1
|
Zhang J, Jiang H, Liu S, Xian Z, Zhao L, Li Y, Lu W, Shao C, Chai S. Bone marrow mesenchymal stem cells transport connexin43 via tunneling nanotubes to alleviate isopreterenol-induced myocardial hypertrophy. Stem Cell Res Ther 2025; 16:229. [PMID: 40329337 PMCID: PMC12057053 DOI: 10.1186/s13287-025-04339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Paracrine signaling plays an important role in stem cell therapy. However, it alone cannot fully explain the therapeutic mechanisms of stem cell therapy in treating heart diseases. Recently, tunneling nanotubes (TNTs)-a novel type of long-distance intercellular connectional structure-have been identified between mesenchymal stem cells (MSCs) and cardiomyocytes (CMs). TNTs mediate the transmission of multiple signaling molecules, enabling cells to exert different biological functions. In the present study, we investigated the role of TNTs in MSC-based therapy for myocardial hypertrophy. METHODS MSCs And CMs were co Cultured for 24 h with or without isopreterenol (ISO) to induce myocardial hypertrophy. Confocal microscopy was used to quantify and analyze the number, morphology, composition, and cell source of TNTs between MSCs and CMs. the effects of ISO on CMs were assessed by comparing cell area (measured by confocal microscopy) and expression levels of hypertrophy Related genes (using qRT PCR) under co Culture and trans Well culture conditions. Flow cytometry was employed to assess the transfer of connexin43 (Cx43) from MSCs to CMs; lentivirus Mediated Cx43 overexpression and Cx43 siRNA were used to investigate the effects of Cx43 on ISO Induced myocardial hypertrophy. RESULTS ISO stimulation significantly increased the number, length, and thickness of TNTs between MSCs and CMs (Number: P < 0.05; length and thickness: P < 0.01). ISO also increased the proportion of TNTs containing microtubules and those derived from MSCs (P < 0.05). Co-culture conditions were more effective than trans-well culture in alleviating ISO-induced myocardial hypertrophy (P < 0.05). Furthermore, Cx43 was observed in TNTs, and ISO enhanced the transfer of Cx43-mCherry from MSCs to co-cultured CMs (P < 0.05). Overexpression of Cx43 in CMs alleviated myocardial hypertrophy, whereas knocking down of Cx43 in MSCs reduced their ability to alleviate myocardial hypertrophy (P < 0.05). CONCLUSIONS Our results demonstrate that ISO promotes the formation of TNTs, particularly between MSCs and CMs, and induces changes in the morphology of TNTs (thickening and lengthening). Additionally, MSCs transmitted Cx43 to CMs via TNTs, which contributes to the alleviation of ISO-induced myocardial hypertrophy. These results suggest that TNTs represent an important mechanism in MSC-mediated therapy for myocardial hypertrophy.
Collapse
Affiliation(s)
- Jianghui Zhang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Ministry of Education, Beijing, China.
- Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China.
| | - Hongfeng Jiang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Ministry of Education, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Sa Liu
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Ministry of Education, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Zhong Xian
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Ministry of Education, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Limin Zhao
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Ministry of Education, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Yue Li
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Ministry of Education, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Wenxiu Lu
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Ministry of Education, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Changrong Shao
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Ministry of Education, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Disease, Beijing, China
| | - Sanbao Chai
- Department of Endocrinology and Metabolism, Peking University International Hospital, Beijing, China.
| |
Collapse
|
2
|
Guo Y, Cheng D, Yu ZY, Schiatti T, Chan AY, Hill AP, Peyronnet R, Feneley MP, Cox CD, Martinac B. Functional coupling between Piezo1 and TRPM4 influences the electrical activity of HL-1 atrial myocytes. J Physiol 2024; 602:4363-4386. [PMID: 38098265 DOI: 10.1113/jp284474] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 11/30/2023] [Indexed: 09/25/2024] Open
Abstract
The transient receptor potential melastatin 4 (TRPM4) channel contributes extensively to cardiac electrical activity, especially cardiomyocyte action potential formation. Mechanical stretch can induce changes in heart rate and rhythm, and the mechanosensitive channel Piezo1 is expressed in many cell types within the myocardium. Our previous study showed that TRPM4 and Piezo1 are closely co-localized in the t-tubules of ventricular cardiomyocytes and contribute to the Ca2+-dependent signalling cascade that underlies hypertrophy in response to mechanical pressure overload. However, there was no direct evidence showing that Piezo1 activation was related to TRPM4 activation in situ. In the present study, we employed the HL-1 mouse atrial myocyte-like cell line as an in vitro model to investigate whether Piezo1-TRPM4 coupling can affect action potential properties. We used the small molecule Piezo1 agonist, Yoda1, as a surrogate for mechanical stretch to activate Piezo1 and detected the action potential changes in HL-1 cells using FluoVolt, a fluorescent voltage sensitive dye. Our results demonstrate that Yoda1-induced activation of Piezo1 changes the action potential frequency in HL-1 cells. This change in action potential frequency is reduced by Piezo1 knockdown using small intefering RNA. Importantly knockdown or pharmacological inhibition of TRPM4 significantly affected the degree to which Yoda1-evoked Piezo1 activation influenced action potential frequency. Thus, the present study provides in vitro evidence of a functional coupling between Piezo1 and TRPM4 in a cardiomyocyte-like cell line. The coupling of a mechanosensitive Ca2+ permeable channel and a Ca2+-activated TRP channel probably represents a ubiquitous model for the role of TRP channels in mechanosensory transduction. KEY POINTS: The transient receptor potential melastatin 4 (TRPM4) and Piezo1 channels have been confirmed to contribute to the Ca2+-dependent signalling cascade that underlies cardiac hypertrophy in response to mechanical pressure overload. However, there was no direct evidence showing that Piezo1 activation was related to TRPM4 activation in situ. We employed the HL-1 mouse atrial myocyte-like cell line as an in vitro model to investigate the effect of Piezo1-TRPM4 coupling on cardiac electrical properties. The results show that both pharmacological and genetic inhibition of TRPM4 significantly affected the degree to which Piezo1 activation influenced action potential frequency in HL-1 cells. Our findings provide in vitro evidence of a functional coupling between Piezo1 and TRPM4 in a cardiomyocyte-like cell line. The coupling of a mechanosensitive Ca2+ permeable channel and a Ca2+-activated TRP channel probably represents a ubiquitous model for the role of TRP channels in mechanosensory transduction in various (patho)physiological processes.
Collapse
Affiliation(s)
- Yang Guo
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Delfine Cheng
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Ze-Yan Yu
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Teresa Schiatti
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Y Chan
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Adam P Hill
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael P Feneley
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Cardiology, St Vincent's Hospital, Sydney, NSW, Australia
| | - Charles D Cox
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
3
|
Klimovič Š, Beckerová D, Věžník J, Kabanov D, Lacina K, Jelinkova S, Gumulec J, Rotrekl V, Přibyl J. Hyaluronic acid-based hydrogels with tunable mechanics improved structural and contractile properties of cells. BIOMATERIALS ADVANCES 2024; 159:213819. [PMID: 38430724 DOI: 10.1016/j.bioadv.2024.213819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Extracellular matrix (ECM) regulates cellular responses through mechanotransduction. The standard approach of in vitro culturing on plastic surfaces overlooks this phenomenon, so there is a need for biocompatible materials that exhibit adjustable mechanical and structural properties, promote cell adhesion and proliferation at low cost and for use in 2D or 3D cell cultures. This study presents a new tunable hydrogel system prepared from high-molecular hyaluronic acid (HA), Bovine serum albumin (BSA), and gelatin cross-linked using EDC/NHS. Hydrogels with Young's moduli (E) ranging from subunit to units of kilopascals were prepared by gradually increasing HA and BSA concentrations. Concentrated high-molecular HA network led to stiffer hydrogel with lower cluster size and swelling capacity. Medium and oxygen diffusion capability of all hydrogels showed they are suitable for 3D cell cultures. Mechanical and structural changes of mouse embryonic fibroblasts (MEFs) on hydrogels were compared with cells on standard cultivation surfaces. Experiments showed that hydrogels have suitable mechanical and cell adhesion capabilities, resulting in structural changes of actin filaments. Lastly, applying hydrogel for a more complex HL-1 cell line revealed improved mechanical and electrophysiological contractile properties.
Collapse
Affiliation(s)
- Šimon Klimovič
- CEITEC, Masaryk University, Brno, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Deborah Beckerová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Jakub Věžník
- CEITEC, Masaryk University, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Daniil Kabanov
- CEITEC, Masaryk University, Brno, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Lacina
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jaromír Gumulec
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vladimír Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Přibyl
- CEITEC, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
4
|
Zhang Z, Luo Y, Ma Y, Zhou Y, Zhu D, Shen W, Liu J. Photocatalytic manipulation of Ca 2+ signaling for regulating cellular and animal behaviors via MOF-enabled H 2O 2 generation. SCIENCE ADVANCES 2024; 10:eadl0263. [PMID: 38640246 PMCID: PMC11029810 DOI: 10.1126/sciadv.adl0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/18/2024] [Indexed: 04/21/2024]
Abstract
The in situ generation of H2O2 in cells in response to external stimulation has exceptional advantages in modulating intracellular Ca2+ dynamics, including high controllability and biological safety, but has been rarely explored. Here, we develop photocatalyst-based metal-organic frameworks (DCSA-MOFs) to modulate Ca2+ responses in cells, multicellular spheroids, and organs. By virtue of the efficient photocatalytic oxygen reduction to H2O2 without sacrificial agents, photoexcited DCSA-MOFs can rapidly trigger Ca2+ outflow from the endoplasmic reticulum with single-cell precision in a repeatable and controllable manner, enabling the propagation of intercellular Ca2+ waves (ICW) over long distances in two-dimensional and three-dimensional cell cultures. After photoexcitation, ICWs induced by DCSA-MOFs can activate neural activities in the optical tectum of tadpoles and thighs of spinal frogs, eliciting the corresponding motor behaviors. Our study offers a versatile optical nongenetic modulation technique that enables remote, repeatable, and controlled manipulation of cellular and animal behaviors.
Collapse
Affiliation(s)
- Zherui Zhang
- College of Material, Chemistry, and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuhao Luo
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Yuanhong Ma
- College of Material, Chemistry, and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Yaofeng Zhou
- Westlake University, Shilongshan Rd. Cloud Town, Xihu District, Hangzhou, Zhejiang, China
| | - Dingcheng Zhu
- College of Material, Chemistry, and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Junqiu Liu
- College of Material, Chemistry, and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
5
|
Li J, Ma ZY, Cui YF, Cui YT, Dong XH, Wang YZ, Fu YY, Xue YD, Tong TT, Ding YZ, Zhu YM, Huang HJ, Zhao L, Lv HZ, Xiong LZ, Zhang K, Han YX, Ban T, Huo R. Cardiac-specific deletion of BRG1 ameliorates ventricular arrhythmia in mice with myocardial infarction. Acta Pharmacol Sin 2024; 45:517-530. [PMID: 37880339 PMCID: PMC10834533 DOI: 10.1038/s41401-023-01170-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/14/2023] [Indexed: 10/27/2023]
Abstract
Malignant ventricular arrhythmia (VA) after myocardial infarction (MI) is mainly caused by myocardial electrophysiological remodeling. Brahma-related gene 1 (BRG1) is an ATPase catalytic subunit that belongs to a family of chromatin remodeling complexes called Switch/Sucrose Non-Fermentable Chromatin (SWI/SNF). BRG1 has been reported as a molecular chaperone, interacting with various transcription factors or proteins to regulate transcription in cardiac diseases. In this study, we investigated the potential role of BRG1 in ion channel remodeling and VA after ischemic infarction. Myocardial infarction (MI) mice were established by ligating the left anterior descending (LAD) coronary artery, and electrocardiogram (ECG) was monitored. Epicardial conduction of MI mouse heart was characterized in Langendorff-perfused hearts using epicardial optical voltage mapping. Patch-clamping analysis was conducted in single ventricular cardiomyocytes isolated from the mice. We showed that BRG1 expression in the border zone was progressively increased in the first week following MI. Cardiac-specific deletion of BRG1 by tail vein injection of AAV9-BRG1-shRNA significantly ameliorated susceptibility to electrical-induced VA and shortened QTc intervals in MI mice. BRG1 knockdown significantly enhanced conduction velocity (CV) and reversed the prolonged action potential duration in MI mouse heart. Moreover, BRG1 knockdown improved the decreased densities of Na+ current (INa) and transient outward potassium current (Ito), as well as the expression of Nav1.5 and Kv4.3 in the border zone of MI mouse hearts and in hypoxia-treated neonatal mouse ventricular cardiomyocytes. We revealed that MI increased the binding among BRG1, T-cell factor 4 (TCF4) and β-catenin, forming a transcription complex, which suppressed the transcription activity of SCN5A and KCND3, thereby influencing the incidence of VA post-MI.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Zi-Yue Ma
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Yun-Feng Cui
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Ying-Tao Cui
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Xian-Hui Dong
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Yong-Zhen Wang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Yu-Yang Fu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Ya-Dong Xue
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Ting-Ting Tong
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Ying-Zi Ding
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Ya-Mei Zhu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Hai-Jun Huang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Ling Zhao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Hong-Zhao Lv
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Ling-Zhao Xiong
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Kai Zhang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Yu-Xuan Han
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China
| | - Tao Ban
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China.
- Heilongjiang Academy of Medical Sciences, Baojian Road, Nangang District, Harbin, 150081, China.
| | - Rong Huo
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Baojian Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
6
|
Ruf L, Bukowska A, Gardemann A, Goette A. Coagulation Factor Xa Has No Effects on the Expression of PAR1, PAR2, and PAR4 and No Proinflammatory Effects on HL-1 Cells. Cells 2023; 12:2849. [PMID: 38132169 PMCID: PMC10741780 DOI: 10.3390/cells12242849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Atrial fibrillation (AF), characterised by irregular high-frequency contractions of the atria of the heart, is of increasing clinical importance. The reasons are the increasing prevalence and thromboembolic complications caused by AF. So-called atrial remodelling is characterised, among other things, by atrial dilatation and fibrotic remodelling. As a result, AF is self-sustaining and forms a procoagulant state. But hypercoagulation not only appears to be the consequence of AF. Coagulation factors can exert influence on cells via protease-activated receptors (PAR) and thereby the procoagulation state could contribute to the development and maintenance of AF. In this work, the influence of FXa on Heart Like-1 (HL-1) cells, which are murine adult atrial cardiomyocytes (immortalized), was investigated. PAR1, PAR2, and PAR4 expression was detected. After incubations with FXa (5-50 nM; 4-24 h) or PAR1- and PAR2-agonists (20 µM; 4-24 h), no changes occurred in PAR expression or in the inflammatory signalling cascade. There were no time- or concentration-dependent changes in the phosphorylation of the MAP kinases ERK1/2 or the p65 subunit of NF-κB. In addition, there was no change in the mRNA expression of the cell adhesion molecules (ICAM-1, VCAM-1, fibronectin). Thus, FXa has no direct PAR-dependent effects on HL-1 cells. Future studies should investigate the influence of FXa on human cardiomyocytes or on other cardiac cell types like fibroblasts.
Collapse
Affiliation(s)
- Lukas Ruf
- Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Alicja Bukowska
- Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Andreas Gardemann
- Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Andreas Goette
- Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
- Department of Cardiology and Intensive Care Medicine, St. Vincenz-Hospital Paderborn, Am Busdorf 2, 33098 Paderborn, Germany
| |
Collapse
|
7
|
3D cell/scaffold model based on aligned-electrospun-nanofiber film/hydrogel multilayers for construction of anisotropic engineered tissue. Biointerphases 2022; 17:051002. [PMID: 36216595 DOI: 10.1116/6.0002058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Many tissues have a three-dimensional (3D) anisotropic structure compatible with their physiological functions. Engineering an in vitro 3D tissue having the natural structure and functions is a hotspot in tissue engineering with application for tissue regeneration, drug screening, and disease modeling. Despite various designs that have successfully guided the cellular alignment, only a few of them could precisely control the orientation of each layer in a multilayered construct or achieve adequate cell contact between layers. This study proposed a design of a multilayered 3D cell/scaffold model, that is, the cell-loaded aligned nanofiber film/hydrogel (ANF/Gel) model. The characterizations of the 3D cell-loaded ANF/Gel model in terms of design, construction, morphology, and cell behavior were systematically studied. The ANF was produced by efficiently aligned electrospinning using a self-designed, fast-and-easy collector, which was designed based on the parallel electrodes and modified with a larger gap area up to about 100 cm2. The nanofibers generated by this simple device presented numerous features like high orientation, uniformity in fiber diameter, and thinness. The ANF/Gel-based cell/scaffold model was formed by encapsulating cell-loaded multilayered poly(lactic-co-glycolic acid)-ANFs in hydrogel. Cells within the ANF/Gel model showed high viability and displayed aligned orientation and elongation in accordance with the nanofiber orientation in each film, forming a multilayered tissue having a layer spacing of 60 μm. This study provides a multilayered 3D cell/scaffold model for the in vitro construction of anisotropic engineered tissues, exhibiting potential applications in cardiac tissue engineering.
Collapse
|
8
|
Junge S, Schmieder F, Sasse P, Czarske J, Torres-Mapa ML, Heisterkamp A. Holographic optogenetic stimulation with calcium imaging as an all optical tool for cardiac electrophysiology. JOURNAL OF BIOPHOTONICS 2022; 15:e202100352. [PMID: 35397155 DOI: 10.1002/jbio.202100352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/25/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
All optical approaches to control and read out the electrical activity in a cardiac syncytium can improve our understanding of cardiac electrophysiology. Here, we demonstrate optogenetic stimulation of cardiomyocytes with high spatial precision using light foci generated with a ferroelectric spatial light modulator. Computer generated holograms binarized by bidirectional error diffusion create multiple foci with more even intensity distribution compared with thresholding approach. We evoke the electrical activity of cardiac HL1 cells expressing the channelrhodopsin-2 variant, ChR2(H134R) using single and multiple light foci and at the same time visualize the action potential using a calcium sensitive indicator called Cal-630. We show that localized regions in the cardiac monolayer can be stimulated enabling us to initiate signal propagation from a precise location. Furthermore, we demonstrate that probing the cardiac cells with multiple light foci enhances the excitability of the cardiac network. This approach opens new applications in manipulating and visualizing the electrical activity in a cardiac syncytium.
Collapse
Affiliation(s)
- Sebastian Junge
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Felix Schmieder
- Faculty of Electrical and Computer Engineering, Laboratory of Measurement and Sensor System Technique and Competence Center Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany
| | - Philipp Sasse
- Medical Faculty, Institute of Physiology I, University of Bonn, Bonn, Germany
| | - Jürgen Czarske
- Faculty of Electrical and Computer Engineering, Laboratory of Measurement and Sensor System Technique and Competence Center Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany
- Faculty of Physics, School of Science and Excellence Cluster Physics of Life, TU Dresden, Dresden, Germany
| | - Maria Leilani Torres-Mapa
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
9
|
Feiner R, Johns E, Antman-Passig M, Khan D, Witek L, Berisha N, Irie T, Oved H, White RM, Heller DA. Drug-Eluting Rubber Bands for Tissue Ligation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27675-27685. [PMID: 35670525 PMCID: PMC10015968 DOI: 10.1021/acsami.2c06175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rubber band ligation is a commonly used method for the removal of tissue abnormalities. Most often, rubber band ligation is performed to remove internal hemorrhoids unresponsive to first line treatments to avoid surgery. While the procedure is considered safe, patients experience mild to significant pain and discomfort until the tissue sloughs off. As patients often require multiple bandings and sessions, reducing these side effects can have a considerable effect on patient adherence and quality of life. To reduce pain and discomfort, we developed drug-eluting rubber bands for ligation procedures. We investigated the potential for a band to elute anesthetics and drug combinations to durably manage pain for a period of up to 5 days while exhibiting similar mechanical properties to conventional rubber bands. We show that the rubber bands retain their mechanical properties despite significant drug loading. Lidocaine, released from the bands, successfully altered the calcium dynamics of cardiomyocytes in vitro and modulated heart rate in zebrafish embryos, while the bands exhibited lower cytotoxicity than conventional bands. Ex vivo studies demonstrated substantial local drug release in enteric tissues. These latex-free bands exhibited sufficient mechanical and drug-eluting properties to serve both ligation and local analgesic functions, potentially enabling pain reduction for multiple indications.
Collapse
Affiliation(s)
- Ron Feiner
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065 USA
| | - Eleanor Johns
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, 10065, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, 10065 USA
| | - Merav Antman-Passig
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065 USA
| | - Doha Khan
- Division of Biomaterials – Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY, 10010, USA
| | - Lukasz Witek
- Division of Biomaterials – Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY, 10010, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, 11201, USA
| | - Naxhije Berisha
- The Graduate Center of the City University of New York, New York, NY, 10016, USA; Department of Nanotechnology, Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York, New York, NY, 10031, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065 USA
| | - Takeshi Irie
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065 USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065 USA
| | - Hadas Oved
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Richard M. White
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065 USA; Weill Cornell Medical College, New York, New York 10065, United States
| | | |
Collapse
|
10
|
Lagonegro P, Rossi S, Salvarani N, Lo Muzio FP, Rozzi G, Modica J, Bigi F, Quaretti M, Salviati G, Pinelli S, Alinovi R, Catalucci D, D'Autilia F, Gazza F, Condorelli G, Rossi F, Miragoli M. Synthetic recovery of impulse propagation in myocardial infarction via silicon carbide semiconductive nanowires. Nat Commun 2022; 13:6. [PMID: 35013167 PMCID: PMC8748722 DOI: 10.1038/s41467-021-27637-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 12/02/2021] [Indexed: 01/30/2023] Open
Abstract
Myocardial infarction causes 7.3 million deaths worldwide, mostly for fibrillation that electrically originates from the damaged areas of the left ventricle. Conventional cardiac bypass graft and percutaneous coronary interventions allow reperfusion of the downstream tissue but do not counteract the bioelectrical alteration originated from the infarct area. Genetic, cellular, and tissue engineering therapies are promising avenues but require days/months for permitting proper functional tissue regeneration. Here we engineered biocompatible silicon carbide semiconductive nanowires that synthetically couple, via membrane nanobridge formations, isolated beating cardiomyocytes over distance, restoring physiological cell-cell conductance, thereby permitting the synchronization of bioelectrical activity in otherwise uncoupled cells. Local in-situ multiple injections of nanowires in the left ventricular infarcted regions allow rapid reinstatement of impulse propagation across damaged areas and recover electrogram parameters and conduction velocity. Here we propose this nanomedical intervention as a strategy for reducing ventricular arrhythmia after acute myocardial infarction. Silicon-based materials have the ability to support bioelectrical activity. Here the authors show how injectable silicon carbide nanowires reduce arrhythmias and rapidly restore conduction in a myocardial infarction model.
Collapse
Affiliation(s)
- Paola Lagonegro
- Istituto dei Materiali per l'Elettronica e il Magnetismo (IMEM), National Research Council CNR, Parco Area delle Scienze 37/A, 43124, Parma, IT, Italy.,Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche (SCITEC-CNR), Via A. Corti 12, 20133, Milan, IT, Italy
| | - Stefano Rossi
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, Dipartimento di Medicina e Chirurgia Università di Parma, Via Gramsci 14, 43124, Parma, IT, Italy
| | - Nicolò Salvarani
- Humanitas Research Hospital - IRCCS, Via Manzoni 56, 20089, Rozzano (Milan), IT, Italy.,Istituto di Ricerca Genetica Biomedica (IRGB), National Research Council CNR, UOS Milan Via Fantoli 16/15, 20138, Milan, IT, Italy
| | - Francesco Paolo Lo Muzio
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, Dipartimento di Medicina e Chirurgia Università di Parma, Via Gramsci 14, 43124, Parma, IT, Italy.,Dipartimento di Scienze Chirurgiche Odontostomatologiche e Materno-Infantili, Università di Verona, Policlinico G.B. Rossi, - P.le L.A. Scuro 10, 37134, Verona, IT, Italy
| | - Giacomo Rozzi
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, Dipartimento di Medicina e Chirurgia Università di Parma, Via Gramsci 14, 43124, Parma, IT, Italy.,Humanitas Research Hospital - IRCCS, Via Manzoni 56, 20089, Rozzano (Milan), IT, Italy
| | - Jessica Modica
- Humanitas Research Hospital - IRCCS, Via Manzoni 56, 20089, Rozzano (Milan), IT, Italy.,Istituto di Ricerca Genetica Biomedica (IRGB), National Research Council CNR, UOS Milan Via Fantoli 16/15, 20138, Milan, IT, Italy
| | - Franca Bigi
- Istituto dei Materiali per l'Elettronica e il Magnetismo (IMEM), National Research Council CNR, Parco Area delle Scienze 37/A, 43124, Parma, IT, Italy.,Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze, 11/a - 43124, Parma, IT, Italy
| | - Martina Quaretti
- Istituto dei Materiali per l'Elettronica e il Magnetismo (IMEM), National Research Council CNR, Parco Area delle Scienze 37/A, 43124, Parma, IT, Italy.,Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze, 11/a - 43124, Parma, IT, Italy
| | - Giancarlo Salviati
- Istituto dei Materiali per l'Elettronica e il Magnetismo (IMEM), National Research Council CNR, Parco Area delle Scienze 37/A, 43124, Parma, IT, Italy
| | - Silvana Pinelli
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, Dipartimento di Medicina e Chirurgia Università di Parma, Via Gramsci 14, 43124, Parma, IT, Italy
| | - Rossella Alinovi
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, Dipartimento di Medicina e Chirurgia Università di Parma, Via Gramsci 14, 43124, Parma, IT, Italy
| | - Daniele Catalucci
- Humanitas Research Hospital - IRCCS, Via Manzoni 56, 20089, Rozzano (Milan), IT, Italy.,Istituto di Ricerca Genetica Biomedica (IRGB), National Research Council CNR, UOS Milan Via Fantoli 16/15, 20138, Milan, IT, Italy
| | - Francesca D'Autilia
- Humanitas Research Hospital - IRCCS, Via Manzoni 56, 20089, Rozzano (Milan), IT, Italy
| | - Ferdinando Gazza
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, via del Taglio 10, 43126, Parma, IT, Italy
| | - Gianluigi Condorelli
- Humanitas Research Hospital - IRCCS, Via Manzoni 56, 20089, Rozzano (Milan), IT, Italy.,Department of Biomedical Sciences Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele Milan, IT, Italy
| | - Francesca Rossi
- Istituto dei Materiali per l'Elettronica e il Magnetismo (IMEM), National Research Council CNR, Parco Area delle Scienze 37/A, 43124, Parma, IT, Italy
| | - Michele Miragoli
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, Dipartimento di Medicina e Chirurgia Università di Parma, Via Gramsci 14, 43124, Parma, IT, Italy. .,Humanitas Research Hospital - IRCCS, Via Manzoni 56, 20089, Rozzano (Milan), IT, Italy.
| |
Collapse
|
11
|
Human Induced Pluripotent Stem Cell as a Disease Modeling and Drug Development Platform-A Cardiac Perspective. Cells 2021; 10:cells10123483. [PMID: 34943991 PMCID: PMC8699880 DOI: 10.3390/cells10123483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
A comprehensive understanding of the pathophysiology and cellular responses to drugs in human heart disease is limited by species differences between humans and experimental animals. In addition, isolation of human cardiomyocytes (CMs) is complicated because cells obtained by biopsy do not proliferate to provide sufficient numbers of cells for preclinical studies in vitro. Interestingly, the discovery of human-induced pluripotent stem cell (hiPSC) has opened up the possibility of generating and studying heart disease in a culture dish. The combination of reprogramming and genome editing technologies to generate a broad spectrum of human heart diseases in vitro offers a great opportunity to elucidate gene function and mechanisms. However, to exploit the potential applications of hiPSC-derived-CMs for drug testing and studying adult-onset cardiac disease, a full functional characterization of maturation and metabolic traits is required. In this review, we focus on methods to reprogram somatic cells into hiPSC and the solutions for overcome immaturity of the hiPSC-derived-CMs to mimic the structure and physiological properties of the adult human CMs to accurately model disease and test drug safety. Finally, we discuss how to improve the culture, differentiation, and purification of CMs to obtain sufficient numbers of desired types of hiPSC-derived-CMs for disease modeling and drug development platform.
Collapse
|
12
|
Rossi S, Buccarello A, Caffarra Malvezzi C, Pinelli S, Alinovi R, Guerrero Gerboles A, Rozzi G, Leonardi F, Bollati V, De Palma G, Lagonegro P, Rossi F, Lottici PP, Poli D, Statello R, Macchi E, Miragoli M. Exposure to nanoparticles derived from diesel particulate filter equipped engine increases vulnerability to arrhythmia in rat hearts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117163. [PMID: 33910133 DOI: 10.1016/j.envpol.2021.117163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Air pollution is well recognized as a central player in cardiovascular disease. Exhaust particulate from diesel engines (DEP) is rich in nanoparticles and may contribute to the health effects of particulate matter in the environment. Moreover, diesel soot emitted by modern engines denotes defective surfaces alongside chemically-reactive sites increasing soot cytotoxicity. We recently demonstrated that engineered nanoparticles can cross the air/blood barrier and are capable to reach the heart. We hypothesize that DEP nanoparticles are pro-arrhythmogenic by direct interaction with cardiac cells. We evaluated the internalization kinetics and the effects of DEP, collected from Euro III (DEPe3, in the absence of Diesel Particulate Filter, DPF) and Euro IV (DEPe4, in the presence of DPF) engines, on alveolar and cardiac cell lines and on in situ rat hearts following DEP tracheal instillation. We observed significant differences in DEP size, metal and organic compositions derived from both engines. DEPe4 comprised ultrafine particles (<100 nm) and denoted a more pronounced toxicological outcome compared to DEPe3. In cardiomyocytes, particle internalization is fastened for DEPe4 compared to DEPe3. The in-vivo epicardial recording shows significant alteration of EGs parameters in both groups. However, the DEPe4-instilled group showed, compared to DEPe3, a significant increment of the effective refractory period, cardiac conduction velocity, and likelihood of arrhythmic events, with a significant increment of membrane lipid peroxidation but no increment in inflammation biomarkers. Our data suggest that DEPe4, possibly due to ultrafine nanoparticles, is rapidly internalized by cardiomyocytes resulting in an acute susceptibility to cardiac electrical disorder and arrhythmias that could accrue from cellular toxicity. Since the postulated transfer of nanoparticles from the lung to myocardial cells has not been investigated it remains open whether the effects on the cardiovascular function are the result of lung inflammatory reactions or due to particles that have reached the heart.
Collapse
Affiliation(s)
- Stefano Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy; CERT, Center of Excellence for Toxicological Research, University of Parma, Parma, Italy
| | - Andrea Buccarello
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rossella Alinovi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Giacomo Rozzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Humanitas Clinical and Research Center -IRCCS, 20090, Rozzano, Milan, Italy
| | - Fabio Leonardi
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milano, Italy
| | - Giuseppe De Palma
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Paola Lagonegro
- National Research Council (CNR), Istituto Dei Materiali per L'Elettronica Ed Il Magnetismo (IMEM), Parma, Italy
| | - Francesca Rossi
- National Research Council (CNR), Istituto Dei Materiali per L'Elettronica Ed Il Magnetismo (IMEM), Parma, Italy
| | - Pier Paolo Lottici
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Diana Poli
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, 00078, Monte Porzio Catone, Rome, Italy
| | - Rosario Statello
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Emilio Macchi
- CERT, Center of Excellence for Toxicological Research, University of Parma, Parma, Italy; Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Michele Miragoli
- Department of Medicine and Surgery, University of Parma, Parma, Italy; CERT, Center of Excellence for Toxicological Research, University of Parma, Parma, Italy; Humanitas Clinical and Research Center -IRCCS, 20090, Rozzano, Milan, Italy; National Research Council (CNR), Istituto di Ricerca Genetica e Biomedica (IRGB), Milan, Italy.
| |
Collapse
|
13
|
Martins-Marques T, Ribeiro-Rodrigues T, de Jager SC, Zuzarte M, Ferreira C, Cruz P, Reis L, Baptista R, Gonçalves L, Sluijter JP, Girao H. Myocardial infarction affects Cx43 content of extracellular vesicles secreted by cardiomyocytes. Life Sci Alliance 2020; 3:e202000821. [PMID: 33097557 PMCID: PMC7652393 DOI: 10.26508/lsa.202000821] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemic heart disease has been associated with an impairment on intercellular communication mediated by both gap junctions and extracellular vesicles. We have previously shown that connexin 43 (Cx43), the main ventricular gap junction protein, assembles into channels at the extracellular vesicle surface, mediating the release of vesicle content into target cells. Here, using a comprehensive strategy that included cell-based approaches, animal models and human patients, we demonstrate that myocardial ischemia impairs the secretion of Cx43 into circulating, intracardiac and cardiomyocyte-derived vesicles. In addition, we show that ubiquitin signals Cx43 release in basal conditions but appears to be dispensable during ischemia, suggesting an interplay between ischemia-induced Cx43 degradation and secretion. Overall, this study constitutes a step forward for the characterization of the signals and molecular players underlying vesicle protein sorting, with strong implications on long-range intercellular communication, paving the way towards the development of innovative diagnostic and therapeutic strategies for cardiovascular disorders.
Collapse
Affiliation(s)
- Tania Martins-Marques
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Saskia C de Jager
- Laboratory of Experimental Cardiology, University Medical Center Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Monica Zuzarte
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Cátia Ferreira
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Pedro Cruz
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Liliana Reis
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Rui Baptista
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Cardiology Department, Centro Hospitalar Entre Douro e Vouga, Santa Maria da Feira, Portugal
| | - Lino Gonçalves
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Joost Pg Sluijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Henrique Girao
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
14
|
Dorsch LM, Kuster DWD, Jongbloed JDH, Boven LG, van Spaendonck-Zwarts KY, Suurmeijer AJH, Vink A, du Marchie Sarvaas GJ, van den Berg MP, van der Velden J, Brundel BJJM, van der Zwaag PA. The effect of tropomyosin variants on cardiomyocyte function and structure that underlie different clinical cardiomyopathy phenotypes. Int J Cardiol 2020; 323:251-258. [PMID: 32882290 DOI: 10.1016/j.ijcard.2020.08.101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/27/2022]
Abstract
Background - Variants within the alpha-tropomyosin gene (TPM1) cause dominantly inherited cardiomyopathies, including dilated (DCM), hypertrophic (HCM) and restrictive (RCM) cardiomyopathy. Here we investigated whether TPM1 variants observed in DCM and HCM patients affect cardiomyocyte physiology differently. Methods - We identified a large family with DCM carrying a recently identified TPM1 gene variant (T201M) and a child with RCM with compound heterozygote TPM1 variants (E62Q and M281T) whose family members carrying single variants show diastolic dysfunction and HCM. The effects of TPM1 variants (T201M, E62Q or M281T) and of a plasmid containing both the E62Q and M281T variants on single-cell Ca2+ transients (CaT) in HL-1 cardiomyocytes were studied. To define toxic threshold levels, we performed dose-dependent transfection of TPM1 variants. In addition, cardiomyocyte structure was studied in human cardiac biopsies with TPM1 variants. Results - Overexpression of TPM1 variants led to time-dependent progressive deterioration of CaT, with the smallest effect seen for E62Q and larger and similar effects seen for the T201M and M281T variants. Overexpression of E62Q/M281T did not exacerbate the effects seen with overexpression of a single TPM1 variant. T201M (DCM) replaced endogenous tropomyosin dose-dependently, while M281T (HCM) did not. Human cardiac biopsies with TPM1 variants revealed loss of sarcomeric structures. Conclusion - All TPM1 variants result in reduced cardiomyocyte CaT amplitudes and loss of sarcomeric structures. These effects may underlie pathophysiology of different cardiomyopathy phenotypes.
Collapse
Affiliation(s)
- Larissa M Dorsch
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands.
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Jan D H Jongbloed
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ludolf G Boven
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Karin Y van Spaendonck-Zwarts
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Albert J H Suurmeijer
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Maarten P van den Berg
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Paul A van der Zwaag
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
15
|
Del-Canto I, Gómez-Cid L, Hernández-Romero I, Guillem MS, Fernández-Santos ME, Atienza F, Such L, Fernández-Avilés F, Chorro FJ, Climent AM. Ranolazine-Mediated Attenuation of Mechanoelectric Feedback in Atrial Myocyte Monolayers. Front Physiol 2020; 11:922. [PMID: 32848863 PMCID: PMC7417656 DOI: 10.3389/fphys.2020.00922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
Background Mechanical stretch increases Na+ inflow into myocytes, related to mechanisms including stretch-activated channels or Na+/H+ exchanger activation, involving Ca2+ increase that leads to changes in electrophysiological properties favoring arrhythmia induction. Ranolazine is an antianginal drug with confirmed beneficial effects against cardiac arrhythmias associated with the augmentation of INaL current and Ca2+ overload. Objective This study investigates the effects of mechanical stretch on activation patterns in atrial cell monolayers and its pharmacological response to ranolazine. Methods Confluent HL-1 cells were cultured in silicone membrane plates and were stretched to 110% of original length. The characteristics of in vitro fibrillation (dominant frequency, regularity index, density of phase singularities, rotor meandering, and rotor curvature) were analyzed using optical mapping in order to study the mechanoelectric response to stretch under control conditions and ranolazine action. Results HL-1 cell stretch increased fibrillatory dominant frequency (3.65 ± 0.69 vs. 4.35 ± 0.74 Hz, p < 0.01) and activation complexity (1.97 ± 0.45 vs. 2.66 ± 0.58 PS/cm2, p < 0.01) under control conditions. These effects were related to stretch-induced changes affecting the reentrant patterns, comprising a decrease in rotor meandering (0.72 ± 0.12 vs. 0.62 ± 0.12 cm/s, p < 0.001) and an increase in wavefront curvature (4.90 ± 0.42 vs. 5.68 ± 0.40 rad/cm, p < 0.001). Ranolazine reduced stretch-induced effects, attenuating the activation rate increment (12.8% vs. 19.7%, p < 0.01) and maintaining activation complexity—both parameters being lower during stretch than under control conditions. Moreover, under baseline conditions, ranolazine slowed and regularized the activation patterns (3.04 ± 0.61 vs. 3.65 ± 0.69 Hz, p < 0.01). Conclusion Ranolazine attenuates the modifications of activation patterns induced by mechanical stretch in atrial myocyte monolayers.
Collapse
Affiliation(s)
- Irene Del-Canto
- INCLIVA Health Research Institute, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Valencia, Spain.,Department of Electronic Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Lidia Gómez-Cid
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain
| | | | - María S Guillem
- ITACA Institute, Universitat Politècnica de València, Valencia, Spain
| | - María Eugenia Fernández-Santos
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain
| | - Felipe Atienza
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain
| | - Luis Such
- INCLIVA Health Research Institute, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Valencia, Spain.,Department of Physiology, Universitat de València Estudi General, Valencia, Spain
| | - Francisco Fernández-Avilés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain
| | - Francisco J Chorro
- INCLIVA Health Research Institute, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Valencia, Spain.,Department of Cardiology, Hospital Clínico Universitario de Valencia, INCLIVA, Valencia, Spain
| | - Andreu M Climent
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain.,ITACA Institute, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
16
|
Electrophysiological Effects of Extracellular Vesicles Secreted by Cardiosphere-Derived Cells: Unraveling the Antiarrhythmic Properties of Cell Therapies. Processes (Basel) 2020. [DOI: 10.3390/pr8080924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although cell-based therapies show potential antiarrhythmic effects that could be mediated by their paracrine action, the mechanisms and the extent of these effects were not deeply explored. We investigated the antiarrhythmic mechanisms of extracellular vesicles secreted by cardiosphere-derived cell extracellular vesicles (CDC-EVs) on the electrophysiological properties and gene expression profile of HL1 cardiomyocytes. HL-1 cultures were primed with CDC-EVs or serum-free medium alone for 48 h, followed by optical mapping and gene expression analysis. In optical mapping recordings, CDC-EVs reduced the activation complexity of the cardiomyocytes by 40%, increased rotor meandering, and reduced rotor curvature, as well as induced an 80% increase in conduction velocity. HL-1 cells primed with CDC-EVs presented higher expression of SCN5A, CACNA1C, and GJA1, coding for proteins involved in INa, ICaL, and Cx43, respectively. Our results suggest that CDC-EVs reduce activation complexity by increasing conduction velocity and modifying rotor dynamics, which could be driven by an increase in expression of SCN5A and CACNA1C genes, respectively. Our results provide new insights into the antiarrhythmic mechanisms of cell therapies, which should be further validated using other models.
Collapse
|
17
|
Abstract
Experimental models of cardiac disease play a key role in understanding the pathophysiology of the disease and developing new therapies. The features of the experimental models should reflect the clinical phenotype, which can have a wide spectrum of underlying mechanisms. We review characteristics of commonly used experimental models of cardiac physiology and pathophysiology in all translational steps including in vitro, small animal, and large animal models. Understanding their characteristics and relevance to clinical disease is the key for successful translation to effective therapies.
Collapse
|
18
|
Liu H, Bolonduro OA, Hu N, Ju J, Rao AA, Duffy BM, Huang Z, Black LD, Timko BP. Heart-on-a-Chip Model with Integrated Extra- and Intracellular Bioelectronics for Monitoring Cardiac Electrophysiology under Acute Hypoxia. NANO LETTERS 2020; 20:2585-2593. [PMID: 32092276 DOI: 10.1021/acs.nanolett.0c00076] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We demonstrated a bioelectronic heart-on-a-chip model for studying the effects of acute hypoxia on cardiac function. A microfluidic channel enabled rapid modulation of medium oxygenation, which mimicked the regimes induced by a temporary coronary occlusion and reversibly activated hypoxia-related transduction pathways in HL-1 cardiac model cells. Extracellular bioelectronics provided continuous readouts demonstrating that hypoxic cells experienced an initial period of tachycardia followed by a reduction in beat rate and eventually arrhythmia. Intracellular bioelectronics consisting of Pt nanopillars temporarily entered the cytosol following electroporation, yielding action potential (AP)-like readouts. We found that APs narrowed during hypoxia, consistent with proposed mechanisms by which oxygen deficits activate ATP-dependent K+ channels that promote membrane repolarization. Significantly, both extra- and intracellular devices could be multiplexed, enabling mapping capabilities unachievable by other electrophysiological tools. Our platform represents a significant advance toward understanding electrophysiological responses to hypoxia and could be applicable to disease modeling and drug development.
Collapse
Affiliation(s)
- Haitao Liu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
- School of Materials Science and Technology, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, China University of Geosciences, Beijing 100083, PR China
| | - Olurotimi A Bolonduro
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Ning Hu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangdong Province Key Laboratory of Display Material and Technology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jie Ju
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Akshita A Rao
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Breanna M Duffy
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Zhaohui Huang
- School of Materials Science and Technology, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, China University of Geosciences, Beijing 100083, PR China
| | - Lauren D Black
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Department of Cell, Molecular & Developmental Biology, School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111, United States
| | - Brian P Timko
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
19
|
van Gorp PRR, Trines SA, Pijnappels DA, de Vries AAF. Multicellular In vitro Models of Cardiac Arrhythmias: Focus on Atrial Fibrillation. Front Cardiovasc Med 2020; 7:43. [PMID: 32296716 PMCID: PMC7138102 DOI: 10.3389/fcvm.2020.00043] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice with a large socioeconomic impact due to its associated morbidity, mortality, reduction in quality of life and health care costs. Currently, antiarrhythmic drug therapy is the first line of treatment for most symptomatic AF patients, despite its limited efficacy, the risk of inducing potentially life-threating ventricular tachyarrhythmias as well as other side effects. Alternative, in-hospital treatment modalities consisting of electrical cardioversion and invasive catheter ablation improve patients' symptoms, but often have to be repeated and are still associated with serious complications and only suitable for specific subgroups of AF patients. The development and progression of AF generally results from the interplay of multiple disease pathways and is accompanied by structural and functional (e.g., electrical) tissue remodeling. Rational development of novel treatment modalities for AF, with its many different etiologies, requires a comprehensive insight into the complex pathophysiological mechanisms. Monolayers of atrial cells represent a simplified surrogate of atrial tissue well-suited to investigate atrial arrhythmia mechanisms, since they can easily be used in a standardized, systematic and controllable manner to study the role of specific pathways and processes in the genesis, perpetuation and termination of atrial arrhythmias. In this review, we provide an overview of the currently available two- and three-dimensional multicellular in vitro systems for investigating the initiation, maintenance and termination of atrial arrhythmias and AF. This encompasses cultures of primary (animal-derived) atrial cardiomyocytes (CMs), pluripotent stem cell-derived atrial-like CMs and (conditionally) immortalized atrial CMs. The strengths and weaknesses of each of these model systems for studying atrial arrhythmias will be discussed as well as their implications for future studies.
Collapse
Affiliation(s)
| | | | | | - Antoine A. F. de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
20
|
Martins-Marques T, Catarino S, Gonçalves A, Miranda-Silva D, Gonçalves L, Antunes P, Coutinho G, Leite Moreira A, Falcão Pires I, Girão H. EHD1 Modulates Cx43 Gap Junction Remodeling Associated With Cardiac Diseases. Circ Res 2020; 126:e97-e113. [PMID: 32138615 DOI: 10.1161/circresaha.119.316502] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
RATIONALE Efficient communication between heart cells is vital to ensure the anisotropic propagation of electrical impulses, a function mainly accomplished by gap junctions (GJ) composed of Cx43 (connexin 43). Although the molecular mechanisms remain unclear, altered distribution and function of gap junctions have been associated with acute myocardial infarction and heart failure. OBJECTIVE A recent proteomic study from our laboratory identified EHD1 (Eps15 [endocytic adaptor epidermal growth factor receptor substrate 15] homology domain-containing protein 1) as a novel interactor of Cx43 in the heart. METHODS AND RESULTS In the present work, we demonstrate that knockdown of EHD1 impaired the internalization of Cx43, preserving gap junction-intercellular coupling in cardiomyocytes. Interaction of Cx43 with EHD1 was mediated by Eps15 and promoted by phosphorylation and ubiquitination of Cx43. Overexpression of wild-type EHD1 accelerated internalization of Cx43 and exacerbated ischemia-induced lateralization of Cx43 in isolated adult cardiomyocytes. In addition, we show that EHDs associate with Cx43 in human and murine failing hearts. CONCLUSIONS Overall, we identified EHDs as novel regulators of endocytic trafficking of Cx43, participating in the pathological remodeling of gap junctions, paving the way to innovative therapeutic strategies aiming at preserving intercellular communication in the heart.
Collapse
Affiliation(s)
- Tania Martins-Marques
- From the Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (T.M.-M., S.C., L.C., P.A., G.C., H.G.), University of Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (T.M.-M., S.C., H.G.), University of Coimbra, Portugal.,Clinical Academic Centre of Coimbra, CACC, Portugal (T.M-M., S.C., L.G., P.A., G.C., H.G.)
| | - Steve Catarino
- From the Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (T.M.-M., S.C., L.C., P.A., G.C., H.G.), University of Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (T.M.-M., S.C., H.G.), University of Coimbra, Portugal.,Clinical Academic Centre of Coimbra, CACC, Portugal (T.M-M., S.C., L.G., P.A., G.C., H.G.)
| | - Alexandre Gonçalves
- Department of Surgery and Physiology & Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Portugal (A.G., D.M.S., A.L.M., I.F.P.)
| | - Daniela Miranda-Silva
- Department of Surgery and Physiology & Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Portugal (A.G., D.M.S., A.L.M., I.F.P.)
| | - Lino Gonçalves
- Clinical Academic Centre of Coimbra, CACC, Portugal (T.M-M., S.C., L.G., P.A., G.C., H.G.)
| | - Pedro Antunes
- From the Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (T.M.-M., S.C., L.C., P.A., G.C., H.G.), University of Coimbra, Portugal.,Clinical Academic Centre of Coimbra, CACC, Portugal (T.M-M., S.C., L.G., P.A., G.C., H.G.).,Cardiothoracic Surgery (P.A., G.C.), Coimbra Hospital and University Centre, Portugal
| | - Gonçalo Coutinho
- From the Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (T.M.-M., S.C., L.C., P.A., G.C., H.G.), University of Coimbra, Portugal.,Clinical Academic Centre of Coimbra, CACC, Portugal (T.M-M., S.C., L.G., P.A., G.C., H.G.).,Cardiothoracic Surgery (P.A., G.C.), Coimbra Hospital and University Centre, Portugal
| | - Adelino Leite Moreira
- Department of Surgery and Physiology & Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Portugal (A.G., D.M.S., A.L.M., I.F.P.)
| | - Inês Falcão Pires
- Department of Surgery and Physiology & Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Portugal (A.G., D.M.S., A.L.M., I.F.P.)
| | - Henrique Girão
- From the Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine (T.M.-M., S.C., L.C., P.A., G.C., H.G.), University of Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (T.M.-M., S.C., H.G.), University of Coimbra, Portugal.,Clinical Academic Centre of Coimbra, CACC, Portugal (T.M-M., S.C., L.G., P.A., G.C., H.G.)
| |
Collapse
|
21
|
Batista-Almeida D, Ribeiro-Rodrigues T, Martins-Marques T, Cortes L, Antunes MJ, Antunes PE, Gonçalves L, Brou C, Aasen T, Zurzolo C, Girão H. Ischaemia impacts TNT-mediated communication between cardiac cells. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.crcbio.2020.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Multi-Electrode Array with a Planar Surface for Cell Patterning by Microprinting. SENSORS 2019; 19:s19245379. [PMID: 31817539 PMCID: PMC6960975 DOI: 10.3390/s19245379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/24/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
Multielectrode arrays (MEAs) are devices for non-invasive electrophysiological measurements of cell populations. This paper describes a novel fabrication method of MEAs with a fully planar surface. The surface of the insulation layer and the surface of the electrodes were on one plane; we named this device the planar MEA (pMEA). The main advantage of the pMEA is that it allows uniform contact between the pMEA surface and a substrate for positioning of microfluidic channels or microprinting of a cell adhesive layer. The fabrication of the pMEA is based on a low adhesive Au sacrificial peel-off layer. In divergence from conventional MEAs with recessed electrodes, the electrodes of the pMEA lead across the sloped edge of the insulation layer. To make this, the profile of the edge of the insulation layer was measured and the impedance of the planar electrodes was characterized. The impedance of the pMEA was comparable with the impedance of conventional MEA electrodes. The pMEA was tested for patterning HL-1 cells with a combination of imprinting fibronectin and coating by antifouling poly (l-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG). The HL-1 cells remained patterned even at full confluency and presented spontaneous and synchronous beating activity.
Collapse
|
23
|
Liu J, Volkers L, Jangsangthong W, Bart CI, Engels MC, Zhou G, Schalij MJ, Ypey DL, Pijnappels DA, de Vries AAF. Generation and primary characterization of iAM-1, a versatile new line of conditionally immortalized atrial myocytes with preserved cardiomyogenic differentiation capacity. Cardiovasc Res 2019; 114:1848-1859. [PMID: 29917042 PMCID: PMC6255688 DOI: 10.1093/cvr/cvy134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/13/2018] [Indexed: 01/15/2023] Open
Abstract
Aims The generation of homogeneous cardiomyocyte populations from fresh tissue or stem cells is laborious and costly. A potential solution to this problem would be to establish lines of immortalized cardiomyocytes. However, as proliferation and (terminal) differentiation of cardiomyocytes are mutually exclusive processes, their permanent immortalization causes loss of electrical and mechanical functions. We therefore aimed at developing conditionally immortalized atrial myocyte (iAM) lines allowing toggling between proliferative and contractile phenotypes by a single-component change in culture medium composition. Methods and results Freshly isolated neonatal rat atrial cardiomyocytes (AMs) were transduced with a lentiviral vector conferring doxycycline (dox)-controlled expression of simian virus 40 large T antigen. Under proliferative conditions (i.e. in the presence of dox), the resulting cells lost most cardiomyocyte traits and doubled every 38 h. Under differentiation conditions (i.e. in the absence of dox), the cells stopped dividing and spontaneously reacquired a phenotype very similar to that of primary AMs (pAMs) in gene expression profile, sarcomeric organization, contractile behaviour, electrical properties, and response to ion channel-modulating compounds (as assessed by patch-clamp and optical voltage mapping). Moreover, differentiated iAMs had much narrower action potentials and propagated them at >10-fold higher speeds than the widely used murine atrial HL-1 cells. High-frequency electrical stimulation of confluent monolayers of differentiated iAMs resulted in re-entrant conduction resembling atrial fibrillation, which could be prevented by tertiapin treatment, just like in monolayers of pAMs. Conclusion Through controlled expansion and differentiation of AMs, large numbers of functional cardiomyocytes were generated with properties superior to the differentiated progeny of existing cardiomyocyte lines. iAMs provide an attractive new model system for studying cardiomyocyte proliferation, differentiation, metabolism, and (electro)physiology as well as to investigate cardiac diseases and drug responses, without using animals.
Collapse
Affiliation(s)
- Jia Liu
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, RC Leiden, The Netherlands.,Department of Cell Biology and Genetics, Center for Anti-ageing and Regenerative Medicine, Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Shenzhen University Medical School, Shenzhen University, Nanhai Ave 3688, Shenzhen, China.,Netherlands Heart Institute, Holland Heart House, Moreelsepark 1, 3511 EP, Utrecht, The Netherlands
| | - Linda Volkers
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, RC Leiden, The Netherlands
| | - Wanchana Jangsangthong
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, RC Leiden, The Netherlands
| | - Cindy I Bart
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, RC Leiden, The Netherlands
| | - Marc C Engels
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, RC Leiden, The Netherlands
| | - Guangqian Zhou
- Department of Cell Biology and Genetics, Center for Anti-ageing and Regenerative Medicine, Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Shenzhen University Medical School, Shenzhen University, Nanhai Ave 3688, Shenzhen, China
| | - Martin J Schalij
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, RC Leiden, The Netherlands
| | - Dirk L Ypey
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, RC Leiden, The Netherlands
| | - Daniël A Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, RC Leiden, The Netherlands
| | - Antoine A F de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, RC Leiden, The Netherlands.,Netherlands Heart Institute, Holland Heart House, Moreelsepark 1, 3511 EP, Utrecht, The Netherlands
| |
Collapse
|
24
|
Simeonov S, Schäffer TE. Ultrafast Imaging of Cardiomyocyte Contractions by Combining Scanning Ion Conductance Microscopy with a Microelectrode Array. Anal Chem 2019; 91:9648-9655. [PMID: 31247725 DOI: 10.1021/acs.analchem.9b01092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Beating cardiomyocytes undergo fast morphodynamics during the contraction-relaxation cycle. However, imaging these morphodynamics with a high spatial and temporal resolution is difficult, owing to a lack of suitable techniques. Here, we combine scanning ion conductance microscopy (SICM) with a microelectrode array (MEA) to image the three-dimensional (3D) topography of cardiomyocytes during a contraction-relaxation cycle with 1 μm spatial and 1 ms time resolution. We record the vertical motion of cardiomyocytes at many locations across a cell by SICM and synchronize these data using the simultaneously recorded action potential by the MEA as a time reference. This allows us to reconstruct the time-resolved 3D morphology of cardiomyocytes during a full contraction-relaxation cycle with a raw data rate of 200 μs/frame and to generate spatially resolved images of contractile parameters (maximum displacement, time delay, asymmetry factor). We use the MEA-SICM setup to visualize the effect of blebbistatin, a myosin II inhibitor, on the morphodynamics of contractions. Further, we find an upper limit of 0.02% for cell volume changes during an action potential. The results show that MEA-SICM provides an ultrafast imaging platform for investigating the functional interplay of cardiomyocyte electrophysiology and mechanics.
Collapse
Affiliation(s)
- Stefan Simeonov
- Institute of Applied Physics , University of Tübingen , Auf der Morgenstelle 10 , 72076 Tübingen , Germany
| | - Tilman E Schäffer
- Institute of Applied Physics , University of Tübingen , Auf der Morgenstelle 10 , 72076 Tübingen , Germany
| |
Collapse
|
25
|
Houston C, Ng FS, Dupont E. Letter by Houston et al Regarding Article, "Localized Optogenetic Targeting of Rotors in Atrial Cardiomyocyte Monolayers". Circ Arrhythm Electrophysiol 2019; 11:e006118. [PMID: 29437763 DOI: 10.1161/circep.117.006118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Charles Houston
- From the ElectroCardioMaths Programme, National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Fu Siong Ng
- From the ElectroCardioMaths Programme, National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Emmanuel Dupont
- From the ElectroCardioMaths Programme, National Heart and Lung Institute, Imperial College London, United Kingdom
| |
Collapse
|
26
|
Honarbakhsh S, Hunter RJ, Finlay M, Ullah W, Keating E, Tinker A, Schilling RJ. Development, in vitro validation and human application of a novel method to identify arrhythmia mechanisms: The stochastic trajectory analysis of ranked signals mapping method. J Cardiovasc Electrophysiol 2019; 30:691-701. [PMID: 30801836 PMCID: PMC8609431 DOI: 10.1111/jce.13882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 11/29/2022]
Abstract
Introduction Methods and Results Conclusions
Collapse
Affiliation(s)
- Shohreh Honarbakhsh
- Electrophysiology DepartmentThe Barts Heart Centre, Barts Health NHS trust London United Kingdom
| | - Ross J. Hunter
- Electrophysiology DepartmentThe Barts Heart Centre, Barts Health NHS trust London United Kingdom
| | - Malcolm Finlay
- Electrophysiology DepartmentThe Barts Heart Centre, Barts Health NHS trust London United Kingdom
| | - Waqas Ullah
- Electrophysiology DepartmentThe Barts Heart Centre, Barts Health NHS trust London United Kingdom
| | - Emily Keating
- Electrophysiology DepartmentThe Barts Heart Centre, Barts Health NHS trust London United Kingdom
| | | | - Richard J. Schilling
- Electrophysiology DepartmentThe Barts Heart Centre, Barts Health NHS trust London United Kingdom
| |
Collapse
|
27
|
Boyle PM, Franceschi WH, Constantin M, Hawks C, Desplantez T, Trayanova NA, Vigmond EJ. New insights on the cardiac safety factor: Unraveling the relationship between conduction velocity and robustness of propagation. J Mol Cell Cardiol 2019; 128:117-128. [PMID: 30677394 DOI: 10.1016/j.yjmcc.2019.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 01/31/2023]
Abstract
Cardiac conduction disturbances are linked with arrhythmia development. The concept of safety factor (SF) has been derived to describe the robustness of conduction, but the usefulness of this metric has been constrained by several limitations. For example, due to the difficulty of measuring the necessary input variables, SF calculations have only been applied to synthetic data. Moreover, quantitative validation of SF is lacking; specifically, the practical meaning of particular SF values is unclear, aside from the fact that propagation failure (i.e., conduction block) is characterized by SF < 1. This study aims to resolve these limitations for our previously published SF formulation and explore its relationship to relevant electrophysiological properties of cardiac tissue. First, HL-1 cardiomyocyte monolayers were grown on multi-electrode arrays and the robustness of propagation was estimated using extracellular potential recordings. SF values reconstructed purely from experimental data were largely between 1 and 5 (up to 89.1% of sites characterized). This range is consistent with values derived from synthetic data, proving that the formulation is sound and its applicability is not limited to analysis of computational models. Second, for simulations conducted in 1-, 2-, and 3-dimensional tissue blocks, we calculated true SF values at locations surrounding the site of current injection for sub- and supra-threshold stimuli and found that they differed from values estimated by our SF formulation by <10%. Finally, we examined SF dynamics under conditions relevant to arrhythmia development in order to provide physiological insight. Our analysis shows that reduced conduction velocity (Θ) caused by impaired intrinsic cell-scale excitability (e.g., due to sodium current a loss-of-function mutation) is associated with less robust conduction (i.e., lower SF); however, intriguingly, Θ variability resulting from modulation of tissue scale conductivity has no effect on SF. These findings are supported by analytic derivation of the relevant relationships from first principles. We conclude that our SF formulation, which can be applied to both experimental and synthetic data, produces values that vary linearly with the excess charge needed for propagation. SF calculations can provide insights helpful in understanding the initiation and perpetuation of cardiac arrhythmia.
Collapse
Affiliation(s)
- Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - William H Franceschi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Marion Constantin
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Pessac-Bordeaux, France
| | - Claudia Hawks
- Department of Physics and Applied Mathematics at the University of Navarra, Pamplona, Spain
| | - Thomas Desplantez
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Pessac-Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward J Vigmond
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Pessac-Bordeaux, France; Université de Bordeaux, Talence, France.
| |
Collapse
|
28
|
Cerea A, Caprettini V, Bruno G, Lovato L, Melle G, Tantussi F, Capozza R, Moia F, Dipalo M, De Angelis F. Selective intracellular delivery and intracellular recordings combined in MEA biosensors. LAB ON A CHIP 2018; 18:3492-3500. [PMID: 30306172 DOI: 10.1039/c8lc00435h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Biological studies on in vitro cell cultures are of fundamental importance to investigate cell response to external stimuli, such as new drugs for the treatment of specific pathologies, or to study communication between electrogenic cells. Although three-dimensional (3D) nanostructures brought tremendous improvements on biosensors used for various biological in vitro studies, including drug delivery and electrical recording, there is still a lack of multifunctional capabilities that could help gain deeper insights in several bio-related research fields. In this work, the electrical recording of large cell ensembles and the intracellular delivery of few selected cells are combined on the same device by integrating microfluidic channels on the bottom of a multi-electrode array decorated with 3D hollow nanostructures. The novel platform allows the recording of intracellular-like action potentials from large ensembles of cardiomyocytes derived from human induced pluripotent stem cells (hiPSC) and from the HL-1 line, while different molecules are selectively delivered into single/few targeted cells. The proposed approach shows high potential for enabling new comprehensive studies that can relate drug effects to network level cell communication processes.
Collapse
Affiliation(s)
- Andrea Cerea
- Istituto Italiano di Tecnologia, 16163 Genova, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Houston C, Tzortzis KN, Roney C, Saglietto A, Pitcher DS, Cantwell CD, Chowdhury RA, Ng FS, Peters NS, Dupont E. Characterisation of re-entrant circuit (or rotational activity) in vitro using the HL1-6 myocyte cell line. J Mol Cell Cardiol 2018; 119:155-164. [PMID: 29746849 PMCID: PMC6004038 DOI: 10.1016/j.yjmcc.2018.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/18/2018] [Accepted: 05/02/2018] [Indexed: 11/17/2022]
Abstract
Fibrillation is the most common arrhythmia observed in clinical practice. Understanding of the mechanisms underlying its initiation and maintenance remains incomplete. Functional re-entries are potential drivers of the arrhythmia. Two main concepts are still debated, the “leading circle” and the “spiral wave or rotor” theories. The homogeneous subclone of the HL1 atrial-derived cardiomyocyte cell line, HL1-6, spontaneously exhibits re-entry on a microscopic scale due to its slow conduction velocity and the presence of triggers, making it possible to examine re-entry at the cellular level. We therefore investigated the re-entry cores in cell monolayers through the use of fluorescence optical mapping at high spatiotemporal resolution in order to obtain insights into the mechanisms of re-entry. Re-entries in HL1-6 myocytes required at least two triggers and a minimum colony area to initiate (3.5 to 6.4 mm2). After electrical activity was completely stopped and re-started by varying the extracellular K+ concentration, re-entries never returned to the same location while 35% of triggers re-appeared at the same position. A conduction delay algorithm also allows visualisation of the core of the re-entries. This work has revealed that the core of re-entries is conduction blocks constituted by lines and/or groups of cells rather than the round area assumed by the other concepts of functional re-entry. This highlights the importance of experimentation at the microscopic level in the study of re-entry mechanisms. The cell line HL1-6 makes it possible to examine propagation at the single cell level. A new analysis toolkit permits visualisation of re-entry core in 2D cultures. The number of triggers and re-entries depends on colony size. Re-entry cores are groups of cells connected by thin lines of functional block. The mechanism of re-entry appears comparable with the leading circle concept.
Collapse
Affiliation(s)
- Charles Houston
- Myocardial Function, National Heart and Lung Institute, Imperial College London, London, UK.
| | - Konstantinos N Tzortzis
- Myocardial Function, National Heart and Lung Institute, Imperial College London, London, UK.
| | - Caroline Roney
- Myocardial Function, National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrea Saglietto
- Myocardial Function, National Heart and Lung Institute, Imperial College London, London, UK
| | - David S Pitcher
- Myocardial Function, National Heart and Lung Institute, Imperial College London, London, UK.
| | - Chris D Cantwell
- Myocardial Function, National Heart and Lung Institute, Imperial College London, London, UK.
| | - Rasheda A Chowdhury
- Myocardial Function, National Heart and Lung Institute, Imperial College London, London, UK.
| | - Fu Siong Ng
- Myocardial Function, National Heart and Lung Institute, Imperial College London, London, UK.
| | - Nicholas S Peters
- Myocardial Function, National Heart and Lung Institute, Imperial College London, London, UK.
| | - Emmanuel Dupont
- Myocardial Function, National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
30
|
Feola I, Volkers L, Majumder R, Teplenin A, Schalij MJ, Panfilov AV, de Vries AAF, Pijnappels DA. Response by Feola et al to Letter Regarding Article, "Localized Optogenetic Targeting of Rotors in Atrial Cardiomyocyte Monolayers". Circ Arrhythm Electrophysiol 2018; 11:e006130. [PMID: 29437764 DOI: 10.1161/circep.117.006130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Iolanda Feola
- From the Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, The Netherlands (I.F., L.V., R.M., A.T., M.J.S., A.V.P., A.A.F.d.V., D.A.P.); and Department of Physics and Astronomy, Ghent University, Belgium (A.V.P.)
| | - Linda Volkers
- From the Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, The Netherlands (I.F., L.V., R.M., A.T., M.J.S., A.V.P., A.A.F.d.V., D.A.P.); and Department of Physics and Astronomy, Ghent University, Belgium (A.V.P.)
| | - Rupamanjari Majumder
- From the Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, The Netherlands (I.F., L.V., R.M., A.T., M.J.S., A.V.P., A.A.F.d.V., D.A.P.); and Department of Physics and Astronomy, Ghent University, Belgium (A.V.P.)
| | - Alexander Teplenin
- From the Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, The Netherlands (I.F., L.V., R.M., A.T., M.J.S., A.V.P., A.A.F.d.V., D.A.P.); and Department of Physics and Astronomy, Ghent University, Belgium (A.V.P.)
| | - Martin J Schalij
- From the Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, The Netherlands (I.F., L.V., R.M., A.T., M.J.S., A.V.P., A.A.F.d.V., D.A.P.); and Department of Physics and Astronomy, Ghent University, Belgium (A.V.P.)
| | - Alexander V Panfilov
- From the Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, The Netherlands (I.F., L.V., R.M., A.T., M.J.S., A.V.P., A.A.F.d.V., D.A.P.); and Department of Physics and Astronomy, Ghent University, Belgium (A.V.P.)
| | - Antoine A F de Vries
- From the Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, The Netherlands (I.F., L.V., R.M., A.T., M.J.S., A.V.P., A.A.F.d.V., D.A.P.); and Department of Physics and Astronomy, Ghent University, Belgium (A.V.P.)
| | - Daniël A Pijnappels
- From the Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, The Netherlands (I.F., L.V., R.M., A.T., M.J.S., A.V.P., A.A.F.d.V., D.A.P.); and Department of Physics and Astronomy, Ghent University, Belgium (A.V.P.)
| |
Collapse
|
31
|
Peter AK, Bjerke MA, Leinwand LA. Biology of the cardiac myocyte in heart disease. Mol Biol Cell 2017; 27:2149-60. [PMID: 27418636 PMCID: PMC4945135 DOI: 10.1091/mbc.e16-01-0038] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/23/2016] [Indexed: 12/21/2022] Open
Abstract
Cardiac hypertrophy is a major risk factor for heart failure, and it has been shown that this increase in size occurs at the level of the cardiac myocyte. Cardiac myocyte model systems have been developed to study this process. Here we focus on cell culture tools, including primary cells, immortalized cell lines, human stem cells, and their morphological and molecular responses to pathological stimuli. For each cell type, we discuss commonly used methods for inducing hypertrophy, markers of pathological hypertrophy, advantages for each model, and disadvantages to using a particular cell type over other in vitro model systems. Where applicable, we discuss how each system is used to model human disease and how these models may be applicable to current drug therapeutic strategies. Finally, we discuss the increasing use of biomaterials to mimic healthy and diseased hearts and how these matrices can contribute to in vitro model systems of cardiac cell biology.
Collapse
Affiliation(s)
- Angela K Peter
- Biofrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Maureen A Bjerke
- Biofrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Leslie A Leinwand
- Biofrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| |
Collapse
|
32
|
Roney CH, Cantwell CD, Qureshi NA, Chowdhury RA, Dupont E, Lim PB, Vigmond EJ, Tweedy JH, Ng FS, Peters NS. Rotor Tracking Using Phase of Electrograms Recorded During Atrial Fibrillation. Ann Biomed Eng 2017; 45:910-923. [PMID: 27921187 PMCID: PMC5362653 DOI: 10.1007/s10439-016-1766-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/08/2016] [Indexed: 11/25/2022]
Abstract
Extracellular electrograms recorded during atrial fibrillation (AF) are challenging to interpret due to the inherent beat-to-beat variability in amplitude and duration. Phase mapping represents these voltage signals in terms of relative position within the cycle, and has been widely applied to action potential and unipolar electrogram data of myocardial fibrillation. To date, however, it has not been applied to bipolar recordings, which are commonly acquired clinically. The purpose of this study is to present a novel algorithm for calculating phase from both unipolar and bipolar electrograms recorded during AF. A sequence of signal filters and processing steps are used to calculate phase from simulated, experimental, and clinical, unipolar and bipolar electrograms. The algorithm is validated against action potential phase using simulated data (trajectory centre error <0.8 mm); between experimental multi-electrode array unipolar and bipolar phase; and for wavefront identification in clinical atrial tachycardia. For clinical AF, similar rotational content (R 2 = 0.79) and propagation maps (median correlation 0.73) were measured using either unipolar or bipolar recordings. The algorithm is robust, uses standard signal processing techniques, and accurately quantifies AF wavefronts and sources. Identifying critical sources, such as rotors, in AF, may allow for more accurate targeting of ablation therapy and improved patient outcomes.
Collapse
Affiliation(s)
- Caroline H Roney
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, F-33600, Pessac-Bordeaux, France
| | - Chris D Cantwell
- Department of Aeronautics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Norman A Qureshi
- National Heart and Lung Institute, Imperial College London, 4th floor Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Rasheda A Chowdhury
- National Heart and Lung Institute, Imperial College London, 4th floor Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Emmanuel Dupont
- National Heart and Lung Institute, Imperial College London, 4th floor Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Phang Boon Lim
- National Heart and Lung Institute, Imperial College London, 4th floor Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Edward J Vigmond
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, F-33600, Pessac-Bordeaux, France
| | - Jennifer H Tweedy
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Fu Siong Ng
- National Heart and Lung Institute, Imperial College London, 4th floor Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Nicholas S Peters
- National Heart and Lung Institute, Imperial College London, 4th floor Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
33
|
Desplantez T. Cardiac Cx43, Cx40 and Cx45 co-assembling: involvement of connexins epitopes in formation of hemichannels and Gap junction channels. BMC Cell Biol 2017; 18:3. [PMID: 28124623 PMCID: PMC5267329 DOI: 10.1186/s12860-016-0118-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background This review comes after the International Gap Junction Conference (IGJC 2015) and describes the current knowledge on the function of the specific motifs of connexins in the regulation of the formation of gap junction channels. Moreover the review is complemented by a summarized description of the distinct contribution of gap junction channels in the electrical coupling. Results Complementary biochemical and functional characterization on cell models and primary cells have improved our understanding on the oligomerization of connexins and the formation and the electrical properties of gap junction channels. Studies mostly focused cardiac connexins Cx43 and Cx40 expressed in myocytes, while Cx45 and Cx30.2 have been less investigated, for which main findings are reviewed to highlight their critical contribution in the formation of gap junction channels for ensuring the orchestrated electrical impulse propagation and coordination of atrial and ventricular contraction and heart function, whereas connexin dysfunction and remodeling are pro-arrhythmic factors. Common and specific motifs of residues identified in different domain of each type of connexin determine the connexin homo- and hetero-oligomerization and the channels formation, which leads to specific electrical properties. Conclusions These motifs and the resulting formation of gap junction channels are keys to ensure the tissue homeostasis and function in each connexin expression pattern in various tissues of multicellular organisms. Altogether, the findings to date have significantly improved our understanding on the function of the different connexin expression patterns in healthy and diseased tissues, and promise further investigations on the contribution in the different types of connexin.
Collapse
Affiliation(s)
- Thomas Desplantez
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Campus X. Arnozan, Avenue Haut Leveque, 33600, Pessac- Bordeaux, France. .,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France. .,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France.
| |
Collapse
|
34
|
Baheiraei N, Gharibi R, Yeganeh H, Miragoli M, Salvarani N, Di Pasquale E, Condorelli G. Electroactive polyurethane/siloxane derived from castor oil as a versatile cardiac patch, part II: HL-1 cytocompatibility and electrical characterizations. J Biomed Mater Res A 2016; 104:1398-407. [PMID: 26822463 DOI: 10.1002/jbm.a.35669] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/26/2016] [Indexed: 11/09/2022]
Abstract
In first part of this experiment, biocompatibility of the newly developed electroactive polyurethane/siloxane films containing aniline tetramer moieties was demonstrated with proliferation and differentiation of C2C12 myoblasts. Here we further assessed the cytocompatibility of the prepared samples with HL1-cell line, the electrophysiological properties and the patch clamp recording of the seeded cells over the selected electroactive sample. Presence of electroactive aniline tetramer in the structure of polyurethane/siloxane led to the increased expression of cardiac-specific genes of HL-1 cells involved in muscle contraction and electrical coupling. Our results showed that expression of Cx43, TrpT-2, and SERCA genes was significantly increased in conductive sample compared to tissue culture plate and the corresponding non-conductive analogous. The prepared materials were not only biocompatible in terms of cellular toxicity, but did not alter the intrinsic electrical characteristics of HL-1 cells. Embedding the electroactive moiety into the prepared films improved the properties of these polymeric cardiac construct through the enhanced transmission of electrical signals between the cells. Based on morphological observation, calcium imaging and electrophysiological recordings, we demonstrated the potential applicability of these materials for cardiac tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1398-1407, 2016.
Collapse
Affiliation(s)
- Nafiseh Baheiraei
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Gharibi
- Department of Polyurethane, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
| | - Hamid Yeganeh
- Department of Polyurethane, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
| | - Michele Miragoli
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,CERT, Center of Excellence for Toxicological Research, Dept. of Clinical and Experimental Medicine, University of Parma, Italy
| | - Nicolò Salvarani
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Institute of Genetic and Biomedical Research-UOS Milan, National Research Council, Milan, Italy
| | - Elisa Di Pasquale
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Institute of Genetic and Biomedical Research-UOS Milan, National Research Council, Milan, Italy
| | | |
Collapse
|
35
|
Relating specific connexin co-expression ratio to connexon composition and gap junction function. J Mol Cell Cardiol 2015; 89:195-202. [PMID: 26550940 DOI: 10.1016/j.yjmcc.2015.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 10/05/2015] [Accepted: 11/04/2015] [Indexed: 12/15/2022]
Abstract
Cardiac connexin 43 (Cx43), Cx40 and Cx45 are co-expressed at distinct ratios in myocytes. This pattern is considered a key factor in regulating the gap junction channels composition, properties and function and remains poorly understood. This work aims to correlate gap junction function with the connexin composition of the channels at accurate ratios Cx43:Cx40 and Cx43:Cx45. Rat liver epithelial cells that endogenously express Cx43 were stably transfected to induce expression of accurate levels of Cx40 or Cx45 that may be present in various areas of the heart (e.g. atria and ventricular conduction system). Induction of Cx40 does not increase the amounts of junctional connexins (Cx43 and Cx40), whereas induction of Cx45 increases the amounts of junctional connexins (Cx43 and Cx45). Interestingly, the non-junctional fraction of Cx43 remains unaffected upon induction of Cx40 and Cx45. Co-immunoprecipitation studies show low level of Cx40/Cx43 heteromerisation and undetectable Cx45/Cx43 heteromerisation. Functional characterisation shows that induction of Cx40 and Cx45 decreases Lucifer Yellow transfer. Electrical coupling is decreased by Cx45 induction, whereas it is decreased at low induction of Cx40 and increased at high induction. These data indicate a fine regulation of the gap junction channel make-up in function of the type and the ratio of co-expressed Cxs that specifically regulates chemical and electrical coupling. This reflects specific gap junction function in regulating impulse propagation in the healthy heart, and a pro-arrhythmic potential of connexin remodelling in the diseased heart.
Collapse
|
36
|
Noritake K, Aki T, Funakoshi T, Unuma K, Uemura K. Direct Exposure to Ethanol Disrupts Junctional Cell-Cell Contact and Hippo-YAP Signaling in HL-1 Murine Atrial Cardiomyocytes. PLoS One 2015; 10:e0136952. [PMID: 26317911 PMCID: PMC4552866 DOI: 10.1371/journal.pone.0136952] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 08/10/2015] [Indexed: 02/04/2023] Open
Abstract
Direct exposure of cardiomyocytes to ethanol causes cardiac damage such as cardiac arrythmias and apoptotic cell death. Cardiomyocytes are connected to each other through intercalated disks (ID), which are composed of a gap junction (GJ), adherens junction, and desmosome. Changes in the content as well as the subcellular localization of connexin43 (Cx43), the main component of the cardiac GJ, are reportedly involved in cardiac arrythmias and subsequent damage. Recently, the hippo-YAP signaling pathway, which links cellular physical status to cell proliferation, differentiation, and apoptosis, has been implicated in cardiac homeostasis under physiological as well as pathological conditions. This study was conducted to explore the possible involvement of junctional intercellular communication, mechanotransduction through cytoskeletal organization, and the hippo-YAP pathway in cardiac damage caused by direct exposure to ethanol. HL-1 murine atrial cardiac cells were used since these cells retain cardiac phenotypes through ID formation and subsequent synchronous contraction. Cells were exposed to 0.5-2% ethanol; significant apoptotic cell death was observed after exposure to 2% ethanol for 48 hours. A decrease in Cx43 levels was already observed after 3 hours exposure to 2% ethanol, suggesting a rapid degradation of this protein. Upon exposure to ethanol, Cx43 translocated into lysosomes. Cellular cytoskeletal organization was also dysregulated by ethanol, as demonstrated by the disruption of myofibrils and intermediate filaments. Coinciding with the loss of cell-cell adherence, decreased phosphorylation of YAP, a hippo pathway effector, was also observed in ethanol-treated cells. Taken together, the results provide evidence that cells exposed directly to ethanol show 1) impaired cell-cell adherence/communication, 2) decreased cellular mechanotransduction by the cytoskeleton, and 3) a suppressed hippo-YAP pathway. Suppression of hippo-YAP pathway signaling should be effective in maintaining cellular homeostasis in cardiomyocytes exposed to ethanol.
Collapse
Affiliation(s)
- Kanako Noritake
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiko Aki
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| | - Takeshi Funakoshi
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kana Unuma
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Uemura
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
37
|
Martins-Marques T, Anjo SI, Pereira P, Manadas B, Girão H. Interacting Network of the Gap Junction (GJ) Protein Connexin43 (Cx43) is Modulated by Ischemia and Reperfusion in the Heart. Mol Cell Proteomics 2015; 14:3040-55. [PMID: 26316108 DOI: 10.1074/mcp.m115.052894] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Indexed: 01/16/2023] Open
Abstract
The coordinated and synchronized cardiac muscle contraction relies on an efficient gap junction-mediated intercellular communication (GJIC) between cardiomyocytes, which involves the rapid anisotropic impulse propagation through connexin (Cx)-containing channels, namely of Cx43, the most abundant Cx in the heart. Expectedly, disturbing mechanisms that affect channel activity, localization and turnover of Cx43 have been implicated in several cardiomyopathies, such as myocardial ischemia. Besides gap junction-mediated intercellular communication, Cx43 has been associated with channel-independent functions, including modulation of cell adhesion, differentiation, proliferation and gene transcription. It has been suggested that the role played by Cx43 is dictated by the nature of the proteins that interact with Cx43. Therefore, the characterization of the Cx43-interacting network and its dynamics is vital to understand not only the molecular mechanisms underlying pathological malfunction of gap junction-mediated intercellular communication, but also to unveil novel and unanticipated biological functions of Cx43. In the present report, we applied a quantitative SWATH-MS approach to characterize the Cx43 interactome in rat hearts subjected to ischemia and ischemia-reperfusion. Our results demonstrate that, in the heart, Cx43 interacts with proteins related with various biological processes such as metabolism, signaling and trafficking. The interaction of Cx43 with proteins involved in gene transcription strengthens the emerging concept that Cx43 has a role in gene expression regulation. Importantly, our data shows that the interactome of Cx43 (Connexome) is differentially modulated in diseased hearts. Overall, the characterization of Cx43-interacting network may contribute to the establishment of new therapeutic targets to modulate cardiac function in physiological and pathological conditions. Data are available via ProteomeXchange with identifier PXD002331.
Collapse
Affiliation(s)
- Tania Martins-Marques
- From the ‡Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-354 Coimbra, Portugal
| | - Sandra Isabel Anjo
- §CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ¶Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Paulo Pereira
- From the ‡Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-354 Coimbra, Portugal
| | - Bruno Manadas
- §CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ‖Biocant - Biotechnology Innovation Center, 3060-197, Cantanhede, Portugal
| | - Henrique Girão
- From the ‡Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-354 Coimbra, Portugal;
| |
Collapse
|
38
|
Marcu IC, Illaste A, Heuking P, Jaconi ME, Ullrich ND. Functional Characterization and Comparison of Intercellular Communication in Stem Cell-Derived Cardiomyocytes. Stem Cells 2015; 33:2208-18. [PMID: 25968594 DOI: 10.1002/stem.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/08/2015] [Indexed: 02/05/2023]
Abstract
One novel treatment strategy for the diseased heart focuses on the use of pluripotent stem cell-derived cardiomyocytes (SC-CMs) to overcome the heart's innate deficiency for self-repair. However, targeted application of SC-CMs requires in-depth characterization of their true cardiogenic potential in terms of excitability and intercellular coupling at cellular level and in multicellular preparations. In this study, we elucidated the electrical characteristics of single SC-CMs and intercellular coupling quality of cell pairs, and concomitantly compared them with well-characterized murine native neonatal and immortalized HL-1 cardiomyocytes. Firstly, we investigated the electrical properties and Ca(2+) signaling mechanisms specific to cardiac contraction in single SC-CMs. Despite heterogeneity of the new cardiac cell population, their electrophysiological activity and Ca(2+) handling were similar to native cells. Secondly, we investigated the capability of paired SC-CMs to form an adequate subunit of a functional syncytium and analyzed gap junctions and signal transmission by dye transfer in cell pairs. We discovered significantly diminished coupling in SC-CMs compared with native cells, which could not be enhanced by a coculture approach combining SC-CMs and primary CMs. Moreover, quantitative and structural analysis of gap junctions presented significantly reduced connexin expression levels compared with native CMs. Strong dependence of intercellular coupling on gap junction density was further confirmed by computational simulations. These novel findings demonstrate that despite the cardiogenic electrophysiological profile, SC-CMs present significant limitations in intercellular communication. Inadequate coupling may severely impair functional integration and signal transmission, which needs to be carefully considered for the prospective use of SC-CMs in cardiac repair. Stem Cells 2015;33:2208-2218.
Collapse
Affiliation(s)
- Irene C Marcu
- Department of Physiology, University of Bern, Bern, Switzerland.,Department of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Ardo Illaste
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Pernilla Heuking
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Marisa E Jaconi
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Nina D Ullrich
- Department of Physiology, University of Bern, Bern, Switzerland.,Department of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
39
|
Ischaemia-induced autophagy leads to degradation of gap junction protein connexin43 in cardiomyocytes. Biochem J 2015; 467:231-45. [DOI: 10.1042/bj20141370] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
GJIC (gap junction intercellular communication) between cardiomyocytes is essential for synchronous heart contraction and relies on Cx (connexin)-containing channels. Increased breakdown of Cx43 has been often associated with various cardiac diseases. However, the mechanisms whereby Cx43 is degraded in ischaemic heart remain unknown. The results obtained in the present study, using both HL-1 cells and organotypic heart cultures, show that simulated ischaemia induces degradation of Cx43 that can be prevented by chemical or genetic inhibitors of autophagy. Additionally, ischaemia-induced degradation of Cx43 results in GJIC impairment in HL-1 cells, which can be restored by autophagy inhibition. In cardiomyocytes, ubiquitin signals Cx43 for autophagic degradation, through the recruitment of the ubiquitin-binding proteins Eps15 (epidermal growth factor receptor substrate 15) and p62, that assist in Cx43 internalization and targeting to autophagic vesicles, via LC3 (light chain 3). Moreover, we establish that degradation of Cx43 in ischaemia or I/R (ischaemia/reperfusion) relies upon different molecular players. Indeed, degradation of Cx43 during early periods of ischaemia depends on AMPK (AMP-activated protein kinase), whereas in late periods of ischaemia and I/R Beclin 1 is required. In the Langendorff-perfused heart, Cx43 is dephosphorylated in ischaemia and degraded during I/R, where Cx43 degradation correlates with autophagy activation. In summary, the results of the present study provide new evidence regarding the molecular mechanisms whereby Cx43 is degraded in ischaemia, which may contribute to the development of new strategies that aim to preserve GJIC and cardiac function in ischaemic heart.
Collapse
|