1
|
Cho SY, Eun HS, Kim J, Ko YD, Rou WS, Joo JS. The Solute Carrier Superfamily as Therapeutic Targets in Pancreatic Ductal Adenocarcinoma. Genes (Basel) 2025; 16:463. [PMID: 40282424 PMCID: PMC12027052 DOI: 10.3390/genes16040463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC), a challenging and malignant cancer, primarily originates from the exocrine cells of the pancreas. The superfamily of solute carrier (SLC) transporters, consisting of more than 450 proteins divided into 65 families, is integral to various cellular processes and represents a promising target in precision oncology. As therapeutic targets, SLC transporters are explored through an integrative analysis. MATERIALS AND METHODS The expression profiles of SLCs were systematically analyzed using mRNA data from The Cancer Genome Atlas (TCGA) and protein data from the Human Protein Atlas (HPA). Survival analysis was examined to evaluate the prognostic significance of SLC transporters for overall survival (OS) and disease-specific survival (DSS). Genetic alterations were examined using cBioPortal, while structural studies were performed with AlphaFold and AlphaMissense to predict functional impacts. Furthermore, Gene Set Enrichment Analysis (GSEA) was carried out to identify oncogenic pathways linked to SLC transporter expression. RESULTS SLC transporters were significantly upregulated in tumors relative to normal tissues. Higher expression levels of SLC39A10 (HR = 1.89, p = 0.0026), SLC22B5 (HR = 1.84, p = 0.0042), SLC55A2 (HR = 2.15, p = 0.00023), and SLC30A6 (HR = 1.90, p = 0.003) were strongly associated with unfavorable OS, highlighting their connection to poor prognosis in PDAC. GSEA highlighted that these four transporters are significantly involved in key oncogenic pathways, such as epithelial-mesenchymal transition (EMT), TNF-α signaling, and angiogenesis. CONCLUSIONS The study identifies four SLCs as therapeutic targets in PDAC, highlighting their crucial role in essential metabolic pathways. These findings lay the groundwork for developing next-generation metabolic anti-cancer treatment to improve survival for PDAC patients.
Collapse
Affiliation(s)
- Sang Yeon Cho
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea;
- CHOMEDICINE Inc., TIPS Town, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyuk Soo Eun
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Jaejeung Kim
- Department of Computer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Yun Dam Ko
- Seoul Teunteun Rehabilitation Clinic, Jeungpyeong-gun, Chungcheongbuk-do 27937, Republic of Korea
| | - Woo Sun Rou
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| | - Jong Seok Joo
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Department of Internal Medicine, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| |
Collapse
|
2
|
Kiouri DP, Chasapis CT, Mavromoustakos T, Spiliopoulou CA, Stefanidou ME. Zinc and its binding proteins: essential roles and therapeutic potential. Arch Toxicol 2025; 99:23-41. [PMID: 39508885 DOI: 10.1007/s00204-024-03891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
Zinc is an essential micronutrient that participates in a multitude of cellular and biochemical processes. It is indispensable for normal growth and the maintenance of physiological functions. As one of the most significant trace elements in the body, zinc fulfills three primary biological roles: catalytic, structural, and regulatory. It serves as a cofactor in over 300 enzymes, and more than 3000 proteins require zinc, underscoring its crucial role in numerous physiological processes such as cell division and growth, immune function, tissue maintenance, as well as synthesis protein and collagen synthesis. Zinc deficiency has been linked to increased oxidative stress and inflammation, which may contribute to the pathogenesis of a multitude of diseases, like neurological disorders and cancer. In addition, zinc is a key constituent of zinc-binding proteins, which play a pivotal role in maintaining cellular zinc homeostasis. This review aims to update and expand upon the understanding of zinc biology, highlighting the fundamental roles of zinc in biological processes and the health implications of zinc deficiency. This work also explores the diverse functions of zinc in immune regulation, cellular growth, and neurological health, emphasizing the need for further research to fully elucidate the therapeutic potential of zinc supplementation in disease prevention and management.
Collapse
Affiliation(s)
- Despoina P Kiouri
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - Christos T Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece.
| | - Thomas Mavromoustakos
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - Chara A Spiliopoulou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Maria E Stefanidou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| |
Collapse
|
3
|
Barman SK, Nesarajah AN, Zaman MS, Malladi CS, Mahns DA, Wu MJ. Distinctive expression and cellular localisation of zinc homeostasis-related proteins in breast and prostate cancer cells. J Trace Elem Med Biol 2024; 86:127500. [PMID: 39047373 DOI: 10.1016/j.jtemb.2024.127500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/25/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Zinc transport proteins (ZIP and ZnT), metallothioneins (MT) and protein kinase CK2 are involved in dysregulation of zinc homeostasis in breast and prostate cancer cells. Following up our previous research, we targeted ZIP12, ZnT1, MT2A and CK2 in this study by investigating their expression levels and protein localisation. METHODS Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunofluorescence confocal microscopy were employed to quantify the expression of ZIP12, ZnT1, MT2A and CK2 subunits in a panel of breast and prostate cell lines without or with extracellular zinc exposure. The cellular localisations of these target proteins were also examined by immunofluorescence confocal microscopy. RESULTS In response to the extracellular zinc exposure, the gene expression was elevated for SLC39A12 (ZIP12), SLC30A1 (ZnT1) and MT2A (MT2A) in normal prostate epithelial cells (RWPE-1) in contrast to their cancerous counterparts (PC3 and DU145), whilst the gene expression was higher for SLC39A12 (ZIP12) and SLC30A1 (ZnT1) in both normal (MCF10A) and basal breast cancer cells (MDA-MB-231) compared to luminal breast cancer cells (MCF-7). At the protein level, the expression for both ZIP12 and ZnT1 was trending lower in the time course for the breast cancer cells whilst their expression was remained constant in the normal breast epithelial cells. The expression of ZIP12 in prostate cancer cells was higher than the normal prostate cells. The protein expression for CK2 α/αꞌ and CK2β was markedly higher in prostate cancer cells than the normal prostate cells. Upon extracellular zinc exposure, ZIP12 was, for the first time, conspicuously localised in the plasma membrane of breast cancer cells but not in normal breast epithelial cells and prostate cells. ZnT1 is only localised in the plasma membrane of breast cancer cells. MT2A is distinctively seen close to the plasma membrane in breast cancer cells. CK2 is also for the first time shown to be localised in proximity to the plasma membrane of breast cancer cells. CONCLUSION The findings, particularly the localisation of ZIP12 and CK2, are novel and significant for our understanding of zinc homeostasis in breast and prostate cancer cells.
Collapse
Affiliation(s)
- Shital K Barman
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Abinaya N Nesarajah
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Mohammad S Zaman
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Chandra S Malladi
- Proteomics and Lipidomics Lab, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Ming J Wu
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| |
Collapse
|
4
|
Wang L, Ni C, Zhang K, Yang Y, Chen R, Lou X, Yan Y, Li K, Dong Y, Yao X, Wan J, Duan X, Wang F, Li Y, Qin Z. Chelating drug-induced labile Zn 2+ with nanoparticle-encapsulated TPEN at low dose enhances lung cancer chemotherapy through inhibiting ABCB1. iScience 2024; 27:111072. [PMID: 39507258 PMCID: PMC11539588 DOI: 10.1016/j.isci.2024.111072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/06/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024] Open
Abstract
Chemotherapy resistance is still a great challenge for clinical treatment of lung cancer. Here, we found that doxorubicin (DOX) induced an increase of labile Zn2+ in lung cancer cells, and these labile Zn2+ protected tumor cells against DOX cytotoxicity. Nanoparticles encapsulating N,N,N',N'-Tetrakis (2-pyridylmethyl)-ethylenediamine (TPEN) were then constructed to chelate labile Zn2+ for tumor therapy. Application of nanoparticle-encapsulated TPEN at low dose not only avoided severe side effects caused by removing physiological Zn2+ but also effectively chelated drug-induced labile Zn2+, and thereby enhanced DOX cytotoxicity. Mechanistically, nanosized TPEN inhibits ABCB1-mediated drug export potentiated by drug-induced labile Zn2+. Finally, the results unraveled that nanosized TPEN at low dose endowed DOX with the killing ability on resistant tumor cells. Taken together, our results demonstrate that chelating drug-induced labile Zn2+ by nanosized TPEN at low dose enhances lung cancer chemotherapy by inhibiting ABCB1, providing a feasible strategy to overcome chemoresistance in lung cancer.
Collapse
Affiliation(s)
- Linlin Wang
- Medical Research Center, Henan China–Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chen Ni
- Medical Research Center, Henan China–Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Kaili Zhang
- Medical Research Center, Henan China–Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuanyuan Yang
- Medical Research Center, Henan China–Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ruoyang Chen
- Medical Research Center, Henan China–Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaohan Lou
- Medical Research Center, Henan China–Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yan Yan
- Medical Research Center, Henan China–Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Kexin Li
- Medical Research Center, Henan China–Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ya Dong
- Medical Research Center, Henan China–Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaohan Yao
- Medical Research Center, Henan China–Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jiajia Wan
- Medical Research Center, Henan China–Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xixi Duan
- Medical Research Center, Henan China–Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Fazhan Wang
- Medical Research Center, Henan China–Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - YongJuan Li
- Medical Research Center, Henan China–Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
- The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhihai Qin
- Medical Research Center, Henan China–Germany International Joint Laboratory of Tumor Immune Microenvironment and Disease, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
5
|
Iwabuchi E, Miki Y, Xu J, Kanai A, Ishida T, Sasano H, Suzuki T. Zinc transporter ZnT5 is associated with epithelial mesenchymal transition via SMAD1 in breast cancer. Int J Exp Pathol 2024; 105:184-192. [PMID: 39138630 PMCID: PMC11574640 DOI: 10.1111/iep.12515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024] Open
Abstract
Zinc levels in breast cancer tissues have been reported to be higher than those in normal tissues. In addition, the expression levels of zinc transporters, including ZnT5 and ZnT6, are reportedly higher in breast cancer than in normal breast tissues. ZnT5 and ZnT6 also contribute to heterodimer formation and are involved in several biological functions. However, the functions of ZnT5 and ZnT6 heterodimers in breast cancer remain unknown. Therefore, we first investigated the immunolocalization of ZnT5 and ZnT6 in pathological breast cancer specimens and in MCF-7 and T-47D breast cancer cells. Next, we used small interfering RNA to assess cell viability and migration in ZnT5 knockdown MCF-7 and T-47D cells. Immunohistochemical analysis showed that the number of ZnT5-positive breast cancer cells was inversely correlated with the pathologic N factor status. ZnT5 knockdown had no effect on cell viability in the presence of 100 μM ZnCl2 in MCF-7 and T-47D cells. In a wound healing assay, 100 μM ZnCl2 treatment inhibited cell migration of MCF-7 and T-47D cells, whereas ZnT5 knockdown promoted cell migration, decreased E-cadherin expression and increased vimentin, slug and matrix metalloproteinase 9 expression. Antibody arrays showed that ZnT5 knockdown increased the expression of SMAD1, and that dorsomorphin treatment inhibited the promotion of migratory ability induced by ZnT5 knockdown. The results of this study revealed that both ZnT5 may be involved in less aggressive breast cancer subtypes, possibly through inhibition of cell migration.
Collapse
Affiliation(s)
- Erina Iwabuchi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junyao Xu
- The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| | - Ayako Kanai
- Department of Breast Surgery, Hachinohe City Hospital, Aomori, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Pathology, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
6
|
Liu H, Li L, Lu R. ZIP transporters-regulated Zn 2+ homeostasis: A novel determinant of human diseases. J Cell Physiol 2024; 239:e31223. [PMID: 38530191 DOI: 10.1002/jcp.31223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 03/27/2024]
Abstract
As an essential trace element for organisms, zinc participates in various physiological processes, such as RNA transcription, DNA replication, cell proliferation, and cell differentiation. The destruction of zinc homeostasis is associated with various diseases. Zinc homeostasis is controlled by the cooperative action of zinc transporter proteins that are responsible for the influx and efflux of zinc. Zinc transporter proteins are mainly categorized into two families: Zrt/Irt-like protein (SLC39A/ZIP) family and zinc transporter (SLC30A/ZNT) family. ZIP transporters contain 14 members, namely ZIP1-14, which can be further divided into four subfamilies. Currently, ZIP transporters-regulated zinc homeostasis is one of the research hotspots. Cumulative evidence suggests that ZIP transporters-regulated zinc homeostasis may cause physiological dysfunction and contribute to the onset and progression of diverse diseases, such as cancers, neurological diseases, and cardiovascular diseases. In this review, we initially discuss the structure and distribution of ZIP transporters. Furthermore, we comprehensively review the latest research progress of ZIP transporters-regulated zinc homeostasis in diseases, providing a new perspective into new therapeutic targets for treating related diseases.
Collapse
Affiliation(s)
- Huimei Liu
- Department of Pharmacology, Hengyang Medical School, University of South China, Hengyang, China
| | - Lanfang Li
- Department of Pharmacology, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruirui Lu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
7
|
Su MC, Lee AM, Zhang W, Maeser D, Gruener RF, Deng Y, Huang RS. Computational Modeling to Identify Drugs Targeting Metastatic Castration-Resistant Prostate Cancer Characterized by Heightened Glycolysis. Pharmaceuticals (Basel) 2024; 17:569. [PMID: 38794139 PMCID: PMC11124089 DOI: 10.3390/ph17050569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) remains a deadly disease due to a lack of efficacious treatments. The reprogramming of cancer metabolism toward elevated glycolysis is a hallmark of mCRPC. Our goal is to identify therapeutics specifically associated with high glycolysis. Here, we established a computational framework to identify new pharmacological agents for mCRPC with heightened glycolysis activity under a tumor microenvironment, followed by in vitro validation. First, using our established computational tool, OncoPredict, we imputed the likelihood of drug responses to approximately 1900 agents in each mCRPC tumor from two large clinical patient cohorts. We selected drugs with predicted sensitivity highly correlated with glycolysis scores. In total, 77 drugs predicted to be more sensitive in high glycolysis mCRPC tumors were identified. These drugs represent diverse mechanisms of action. Three of the candidates, ivermectin, CNF2024, and P276-00, were selected for subsequent vitro validation based on the highest measured drug responses associated with glycolysis/OXPHOS in pan-cancer cell lines. By decreasing the input glucose level in culture media to mimic the mCRPC tumor microenvironments, we induced a high-glycolysis condition in PC3 cells and validated the projected higher sensitivity of all three drugs under this condition (p < 0.0001 for all drugs). For biomarker discovery, ivermectin and P276-00 were predicted to be more sensitive to mCRPC tumors with low androgen receptor activities and high glycolysis activities (AR(low)Gly(high)). In addition, we integrated a protein-protein interaction network and topological methods to identify biomarkers for these drug candidates. EEF1B2 and CCNA2 were identified as key biomarkers for ivermectin and CNF2024, respectively, through multiple independent biomarker nomination pipelines. In conclusion, this study offers new efficacious therapeutics beyond traditional androgen-deprivation therapies by precisely targeting mCRPC with high glycolysis.
Collapse
Affiliation(s)
- Mei-Chi Su
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (M.-C.S.); (A.M.L.); (R.F.G.)
| | - Adam M. Lee
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (M.-C.S.); (A.M.L.); (R.F.G.)
| | - Weijie Zhang
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA; (W.Z.); (D.M.)
| | - Danielle Maeser
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA; (W.Z.); (D.M.)
| | - Robert F. Gruener
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (M.-C.S.); (A.M.L.); (R.F.G.)
| | - Yibin Deng
- Department of Urology, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - R. Stephanie Huang
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (M.-C.S.); (A.M.L.); (R.F.G.)
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA; (W.Z.); (D.M.)
| |
Collapse
|
8
|
Ren X, Feng C, Wang Y, Chen P, Wang S, Wang J, Cao H, Li Y, Ji M, Hou P. SLC39A10 promotes malignant phenotypes of gastric cancer cells by activating the CK2-mediated MAPK/ERK and PI3K/AKT pathways. Exp Mol Med 2023; 55:1757-1769. [PMID: 37524874 PMCID: PMC10474099 DOI: 10.1038/s12276-023-01062-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/13/2023] [Accepted: 05/25/2023] [Indexed: 08/02/2023] Open
Abstract
Solute carrier family 39 member 10 (SLC39A10) belongs to a subfamily of zinc transporters and plays a key role in B-cell development. Previous studies have reported that its upregulation promotes breast cancer metastasis by enhancing the influx of zinc ions (Zn2+); however, its role in gastric cancer remains totally unclear. Here, we found that SLC39A10 expression was frequently increased in gastric adenocarcinomas and that SLC39A10 upregulation was strongly associated with poor patient outcomes; in addition, we identified SLC39A10 as a direct target of c-Myc. Functional studies showed that ectopic expression of SLC39A10 in gastric cancer cells dramatically enhanced the proliferation, colony formation, invasiveness abilities of these gastric cancer cells and tumorigenic potential in nude mice. Conversely, SLC39A10 knockdown inhibited gastric cancer cell proliferation and colony formation. Mechanistically, SLC39A10 exerted its carcinogenic effects by increasing Zn2+ availability and subsequently enhancing the enzyme activity of CK2 (casein kinase 2). As a result, the MAPK/ERK and PI3K/AKT pathways, two major downstream effectors of CK2, were activated, while c-Myc, a downstream target of these two pathways, formed a vicious feedback loop with SLC39A10 to drive the malignant progression of gastric cancer. Taken together, our data demonstrate that SLC39A10 is a functional oncogene in gastric cancer and suggest that targeting CK2 is an alternative therapeutic strategy for gastric cancer patients with high SLC39A10 expression.
Collapse
Affiliation(s)
- Xiaojuan Ren
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Chao Feng
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Yubo Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Pu Chen
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Simeng Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Jianling Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Hongxin Cao
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China
| | - Yujun Li
- Department of Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, P. R. China.
| | - Meiju Ji
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China.
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China.
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China.
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China.
| |
Collapse
|
9
|
Oh M, Batty S, Banerjee N, Kim TH. High extracellular glucose promotes cell motility by modulating cell deformability and contractility via the cAMP-RhoA-ROCK axis in human breast cancer cells. Mol Biol Cell 2023; 34:ar79. [PMID: 37195739 PMCID: PMC10398875 DOI: 10.1091/mbc.e22-12-0560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023] Open
Abstract
The mechanical properties, or mechanotypes, of cells are largely determined by their deformability and contractility. The ability of cancer cells to deform and generate contractile force is critical in multiple steps of metastasis. Identifying soluble cues that regulate cancer cell mechanotypes and understanding the underlying molecular mechanisms regulating these cellular mechanotypes could provide novel therapeutic targets to prevent metastasis. Although a strong correlation between high glucose level and cancer metastasis has been demonstrated, the causality has not been elucidated, and the underlying molecular mechanisms remain largely unknown. In this study, using novel high-throughput mechanotyping assays, we show that human breast cancer cells become less deformable and more contractile with increased extracellular glucose levels (>5 mM). These altered cell mechanotypes are due to increased F-actin rearrangement and nonmuscle myosin II (NMII) activity. We identify the cAMP-RhoA-ROCK-NMII axis as playing a major role in regulating cell mechanotypes at high extracellular glucose levels, whereas calcium and myosin light-chain kinase (MLCK) are not required. The altered mechanotypes are also associated with increased cell migration and invasion. Our study identifies key components in breast cancer cells that convert high extracellular glucose levels into changes in cellular mechanotype and behavior relevant in cancer metastasis.
Collapse
Affiliation(s)
- Mijung Oh
- Department of Pathology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Skylar Batty
- Undergraduate Pipeline Network Summer Research Program, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Nayan Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Tae-Hyung Kim
- Department of Pathology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131
| |
Collapse
|
10
|
Qu Z, Liu Q, Kong X, Wang X, Wang Z, Wang J, Fang Y. A Systematic Study on Zinc-Related Metabolism in Breast Cancer. Nutrients 2023; 15:nu15071703. [PMID: 37049543 PMCID: PMC10096741 DOI: 10.3390/nu15071703] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Breast cancer has become the most common cancer worldwide. Despite the major advances made in the past few decades in the treatment of breast cancer using a combination of chemotherapy, endocrine therapy, and immunotherapy, the genesis, treatment, recurrence, and metastasis of this disease continue to pose significant difficulties. New treatment approaches are therefore urgently required. Zinc is an important trace element that is involved in regulating various enzymatic, metabolic, and cellular processes in the human body. Several studies have shown that abnormal zinc homeostasis can lead to the onset and progression of various diseases, including breast cancer. This review highlights the role played by zinc transporters in pathogenesis, apoptosis, signal transduction, and potential clinical applications in breast cancer. Additionally, the translation of the clinical applications of zinc and associated molecules in breast cancer, as well as the recent developments in the zinc-related drug targets for breast cancer treatment, is discussed. These developments offer novel insights into understanding the concepts and approaches that could be used for the diagnosis and management of breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Fang
- Correspondence: (J.W.); (Y.F.)
| |
Collapse
|
11
|
Barman SK, Zaman MS, Veljanoski F, Malladi CS, Mahns DA, Wu MJ. Expression profiles of the genes associated with zinc homeostasis in normal and cancerous breast and prostate cells. Metallomics 2022; 14:6601457. [PMID: 35657662 DOI: 10.1093/mtomcs/mfac038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022]
Abstract
Zn2+ dyshomeostasis is an intriguing phenomenon in breast and prostate cancers, with breast cancer cells exhibiting higher intracellular Zn2+ level compared to their corresponding normal epithelial cells, in contrast to the low Zn2+ level in prostate cancer cells. In order to gain molecular insights into the zinc homeostasis of breast and prostate cancer cells, this study profiled the expression of 28 genes, including 14 zinc importer genes (SLC39A1-14) which encode ZIP1-14 to transport Zn2+ into the cytoplasm, 10 zinc exporter genes (SLC30A1-10) which encode ZnT1-10 to transport Zn2+ out of the cytoplasm and 4 metallothionein genes (MT1B, MT1F, MT1X, MT2A) in breast (MCF10A, MCF-7, MDA-MB-231) and prostate (RWPE-1, PC3, DU145) cell lines in response to extracellular zinc exposures at a mild cytotoxic dosage and a benign dosage. The RNA samples were prepared at 0 min (T0), 30 min (T30) and 120 min (T120) in a time course with or without zinc exposure, which were used for profiling the baseline and dynamic gene expression. The up-regulation of MT genes was observed across the breast and prostate cancer cell lines. The expression landscape of SLC39A and SLC30A was revealed by the qRT-PCR data of this study, which sheds light on the divergence of intracellular Zn2+ levels for breast and prostate cancer cells. Taken together, the findings are valuable in unravelling the molecular intricacy of zinc homeostasis in breast and prostate cancer cells.
Collapse
Affiliation(s)
- Shital K Barman
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751
| | - Mohammad S Zaman
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751
| | - Filip Veljanoski
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751
| | - Chandra S Malladi
- Proteomics and Lipidomics Lab, School of Medicine, Western Sydney University, Locked
| | - David A Mahns
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751
| | - Ming J Wu
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751
| |
Collapse
|
12
|
Ugurlu I, Baltaci SB, Unal O, Mogulkoc R, Ucaryilmaz H, Baltaci AK. Chronic Running Exercise Regulates Cytotoxic Cell Functions and Zinc Transporter SLC39A10/ZIP10 Levels in Diabetic Rats. Biol Trace Elem Res 2022; 200:699-705. [PMID: 33742346 DOI: 10.1007/s12011-021-02680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 11/26/2022]
Abstract
The aim of this study is to investigate how chronic running exercise affects ZIP10 levels in thymus and spleen tissue as well as immune parameters in diabetic rats. A total of 40 adult male Wistar rats were divided into 4 equal groups: group 1, control; group 2, exercise control; group 3, diabetes; group 4, diabetes + exercise. Diabetes was induced by injecting intraperitoneal streptozotocin (STZ) at a dose of 40 mg/kg twice with 24-h intervals to the animals in groups 3 and 4. The animals in group 2 and group 4 underwent exercise for 45 min on the rat treadmill for 4 weeks at 20 m/min. Twenty-four hours after the last running exercise, the animals were sacrificed under general anesthesia. Immunological parameters were determined by flow cytometric method; tissue ZIP 10 levels were determined by ELISA method. The diabetic group had the lowest natural killer (NK) and natural killer T (NKT) cells percentages. Chronic exercise partially improved NK and NKT cell percentages in diabetic rats. The diabetic group had the lowest ZIP10 levels in spleen and thymus tissue. ZIP10 values in spleen and thymus tissue of diabetes exercise group were significantly higher than diabetes group. The results of our study show that the impaired cytotoxic cell functions in diabetes are partially corrected with 4 weeks of chronic exercise, and that the suppressed ZIP 10 levels in diabetic rats are reversed by 4 weeks of chronic exercise.
Collapse
Affiliation(s)
- Ibrahim Ugurlu
- Vocational School of Health Services, Selcuk University, Konya, Turkey
| | | | - Omer Unal
- Medical Faculty, Department of Physiology, Selcuk University, Konya, Turkey
| | - Rasim Mogulkoc
- Medical Faculty, Department of Physiology, Selcuk University, Konya, Turkey
| | - Hulya Ucaryilmaz
- Medical Faculty Department of Medical Biology, Selcuk University, Konya, Turkey
| | | |
Collapse
|
13
|
Schilling K, Harris AL, Halliday AN, Schofield CJ, Sheldon H, Haider S, Larner F. Investigations on Zinc Isotope Fractionation in Breast Cancer Tissue Using in vitro Cell Culture Uptake-Efflux Experiments. Front Med (Lausanne) 2022; 8:746532. [PMID: 35127740 PMCID: PMC8811157 DOI: 10.3389/fmed.2021.746532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Zinc (Zn) accumulates in breast cancer tumors compared to adjacent healthy tissue. Clinical samples of breast cancer tissue show light Zn isotopic compositions (δ66Zn) relative to healthy tissue. The underlying mechanisms causing such effects are unknown. To investigate if the isotopic discrimination observed for in vivo breast cancer tissue samples can be reproduced in vitro, we report isotopic data for Zn uptake-efflux experiments using a human breast cancer cell line. MDA-MB-231 cell line was used as a model for triple receptor negative breast cancer. We determined Zn isotope fractionation for Zn cell uptake (Δ66Znuptake) and cell efflux (Δ66Znefflux) using a drip-flow reactor to enable comparison with the in vivo environment. The MDA-MB-231 cell line analyses show Zn isotopic fractionations in an opposite direction to those observed for in vivo breast cancer tissue. Uptake of isotopically heavy Zn (Δ66Znuptake = +0.23 ± 0.05‰) is consistent with transport via Zn transporters (ZIPs), which have histidine-rich binding sites. Zinc excreted during efflux is isotopically lighter than Zn taken up by the cells (Δ66Znefflux = -0.35 ± 0.06‰). The difference in Zn isotope fractionation observed between in vitro MDA-MB-231 cell line experiments and in vivo breast tissues might be due to differences in Zn transporter levels or intercellular Zn storage (endoplasmic reticulum and/or Zn specific vesicles); stromal cells, such as fibroblasts and immune cells. Although, additional experiments using other human breast cancer cell lines (e.g., MCF-7, BT-20) with varying Zn protein characteristics are required, the results highlight differences between in vitro and in vivo Zn isotope fractionation.
Collapse
Affiliation(s)
- Kathrin Schilling
- Lamont Doherty Earth Observatory, Columbia University, Palisades, NY, United States
- Department of Medical Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
| | - Adrian L. Harris
- Department of Medical Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Alex N. Halliday
- Lamont Doherty Earth Observatory, Columbia University, Palisades, NY, United States
- Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
| | | | - Helen Sheldon
- Department of Medical Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Syed Haider
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Fiona Larner
- Department of Medical Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Takatani-Nakase T, Matsui C, Hosotani M, Omura M, Takahashi K, Nakase I. Hypoxia enhances motility and EMT through the Na +/H + exchanger NHE-1 in MDA-MB-231 breast cancer cells. Exp Cell Res 2022; 412:113006. [PMID: 34979106 DOI: 10.1016/j.yexcr.2021.113006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022]
Abstract
Breast cancer metastasis is the leading cause of cancer-related deaths. Hypoxia in the tumor mass is believed to trigger cell migration, which is involved in a crucial process of breast cancer metastasis. However, the molecular mechanisms underlying aggressive behavior under hypoxic conditions have not been fully elucidated. Here, we demonstrate the significant motility of MDA-MB-231 cells cultured under hypoxic conditions compared to that of cells cultured under normoxic conditions. MDA-MB-231 cells under hypoxic conditions showed a significant increase in Na+/H+ exchanger isoform 1 (NHE1) expression level, which was observed to co-locate in lamellipodia formation. Inhibition of NHE1 significantly suppressed the intracellular pH and the expression of mesenchymal markers, thereby blocking the high migration activity in hypoxia. Moreover, treatment with ciglitazone, a potent and selective peroxisome proliferator-activated receptor γ (PPARγ) agonist, modulated hypoxia-enhanced motion in cells via the repression of NHE1. These findings highlight that NHE1 is required for migratory activity through the enhancement of epithelial-mesenchymal transition (EMT) in MDA-MB-231 cells under hypoxic conditions, and we propose new drug repurposing strategies targeting hypoxia based on NHE1 suppression by effective usage of PPARγ agonists.
Collapse
Affiliation(s)
- Tomoka Takatani-Nakase
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo, 663-8179, Japan; Institute for Bioscience, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo, 663-8179, Japan.
| | - Chihiro Matsui
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo, 663-8179, Japan
| | - Maiko Hosotani
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo, 663-8179, Japan
| | - Mika Omura
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Koichi Takahashi
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68, Koshien Kyuban-cho, Nishinomiya, Hyogo, 663-8179, Japan
| | - Ikuhiko Nakase
- Graduate School of Science, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan; NanoSquare Research Institute, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan.
| |
Collapse
|
15
|
Zhang F, de Haan-Du J, Sidorenkov G, Landman GWD, Jalving M, Zhang Q, de Bock GH. Type 2 Diabetes Mellitus and Clinicopathological Tumor Characteristics in Women Diagnosed with Breast Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2021; 13:cancers13194992. [PMID: 34638475 PMCID: PMC8508341 DOI: 10.3390/cancers13194992] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 02/05/2023] Open
Abstract
Poor prognosis caused by type 2 diabetes mellitus (T2DM) in women with breast cancer is conferred, while the association between T2DM and breast tumor aggressiveness is still a matter of debate. This study aimed to clarify the differences in breast cancer characteristics, including stage, size, lymph node status, grade, estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor (Her2), between patients with and without pre-existing T2DM. PubMed, Embase, and Web of Science were searched for studies from 1 January 2010 to 2 July 2021. Adjusted odds ratios (ORs) with 95% confidence intervals (CIs) were pooled by using a random effects model. T2DM was significantly associated with tumor stages III/IV versus cancers in situ and stages I/II (pooled ORs (pOR), 95% CI: 1.19; 1.04-1.36, p = 0.012), tumor size >20 versus ≤20 mm (pOR, 95% CI: 1.18; 1.04-1.35, p = 0.013), and lymph node invasion versus no involvement (pOR, 95% CI: 1.26; 1.05-1.51, p = 0.013). These findings suggest that women with T2DM are at a higher risk of late-stage tumors, large tumor sizes, and invasive lymph nodes at breast cancer diagnosis.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.Z.); (J.d.H.-D.); (G.H.d.B.)
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China;
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jing de Haan-Du
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.Z.); (J.d.H.-D.); (G.H.d.B.)
| | - Grigory Sidorenkov
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.Z.); (J.d.H.-D.); (G.H.d.B.)
- Correspondence:
| | - Gijs W. D. Landman
- Department of Internal Medicine, Gelre Hospital, 7334 DZ Apeldoorn, The Netherlands;
| | - Mathilde Jalving
- Department of Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Qingying Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China;
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Geertruida H. de Bock
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.Z.); (J.d.H.-D.); (G.H.d.B.)
| |
Collapse
|
16
|
Nazempour N, Taleqani MH, Taheri N, Haji Ali Asgary Najafabadi AH, Shokrollahi A, Zamani A, Fattahi Dolatabadi N, Peymani M, Mahdevar M. The role of cell surface proteins gene expression in diagnosis, prognosis, and drug resistance of colorectal cancer: In silico analysis and validation. Exp Mol Pathol 2021; 123:104688. [PMID: 34592197 DOI: 10.1016/j.yexmp.2021.104688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
Cell surface proteins (CSPs) are an important type of protein in different essential cell functions. This study aimed to distinguish overexpressed CSPs in colorectal cancer to investigate their biomarker, prognosis, and drug resistance potential. Raw data of three datasets including 1187 samples was downloaded then normalization and differential expression were performed. By the combination of the cancer genome atlas (TCGA) clinical data, survival analysis was carried out. Information of all CSPs was collected from cell surface protein atlas. The role of each candidate gene expression was investigated in drug resistance by CCEL and GDSC data from PharmacoGX. CRC samples including 30 tumor samples and adjacent normal were used to confirm data by RT-qPCR. Outcomes showed that 66 CSPs overexpressed in three datasets, and 146 CSPs expression associated with poor prognosis features in TCGA data that TIMP1 and QSOX2 can associate with poor patient survival independently. High-risk patients illustrated more fatality than low-risk patients based on the risk score calculated by the expression level of these genes. Receiver operating characteristic curve analysis showed that 39 CSPs as perfect biomarkers for diagnosis in CRC. Furthermore, QSOX2 and TIMP1 expression levels increased in tumor samples compared to adjacent normal samples. The Drug resistance analysis demonstrated ADAM12 and COL1A2 up-regulation among 66 overexpressed CSPs caused resistance to Venetoclax and Cyclophosphamide with a high estimate, respectively. Many CSPs are deregulated in CRC, and can be valuable candidates as biomarkers for diagnosis, prognosis, and drug resistance.
Collapse
Affiliation(s)
- Nasrin Nazempour
- Department of Chemistry, Shahreza Branch, Islamic Azad University, Shahreza, Isfahan, Iran; Gene Raz Bu Ali, Genetic and Biotechnology Academy, Isfahan, Iran
| | - Mohammad Hossein Taleqani
- Department of Biology, Faculty of Science, University of Yazd, Yazd, Iran; Gene Raz Bu Ali, Genetic and Biotechnology Academy, Isfahan, Iran
| | - Navid Taheri
- Department of Microbiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran; Gene Raz Bu Ali, Genetic and Biotechnology Academy, Isfahan, Iran
| | | | - Alireza Shokrollahi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Atefeh Zamani
- Gene Raz Bu Ali, Genetic and Biotechnology Academy, Isfahan, Iran
| | | | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Sharekord, Iran.
| | - Mohammad Mahdevar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
17
|
Hu X, Wu J, Xiong H, Zeng L, Wang Z, Wang C, Huang D, Zhang T, Peng Y, Chen W, Xia K, Su T. Type 2 diabetes mellitus promotes the proliferation, metastasis, and suppresses the apoptosis in oral squamous cell carcinoma. J Oral Pathol Med 2021; 51:483-492. [PMID: 34551155 DOI: 10.1111/jop.13244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Our previous study revealed that patients with oral squamous cell carcinoma and concomitant type 2 diabetes mellitus presented a lower 5-year survival rate. Hyperglycemia has been increasingly recognized as a risk factor for more advanced disease and poorer prognosis in patients with oral squamous cell carcinoma. However, its role remains unclear. METHODS The expressions of BRIP1, Ki67, E-cadherin, and cleaved caspase-3 were detected by immunohistochemistry in oral squamous cell carcinoma tissues with or without type 2 diabetes mellitus. Cell counting kit-8 assay and wound healing assay were used to determine the proliferative and migratory ability of oral squamous cell carcinoma cells cultured with or without high glucose in vitro. Flow cytometry was applied to distinguish the role of high glucose on the cell cycle and apoptosis rates. RESULTS The expression level of Ki67 was elevated while BRIP1, E-cadherin, and cleaved caspase-3 were downregulated in patients with oral squamous cell carcinoma coexisting with diabetes. The cell proliferation and migration in oral squamous cell carcinoma cell lines were significantly enhanced by high glucose. Flow cytometric analysis suggested that high glucose predisposed cancer cells to stay at S/G2 phase and to exhibit lower apoptosis rates. CONCLUSION Our results implicated that type 2 diabetes mellitus may play a crucial role in the development and progression of oral squamous cell carcinoma through hyperglycemia, affecting cancer cell proliferation, migration, and apoptosis. This finding might provide a new direction for the prevention and treatment of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Xin Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Jin Wu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Haofeng Xiong
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Liujun Zeng
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Zijia Wang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Can Wang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Danni Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Tianyi Zhang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Ying Peng
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Weijun Chen
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Tong Su
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya hospital of Central South University, Changsha, Hunan, China.,Research Center of Oral and Maxillofacial Tumor, Xiangya hospital of Central South University, Changsha, Hunan, China.,Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, Hunan, China
| |
Collapse
|
18
|
Zinc Signaling in the Mammary Gland: For Better and for Worse. Biomedicines 2021; 9:biomedicines9091204. [PMID: 34572390 PMCID: PMC8469023 DOI: 10.3390/biomedicines9091204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
Zinc (Zn2+) plays an essential role in epithelial physiology. Among its many effects, most prominent is its action to accelerate cell proliferation, thereby modulating wound healing. It also mediates affects in the gastrointestinal system, in the testes, and in secretory organs, including the pancreas, salivary, and prostate glands. On the cellular level, Zn2+ is involved in protein folding, DNA, and RNA synthesis, and in the function of numerous enzymes. In the mammary gland, Zn2+ accumulation in maternal milk is essential for supporting infant growth during the neonatal period. Importantly, Zn2+ signaling also has direct roles in controlling mammary gland development or, alternatively, involution. During breast cancer progression, accumulation or redistribution of Zn2+ occurs in the mammary gland, with aberrant Zn2+ signaling observed in the malignant cells. Here, we review the current understanding of the role of in Zn2+ the mammary gland, and the proteins controlling cellular Zn2+ homeostasis and signaling, including Zn2+ transporters and the Gq-coupled Zn2+ sensing receptor, ZnR/GPR39. Significant advances in our understanding of Zn2+ signaling in the normal mammary gland as well as in the context of breast cancer provides new avenues for identification of specific targets for breast cancer therapy.
Collapse
|
19
|
Supabphol S, Seubwai W, Wongkham S, Saengboonmee C. High glucose: an emerging association between diabetes mellitus and cancer progression. J Mol Med (Berl) 2021; 99:1175-1193. [PMID: 34036430 DOI: 10.1007/s00109-021-02096-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/16/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
The association of cancer and diabetes mellitus (DM) has been studied for decades. Hyperglycemia and the imbalance of hormones are factors that contribute to the molecular link between DM and carcinogenesis and cancer progression. Hyperglycemia alone or in combination with hyperinsulinemia are key factors that promote cancer aggressiveness. Many preclinical studies suggest that high glucose induces abnormal energy metabolism and aggressive cancer via several mechanisms. As evidenced by clinical studies, hyperglycemia is associated with poor clinical outcomes in patients who have comorbid DM. The prognoses of cancer patients with DM are improved when their plasma glucose levels are controlled. This suggests that high glucose level maybe be involved in the molecular mechanism that causes the link between DM and cancer and may also be useful for prognosis of cancer progression. This review comprehensively summarizes the evidence from recent pre-clinical and clinical studies of the impact of hyperglycemia on cancer advancement as well as the underlying molecular mechanism for this impact. Awareness among clinicians of the association between hyperglycemia or DM and cancer progression may improve cancer treatment outcome in patients who have DM.
Collapse
Affiliation(s)
- Suangson Supabphol
- The Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wunchana Seubwai
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sopit Wongkham
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Charupong Saengboonmee
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
20
|
Ma Z, Li Z, Wang S, Zhou Q, Ma Z, Liu C, Huang B, Zheng Z, Yang L, Zou Y, Zhang C, Huang S, Hou B. SLC39A10 Upregulation Predicts Poor Prognosis, Promotes Proliferation and Migration, and Correlates with Immune Infiltration in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:899-912. [PMID: 34395329 PMCID: PMC8357404 DOI: 10.2147/jhc.s320326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/20/2021] [Indexed: 12/31/2022] Open
Abstract
Background Recent evidence has shown that Solute Carrier Family 39 Member 10 (SLC39A10) promoted tumor progression in several cancer types. The study intended to explore the expression and function of SLC39A10 in hepatocellular carcinoma (HCC). Methods Multiple bioinformatics analyses were used to evaluate SLC39A10 expression and potential role in HCC. Quantitative real-time polymerase chain reaction and immunohistochemistry were used to confirm SLC39A10 expression. Intro studies were performed to assess the effects of SLC39A10 on HCC cells proliferation and migration. Furthermore, flow cytometry was conducted to identify its specific function in apoptosis of HCC. Results SLC39A10 was significantly over-expressed in HCC samples from both bioinformatic databases and our cohort. Survival analyses suggested patients with high expression of SLC39A10 had poor overall survival and disease-free survival (P-value <0.01). Further, the expression of SLC39A10 was positively correlated with tumor-infiltrating lymphocytes and some immune checkpoints like CTLA4, TIM3 and TGFB1. In HCC cell lines, SLC39A10 knockdown inhibited cells proliferation and migration, but promoted apoptosis. Conclusion An increased SLC39A10 expression was found and served as an unfavorable indicator of survival in HCC. Further studies suggested SLC39A10 promotes tumor aggressiveness and may provide a novel target for HCC therapy.
Collapse
Affiliation(s)
- Zuyi Ma
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.,Shantou University of Medical College, Shantou, 515000, People's Republic of China
| | - Zhenchong Li
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.,South China University of Technology School of Medicine, Guangzhou, 51000, People's Republic of China
| | - Shujie Wang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Qi Zhou
- Department of General Surgery, Hui Ya Hospital of the First Affiliated Hospital, Sun Yat-Sen University, Huizhou, 516081, People's Republic of China.,Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, People's Republic of China
| | - Zuguang Ma
- Sanshui Disease Prevention Cure Station, Foshan, 528100, People's Republic of China
| | - Chunsheng Liu
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.,Shantou University of Medical College, Shantou, 515000, People's Republic of China
| | - Bowen Huang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Zehao Zheng
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.,Shantou University of Medical College, Shantou, 515000, People's Republic of China
| | - LinLing Yang
- Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yiping Zou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.,Shantou University of Medical College, Shantou, 515000, People's Republic of China
| | - Chuanzhao Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.,South China University of Technology School of Medicine, Guangzhou, 51000, People's Republic of China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.,South China University of Technology School of Medicine, Guangzhou, 51000, People's Republic of China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.,South China University of Technology School of Medicine, Guangzhou, 51000, People's Republic of China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| |
Collapse
|
21
|
Mosier JA, Schwager SC, Boyajian DA, Reinhart-King CA. Cancer cell metabolic plasticity in migration and metastasis. Clin Exp Metastasis 2021; 38:343-359. [PMID: 34076787 DOI: 10.1007/s10585-021-10102-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/08/2021] [Indexed: 12/13/2022]
Abstract
Metabolic reprogramming is a hallmark of cancer metastasis in which cancer cells manipulate their metabolic profile to meet the dynamic energetic requirements of the tumor microenvironment. Though cancer cell proliferation and migration through the extracellular matrix are key steps of cancer progression, they are not necessarily fueled by the same metabolites and energy production pathways. The two main metabolic pathways cancer cells use to derive energy from glucose, glycolysis and oxidative phosphorylation, are preferentially and plastically utilized by cancer cells depending on both their intrinsic metabolic properties and their surrounding environment. Mechanical factors in the microenvironment, such as collagen density, pore size, and alignment, and biochemical factors, such as oxygen and glucose availability, have been shown to influence both cell migration and glucose metabolism. As cancer cells have been identified as preferentially utilizing glycolysis or oxidative phosphorylation based on heterogeneous intrinsic or extrinsic factors, the relationship between cancer cell metabolism and metastatic potential is of recent interest. Here, we review current in vitro and in vivo findings in the context of cancer cell metabolism during migration and metastasis and extrapolate potential clinical applications of this work that could aid in diagnosing and tracking cancer progression in vivo by monitoring metabolism. We also review current progress in the development of a variety of metabolically targeted anti-metastatic drugs, both in clinical trials and approved for distribution, and highlight potential routes for incorporating our recent understanding of metabolic plasticity into therapeutic directions. By further understanding cancer cell energy production pathways and metabolic plasticity, more effective and successful clinical imaging and therapeutics can be developed to diagnose, target, and inhibit metastasis.
Collapse
Affiliation(s)
- Jenna A Mosier
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Samantha C Schwager
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - David A Boyajian
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | | |
Collapse
|
22
|
Otto L, Rahn S, Daunke T, Walter F, Winter E, Möller JL, Rose-John S, Wesch D, Schäfer H, Sebens S. Initiation of Pancreatic Cancer: The Interplay of Hyperglycemia and Macrophages Promotes the Acquisition of Malignancy-Associated Properties in Pancreatic Ductal Epithelial Cells. Int J Mol Sci 2021; 22:ijms22105086. [PMID: 34064969 PMCID: PMC8151031 DOI: 10.3390/ijms22105086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/26/2021] [Accepted: 05/08/2021] [Indexed: 01/02/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is still one of the most aggressive solid malignancies with a poor prognosis. Obesity and type 2 diabetes mellitus (T2DM) are two major risk factors linked to the development and progression of PDAC, both often characterized by high blood glucose levels. Macrophages represent the main immune cell population in PDAC contributing to PDAC development. It has already been shown that pancreatic ductal epithelial cells (PDEC) undergo epithelial–mesenchymal transition (EMT) when exposed to hyperglycemia or macrophages. Thus, this study aimed to investigate whether concomitant exposure to hyperglycemia and macrophages aggravates EMT-associated alterations in PDEC. Exposure to macrophages and elevated glucose levels (25 mM glucose) impacted gene expression of EMT inducers such as IL-6 and TNF-α as well as EMT transcription factors in benign (H6c7-pBp) and premalignant (H6c7-kras) PDEC. Most strikingly, exposure to hyperglycemic coculture with macrophages promoted downregulation of the epithelial marker E-cadherin, which was associated with an elevated migratory potential of PDEC. While blocking IL-6 activity by tocilizumab only partially reverted the EMT phenotype in H6c7-kras cells, neutralization of TNF-α by etanercept was able to clearly impair EMT-associated properties in premalignant PDEC. Altogether, the current study attributes a role to a T2DM-related hyperglycemic, inflammatory micromilieu in the acquisition of malignancy-associated alterations in premalignant PDEC, thus providing new insights on how metabolic diseases might promote PDAC initiation.
Collapse
Affiliation(s)
- Lilli Otto
- Institute for Experimental Cancer Research, Kiel University (CAU) and University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (L.O.); (T.D.); (F.W.); (E.W.); (H.S.)
| | - Sascha Rahn
- Institute of Biochemistry, Kiel University, 24118 Kiel, Germany; (S.R.); (S.R.-J.)
| | - Tina Daunke
- Institute for Experimental Cancer Research, Kiel University (CAU) and University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (L.O.); (T.D.); (F.W.); (E.W.); (H.S.)
| | - Frederik Walter
- Institute for Experimental Cancer Research, Kiel University (CAU) and University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (L.O.); (T.D.); (F.W.); (E.W.); (H.S.)
| | - Elsa Winter
- Institute for Experimental Cancer Research, Kiel University (CAU) and University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (L.O.); (T.D.); (F.W.); (E.W.); (H.S.)
| | - Julia Luisa Möller
- Department of Hematology and Oncology, University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany;
| | - Stefan Rose-John
- Institute of Biochemistry, Kiel University, 24118 Kiel, Germany; (S.R.); (S.R.-J.)
| | - Daniela Wesch
- Institute of Immunology, Kiel University and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany;
| | - Heiner Schäfer
- Institute for Experimental Cancer Research, Kiel University (CAU) and University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (L.O.); (T.D.); (F.W.); (E.W.); (H.S.)
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University (CAU) and University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (L.O.); (T.D.); (F.W.); (E.W.); (H.S.)
- Correspondence: ; Tel.: +49-431-500-30501
| |
Collapse
|
23
|
Yagi H, Fujihara C, Murakami S. Effects of oxidative stress-induced increases in Zn 2+ concentrations in human gingival epithelial cells. J Periodontal Res 2021; 56:512-522. [PMID: 33641168 DOI: 10.1111/jre.12851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/25/2020] [Accepted: 01/10/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Previous studies have reported that oxidative stress increases intracellular Zn2+ concentrations and induces cytotoxicity. However, no studies have investigated whether oxidative stress induces such changes in periodontal tissue cells. In the present study, we investigated the effect of oxidative stress on intracellular Zn2+ concentration in periodontium constituent cells and its potential relationship with periodontal disease. METHODS We analyzed changes in intracellular Zn2+ concentrations in human gingival epithelial (epi4) cells treated with hydrogen peroxide (H2 O2 ). The fluorescent probes FluoZin-3 AM and CellTracker Green CMFDA were used to detect intracellular Zn2+ and thiol groups, respectively. Western blot analyses, luciferase reporter assays, and real-time polymerase chain reaction (PCR) analyses were performed to examine the effect of intracellular Zn2+ on epi4 cells. RESULTS H2 O2 treatment increased intracellular concentrations of Zn2+ in epi4 cells by facilitating the movement of Zn2+ from cellular nonprotein thiols to the cytoplasm and promoting cell membrane permeability to Zn2+ . Furthermore, H2 O2 -induced increases in intracellular Zn2+ activated the p38 cAMP response element-binding protein/mitogen-activated protein kinase (p38 CREB/MAPK) cascade, upregulated nuclear factor kappa B (NF-κB) DNA binding, and increased the expression of inflammatory cytokines and matrix metallopeptidase-9 (MMP-9). CONCLUSION Increases in intracellular Zn2+ induced by oxidative stress activate signaling pathways involved in inflammation, potentially contributing to the progression of periodontal disease.
Collapse
Affiliation(s)
- Hiroko Yagi
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Chiharu Fujihara
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
24
|
Silva C, Andrade N, Guimarães JT, Patrício E, Martel F. The in vitro effect of the diabetes-associated markers insulin, leptin and oxidative stress on cellular characteristics promoting breast cancer progression is GLUT1-dependent. Eur J Pharmacol 2021; 898:173980. [PMID: 33647254 DOI: 10.1016/j.ejphar.2021.173980] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 01/09/2023]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) associate with increased incidence and mortality from many cancers, including breast cancer. The mechanisms involved in this relation remain poorly understood. Our study aimed to investigate the in vitro effect of high levels of glucose, insulin, leptin, TNF-α, INF-γ and oxidative stress (induced with tert-butylhydroperoxide (TBH)), which are associated with T2DM, upon glucose uptake by breast cancer (MCF-7 and MDA-MB-231) and non-cancer (MCF-12A) cells and to correlate this effect with their effects upon cellular characteristics associated with cancer progression (cell proliferation, viability, migration, angiogenesis and apoptosis). 3H-DG uptake was markedly inhibited by a selective GLUT1 inhibitor (BAY-876) in all cell lines, proving that 3H-DG uptake is mainly GLUT1-mediated. TBH (2.5 μM), insulin (50 nM), leptin (500 ng/ml) and INF-y (100 ng/ml) stimulate GLUT1-mediated 3H-DG (1 mM) uptake by both ER-positive and triple-negative breast cancer cell lines. TBH and leptin, but not insulin and INF-γ, increase GLUT1 mRNA levels. Insulin and leptin (in both ER-positive and triple-negative breast cancer cell lines) and TBH (in the triple-negative cell line) have a proproliferative effect and leptin possesses a cytoprotective effect in both breast cancer cell lines that can contribute to cancer progression. The effects of TBH, insulin, leptin and INF-γ upon breast cancer cell proliferation and viability are GLUT1-dependent. In conclusion, T2DM-associated characteristics induce changes in GLUT1-mediated glucose uptake that can contribute to cancer progression. Moreover, we conclude that BAY-876 can be a strong candidate for development of a new effective anticancer agent against breast cancer.
Collapse
Affiliation(s)
- Cláudia Silva
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
| | - Nelson Andrade
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal; REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - João Tiago Guimarães
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Department of Clinical Pathology, São João Hospital Centre, Porto, Portugal; Institute of Public Health, University of Porto, Porto, Portugal
| | - Emília Patrício
- Department of Clinical Pathology, São João Hospital Centre, Porto, Portugal
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal.
| |
Collapse
|
25
|
Yurasakpong L, Apisawetakan S, Pranweerapaiboon K, Sobhon P, Chaithirayanon K. Holothuria scabra Extract Induces Cell Apoptosis and Suppresses Warburg Effect by Down-Regulating Akt/mTOR/HIF-1 Axis in MDA-MB-231 Breast Cancer Cells. Nutr Cancer 2020; 73:1964-1975. [PMID: 32878490 DOI: 10.1080/01635581.2020.1814825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Cancer cells utilize the modified glucose metabolism known as Warburg effect, with lactate production as the end product. In the search for alternative therapy, the body wall of sea cucumbers contains various substances with pharmacological activities. Herein, we investigate the effect of Holothuria scabra extract on the viability and Warburg effect of aggressive breast cancer cells. METHODS Body wall of H. scabra was extracted using 95% ethanol. Triple-negative breast cancer cells, MDA-MB-231, were treated with the extract at various concentrations under normoglycemic and hyperglycemic conditions. Cytotoxicity test was performed using MTT assay. Apoptotic proteins were quantified using Western blot. Apoptotic cells were stained with Hoechst 33342. Lactate production was determined using L-lactate assay kit. RESULTS By MTT assay, H. scabra extract suppressed the viability of breast cancer cells in a dose-dependent and time-dependent manner by enhancing apoptosis, indicated by a marked increase of proapoptotic Bax and pro-caspase three expressions, and decreased expression of anti-apoptotic Bcl-2. The extract could reduce hexokinase II expression, leading to reduced lactate production by blocking the Akt/mTOR/HIF-1 axis. DISCUSSION Overall findings indicated that H. scabra extract could be a possible therapeutic against breast cancer progression in patients with hyperglycemia, for instance, diabetes mellitus.
Collapse
Affiliation(s)
| | - Somjai Apisawetakan
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Wattana, Thailand
| | | | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Thailand
| | | |
Collapse
|
26
|
Gkionis L, Kavetsou E, Kalospyros A, Manousakis D, Garzon Sanz M, Butterworth S, Detsi A, Tirella A. Investigation of the cytotoxicity of bioinspired coumarin analogues towards human breast cancer cells. Mol Divers 2020; 25:307-321. [PMID: 32328962 PMCID: PMC7870773 DOI: 10.1007/s11030-020-10082-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Abstract Coumarins possess a wide array of therapeutic capabilities, but often with unclear mechanism of action. We tested a small library of 18 coumarin derivatives against human invasive breast ductal carcinoma cells with the capacity of each compound to inhibit cell proliferation scored, and the most potent coumarin analogues selected for further studies. Interestingly, the presence of two prenyloxy groups (5,7-diprenyloxy-4-methyl-coumarin, 4g) or the presence of octyloxy substituent (coumarin 4d) was found to increase the potency of compounds in breast cancer cells, but not against healthy human fibroblasts. The activity of potent compounds on breast cancer cells cultured more similarly to the conditions of the tumour microenvironment was also investigated, and increased toxicity was observed. Results suggest that tested coumarin derivatives could potentially reduce the growth of tumour mass. Moreover, their use as (combination) therapy in cancer treatment might have the potential of causing limited side effects. Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s11030-020-10082-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leonidas Gkionis
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Eleni Kavetsou
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780, Athens, Greece
| | - Alexandros Kalospyros
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780, Athens, Greece
| | - Dimitris Manousakis
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780, Athens, Greece
| | - Miguel Garzon Sanz
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Sam Butterworth
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- NorthWest Centre for Advanced Drug Delivery (NoWCADD), Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780, Athens, Greece.
| | - Annalisa Tirella
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- NorthWest Centre for Advanced Drug Delivery (NoWCADD), Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
27
|
Reduction of Serum Concentrations and Synergy between Retinol, β-Carotene, and Zinc According to Cancer Staging and Different Treatment Modalities Prior to Radiation Therapy in Women with Breast Cancer. Nutrients 2019; 11:nu11122953. [PMID: 31817125 PMCID: PMC6950526 DOI: 10.3390/nu11122953] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/01/2019] [Accepted: 09/15/2019] [Indexed: 12/25/2022] Open
Abstract
The procedures used for breast cancer treatment are able to increase the level of oxidative stress and cause depletion of antioxidants. Objectives: To investigate the relationship between serum concentrations of retinol, β-carotene, and zinc, according to breast cancer staging, considering different treatment modalities prior to radiation therapy and the synergistic action between these micronutrients. Methods: This is a cross-sectional observational study comprising a cohort of patients with breast cancer which was carried out prior to radiation therapy. Patients were divided into 3 groups: G1 comprised women who had undergone breast-conserving surgery, G2 comprised those who had undergone chemotherapy, and G3 those who had undergone breast-conserving surgery and chemotherapy. Serum concentrations of retinol, β-carotene, and zinc were quantified. Breast cancer staging was based on the TNM (Tumor, Node, Metastasis) classification of malignant tumors, a type of staging tool for different cancers. Results: A total of 230 patients were assessed. A decrease of the serum concentrations of the micronutrients assessed as the staging level of the disease increased was observed. Surgery alone had a greater negative impact on serum concentrations of retinol. Considering the treatments prior to radiotherapy, patients undergoing surgery alone and chemotherapy associated with surgery had higher percentages of deficiency of β-carotene and retinol. There was a positive correlation between the concentrations of zinc, retinol, and β-carotene, showing a synergy between these micronutrients. Conclusion: A significant reduction in the serum concentrations of the assessed micronutrients was observed, according to the increase in breast cancer staging. The synergy between the micronutrients must be considered in order to maximize the benefits and minimize the adverse effects of irradiation to normal cells.
Collapse
|
28
|
Li W, Zhang X, Sang H, Zhou Y, Shang C, Wang Y, Zhu H. Effects of hyperglycemia on the progression of tumor diseases. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:327. [PMID: 31337431 PMCID: PMC6651927 DOI: 10.1186/s13046-019-1309-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022]
Abstract
Malignant tumors are often multifactorial. Epidemiological studies have shown that hyperglycemia raises the prevalence and mortality of certain malignancies, like breast, liver, bladder, pancreatic, colorectal, endometrial cancers. Hyperglycemia can promote the proliferation, invasion and migration, induce the apoptotic resistance and enhance the chemoresistance of tumor cells. This review focuses on the new findings in the relationship between hyperglycemia and tumor development.
Collapse
Affiliation(s)
- Wenjie Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xuehui Zhang
- Department of Pharmacy, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, 215228, China
| | - Hui Sang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Ying Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Chunyu Shang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Yongqing Wang
- Department of Pharmacy, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, 215228, China. .,Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Hong Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
29
|
Roshan MH, Shing YK, Pace NP. Metformin as an adjuvant in breast cancer treatment. SAGE Open Med 2019; 7:2050312119865114. [PMID: 31360518 PMCID: PMC6637843 DOI: 10.1177/2050312119865114] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is one of the most common malignancies in females. It is an etiologically complex disease driven by a multitude of cellular pathways. The proliferation and spread of breast cancer is intimately linked to cellular glucose metabolism, given that glucose is an essential cellular metabolic substrate and that insulin signalling has mitogenic effects. Growing interest has focused on anti-diabetic agents in the management of breast cancer. Epidemiologic studies show that metformin reduces cancer incidence and mortality among type 2 diabetic patients. Preclinical in vitro and in vivo research provides intriguing insight into the cellular mechanisms behind the oncostatic effects of metformin. This article aims to provide an overview of the mechanisms in which metformin may elicit its anti-cancerous effects and discuss its potential role as an adjuvant in the management of breast cancer.
Collapse
Affiliation(s)
- Mohsin Hk Roshan
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Yan K Shing
- Pamela Youde Nethersole Eastern Hospital, Hong Kong
| | - Nikolai P Pace
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| |
Collapse
|
30
|
Sun S, Sun Y, Rong X, Bai L. High glucose promotes breast cancer proliferation and metastasis by impairing angiotensinogen expression. Biosci Rep 2019; 39:BSR20190436. [PMID: 31142626 PMCID: PMC6567675 DOI: 10.1042/bsr20190436] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022] Open
Abstract
A number of investigations have addressed the importance of high glucose in breast cancer, however, the involvement of angiotensinogen (AGT) in this scenario is yet to be defined. Here we set out to analyze the potential pro-tumor effects of high glucose in breast cancer, and understand the underlying molecular mechanism. We demonstrated that high glucose promoted cell proliferation, viability, and anchorage-independent growth of breast cancer cells. In addition, the migrative and invasive capacities were significantly enhanced by high glucose medium. Mechanistically, AGT expression was inhibited by high glucose at both transcriptional and translational levels. High AGT remarkably suppressed proliferation, inhibited viability, and compromised migration/invasion of breast cancer cells. Most importantly, ectopic introduction of AGT almost completely abrogated pro-tumor effects of high glucose. Our study has characterized the pro-tumor properties of high glucose in breast cancer cells, which is predominantly attributed to the suppression of AGT.
Collapse
Affiliation(s)
- Shichao Sun
- Department of Neurology, the Second Hospital, Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang 050000, Hebei, China
| | - Yao Sun
- Department of Medical Image, the Fourth Hospital, Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang 050011, Hebei, China
| | - Xiaoping Rong
- Department of Pediatrics, the Fourth Hospital, Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang 050011, Hebei, China
| | - Lei Bai
- Department of Endocrinology, the Fourth Hospital, Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang 050011, Hebei, China
| |
Collapse
|
31
|
Abstract
Zinc (Zn) is an essential heavy metal utilized in numerous biological processes in mammals, including its recently described role as a signaling mediator. The movement of Zn in and out of cells, across membranes, is regulated by two protein families: the zinc-regulated transporter (ZRT), iron-regulated transporter (IRT)-like protein (ZIP) and the Zn transporter (ZnT) families. ZIPs and ZnTs maintain intracellular Zn homeostasis and control important cellular functions through Zn signaling. Recent studies have highlighted the role of Zn transporters and Zn in disease. ZIP6, 7, and 10 contribute to human breast cancer progression. ZIP6 is associated with breast tumor grade, size, and stage, suggesting that it is a potent driving force toward malignancy; ZIP7 plays an important role in tamoxifen-resistant breast cancer cells, and ZIP10 is involved in invasion and metastasis of breast cancer cells. These Zn transporters are key molecules in the malignant process; thus, understanding Zn transporters will lead to novel diagnostic and therapeutic strategies for breast cancer. This review discusses the emerging functional roles of Zn and Zn transporters in breast cancer.
Collapse
Affiliation(s)
- Tomoka Takatani-Nakase
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| |
Collapse
|
32
|
Jeon HY, Lee YJ, Kim YS, Kim SY, Han ET, Park WS, Hong SH, Kim YM, Ha KS. Proinsulin C‐peptide prevents hyperglycemia‐induced vascular leakage and metastasis of melanoma cells in the lungs of diabetic mice. FASEB J 2019; 33:750-762. [DOI: 10.1096/fj.201800723r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Hye-Yoon Jeon
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine Chuncheon Korea
| | - Yeon-Ju Lee
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine Chuncheon Korea
| | - You-Sun Kim
- Department of BiochemistryAjou University School of Medicine Suwon Korea
| | - Soo-Youl Kim
- Cancer Cell and Molecular Biology BranchNational Cancer Center Goyang Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical MedicineKangwon National University School of Medicine Chuncheon Korea
| | - Won Sun Park
- Department of PhysiologyKangwon National University School of Medicine Chuncheon Korea
| | - Seok-Ho Hong
- Department of Internal MedicineKangwon National University School of Medicine Chuncheon Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine Chuncheon Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular BiochemistryKangwon National University School of Medicine Chuncheon Korea
| |
Collapse
|
33
|
Buss LA, Mandani A, Phillips E, Scott NJA, Currie MJ, Dachs GU. Characterisation of a Mouse Model of Breast Cancer with Metabolic Syndrome. In Vivo 2018; 32:1071-1080. [PMID: 30150428 DOI: 10.21873/invivo.11348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/03/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIM Patients with breast cancer and metabolic syndrome have poorer outcomes. We aimed to develop and characterise an apolipoprotein E-null/aromatase knockout (ApoE-/-/ArKO) mouse model of breast cancer with metabolic syndrome to aid research of the mechanisms behind poor prognosis. MATERIALS AND METHODS Wild-type, ApoE-/- and ApoE-/-/ArKO mice were orthotopically implanted with EO771 murine breast cancer cells. Tumour growth was monitored and tumours investigated for pathological features such as cancer-associated adipocytes, hypoxia and cancer cell proliferation. RESULTS Tumours from ApoE-/-/ArKO mice were significantly more proliferative than those from wild-type mice (p=0.003), and exhibited reduced expression of insulin-like growth factor binding protein-5 (p=0.002). However, ApoE-/-/ArKO mice also had a reduced rate of metastasis compared to wild-type and ApoE-/- mice. Tumour hypoxia and the number of cancer-associated adipocytes did not differ. CONCLUSION The ApoE-/-/ArKO model with EO771 breast cancer provides a novel mouse model to investigate the effects of metabolic syndrome on aspects of breast tumour biology.
Collapse
Affiliation(s)
- Linda A Buss
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Anishah Mandani
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Elisabeth Phillips
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Nicola J A Scott
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Margaret J Currie
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Gabi U Dachs
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch, New Zealand
| |
Collapse
|
34
|
Matsui C, Takatani-Nakase T, Maeda S, Takahashi K. High-Glucose Conditions Promote Anchorage-Independent Colony Growth in Human Breast Cancer MCF-7 Cells. Biol Pharm Bull 2018; 41:1379-1383. [PMID: 30175774 DOI: 10.1248/bpb.b18-00174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that hyperglycemia is connected to the malignant progression of breast cancer; however, the effects of hyperglycemia on tumorigenic potential in breast cancer cells are largely unknown. Here, we demonstrated that the ability of the human breast cancer cell line MCF-7 to undertake anchorage-independent colony growth was significantly enhanced when cultured under high-glucose conditions compared with that under physiological glucose conditions. The high-glucose conditions also promoted phosphorylation of Akt, suggesting that MCF-7 cells cultured in these conditions acquired an increased ability to undergo anchorage-independent growth at least in part through Akt activation, which has been linked to the development of breast cancer. These results raise the possibility that regulation of Akt activity contributes to the tumorigenesis of breast cancer under high-glucose conditions, and we propose that additional analyses of high glucose-induced tumor formation would provide novel strategies for the diagnosis and therapy of breast cancer with hyperglycemia.
Collapse
Affiliation(s)
- Chihiro Matsui
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Tomoka Takatani-Nakase
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Sachie Maeda
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Koichi Takahashi
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| |
Collapse
|
35
|
Paskavitz AL, Quintana J, Cangussu D, Tavera-Montañez C, Xiao Y, Ortiz-Miranda S, Navea JG, Padilla-Benavides T. Differential expression of zinc transporters accompanies the differentiation of C2C12 myoblasts. J Trace Elem Med Biol 2018; 49:27-34. [PMID: 29895369 PMCID: PMC6082398 DOI: 10.1016/j.jtemb.2018.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 12/11/2022]
Abstract
Zinc transporters facilitate metal mobilization and compartmentalization, playing a key role in cellular development. Little is known about the mechanisms and pathways of Zn movement between Zn transporters and metalloproteins during myoblast differentiation. We analyzed the differential expression of ZIP and ZnT transporters during C2C12 myoblast differentiation. Zn transporters account for a transient decrease of intracellular Zn upon myogenesis induction followed by a gradual increase of Zn in myotubes. Considering the subcellular localization and function of each of the Zn transporters, our findings indicate that a fine regulation is necessary to maintain correct metal concentrations in the cytosol and subcellular compartments to avoid toxicity, maintain homeostasis, and for loading metalloproteins needed during myogenesis. This study advances our basic understanding of the complex Zn transport network during muscle differentiation.
Collapse
Affiliation(s)
- Amanda L Paskavitz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA; Department of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Julia Quintana
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Daniella Cangussu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Cristina Tavera-Montañez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA; Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Yao Xiao
- Department of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Sonia Ortiz-Miranda
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Juan G Navea
- Department of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
36
|
Zhou L, Zhan ML, Tang Y, Xiao M, Li M, Li QS, Yang L, Li X, Chen WW, Wang YL. Effects of β-caryophyllene on arginine ADP-ribosyltransferase 1-mediated regulation of glycolysis in colorectal cancer under high-glucose conditions. Int J Oncol 2018; 53:1613-1624. [PMID: 30066849 DOI: 10.3892/ijo.2018.4506] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/31/2018] [Indexed: 11/05/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with an increased risk of the development of colorectal cancer (CRC). A previous study revealed that the levels of arginine-specific mono-ADP-ribosyltransferase 1 (ART1) in CRC tissues from patients with T2DM were higher than in non-diabetic patients. Hyperglycemia, which is a risk factor of cancer, is a common feature of T2DM; however, the effects of ART1 on glycolysis and energy metabolism in CRC cells under high-glucose conditions remains to be elucidated. β-caryophyllene (BCP) has been reported to exert anticancer and hypoglycemic effects. In the present study, CT26 cells were cultured under a high-glucose conditions and the expression levels of relevant factors were detected by western blotting. Cell Counting Kit-8 assay, flow cytometry, Hoechst 33258 staining, ATP assay and lactic acid assay were used to detect the proliferation, apoptosis and energy metabolism of CT26 cells. To observe the effects of ART1 and BCP on tumor growth in vivo, CT26 cell tumors were successfully transplanted into BALB/c mice with T2DM. The results demonstrated that overexpression of ART1 may increase glycolysis and energy metabolism in CT26 CRC cells under high glucose conditions by regulating the protein kinase B/mammalian target of rapamycin/c‑Myc signaling pathway and the expression of glycolytic enzymes. BCP inhibited the effects induced by ART1, which may be due to a BCP-induced reduction in the expression levels of ART1 via nuclear factor-κB. Therefore, ART1 may be considered a therapeutic target for the treatment of diabetic patients with CRC.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Mu-Lu Zhan
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yi Tang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ming Xiao
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ming Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qing-Shu Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lian Yang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xian Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wen-Wen Chen
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ya-Lan Wang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
37
|
Rahn S, Zimmermann V, Viol F, Knaack H, Stemmer K, Peters L, Lenk L, Ungefroren H, Saur D, Schäfer H, Helm O, Sebens S. Diabetes as risk factor for pancreatic cancer: Hyperglycemia promotes epithelial-mesenchymal-transition and stem cell properties in pancreatic ductal epithelial cells. Cancer Lett 2017; 415:129-150. [PMID: 29222037 DOI: 10.1016/j.canlet.2017.12.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/15/2017] [Accepted: 12/01/2017] [Indexed: 12/20/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with hyperglycemia and a risk to develop pancreatic ductal adenocarcinoma (PDAC), one of the most fatal malignancies. Cancer stem cells (CSC) are essential for initiation and maintenance of tumors, and acquisition of CSC-features is linked to epithelial-mesenchymal-transition (EMT). The present study investigated whether hyperglycemia promotes EMT and CSC-features in premalignant and malignant pancreatic ductal epithelial cells (PDEC). Under normoglycemia (5 mM d-glucose), Panc1 PDAC cells but not premalignant H6c7-kras cells exhibited a mesenchymal phenotype along with pronounced colony formation. While hyperglycemia (25 mM d-glucose) did not impact the mesenchymal phenotype of Panc1 cells, CSC-properties were aggravated exemplified by increased Nanog expression and Nanog-dependent formation of holo- and meroclones. In H6c7-kras cells, high glucose increased secretion of Transforming-Growth-Factor-beta1 (TGF-β1) as well as TGF-β1 signaling, and in a TGF-β1-dependent manner reduced E-cadherin expression, increased Nestin expression and number of meroclones. Finally, reduced E-cadherin expression was detected in pancreatic ducts of hyperglycemic but not normoglycemic mice. These data suggest that hyperglycemia promotes the acquisition of mesenchymal and CSC-properties in PDEC by activating TGF-β signaling and might explain how T2DM facilitates pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Sascha Rahn
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel (CAU) and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Vivien Zimmermann
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel (CAU) and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Fabrice Viol
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hendrike Knaack
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel (CAU) and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Kerstin Stemmer
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Lena Peters
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel (CAU) and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Lennart Lenk
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel (CAU) and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Hendrik Ungefroren
- Department of General Surgery and Thoracic Surgery, UKSH Campus Kiel, Germany; First Department of Medicine, UKSH Campus Lübeck, Lübeck, Germany
| | - Dieter Saur
- II. Medizinische Klinik und Poliklinik, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Heiner Schäfer
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel (CAU) and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Ole Helm
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel (CAU) and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel (CAU) and University Medical Center Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany.
| |
Collapse
|
38
|
Shin J, Paek KY, Ivshina M, Stackpole EE, Richter JD. Essential role for non-canonical poly(A) polymerase GLD4 in cytoplasmic polyadenylation and carbohydrate metabolism. Nucleic Acids Res 2017; 45:6793-6804. [PMID: 28383716 PMCID: PMC5499868 DOI: 10.1093/nar/gkx239] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/30/2017] [Indexed: 11/16/2022] Open
Abstract
Regulation of gene expression at the level of cytoplasmic polyadenylation is important for many biological phenomena including cell cycle progression, mitochondrial respiration, and learning and memory. GLD4 is one of the non-canonical poly(A) polymerases that regulates cytoplasmic polyadenylation-induced translation, but its target mRNAs and role in cellular physiology is not well known. To assess the full panoply of mRNAs whose polyadenylation is controlled by GLD4, we performed an unbiased whole genome-wide screen using poy(U) chromatography and thermal elution. We identified hundreds of mRNAs regulated by GLD4, several of which are involved in carbohydrate metabolism including GLUT1, a major glucose transporter. Depletion of GLD4 not only reduced GLUT1 poly(A) tail length, but also GLUT1 protein. GLD4-mediated translational control of GLUT1 mRNA is dependent of an RNA binding protein, CPEB1, and its binding elements in the 3΄ UTR. Through regulating GLUT1 level, GLD4 affects glucose uptake into cells and lactate levels. Moreover, GLD4 depletion impairs glucose deprivation-induced GLUT1 up-regulation. In addition, we found that GLD4 affects glucose-dependent cellular phenotypes such as migration and invasion in glioblastoma cells. Our observations delineate a novel post-transcriptional regulatory network involving carbohydrate metabolism and glucose homeostasis mediated by GLD4.
Collapse
Affiliation(s)
- Jihae Shin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ki Young Paek
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Maria Ivshina
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Emily E Stackpole
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
39
|
Glucose insult elicits hyperactivation of cancer stem cells through miR-424-cdc42-prdm14 signalling axis. Br J Cancer 2017; 117:1665-1675. [PMID: 29024936 PMCID: PMC5729435 DOI: 10.1038/bjc.2017.335] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/28/2017] [Accepted: 08/30/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Meta-analysis shows that women with diabetes have a 20% increased risk of breast cancer and also an increased risk for distant metastasis and mortality. The molecular mechanisms for distant metastasis and mortality in breast cancer patients with diabetes are not very well understood. METHODS We compared the effect of physiological (5 mM) and diabetic (10 mM) levels of glucose on malignant breast epithelial cell invasion and stemness capabilities. We performed microRNA array to determine the dysregulated microRNAs in hyperglycaemic conditions and performed functional and molecular analysis of the gene targets. RESULTS Hyperglycaemia leads to hyperactivation of cancer stem cell pool and enhances invasive ability of breast cancer cells. MiR-424 seems to be a key regulator of cancer cell stemness and invasion. Knockdown of miR-424 in cancer cells under euglycaemic conditions leads to enhanced invasion and stem cell activity, whereas ectopic expression of miR-424 in cancer cells under hyperglycaemic conditions results in suppressed invasion and stem cell activity. Cdc42, a target of miR-424, influences cancer stem cell activity by positively regulating prdm14 through activation of pak1 (p-21-activated kinase 1) and stat5. CONCLUSIONS Our findings establish miR-424→︀cdc42→︀prdm14 axis as a key molecular signalling cascade that might influence breast cancer progression in diabetic patients through hyperactivation of cancer stem cells.
Collapse
|
40
|
Pan S, An L, Meng X, Li L, Ren F, Guan Y. MgCl 2 and ZnCl 2 promote human umbilical vein endothelial cell migration and invasion and stimulate epithelial-mesenchymal transition via the Wnt/β-catenin pathway. Exp Ther Med 2017; 14:4663-4670. [PMID: 29201165 PMCID: PMC5704337 DOI: 10.3892/etm.2017.5144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 02/24/2017] [Indexed: 02/06/2023] Open
Abstract
Previous studies have demonstrated that magnesium and zinc ions promote the migration and epithelial-mesenchymal transition (EMT) of cancer/endothelial cells. However, the impact of MgCl2 and ZnCl2 on the migration, invasion and EMT of human umbilical vein endothelial cells (HUVECs) and the involved mechanisms remain unclear. In the present study, HUVECs were incubated with various doses of MgCl2 and ZnCl2. The optimum concentrations of MgCl2 and ZnCl2 were selected by MTT assay. The migration and invasion capabilities of HUVECs were analyzed by Transwell assays. Subsequently, the expression of matrix metalloproteinase (MMP)-2 and MMP-9 mRNA and protein were determined by reverse transcription-quantitative polymerase chain reaction, western blotting and ELISA. MMP-2 and MMP-9 activities were measured by gelatin zymography. Immunofluorescence staining was performed to investigate cytoskeletal dynamics using Acti-stain™ 488 Fluorescent Phalloidin. Subsequently, the expression of EMT-related markers at the mRNA and protein levels and the activation of Wnt/β-catenin signaling were analyzed. The results identified increases in MMP-2 and MMP-9 expression and activity, indicating that MgCl2 and ZnCl2 promoted HUVEC migration and invasion. In addition, MgCl2 and ZnCl2 treatment induced cytoskeleton remodeling and stimulated EMT via activation of the Wnt/β-catenin signaling pathway, characterized by a decrease in E-cadherin and increases in N-cadherin, vimentin and Snail. These results suggest that MgCl2 and ZnCl2 may enhance the migration and invasion capabilities of HUVECs and promote EMT through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Shuang Pan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Liwen An
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Liming Li
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110819, P.R. China
| | - Fu Ren
- Department of Anatomy, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yifu Guan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
41
|
Matsui C, Takatani-Nakase T, Hatano Y, Kawahara S, Nakase I, Takahashi K. Zinc and its transporter ZIP6 are key mediators of breast cancer cell survival under high glucose conditions. FEBS Lett 2017; 591:3348-3359. [DOI: 10.1002/1873-3468.12797] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/09/2017] [Accepted: 08/13/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Chihiro Matsui
- Department of Pharmaceutics; School of Pharmacy and Pharmaceutical Sciences; Mukogawa Women's University; Nishinomiya Hyogo Japan
| | - Tomoka Takatani-Nakase
- Department of Pharmaceutics; School of Pharmacy and Pharmaceutical Sciences; Mukogawa Women's University; Nishinomiya Hyogo Japan
| | - Yuki Hatano
- Department of Pharmaceutics; School of Pharmacy and Pharmaceutical Sciences; Mukogawa Women's University; Nishinomiya Hyogo Japan
| | - Satomi Kawahara
- Department of Pharmaceutics; School of Pharmacy and Pharmaceutical Sciences; Mukogawa Women's University; Nishinomiya Hyogo Japan
| | - Ikuhiko Nakase
- Nanoscience and Nanotechnology Research Center; Research Organization for the 21st Century; Osaka Prefecture University; Sakai Japan
| | - Koichi Takahashi
- Department of Pharmaceutics; School of Pharmacy and Pharmaceutical Sciences; Mukogawa Women's University; Nishinomiya Hyogo Japan
| |
Collapse
|
42
|
Matou-Nasri S, Sharaf H, Wang Q, Almobadel N, Rabhan Z, Al-Eidi H, Yahya WB, Trivilegio T, Ali R, Al-Shanti N, Ahmed N. Biological impact of advanced glycation endproducts on estrogen receptor-positive MCF-7 breast cancer cells. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2808-2820. [PMID: 28712835 DOI: 10.1016/j.bbadis.2017.07.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 01/05/2023]
Abstract
Diabetes mellitus potentiates the risk of breast cancer. We have previously described the pro-tumorigenic effects of advanced glycation endproducts (AGEs) on estrogen receptor (ER)-negative MDA-MB-231 breast cancer cell line mediated through the receptor for AGEs (RAGE). However, a predominant association between women with ER-positive breast cancer and type 2 diabetes mellitus has been reported. Therefore, we have investigated the biological impact of AGEs on ER-positive human breast cancer cell line MCF-7 using in vitro cell-based assays including cell count, migration, and invasion assays. Western blot, FACS analyses and quantitative real time-PCR were also performed. We found that AGEs at 50-100μg/mL increased MCF-7 cell proliferation and cell migration associated with an enhancement of pro-matrix metalloproteinase (MMP)-9 activity, without affecting their poor invasiveness. However, 200μg/mL AGEs inhibited MCF-7 cell proliferation through induction of apoptosis indicated by caspase-3 cleavage detected using Western blotting. A phospho-protein array analysis revealed that AGEs mainly induce the phosphorylation of extracellular-signal regulated kinase (ERK)1/2 and cAMP response element binding protein-1 (CREB1), both signaling molecules considered as key regulators of AGEs pro-tumorigenic effects. We also showed that AGEs up-regulate RAGE and ER expression at the protein and transcript levels in MCF-7 cells, in a RAGE-dependent manner after blockade of AGEs/RAGE interaction using neutralizing anti-RAGE antibody. Throughout the study, BSA had no effect on cellular processes. These findings pave the way for future studies investigating whether the exposure of AGEs-treated ER-positive breast cancer cells to estrogen could lead to a potentiation of breast cancer development and progression.
Collapse
Affiliation(s)
- Sabine Matou-Nasri
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia.
| | - Hana Sharaf
- School of Healthcare Science, Manchester Metropolitan University, Manchester, M1 5GD, United Kingdom
| | - Qiuyu Wang
- School of Healthcare Science, Manchester Metropolitan University, Manchester, M1 5GD, United Kingdom
| | - Nasser Almobadel
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Zaki Rabhan
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Hamad Al-Eidi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Wesam Bin Yahya
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Thadeo Trivilegio
- Core Facility, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Rizwan Ali
- Core Facility, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Nasser Al-Shanti
- School of Healthcare Science, Manchester Metropolitan University, Manchester, M1 5GD, United Kingdom
| | - Nessar Ahmed
- School of Healthcare Science, Manchester Metropolitan University, Manchester, M1 5GD, United Kingdom..
| |
Collapse
|
43
|
Hou Y, Zhou M, Xie J, Chao P, Feng Q, Wu J. High glucose levels promote the proliferation of breast cancer cells through GTPases. BREAST CANCER-TARGETS AND THERAPY 2017; 9:429-436. [PMID: 28670141 PMCID: PMC5479300 DOI: 10.2147/bctt.s135665] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hyperglycemia or diabetes mellitus (DM), which is characterized by high blood glucose levels, has been linked to an increased risk of cancer for years. However, the underlying molecular mechanisms of the pathophysiological link are not yet fully understood. In this study, we demonstrate that high glucose levels promote the proliferation of breast cancer cells by stimulating epidermal growth factor receptor (EGFR) activation and the Rho family GTPase Rac1 and Cdc42 mediate the corresponding signaling induced by high glucose levels. We further show that Cdc42 promotes EGFR phosphorylation by blocking EGFR degradation, which may be mediated by the Cbl proteins, whereas the Rac1-mediated EGFR phosphorylation is independent of EGFR degradation. Our findings elucidate a part of the underlying molecular mechanism of the link between high glucose levels and tumorigenesis in breast cancer and may provide new insights on the therapeutic strategy for cancer patients with diabetes or hyperglycemia.
Collapse
Affiliation(s)
- Yilin Hou
- Department of Endocrinology, The Third Hospital of Wuhan (Tongren Hospital of Wuhan University), Wuhan, People's Republic of China
| | - Man Zhou
- Department of Endocrinology, The Third Hospital of Wuhan (Tongren Hospital of Wuhan University), Wuhan, People's Republic of China
| | - Jing Xie
- Department of Endocrinology, The Third Hospital of Wuhan (Tongren Hospital of Wuhan University), Wuhan, People's Republic of China
| | - Ping Chao
- Department of Endocrinology, The Third Hospital of Wuhan (Tongren Hospital of Wuhan University), Wuhan, People's Republic of China
| | - Qiyu Feng
- Eastern Hepatobiliary Surgery Institute, National Center for Liver Cancer, Shanghai, People's Republic of China
| | - Jun Wu
- Department of Endocrinology, The Third Hospital of Wuhan (Tongren Hospital of Wuhan University), Wuhan, People's Republic of China
| |
Collapse
|
44
|
Viedma-Rodríguez R, Martínez-Hernández MG, Flores-López LA, Baiza-Gutman LA. Epsilon-aminocaproic acid prevents high glucose and insulin induced-invasiveness in MDA-MB-231 breast cancer cells, modulating the plasminogen activator system. Mol Cell Biochem 2017; 437:65-80. [PMID: 28612231 DOI: 10.1007/s11010-017-3096-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/08/2017] [Indexed: 01/01/2023]
Abstract
Obesity and type II diabetes mellitus have contributed to the increase of breast cancer incidence worldwide. High glucose concentration promotes the proliferation of metastatic cells, favoring the activation of the plasminogen/plasmin system, thus contributing to tumor progression. The efficient formation of plasmin is dependent on the binding of plasminogen to the cell surface. We studied the effect of ε-aminocaproic acid (EACA), an inhibitor of the binding of plasminogen to cell surface, on proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and plasminogen activation system, in metastatic MDA-MB-231 breast cancer cells grown in a high glucose microenvironment and treated with insulin. MDA-MB-231 cells were treated with EACA 12.5 mmol/L under high glucose 30 mmol/L (HG) and high glucose and insulin 80 nmol/L (HG-I) conditions, evaluating: cell population growth, % of viability, migratory, and invasive abilities, as well as the expression of uPA, its receptor (uPAR), and its inhibitor (PAI-1), by real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blot, MMP-2 and MMP-9 mRNAs were evaluated by RT-PCR. Markers of EMT were evaluated by Western blot. Additionally, the presence of active uPA was studied by gel zymography, using casein-plasminogen as substrates. EACA prevented the increase in cell population, migration and invasion induced by HG and insulin, which was associated with the inhibition of EMT and the attenuation of HG- and insulin-dependent expression of uPA, uPAR, PAI-1, MMP-2, MMP-9, α-enolase (ENO A), and HCAM. The interaction of plasminogen to the cell surface and plasmin formation are mediators of the prometastasic action of hyperglycemia and insulin, potentially, EACA can be employed in the prevention and as adjuvant treatment of breast tumorigenesis promoted by hyperglycemia and insulin.
Collapse
Affiliation(s)
- Rubí Viedma-Rodríguez
- Unidad de Morfofisiología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Estado de México, Mexico
| | - María Guadalupe Martínez-Hernández
- Unidad de Morfofisiología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Estado de México, Mexico
| | - Luis Antonio Flores-López
- Unidad de Morfofisiología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Estado de México, Mexico
| | - Luis Arturo Baiza-Gutman
- Unidad de Morfofisiología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Estado de México, Mexico.
| |
Collapse
|
45
|
Phoomak C, Vaeteewoottacharn K, Silsirivanit A, Saengboonmee C, Seubwai W, Sawanyawisuth K, Wongkham C, Wongkham S. High glucose levels boost the aggressiveness of highly metastatic cholangiocarcinoma cells via O-GlcNAcylation. Sci Rep 2017; 7:43842. [PMID: 28262738 PMCID: PMC5338328 DOI: 10.1038/srep43842] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/30/2017] [Indexed: 02/08/2023] Open
Abstract
Increased glucose utilization is a feature of cancer cells to support cell survival, proliferation, and metastasis. An association between diabetes mellitus and cancer progression was previously demonstrated in cancers including cholangiocarcinoma (CCA). This study was aimed to determine the effects of high glucose on protein O-GlcNAcylation and metastatic potentials of CCA cells. Two pairs each of the parental low metastatic and highly metastatic CCA sublines were cultured in normal (5.6 mM) or high (25 mM) glucose media. The migration and invasion abilities were determined and underlying mechanisms were explored. Results revealed that high glucose promoted migration and invasion of CCA cells that were more pronounced in the highly metastatic sublines. Concomitantly, high glucose increased global O-GlcNAcylated proteins, the expressions of vimentin, hexokinase, glucosamine-fructose-6-phosphate amidotransferase (GFAT) and O-GlcNAc transferase of CCA cells. The glucose level that promoted migration/invasion was shown to be potentiated by the induction of GFAT, O-GlcNAcylation and an increase of O-GlcNAcylated vimentin and vimentin expression. Treatment with a GFAT inhibitor reduced global O-GlcNAcylated proteins, vimentin expression, and alleviated cell migration. Altogether, these results suggested the role of high glucose enhanced CCA metastasis via modulation of O-GlcNAcylation, through the expressions of GFAT and vimentin.
Collapse
Affiliation(s)
- Chatchai Phoomak
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kulthida Vaeteewoottacharn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wunchana Seubwai
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
46
|
Minchenko DO, Riabovol OO, Ratushna OO, Minchenko OH. Hypoxic regulation of the expression of genes encoded estrogen related proteins in U87 glioma cells: eff ect of IRE1 inhibition. Endocr Regul 2017; 51:8-19. [PMID: 28222026 DOI: 10.1515/enr-2017-0002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The aim of the present study was to examine the effect of inhibition of endoplasmic reticulum stress signaling, mediated by IRE1 (inositol requiring enzyme 1), which is a central mediator of the unfolded protein response on the expression of genes encoded estrogen related proteins (NRIP1/RIP140, TRIM16/EBBP, ESRRA/NR3B1, FAM162A/E2IG5, PGRMC2/PMBP, and SLC39A6/LIV-1) and their hypoxic regulation in U87 glioma cells for evaluation of their possible significance in the control of glioma cells proliferation. METHODS The expression of NRIP1, EBBP, ESRRA, E2IG5, PGRMC2, and SLC39A6 genes in U87 glioma cells, transfected by empty vector pcDNA3.1 (control) and cells without IRE1 signaling enzyme function (transfected by dnIRE1) upon hypoxia, was studied by a quantitative polymerase chain reaction. RESULTS Inhibition of both enzymatic activities (kinase and endoribonuclease) of IRE1 signaling enzyme function up-regulates the expression of EBBP, E2IG5, PGRMC2, and SLC39A6 genes is in U87 glioma cells in comparison with the control glioma cells, with more significant changes for E2IG5 and PGRMC2 genes. At the same time, the expression of NRIP1 and ESRRA genes is strongly down-regulated in glioma cells upon inhibition of IRE1. We also showed that hypoxia increases the expression of E2IG5, PGRMC2, and EBBP genes and decreases NRIP1 and ESRRA genes expression in control glioma cells. Furthermore, the inhibition of IRE1 in U87 glioma cells decreases the eff ect of hypoxia on the expression of E2IG5 and PGRMC2 genes, eliminates hypoxic regulation of NRIP1 gene, and enhances the sensitivity of ESRRA gene to hypoxic condition. Furthermore, the expression of SLC39A6 gene is resistant to hypoxia in both the glioma cells with and without IRE1 signaling enzyme function. CONCLUSIONS Results of this investigation demonstrate that inhibition of IRE1 signaling enzyme function affects the expression of NRIP1, EBBP, ESRRA, E2IG5, PGRMC2, and SLC39A6 genes in U87 glioma cells in gene specific manner and these changes possibly contribute to the suppression of the cell proliferation. Most of these genes are regulated by hypoxia and preferentially through IRE1 signaling pathway of endoplasmic reticulum stress.
Collapse
Affiliation(s)
- D O Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Pediatrics, National Bohomolets Medical University, Kyiv, Ukraine
| | - O O Riabovol
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - O O Ratushna
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - O H Minchenko
- Department of Molecular Biology, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
47
|
Investigation of the Influence of Glucose Concentration on Cancer Cells by Using a Microfluidic Gradient Generator without the Induction of Large Shear Stress. MICROMACHINES 2016; 7:mi7090155. [PMID: 30404324 PMCID: PMC6189924 DOI: 10.3390/mi7090155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 01/05/2023]
Abstract
A microfluidic device capable of precise chemical control is helpful to mimic tumor microenvironments in vitro, which are closely associated with malignant progression, including metastasis. Cancer cells under a concentration gradient of oxygen and other sustenance materials inside a tumor in vivo have recently been reported to increase the probability of metastasis. The influence of glucose concentration on cancer cells has not been measured well, whereas that of oxygen concentration has been thoroughly examined using microfluidic devices. This is because glucose concentrations can be controlled using microfluidic concentration gradient generators, which trade off temporal stability of the glucose concentration and shear stress on the cells; by contrast, oxygen concentration can be easily controlled without microfluidic device-induced shear stresses. To study cell division and migration responses as a function of glucose concentration, we developed a microfluidic device to observe cell behaviors under various chemical conditions. The device has small-cross-section microchannels for generating a concentration gradient and a large-cross-section chamber for cell culture. With this design, the device can achieve both a cell culture with sufficiently low shear stress on cell activity and a stable glucose concentration gradient. Experiments revealed that a low glucose concentration increased the total migration length of HeLa cells and that HeLa cells under a glucose concentration gradient exhibit random motion rather than chemotaxis.
Collapse
|
48
|
Li F, Abuarab N, Sivaprasadarao A. Reciprocal regulation of actin cytoskeleton remodelling and cell migration by Ca2+ and Zn2+: role of TRPM2 channels. J Cell Sci 2016; 129:2016-29. [PMID: 27068538 DOI: 10.1242/jcs.179796] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 04/01/2016] [Indexed: 12/26/2022] Open
Abstract
Cell migration is a fundamental feature of tumour metastasis and angiogenesis. It is regulated by a variety of signalling molecules including H2O2 and Ca(2+) Here, we asked whether the H2O2-sensitive transient receptor potential melastatin 2 (TRPM2) Ca(2+) channel serves as a molecular link between H2O2 and Ca(2+) H2O2-mediated activation of TRPM2 channels induced filopodia formation, loss of actin stress fibres and disassembly of focal adhesions, leading to increased migration of HeLa and prostate cancer (PC)-3 cells. Activation of TRPM2 channels, however, caused intracellular release of not only Ca(2+) but also of Zn(2+) Intriguingly, elevation of intracellular Zn(2+) faithfully reproduced all of the effects of H2O2, whereas Ca(2+) showed opposite effects. Interestingly, H2O2 caused increased trafficking of Zn(2+)-enriched lysosomes to the leading edge of migrating cells, presumably to impart polarisation of Zn(2+) location. Thus, our results indicate that a reciprocal interplay between Ca(2+) and Zn(2+) regulates actin remodelling and cell migration; they call for a revision of the current notion that implicates an exclusive role for Ca(2+) in cell migration.
Collapse
Affiliation(s)
- Fangfang Li
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| | - Nada Abuarab
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| | - Asipu Sivaprasadarao
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
49
|
Saengboonmee C, Seubwai W, Pairojkul C, Wongkham S. High glucose enhances progression of cholangiocarcinoma cells via STAT3 activation. Sci Rep 2016; 6:18995. [PMID: 26743134 PMCID: PMC4705543 DOI: 10.1038/srep18995] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/30/2015] [Indexed: 02/07/2023] Open
Abstract
Epidemiological studies have indicated diabetes mellitus (DM) as a risk of cholangiocarcinoma (CCA), however, the effects and mechanisms of high glucose on progression of CCA remain unclear. This study reports for the first time of the enhancing effects of high glucose on aggressive phenotypes of CCA cells via STAT3 activation. CCA cells cultured in high glucose media exerted significantly higher rates of cell proliferation, adhesion, migration and invasion than those cultured in normal glucose. The phosphokinase array revealed STAT3 as the dominant signal activated in response to high glucose. Increased nuclear STAT3, p-STAT3 and its downstream target proteins, cyclin D1, vimentin and MMP2, were shown to be underling mechanisms of high glucose stimulation. The link of high glucose and STAT3 activation was confirmed in tumor tissues from CCA patients with DM that exhibited higher STAT3 activation than those without DM. Moreover, the levels of STAT3 activation were correlated with the levels of blood glucose. Finally, decreasing the level of glucose or using a STAT3 inhibitor could reduce the effects of high glucose. These findings suggest that controlling blood glucose or using a STAT3 inhibitor as an alternative approach may improve the therapeutic outcome of CCA patients with DM.
Collapse
Affiliation(s)
- Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wunchana Seubwai
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chawalit Pairojkul
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
50
|
Bostanci Z, Mack RP, Enomoto LM, Alam S, Brown A, Neumann C, Soybel DI, Kelleher SL. Marginal zinc intake reduces the protective effect of lactation on mammary gland carcinogenesis in a DMBA-induced tumor model in mice. Oncol Rep 2015; 35:1409-16. [PMID: 26707944 DOI: 10.3892/or.2015.4508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/06/2015] [Indexed: 11/05/2022] Open
Abstract
Breastfeeding can reduce breast cancer risk; however, unknown factors modify this protective effect. Zinc (Zn) modulates an array of cellular functions including oxidative stress, cell proliferation, motility and apoptosis. Marginal Zn intake is common in women and is associated with breast cancer. We reported that marginal Zn intake in mice leads to mammary gland hypoplasia and hallmarks of pre-neoplastic lesions. In the present study, we tested the hypothesis that marginal Zn intake confounds the protective effect of lactation on breast cancer. Nulliparous mice fed control (ZA, 30 mg Zn/kg) or a marginal Zn diet (ZD, 15 mg Zn/kg), were bred and offspring were weaned naturally. Post-involution, mice were gavaged with corn oil or 7,12-dimethylbenz(a)anthracene (DMBA, 1 mg/wk for 4 weeks) and tumor development was monitored. A ZD diet led to insufficient involution, increased fibrosis and oxidative stress. Following DMBA treatment, mice fed ZD had higher oxidative stress in mammary tissue that correlated with reduced levels of peroxiredoxin-1 and p53 and tended to have shorter tumor latency and greater incidence of non-palpable tumors. In summary, marginal Zn intake creates a toxic mammary gland microenvironment and abrogates the protective effect of lactation on carcinogenesis.
Collapse
Affiliation(s)
- Zeynep Bostanci
- Department of Surgery, The Pennsylvania State University Hershey College of Medicine, Hershey, PA 17033, USA
| | - Ronald P Mack
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, P.R. China
| | - Laura M Enomoto
- Department of Surgery, The Pennsylvania State University Hershey College of Medicine, Hershey, PA 17033, USA
| | - Samina Alam
- Department of Surgery, The Pennsylvania State University Hershey College of Medicine, Hershey, PA 17033, USA
| | - Ashley Brown
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Carola Neumann
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - David I Soybel
- Department of Surgery, The Pennsylvania State University Hershey College of Medicine, Hershey, PA 17033, USA
| | - Shannon L Kelleher
- Department of Surgery, The Pennsylvania State University Hershey College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|