed by Pelnac Gplus and Integra was 88.8% ± 3.5% and 28.2% ± 7.0%, respectively (P < 0.05). In the in vivo experiment, the area of newly formed granulation tissue and both the number and area of newly formed capillaries in the PelnacG + MG group were significantly larger than those in the control group at 14 days after implantation (P < 0.05). Conclusions Skin MG was successfully impregnated into Pelnac Gplus by simple administration but not into Integra. Administration of skin MG into the Pelnac Gplus promoted granulation formation and angiogenesis. Pelnac Gplus was more suitable than Integra in the combination therapy.
Collapse
|
8
|
Abbasi B, Shamsasenjan K, Ahmadi M, Beheshti SA, Saleh M. Mesenchymal stem cells and natural killer cells interaction mechanisms and potential clinical applications. Stem Cell Res Ther 2022; 13:97. [PMID: 35255980 PMCID: PMC8900412 DOI: 10.1186/s13287-022-02777-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/09/2021] [Indexed: 12/29/2022] Open
Abstract
Natural killer cells (NK cells) are innate immune cells that are activated to fight tumor cells and virus-infected cells. NK cells also play an important role in the graft versus leukemia response. However, they can over-develop inflammatory reactions by secreting inflammatory cytokines and increasing Th1 differentiation, eventually leading to tissue damage. Today, researchers have attributed some autoimmune diseases and GVHD to NK cells. On the other hand, it has been shown that mesenchymal stem cells (MSCs) can modulate the activity of NK cells, while some researchers have shown that NK cells can cause MSCs to lysis. Therefore, we considered it is necessary to investigate the effect of these two cells and their signaling pathway in contact with each other, also their clinical applications.
Collapse
Affiliation(s)
- Batol Abbasi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedeh Ameneh Beheshti
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahshid Saleh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Delben PB, Zomer HD, Acordi da Silva C, Gomes RS, Melo FR, Dillenburg-Pilla P, Trentin AG. Human adipose-derived mesenchymal stromal cells from face and abdomen undergo replicative senescence and loss of genetic integrity after long-term culture. Exp Cell Res 2021; 406:112740. [PMID: 34303697 DOI: 10.1016/j.yexcr.2021.112740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Body fat depots are heterogeneous concerning their embryonic origin, structure, exposure to environmental stressors, and availability. Thus, investigating adipose-derived mesenchymal stromal cells (ASCs) from different sources is essential to standardization for future therapies. In vitro amplification is also critical because it may predispose cell senescence and mutations, reducing regenerative properties and safety. Here, we evaluated long-term culture of human facial ASCs (fASCs) and abdominal ASCs (aASCs) and showed that both met the criteria for MSCs characterization but presented differences in their immunophenotypic profile, and differentiation and clonogenic potentials. The abdominal tissue yielded more ASCs, and these had higher proliferative potential, but facial cells displayed fewer mitotic errors at higher passages. However, both cell types reduced clonal efficiency over time and entered replicative senescence around P12, as evaluated by progressive morphological alterations, reduced proliferative capacity, and SA-β-galactosidase expression. Loss of genetic integrity was detected by a higher proportion of cells showing nuclear alterations and γ-H2AX expression. Our findings indicate that the source of ASCs can substantially influence their phenotype and therefore should be carefully considered in future cell therapies, avoiding, however, long-term culture to ensure genetic stability.
Collapse
Affiliation(s)
- Priscilla Barros Delben
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Brazil.
| | - Helena Debiazi Zomer
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Brazil; Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, IL, USA.
| | - Camila Acordi da Silva
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Brazil.
| | | | | | | | - Andrea Gonçalves Trentin
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Sierra-Sánchez Á, Kim KH, Blasco-Morente G, Arias-Santiago S. Cellular human tissue-engineered skin substitutes investigated for deep and difficult to heal injuries. NPJ Regen Med 2021; 6:35. [PMID: 34140525 PMCID: PMC8211795 DOI: 10.1038/s41536-021-00144-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Wound healing is an important function of skin; however, after significant skin injury (burns) or in certain dermatological pathologies (chronic wounds), this important process can be deregulated or lost, resulting in severe complications. To avoid these, studies have focused on developing tissue-engineered skin substitutes (TESSs), which attempt to replace and regenerate the damaged skin. Autologous cultured epithelial substitutes (CESs) constituted of keratinocytes, allogeneic cultured dermal substitutes (CDSs) composed of biomaterials and fibroblasts and autologous composite skin substitutes (CSSs) comprised of biomaterials, keratinocytes and fibroblasts, have been the most studied clinical TESSs, reporting positive results for different pathological conditions. However, researchers' purpose is to develop TESSs that resemble in a better way the human skin and its wound healing process. For this reason, they have also evaluated at preclinical level the incorporation of other human cell types such as melanocytes, Merkel and Langerhans cells, skin stem cells (SSCs), induced pluripotent stem cells (iPSCs) or mesenchymal stem cells (MSCs). Among these, MSCs have been also reported in clinical studies with hopeful results. Future perspectives in the field of human-TESSs are focused on improving in vivo animal models, incorporating immune cells, designing specific niches inside the biomaterials to increase stem cell potential and developing three-dimensional bioprinting strategies, with the final purpose of increasing patient's health care. In this review we summarize the use of different human cell populations for preclinical and clinical TESSs under research, remarking their strengths and limitations and discuss the future perspectives, which could be useful for wound healing purposes.
Collapse
Affiliation(s)
- Álvaro Sierra-Sánchez
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.
| | - Kevin H Kim
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada University, Granada, Spain
| | - Gonzalo Blasco-Morente
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada University, Granada, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada University, Granada, Spain
- Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
11
|
Khoshnood N, Zamanian A. Decellularized extracellular matrix bioinks and their application in skin tissue engineering. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bprint.2020.e00095] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Cabral LRB, Teixeira LN, Gimenez RP, Demasi APD, de Brito Junior RB, de Araújo VC, Martinez EF. Effect of Hyaluronic Acid and Poly-L-Lactic Acid Dermal Fillers on Collagen Synthesis: An in vitro and in vivo Study. Clin Cosmet Investig Dermatol 2020; 13:701-710. [PMID: 33061510 PMCID: PMC7533910 DOI: 10.2147/ccid.s266015] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/13/2020] [Indexed: 01/09/2023]
Abstract
Purpose Skin ageing is marked by structural and functional changes in epidermis and dermis, which result clinically in wrinkles, loss of elasticity, and rough-textured appearance. In this context, different dermal fillers have been used to overcome these negative effects associated with skin ageing, such as hyaluronic acid (HA) and poly-L-lactic acid (PLLA). Despite their low immunogenicity, these materials can cause an inflammatory reaction after application. Materials and Methods Considering high demand of HA and PLLA as filler material, this study aimed to evaluate their in vitro and in vivo effects. For the in vitro study, human dermal fibroblast cell cultures were supplemented with HA or PLLA for 24, 48, and 72 h. The following parameters were assayed: 1) cell proliferation, 2) cell viability, and 3) quantification of type I collagen by ELISA. For the in vivo study, HA or PLLA was injected in the dermis of Wistar rats and the tissues were collected after 15, 30, and 60 days for histologic evaluation and for quantification of type I collagen by Western blotting. The quantitative data were statistically analyzed using an ANOVA two-way. The significance level was set at 5%. Results At 72 h, high cell proliferation was observed for HA compared to control (p<0.05). Cultures exposed to PLLA exhibited a reduction in both cell proliferation and viability compared to control in all time points (p<0.05). Type I collagen expression was greater in cultures exposed to HA or PLLA compared to control (p<0.05). Histologic analysis showed the presence of multinucleated cells only in the PLLA group in all experimental time points. Western blotting analysis revealed high content of type I collagen in HA compared to PLLA (p<0.05). Conclusion The present study addresses a potentially unfavorable effect of dermal PLLA filler on the fibroblast phenotype, with possible clinical complications, unlike HA.
Collapse
Affiliation(s)
| | - Lucas Novaes Teixeira
- Division of Cell Biology and Oral Pathology, Faculdade São Leopoldo Mandic, Campinas, São Paulo, Brazil
| | - Rodrigo Pinto Gimenez
- Division of Plastic Surgery, Faculdade São Leopoldo Mandic, Campinas, São Paulo, Brazil
| | - Ana Paula Dias Demasi
- Division of Cell Biology and Oral Pathology, Faculdade São Leopoldo Mandic, Campinas, São Paulo, Brazil
| | | | - Vera Cavalcanti de Araújo
- Division of Cell Biology and Oral Pathology, Faculdade São Leopoldo Mandic, Campinas, São Paulo, Brazil
| | | |
Collapse
|
13
|
Bellu E, Garroni G, Balzano F, Satta R, Montesu MA, Kralovic M, Fedacko J, Cruciani S, Maioli M. Isolating stem cells from skin: designing a novel highly efficient non-enzymatic approach. Physiol Res 2020; 68:S385-S388. [PMID: 32118468 DOI: 10.33549/physiolres.934373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Stem cells are undifferentiated elements capable to acquire a specific cellular phenotype under the influence of specific stimuli, thus being involved in tissue integrity and maintenance. In the skin tissue self-renewal and wound healing after injury is a complex process, especially in adulthood, due to the aging process and the continuous exposure to damaging agents. The importance of stem cells in regenerative medicine is well known and defining or improving their isolation methods is therefore a primary and crucial step. In the present paper we present a novel method to isolate stem cells from human skin, including the involvement of a novel medium for the maintenance and expansion of in vitro cultures. The biopsies were mechanically digested and put in culture. The migrating cells were positive selected with magnetic cell sorting, characterized by flow-cytometry analysis, and viability detected by MTT assay. Cells exhibited a mesenchymal phenotype, as demonstrated by the positive acquirement of an osteogenic or adipogenic phenotype when cultured in specific conditioned media. Taken together our results disclose a novel method for culturing and expanding stem cells from skin and pave the way for future clinical applications in tissue regeneration.
Collapse
Affiliation(s)
- E Bellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yang HY, Fierro F, So M, Yoon DJ, Nguyen AV, Gallegos A, Bagood MD, Rojo-Castro T, Alex A, Stewart H, Chigbrow M, Dasu MR, Peavy TR, Soulika AM, Nolta JA, Isseroff RR. Combination product of dermal matrix, human mesenchymal stem cells, and timolol promotes diabetic wound healing in mice. Stem Cells Transl Med 2020; 9:1353-1364. [PMID: 32720751 DOI: 10.1002/sctm.19-0380] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/21/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetic foot ulcers are a major health care concern with limited effective therapies. Mesenchymal stem cell (MSC)-based therapies are promising treatment options due to their beneficial effects of immunomodulation, angiogenesis, and other paracrine effects. We investigated whether a bioengineered scaffold device containing hypoxia-preconditioned, allogeneic human MSCs combined with the beta-adrenergic antagonist timolol could improve impaired wound healing in diabetic mice. Different iterations were tested to optimize the primary wound outcome, which was percent of wound epithelialization. MSC preconditioned in 1 μM timolol at 1% oxygen (hypoxia) seeded at a density of 2.5 × 105 cells/cm2 on Integra Matrix Wound Scaffold (MSC/T/H/S) applied to wounds and combined with daily topical timolol applications at 2.9 mM resulted in optimal wound epithelialization 65.6% (24.9% ± 13.0% with MSC/T/H/S vs 41.2% ± 20.1%, in control). Systemic absorption of timolol was below the HPLC limit of quantification, suggesting that with the 7-day treatment, accumulative steady-state timolol concentration is minimal. In the early inflammation stage of healing, the MSC/T/H/S treatment increased CCL2 expression, lowered the pro-inflammatory cytokines IL-1B and IL6 levels, decreased neutrophils by 44.8%, and shifted the macrophage ratio of M2/M1 to 1.9 in the wound, demonstrating an anti-inflammatory benefit. Importantly, expression of the endothelial marker CD31 was increased by 2.5-fold with this treatment. Overall, the combination device successfully improved wound healing and reduced the wound inflammatory response in the diabetic mouse model, suggesting that it could be translated to a therapy for patients with diabetic chronic wounds.
Collapse
Affiliation(s)
- Hsin-Ya Yang
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Fernando Fierro
- Department of Cell Biology and Human Anatomy, University of California, Davis, Sacramento, California, USA.,Stem Cell Program, Department of Internal Medicine, University of California, Davis, Davis, California, USA
| | - Michelle So
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Daniel J Yoon
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Alan Vu Nguyen
- Department of Dermatology, University of California, Davis, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, California, USA
| | - Anthony Gallegos
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Michelle D Bagood
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Tomas Rojo-Castro
- Department of Biological Sciences, California State University, Sacramento, Sacramento, California, USA
| | - Alan Alex
- Department of Biological Sciences, California State University, Sacramento, Sacramento, California, USA
| | - Heather Stewart
- Stem Cell Program, Department of Internal Medicine, University of California, Davis, Davis, California, USA
| | - Marianne Chigbrow
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Mohan R Dasu
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Thomas R Peavy
- Department of Biological Sciences, California State University, Sacramento, Sacramento, California, USA
| | - Athena M Soulika
- Department of Dermatology, University of California, Davis, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, California, USA
| | - Jan A Nolta
- Stem Cell Program, Department of Internal Medicine, University of California, Davis, Davis, California, USA
| | - R Rivkah Isseroff
- Department of Dermatology, University of California, Davis, Sacramento, California, USA.,Dermatology Section, VA Northern California Health Care System, Mather, California, USA
| |
Collapse
|
15
|
Utility of a New Artificial Dermis as a Successful Tool in Face and Scalp Reconstruction for Skin Cancer: Analysis of the Efficacy, Safety, and Aesthetic Outcomes. Dermatol Res Pract 2020; 2020:4874035. [PMID: 32765599 PMCID: PMC7388001 DOI: 10.1155/2020/4874035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/29/2020] [Indexed: 02/03/2023] Open
Abstract
Radical ablative surgery is the gold standard treatment of head skin cancer. The authors expose their experience with a new artificial dermis (Pelnac®), analyzing retrospectively the overall morbidity and aesthetic outcomes. 16 consecutive patients underwent two surgical procedures under local anesthesia. The first involved the tumor removal and application of the ADM. In the second, the exposed tissue was covered with a split-thickness skin graft. On follow-up (6 months), tumor recurrences, quality of scars (using the Vancouver Scar Scale), and patient reported outcomes (using FACE-Q Skin Cancer Module) were evaluated. 10 were males and 6 females, with a mean age of 73 years (61-89). The follow-up ranged from 12 to 48 months (mean: 30). The sites of skin tumor were scalp (12 cases), forehead (2), cheek (1), and zygomatic area (1). Nine patients underwent previous local surgery; two received radiotherapy. The average length of hospital stay was 3.2 days. The mean surface area of the defect was 59.15 cm2 (16.9-89.5). In three cases, the surgical bed was bone without periosteum. The malignant tumors excised were basal cell carcinoma (68.75%), squamous cell carcinoma (18.75%), malignant melanoma (6.25%), and sarcoma (6.25%). The mean operating time was 41 minutes for the first operation (25-55) and 34 for the second (25-48). No significant problems were observed and 15 patients (93.75%) had 100 percent intake of graft. The mean time of healing was 39 days (32-45). At 6 months post-op, no tumor recurrence. Satisfactory cosmetic and functional results were obtained in all patients as shown by the VSS Scale and FACEQ skin cancer module mean scores. We believe that the artificial dermis is a reliable alternative to flaps and should be considered an excellent option in head reconstruction for skin cancer, especially in critical patients (old, with large and deep defects, with recurrent tumors, required radiotherapy).
Collapse
|
16
|
Zomer HD, Jeremias TDS, Ratner B, Trentin AG. Mesenchymal stromal cells from dermal and adipose tissues induce macrophage polarization to a pro-repair phenotype and improve skin wound healing. Cytotherapy 2020; 22:247-260. [PMID: 32234290 DOI: 10.1016/j.jcyt.2020.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/09/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
The process of wound healing restores skin homeostasis but not full functionality; thus, novel therapeutic strategies are needed to accelerate wound closure and improve the quality of healing. In this context, tissue engineering and cellular therapies are promising approaches. Although sharing essential characteristics, mesenchymal stromal cells (MSCs) isolated from different tissues might have distinct properties. Therefore, the aim of this study was to comparatively investigate, by a mouse model in vivo assay, the potential use of dermal-derived MSCs (DSCs) and adipose tissue-derived MSCs (ASCs) in improving skin wound healing. Human DSCs and ASCs were delivered to full-thickness mouse wounds by a collagen-based scaffold (Integra Matrix). We found that the association of both DSCs and ASCs with the Integra accelerated wound closure in mice compared with the biomaterial only (control). Both types of MSCs stimulated angiogenesis and extracellular matrix remodeling, leading to better quality scars. However, the DSCs showed smaller scar size,superior extracellular matrix deposition, and greater number of cutaneous appendages. Besides, DSCs and ASCs reduced inflammation by induction of macrophage polarization from a pro-inflammatory (M1) to a pro-repair (M2) phenotype. In conclusion, both DSCs and ASCs were able to accelerate the healing of mice skin wounds and promote repair with scars of better quality and more similar to healthy skin than the empty scaffold. DSCs associated with Integra induced superior overall results than the Integra alone, whereas scaffolds with ASCs showed an intermediate effect, often not significantly better than the empty biomaterial.
Collapse
Affiliation(s)
- Helena Debiazi Zomer
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Talita da Silva Jeremias
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Buddy Ratner
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Andrea Goncalves Trentin
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
17
|
Karim AS, Shaum K, Gibson AL. Indeterminate-Depth Burn Injury—Exploring the Uncertainty. J Surg Res 2020; 245:183-197. [DOI: 10.1016/j.jss.2019.07.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/31/2019] [Accepted: 07/19/2019] [Indexed: 01/08/2023]
|
18
|
The Role of Autologous Dermal Micrografts in Regenerative Surgery: A Clinical Experimental Study. Stem Cells Int 2019; 2019:9843407. [PMID: 31582991 PMCID: PMC6754962 DOI: 10.1155/2019/9843407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/03/2019] [Accepted: 08/04/2019] [Indexed: 02/07/2023] Open
Abstract
The aim of the study was the objective assessment of the effectiveness of a microfragmented dermal extract obtained with Rigenera™ technology in promoting the wound healing process in an in vivo homogeneous experimental human acute surgical wound model. The study included 20 patients with 24 acute postsurgical soft tissue loss and a planned sequential two-stage repair with a dermal substitute and an autologous split-thickness skin graft. Each acute postsurgical soft tissue loss was randomized to be treated either with an Integra® dermal substitute enriched with the autologous dermal micrografts obtained with Rigenera™ technology (group A—Rigenera™ protocol) or with an Integra® dermal substitute only (group B—control). The reepithelialization rate in the wounds was assessed in both groups at 4 weeks through digital photography with the software “ImageJ.” The dermal cell suspension enrichment with the Rigenera™ technology was considered effective if the reepithelialized area was higher than 25% of the total wound surface as this threshold was considered far beyond the expected spontaneous reepithelialization rate. In the Rigenera™ protocol group, the statistical analysis failed to demonstrate any significant difference vs. the controls. The old age of the patients likely influenced the outcome as the stem cell regenerative potential is reduced in the elderly. A further explanation for the unsatisfying results of our trial might be the inadequate amount of dermal stem cells used to enrich the dermal substitutes. In our study, we used a 1 : 200 donor/recipient site ratio to minimize donor site morbidity. The gross dimensional disparity between the donor and recipient sites and the low concentration of dermal mesenchymal stromal stem cells might explain the poor epithelial proliferative boost observed in our study. A potential option in the future might be preconditioning of the dermal stem cell harvest with senolytic active principles that would fully enhance their regenerative potential. This trial is registered with trial protocol number NCT03912675.
Collapse
|
19
|
Rode MP, Batti Angulski AB, Gomes FA, da Silva MM, Jeremias TDS, de Carvalho RG, Iucif Vieira DG, Oliveira LFC, Fernandes Maia L, Trentin AG, Hayashi L, de Miranda KR, de Aguiar AK, Rosa RD, Calloni GW. Carrageenan hydrogel as a scaffold for skin-derived multipotent stromal cells delivery. J Biomater Appl 2019; 33:422-434. [PMID: 30223731 DOI: 10.1177/0885328218795569] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carrageenan is a thermoreversible polymer of natural origin widely used in food and pharmaceutical industry that presents a glycosaminoglycan-like structure. Herein, we show that kappa-type carrageenan extracted by a semi-refined process from the red seaweed Kappaphycus alvarezii displayed both chemical and structural properties similar to a commercial carrageenan. Moreover, both extracted carrageenan hydrogel and commercial carrageenan hydrogel can serve as a scaffold for in vitro culture of human skin-derived multipotent stromal cells, demonstrating considerable potential as cell-carrier materials for cell delivery in tissue engineering. Skin-derived multipotent stromal cells cultured inside the carrageenan hydrogels showed a round shape morphology and maintained their growth and viability for at least one week in culture. Next, the effect of the extracted carrageenan hydrogel loaded with human skin-derived multipotent stromal cells was evaluated in a mouse model of full-thickness skin wound. Macroscopic and histological analyses revealed some pointed ameliorated features, such as reduced inflammatory process, faster initial recovery of wounded area, and improved extracellular matrix deposition. These results indicate that extracted carrageenan hydrogel can serve as a scaffold for in vitro growth and maintenance of human SD-MSCs, being also able to act as a delivery system of cells to wounded skin. Thus, evaluation of the properties discussed in this study contribute to a further understanding and specificities of the potential use of carrageenan hydrogel as a delivery system for several applications, further to skin wound healing.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Leila Hayashi
- Universidade Federal de Santa Catarina, Florianopolis, Brazil
| | | | | | | | | |
Collapse
|
20
|
Liu K, Wang Y, Sun Y, Qi X, Tian L, Zhao Y, Xu Y, Liu X. [Masquelet technique combined with artificial dermis for the treatment of bone and soft tissue defects in rabbits]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:578-585. [PMID: 31090351 PMCID: PMC8337203 DOI: 10.7507/1002-1892.201811020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/11/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To investigate the effect of Masquelet technique combined with artificial dermis on repairing bone and soft tissue defects in rabbits, and to observe the microstructure and vascularization of induced membrane, so as to guide the clinical treatment of Gustilo-Anderson type Ⅲ open fracture with large bone defect and soft tissue defect. METHODS Eighty male rabbits, weighing 2.03-2.27 kg (mean, 2.11 kg), were selected. The bilateral thighs of 64 rabbits were randomly divided into experimental group and control group, the remaining 16 rabbits were sham operation group. Bone and soft tissue defect models of femur were made in all rabbits. In the experimental group, the first stage of Masquelet technique was used [polymethyl methacrylate bone cement was filled in bone defect area] combined with artificial dermis treatment; in the control group, the first stage of Masquelet technique was used only; in the sham operation group, the wound was sutured directly without any treatment. Four rabbits in sham operation group and 16 rabbits in the experimental group and control group were sacrificed at 2, 4, 6, and 8 weeks after operation, respectively. The induced membranes and conjunctive membranes were observed on both sides of the femur. The membrane structure was observed by HE staining, and the microvessel density (MVD) was counted by CD34 immunohistochemical staining. RESULTS Gross observation showed that the spongy layer of collagen in the artificial dermis of the experimental group disappeared completely at 4 weeks after operation, and the induced membrane structure of the experimental group and the control group was complete; the membrane structure of the control group was translucent, and the membrane structure of the experimental group was thicker, light red opaque, accompanied by small vessel proliferation. The membrane structure of the experimental group and the control group increased gradually from 6 to 8 weeks after operation. In the sham operation group, only scar tissue proliferation was observed over time. HE staining showed that a large number of muscle fibers and a small amount of collagen fibers proliferation with inflammatory cell infiltration could be seen in the experimental group and the control group at 2 weeks after operation; most of the sham operation group were muscle fibers with a small amount of interfibrous vessels. At 4 weeks after operation, collagen fibers increased and some blood vessels formed in the experimental group. The nuclei of collagen fibers in the control group were round-like, while those in the experimental group were flat-round. At 6 and 8 weeks after operation, the collagen fibers in the experimental group and the control group increased. The nuclei of the collagen fibers in the control group were still round-like. The nuclei of the collagen fibers in the experimental group were fusiformis and deeply stained compared with those in the control group. The proliferation of blood vessels was observed in both groups, and the number of proliferation vessels in the experimental group was increased compared with that in the control group. In the sham operation group, a large number of fibroblasts still appeared, but no significant proliferation of blood vessels with time was observed. CD34 immunohistochemical staining showed that MVD in each group increased gradually with the prolongation of time after operation. MVD in the sham operation group was significantly higher than that in the experimental group and the control group at 2 weeks after operation, and significantly smaller than that in the experimental group and the control group at 4, 6, and 8 weeks after operation ( P<0.05). MVD in the experimental group was significantly higher than that in the control group at 4 and 6 weeks after operation ( P<0.05), but there was no significant difference in MVD between the two groups at 2 and 8 weeks ( P>0.05). CONCLUSION Masquelet technique combined with artificial dermis in the treatment of femoral bone defect and soft tissue defect in rabbits can significantly promote the vascularization of membrane structure at 4-6 weeks after operation. The combination of these two methods has guiding significance for the treatment of Gustilo-Anderson type Ⅲ open fracture with bone and soft tissue defects.
Collapse
Affiliation(s)
- Kui Liu
- No.2 Department of Traumatic Orthopedics, the Third Hospital of Shijiazhuang City Affiliated to Hebei Medical University (Shijiazhuang Orthopaedic Hospital), Shijiazhuang Hebei, 050000,
| | - Yueming Wang
- Rheumatology and Immunology Department of Traditional Chinese Medicine, No. 256 Hospital of Chinese PLA, Shijiazhuang Hebei, 050000, P.R.China
| | - Yichong Sun
- No.2 Department of Traumatic Orthopedics, the Third Hospital of Shijiazhuang City Affiliated to Hebei Medical University (Shijiazhuang Orthopaedic Hospital), Shijiazhuang Hebei, 050000, P.R.China
| | - Xiaoming Qi
- Department of Neurology, the Second Hospital of Hebei Medical University, Shijiazhuang Hebei, 050000, P.R.China
| | - Lijun Tian
- No.2 Department of Traumatic Orthopedics, the Third Hospital of Shijiazhuang City Affiliated to Hebei Medical University (Shijiazhuang Orthopaedic Hospital), Shijiazhuang Hebei, 050000, P.R.China
| | - Yanbin Zhao
- No.2 Department of Traumatic Orthopedics, the Third Hospital of Shijiazhuang City Affiliated to Hebei Medical University (Shijiazhuang Orthopaedic Hospital), Shijiazhuang Hebei, 050000, P.R.China
| | - Ying Xu
- No.2 Department of Traumatic Orthopedics, the Third Hospital of Shijiazhuang City Affiliated to Hebei Medical University (Shijiazhuang Orthopaedic Hospital), Shijiazhuang Hebei, 050000, P.R.China
| | - Xing Liu
- No.2 Department of Traumatic Orthopedics, the Third Hospital of Shijiazhuang City Affiliated to Hebei Medical University (Shijiazhuang Orthopaedic Hospital), Shijiazhuang Hebei, 050000, P.R.China
| |
Collapse
|
21
|
Sakamoto T, Obara N, Nishikii H, Kato T, Cao-Sy L, Fujimura R, Yagita H, Sakata-Yanagimoto M, Takahashi S, Chiba S. Notch Signaling in Nestin-Expressing Cells in the Bone Marrow Maintains Erythropoiesis via Macrophage Integrity. Stem Cells 2019; 37:924-936. [PMID: 30932281 DOI: 10.1002/stem.3011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 01/07/2023]
Abstract
Notch signaling plays pivotal roles in both hematopoietic stem/progenitor and their niche cells. Myeloproliferative phenotypes are induced by disruption of Notch signaling in nonhematopoietic bone marrow (BM) cells. Nestin-expressing cells in the BM reportedly represent a component of the hematopoietic stem cell niche. We established mice in which rare Nestin-expressing cells in the BM were marked by green fluorescent protein, and Notch signaling was conditionally disrupted in these cells specifically. We observed impairment of erythropoiesis in the BM accompanying splenomegaly with BM hematopoietic programs in other lineages undisturbed. Transplantation experiments revealed that the microenvironmental rather than the hematopoietic cells were attributable to these phenotypes. We further found that the erythroid-island-forming ability of BM central macrophages was compromised along with the transcriptional upregulation of interleukin-6. Various Inflammatory conditions hamper BM erythropoiesis, which often accompanies extramedullary hematopoiesis. The mouse model demonstrated here may be of relevance to this common pathophysiologic condition. Stem Cells 2019;37:924-936.
Collapse
Affiliation(s)
- Tatsuhiro Sakamoto
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Transfusion Medicine, University of Tsukuba Hospital, Tsukuba, Japan
| | - Naoshi Obara
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hidekazu Nishikii
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takayasu Kato
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Luan Cao-Sy
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ryosuke Fujimura
- School of Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shigeru Chiba
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
22
|
Zomer HD, Varela GKDS, Delben PB, Heck D, Jeremias TDS, Trentin AG. In vitro comparative study of human mesenchymal stromal cells from dermis and adipose tissue for application in skin wound healing. J Tissue Eng Regen Med 2019; 13:729-741. [PMID: 30773827 DOI: 10.1002/term.2820] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/09/2018] [Accepted: 02/13/2019] [Indexed: 12/31/2022]
Abstract
Novel strategies combining cell therapy, tissue engineering, and regenerative medicine have been developed to treat major skin wounds. Although mesenchymal stromal cells (MSCs) from different tissues have similar stem cell features, such as self-renewing mesodermal differentiation potential and expression of immunophenotypic markers, they also have distinct characteristics. Therefore, we aimed to characterize the application of MSCs derived from the dermis and adipose tissue (DSCs and ASCs, respectively) in cutaneous wound healing by in vitro approaches. Human DSC and ASC were obtained and evaluated for their isolation efficiency, stemness, proliferative profile, and genetic stability over time in culture. The ability of wound closure was first assessed by direct cell scratch assay. The paracrine effects of DSC- and ASC-conditioned medium in dermal fibroblasts and keratinocytes and in the induction of tubule formation were also investigated. Although the ASC isolation procedures resulted in 100 times more cells than DSC, the latter had a higher proliferation rate in culture. Both presented low frequency of nuclear alterations over time in culture and showed similar characteristics of stem cells, such as expression of immunophenotypic markers and differentiation potential. DSCs showed increased healing capacity, and their conditioned media had greater paracrine effect in closing the wound of dermal fibroblasts and keratinocytes and in inducing angiogenesis. In conclusion, the therapeutic potential of MSCs is influenced by the obtainment source. Both ASCs and DSCs are applicable for skin wound healing; however, DSCs have an improved potential and should be considered for future applications in cell therapy.
Collapse
Affiliation(s)
- Helena Debiazi Zomer
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, United States of America.,Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Priscilla Barros Delben
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Diana Heck
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Talita da Silva Jeremias
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Andrea Gonçalves Trentin
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Treatment of Large Scars in Children Using Artificial Dermis and Scalp Skin Grafting. J Craniofac Surg 2019; 30:891-896. [PMID: 30865126 DOI: 10.1097/scs.0000000000005381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Large scars formed after burns injury can seriously hamper appearance and function in children. Surgical resection of scars and secondary skin or flap grafting often brings severe damages to donor sites, which may lead to physiological and psychological development disorders in children. Here, we introduce the use of artificial dermis and skin grafts from scalps to treat large scars in children to minimize the donor site morbidity. METHODS A retrospective char review was performed including 7 children with large scars between January 2016 and December 2017. First, the scars were resected, and artificial dermis was applied to the secondary wounds. Twelve days later, outer silicone membrane was removed. Another 2 days later, scalp skin grafts of 0.3 mm were transplanted to the wounds. Manchester Scar Scale and Visual Analog Scale were used to evaluate scar appearance before and after the treatment respectively. One special patient with extensive scars was treated twice at an interval of 1 year. The first therapy was performed with both conventional method of resection and skin grafting and the new method described above. In the second therapy, 4 samples were taken from 4 different sites-the normal skin, scars, the skin where artificial dermis and scalp skin grafting were performed, and the skin where only scalp skin grafting was performed. H-E staining, Masson staining, Aldehyde fuchsin staining, and scanning electron microscopy were used for histological observation. RESULTS All skin grafts survived well. The Manchester Scar Scale score of the graft area was significantly reduced (P < 0.01) after the treatment. Histological examination showed obviously better dermis arrangement where artificial dermis and scalp grafting was performed. CONCLUSION The therapy achieves better appearances and minimizes donor site morbidity. It is beneficial to physical and psychological development of children and provides an alternative to treat children with large scars.
Collapse
|
24
|
Robert AW, Azevedo Gomes F, Rode MP, Marques da Silva M, Veleirinho MBDR, Maraschin M, Hayashi L, Wosgrau Calloni G, Stimamiglio MA. The skin regeneration potential of a pro-angiogenic secretome from human skin-derived multipotent stromal cells. J Tissue Eng 2019; 10:2041731419833391. [PMID: 30886688 PMCID: PMC6415469 DOI: 10.1177/2041731419833391] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/26/2019] [Indexed: 12/18/2022] Open
Abstract
Multipotent stromal cells stimulate skin regeneration after acute or chronic injuries. However, many stem cell therapy protocols are limited by the elevated number of cells required and poor cell survival after transplantation. Considering that the beneficial effects of multipotent stromal cells on wound healing are typically mediated by paracrine mechanisms, we examined whether the conditioned medium from skin-derived multipotent stromal cells would be beneficial for restoring the skin structure of mice after wounding. A proteomic characterization of skin-derived multipotent stromal cell-conditioned medium was performed, and the angiogenic function of this secretome was investigated in vitro using an endothelial cell tube formation assay. We then applied the skin-derived multipotent stromal cell-conditioned medium directly to full-thickness excisional wounds or embedded it into carrageenan or poly(vinyl alcohol) hydrogels to monitor tissue regeneration in mice. Biological processes related to wound healing and angiogenesis were highlighted by the analysis of the skin-derived multipotent stromal cell secretome, and a pro-angiogenic capacity for promoting tubule-like structures was first confirmed in vitro. Skin wounds treated with skin-derived multipotent stromal cell-conditioned medium also displayed increased angiogenesis, independently of the association of the conditioned medium with hydrogels. However, improvements in wound closure and epidermis or decreased inflammatory cell presence were not observed. Hence, the use of the secretome obtained from human skin-derived multipotent stromal cells may be a potential strategy to aid the natural skin repair of full-thickness lesions mainly based on its pro-angiogenic properties.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leila Hayashi
- Federal University of Santa Catarina, Florianópolis, Brazil
| | | | | |
Collapse
|
25
|
Li B, Xue H, Zhao X, Weng Y, Li G, Wang K, Zhou P, Wu Y, Vankelecom H, Chen J. Skin Epidermis and Adnexa Regrowth Induced by Treatment With Artificial Dermal Template After Full-Thickness Skin Wound. INT J LOW EXTR WOUND 2019; 18:42-55. [PMID: 30616449 DOI: 10.1177/1534734618818909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Full-thickness skin wounds are common accidents. Although healing can be achieved by treatments like autologous skin grafts, donor site morbidity is hardly evitable. In this article, we provide compelling evidence demonstrating that artificial dermal template (ADT)-treated wound healing is achieved by regrowth of skin epidermis as well as adnexa without skin grafts by use of rodent models. First, by fixating a chamber to the wound edge, we confirmed that wound healing was achieved by regeneration instead of contracture. We found highly proliferative cells in adnexa in the newly formed skin. In the distal edge of newly formed skin, we identified immature hair follicles at early developing stages, suggesting they were newly regenerated. Second, we observed that the Lgr5-positive hair follicle stem cells contributed to formation of new hair follicles through a lineage tracing model. Also, Lgr6-positive cells were enriched in distal edge of newly developed skin. Finally, WNT signaling pathway mediators were highly expressed in the new skin epidermis and adnexa, implying a potential role of WNT signaling during ADT treatment-stimulated skin regrowth. Taken together, our findings demonstrated that full skin regrowth can be induced by ADT treatment alone, thus arguing for its wide clinical application in skin wound treatment.
Collapse
Affiliation(s)
- Binghui Li
- 1 Wuhan Liyuan Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Hang Xue
- 2 Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaobo Zhao
- 2 Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Yuxiong Weng
- 2 Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Gongchi Li
- 2 Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Kun Wang
- 2 Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Pan Zhou
- 2 Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| | - Youtong Wu
- 3 University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Jianghai Chen
- 2 Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
26
|
Biazar E, Najafi S M, Heidari K S, Yazdankhah M, Rafiei A, Biazar D. 3D bio-printing technology for body tissues and organs regeneration. J Med Eng Technol 2018; 42:187-202. [PMID: 29671367 DOI: 10.1080/03091902.2018.1457094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In the last decade, the use of new technologies in the reconstruction of body tissues has greatly developed. Utilising stem cell technology, nanotechnology and scaffolding design has created new opportunities in tissue regeneration. The use of accurate engineering design in the creation of scaffolds, including 3D printers, has been widely considered. Three-dimensional printers, especially high precision bio-printers, have opened up a new way in the design of 3D tissue engineering scaffolds. In this article, a review of the latest applications of this technology in this promising area has been addressed.
Collapse
Affiliation(s)
- Esmaeil Biazar
- a Department of Biomaterials Engineering, Tonekabon Branch , Islamic Azad University , Tonekabon , Iran
| | - Masoumeh Najafi S
- b Department of Biomaterials Engineering , Maziar University , Noor , Iran
| | - Saeed Heidari K
- c Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran.,d Proteomics Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Meysam Yazdankhah
- e Department of Ophthalmology , University of Pittsburgh , Pittsburgh , PA , USA
| | - Ataollah Rafiei
- f Department of Computer Engineering, Lahijan Branch , Islamic Azad University , Lahijan , Iran
| | - Dariush Biazar
- g Department of Electrical Engineering, Ramsar Branch , Islamic Azad University , Ramsar , Iran
| |
Collapse
|
27
|
Melo FR, Bressan RB, Forner S, Martini AC, Rode M, Delben PB, Rae GA, Figueiredo CP, Trentin AG. Transplantation of Human Skin-Derived Mesenchymal Stromal Cells Improves Locomotor Recovery After Spinal Cord Injury in Rats. Cell Mol Neurobiol 2017; 37:941-947. [PMID: 27510317 PMCID: PMC11482224 DOI: 10.1007/s10571-016-0414-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/02/2016] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a devastating neurologic disorder with significant impacts on quality of life, life expectancy, and economic burden. Although there are no fully restorative treatments yet available, several animal and small-scale clinical studies have highlighted the therapeutic potential of cellular interventions for SCI. Mesenchymal stem cells (MSCs)-which are conventionally isolated from the bone marrow-recently emerged as promising candidates for treating SCI and have been shown to provide trophic support, ameliorate inflammatory responses, and reduce cell death following the mechanical trauma. Here we evaluated the human skin as an alternative source of adult MSCs suitable for autologous cell transplantation strategies for SCI. We showed that human skin-derived MSCs (hSD-MSCs) express a range of neural markers under standard culture conditions and are able to survive and respond to neurogenic stimulation in vitro. In addition, using histological analysis and behavioral assessment, we demonstrated as a proof-of-principle that hSD-MSC transplantation reduces the severity of tissue loss and facilitates locomotor recovery in a rat model of SCI. Altogether, the study provides further characterization of skin-derived MSC cultures and indicates that the human skin may represent an attractive source for cell-based therapies for SCI and other neurological disorders. Further investigation is needed to elucidate the mechanisms by which hSD-MSCs elicit tissue repair and/or locomotor recovery.
Collapse
Affiliation(s)
- Fernanda Rosene Melo
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Raul Bardini Bressan
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Stefânia Forner
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, Brazil
| | - Alessandra Cadete Martini
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, Brazil
| | - Michele Rode
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Priscilla Barros Delben
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Giles Alexander Rae
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, Brazil
| | - Claudia Pinto Figueiredo
- Faculdade de Farmácia, Centro de Ciências Da Saúde, Universidade Federal Do Rio de Janeiro, Campus Universitário, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Andrea Gonçalves Trentin
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
28
|
|
29
|
Migration and Proliferative Activity of Mesenchymal Stem Cells in 3D Polylactide Scaffolds Depends on Cell Seeding Technique and Collagen Modification. Bull Exp Biol Med 2016; 162:120-126. [PMID: 27882461 DOI: 10.1007/s10517-016-3560-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Indexed: 10/20/2022]
Abstract
We analyzed viability of mesenchymal stem cells seeded by static and dynamic methods to highly porous fibrous 3D poly-L-lactide scaffolds with similar physical and chemical properties, but different spatial organization modified with collagen. Standard collagen coating promoted protein adsorption on the scaffold surface and improved adhesive properties of 100 μ-thick scaffolds. Modification of 600-μ scaffolds with collagen under pressure increased proliferative activity of mesenchymal stem cells seeded under static and dynamic (delivery of 100,000 cells in 10 ml medium in a perfusion system at a rate of 1 ml/min) conditions by 47 and 648%, respectively (measured after 120-h culturing by MTT test). Dynamic conditions provide more uniform distribution of collagen on scaffold fibers and promote cell penetration into 3D poly-L-lactide scaffolds with thickness >600 μ.
Collapse
|
30
|
Jinno C, Morimoto N, Ito R, Sakamoto M, Ogino S, Taira T, Suzuki S. A Comparison of Conventional Collagen Sponge and Collagen-Gelatin Sponge in Wound Healing. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4567146. [PMID: 27218103 PMCID: PMC4863089 DOI: 10.1155/2016/4567146] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/23/2016] [Accepted: 03/03/2016] [Indexed: 01/13/2023]
Abstract
The objective of this study was to compare the effectiveness of the collagen-gelatin sponge (CGS) with that of the collagen sponge (CS) in dermis-like tissue regeneration. CGS, which achieves the sustained release of basic fibroblast growth factor (bFGF), is a promising material in wound healing. In the present study, we evaluated and compared CGSs and conventional CSs. We prepared 8 mm full-thickness skin defects on the backs of rats. Either CGSs or CSs were impregnated with normal saline solution (NSS) or 7 μg/cm(2) of bFGF solution and implanted into the defects. At 1 and 2 weeks after implantation, tissue specimens were obtained from the rats of each group (n = 3, total n = 24). The wound area, neoepithelial length, dermis-like tissue area, and the number and area of capillaries were evaluated at 1 and 2 weeks after implantation. There were no significant differences in the CGS without bFGF and CS groups. Significant improvements were observed in the neoepithelial length, the dermis-like tissue area, and the number of newly formed capillaries in the group of rats that received CGSs impregnated with bFGF. The effects on epithelialization, granulation, and vascularization of wound healing demonstrated that, as a scaffold, CGSs are equal or superior to conventional CSs.
Collapse
Affiliation(s)
- Chizuru Jinno
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-machi, Syougoin, Sakyou-ku, Kyoto City, Kyoto 606-8507, Japan
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka 573-1010, Japan
| | - Ran Ito
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-machi, Syougoin, Sakyou-ku, Kyoto City, Kyoto 606-8507, Japan
| | - Michiharu Sakamoto
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-machi, Syougoin, Sakyou-ku, Kyoto City, Kyoto 606-8507, Japan
| | - Shuichi Ogino
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-machi, Syougoin, Sakyou-ku, Kyoto City, Kyoto 606-8507, Japan
| | - Tsuguyoshi Taira
- GUNZE Ltd. QOL Research Center Laboratory, 1 Ishiburo, Inokura Shinmachi, Ayabe, Kyoto 623-8512, Japan
| | - Shigehiko Suzuki
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-machi, Syougoin, Sakyou-ku, Kyoto City, Kyoto 606-8507, Japan
| |
Collapse
|
31
|
Singh D, Singh D, Han SS. 3D Printing of Scaffold for Cells Delivery: Advances in Skin Tissue Engineering. Polymers (Basel) 2016; 8:polym8010019. [PMID: 30979115 PMCID: PMC6432526 DOI: 10.3390/polym8010019] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 01/01/2023] Open
Abstract
Injury or damage to tissue and organs is a major health problem, resulting in about half of the world’s annual healthcare expenditure every year. Advances in the fields of stem cells (SCs) and biomaterials processing have provided a tremendous leap for researchers to manipulate the dynamics between these two, and obtain a skin substitute that can completely heal the wounded areas. Although wound healing needs a coordinated interplay between cells, extracellular proteins and growth factors, the most important players in this process are the endogenous SCs, which activate the repair cascade by recruiting cells from different sites. Extra cellular matrix (ECM) proteins are activated by these SCs, which in turn aid in cellular migrations and finally secretion of growth factors that can seal and heal the wounds. The interaction between ECM proteins and SCs helps the skin to sustain the rigors of everyday activity, and in an attempt to attain this level of functionality in artificial three-dimensional (3D) constructs, tissue engineered biomaterials are fabricated using more advanced techniques such as bioprinting and laser assisted printing of the organs. This review provides a concise summary of the most recent advances that have been made in the area of polymer bio-fabrication using 3D bio printing used for encapsulating stem cells for skin regeneration. The focus of this review is to describe, in detail, the role of 3D architecture and arrangement of cells within this system that can heal wounds and aid in skin regeneration.
Collapse
Affiliation(s)
- Deepti Singh
- Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT-06510, CT, USA.
| | - Dolly Singh
- Biomaterials Lab, Department of Nano, Medical & Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-ko, Gyeongsan, Gyeongsanbukdo 712-749, Korea.
| | - Sung Soo Han
- Biomaterials Lab, Department of Nano, Medical & Polymer Materials, College of Engineering, Yeungnam University, 280 Daehak-ko, Gyeongsan, Gyeongsanbukdo 712-749, Korea.
| |
Collapse
|
32
|
Tartarini D, Mele E. Adult Stem Cell Therapies for Wound Healing: Biomaterials and Computational Models. Front Bioeng Biotechnol 2016; 3:206. [PMID: 26793702 PMCID: PMC4707872 DOI: 10.3389/fbioe.2015.00206] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/17/2015] [Indexed: 12/29/2022] Open
Abstract
The increased incidence of diabetes and tumors, associated with global demographic issues (aging and life styles), has pointed out the importance to develop new strategies for the effective management of skin wounds. Individuals affected by these diseases are in fact highly exposed to the risk of delayed healing of the injured tissue that typically leads to a pathological inflammatory state and consequently to chronic wounds. Therapies based on stem cells (SCs) have been proposed for the treatment of these wounds, thanks to the ability of SCs to self-renew and specifically differentiate in response to the target bimolecular environment. Here, we discuss how advanced biomedical devices can be developed by combining SCs with properly engineered biomaterials and computational models. Examples include composite skin substitutes and bioactive dressings with controlled porosity and surface topography for controlling the infiltration and differentiation of the cells. In this scenario, mathematical frameworks for the simulation of cell population growth can provide support for the design of bioconstructs, reducing the need of expensive, time-consuming, and ethically controversial animal experimentation.
Collapse
Affiliation(s)
- Daniele Tartarini
- Department of Mechanical Engineering, Insigneo Institute for in silico Medicine, University of Sheffield , Sheffield , UK
| | - Elisa Mele
- Department of Materials, Loughborough University , Loughborough , UK
| |
Collapse
|
33
|
Domingues JA, Cherutti G, Motta AC, Hausen MA, Oliveira RT, Silva-Zacarin EC, Barbo MLP, Duek EA. Bilaminar Device of Poly(Lactic-co-Glycolic Acid)/Collagen Cultured With Adipose-Derived Stem Cells for Dermal Regeneration. Artif Organs 2016; 40:938-949. [DOI: 10.1111/aor.12671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Juliana A. Domingues
- Department of Cell Biology and Structural; Biology Institute; UNICAMP; Campinas Brazil
| | - Giselle Cherutti
- Department of Materials Engineering; Faculty of Mechanical Engineering; UNICAMP; Campinas Brazil
| | - Adriana C. Motta
- Department of Physiological Sciences; Biomaterials Laboratory; PUC- SP; Sorocaba Brazil
| | - Moema A. Hausen
- Department of Biology; Structural Biology Laboratory; UFSCAR; Sorocaba Brazil
| | - Rômulo T.D. Oliveira
- Department of Physiological Sciences; Biomaterials Laboratory; PUC- SP; Sorocaba Brazil
| | | | | | - Eliana A.R. Duek
- Department of Materials Engineering; Faculty of Mechanical Engineering; UNICAMP; Campinas Brazil
- Department of Physiological Sciences; Biomaterials Laboratory; PUC- SP; Sorocaba Brazil
| |
Collapse
|
34
|
Ali N, Hosseini M, Vainio S, Taïeb A, Cario‐André M, Rezvani H. Skin equivalents: skin from reconstructions as models to study skin development and diseases. Br J Dermatol 2015; 173:391-403. [DOI: 10.1111/bjd.13886] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2015] [Indexed: 12/17/2022]
Affiliation(s)
- N. Ali
- Laboratory of Developmental Biology Faculty of Biochemistry and Molecular Medicine University of Oulu and Biocenter Oulu Aapistie 5A 90220 Oulu Finland
- Inserm U 1035 33076 Bordeaux France
- Université de Bordeaux 146 rue Léo Saignat 33076 Bordeaux France
| | - M. Hosseini
- Inserm U 1035 33076 Bordeaux France
- Université de Bordeaux 146 rue Léo Saignat 33076 Bordeaux France
| | - S. Vainio
- Laboratory of Developmental Biology Faculty of Biochemistry and Molecular Medicine University of Oulu and Biocenter Oulu Aapistie 5A 90220 Oulu Finland
| | - A. Taïeb
- Inserm U 1035 33076 Bordeaux France
- Université de Bordeaux 146 rue Léo Saignat 33076 Bordeaux France
- Centre de Référence pour les Maladies Rares de la Peau Bordeaux France
- Département de Dermatologie & Dermatologie Pédiatrique CHU de Bordeaux Bordeaux France
| | - M. Cario‐André
- Inserm U 1035 33076 Bordeaux France
- Université de Bordeaux 146 rue Léo Saignat 33076 Bordeaux France
- Centre de Référence pour les Maladies Rares de la Peau Bordeaux France
| | - H.R. Rezvani
- Inserm U 1035 33076 Bordeaux France
- Université de Bordeaux 146 rue Léo Saignat 33076 Bordeaux France
- Centre de Référence pour les Maladies Rares de la Peau Bordeaux France
| |
Collapse
|
35
|
Wosgrau ACC, Jeremias TDS, Leonardi DF, Pereima MJ, Di Giunta G, Trentin AG. Comparative experimental study of wound healing in mice: Pelnac versus Integra. PLoS One 2015; 10:e0120322. [PMID: 25798623 PMCID: PMC4370513 DOI: 10.1371/journal.pone.0120322] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 02/06/2015] [Indexed: 12/14/2022] Open
Abstract
Strategies for skin regeneration have been developed to provide effective treatment for cutaneous wounds and disease. Dermal substitutes have been used to cover the lesion to facilitate cell colonization, thereby promoting dermal regeneration. However, very little is known about Pelnac matrix especially at histological level. Therefore, the present work carried out an experimental in vivo comparative analysis between Pelnac and Integra, the most used dermal templates, in a mouse model of full-thickness skin wounds. Histological sections performed at the 3rd, 6th and 9th days after surgery were analyzed with regard to inflammatory response and vascularization. Both templates were completely incorporated in all animals at the end of the analyzed period. Pelnac-treated animals displayed reduced granulation tissue during the first 6 days of treatment compared to the animals treated with Integra at the same time period. The number of inflammatory cells (neutrophils) was similar in both groups during the period, significantly reducing at the end of inflammatory phase (9th day of treatment) consistent with the progression of healing process. In addition, the density of blood vessels was also statistically similar in both matrices. Therefore, the two dermal templates displayed comparable biological behavior in tissue repair. It is noteworthy that this is the first experimental study comparing Pelnac and Integra dermal templates with focus on full-thickness skin wounds.
Collapse
Affiliation(s)
- Ana Carolina Câmara Wosgrau
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina Florianópolis, Santa Catarina, Brasil
- Serviço de Pediatria, Hospital Universitário, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil
| | - Talita da Silva Jeremias
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina Florianópolis, Santa Catarina, Brasil
| | | | - Maurício José Pereima
- Departamento de Pediatria, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil
- Hospital Infantil Joana de Gusmão, Florianópolis, Santa Catarina, Brasil
| | - Gabriella Di Giunta
- Serviço de Anatomia Patológica, Hospital Universitário, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil
| | - Andrea Gonçalves Trentin
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina Florianópolis, Santa Catarina, Brasil
- * E-mail:
| |
Collapse
|