1
|
Sirajee R, El Khatib S, Dieleman LA, Salla M, Baksh S. ImmunoMet Oncogenesis: A New Concept to Understand the Molecular Drivers of Cancer. J Clin Med 2025; 14:1620. [PMID: 40095546 PMCID: PMC11900543 DOI: 10.3390/jcm14051620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
The appearance of cancer progresses through a multistep process that includes genetic, epigenetic, mutational, inflammatory and metabolic disturbances to signaling pathways within an organ. The combined influence of these changes will dictate the growth properties of the cells; the direction of further malignancy depends on the severity of these "disturbances". The molecular mechanisms driving abnormal inflammation and metabolism are beginning to be identified and, in some cases, are quite prominent in pre-condition states of cancer and are significant drivers of the malignant phenotype. As such, utilizing signaling pathways linked to inflammation and metabolism as biomarkers of cancer is an emerging method and includes pathways beyond those well characterized to drive metabolism or inflammation. In this review, we will discuss several emerging elements influencing proliferation, inflammation and metabolism that may play a part as drivers of the cancer phenotype. These include AMPK and leptin (linked to metabolism), NOD2/RIPK2, TAK1 (linked to inflammation), lactate and pyruvate transporters (monocarboxylate transporter [MCT], linked to mitochondrial biogenesis and metabolism) and RASSF1A (linked to proliferation, cell death, cell cycle control, inflammation and epigenetics). We speculate that the aforementioned elements are important drivers of carcinogenesis that should be collectively referenced as being involved in "ImmunoMET Oncogenesis", a new tripartite description of the role of elements in driving cancer. This term would suggest that for a better understanding of cancer, we need to understand how proliferation, inflammation and metabolic pathways are impacted and how they influence classical drivers of malignant transformation in order to drive ImmunoMET oncogenesis and the malignant state.
Collapse
Affiliation(s)
- Reshma Sirajee
- Faculty of Science, 1-001 CCIS, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Sami El Khatib
- Department of Biological & Chemical Sciences, Bekaa Campus, Lebanese International University, West Bekaa, Khiyara 1106, Lebanon; (S.E.K.); (M.S.)
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Kuwait City 32093, Kuwait
| | - Levinus A. Dieleman
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada;
| | - Mohamed Salla
- Department of Biological & Chemical Sciences, Bekaa Campus, Lebanese International University, West Bekaa, Khiyara 1106, Lebanon; (S.E.K.); (M.S.)
| | - Shairaz Baksh
- Department of Pediatrics, Biochemistry and Division of Experimental Oncology, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada
- Women and Children’s Health Research Institute, Edmonton Clinic Health Academy (ECHA), University of Alberta, 4-081 11405 87 Avenue, Edmonton, AB T6G 1C9, Canada
- BioImmuno Designs, 4747 154 Avenue, Edmonton, AB T5Y 0C2, Canada
- Bio-Stream Diagnostics, 2011 94 Street, Edmonton, AB T6H 1N1, Canada
| |
Collapse
|
2
|
Wong ECL, Dulai PS, Marshall JK, Jairath V, Reinisch W, Narula N. Improvement in serum eosinophilia is observed in clinical responders to ustekinumab but not adalimumab in inflammatory bowel disease. J Crohns Colitis 2025; 19:jjaf006. [PMID: 39804709 PMCID: PMC11760988 DOI: 10.1093/ecco-jcc/jjaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
INTRODUCTION In inflammatory bowel disease (IBD), the number of eosinophils increases in the lamina propria of the intestinal tract, but their specific patho-mechanistic role remains unclear. Elevated blood eosinophil counts in active IBD suggest their potential as biomarkers for predicting response to biological therapies. This study evaluates blood eosinophil count trends and their predictive value for clinical response and endoscopic improvement in patients with IBD receiving ustekinumab or adalimumab induction therapy. METHODS Participant-level data from phase 3 and 4 clinical trials (UNIFI, SEAVUE, VARSITY) evaluating ustekinumab and adalimumab for moderate-severe Crohn's disease (CD) and ulcerative colitis (UC) were used. The primary outcome was clinical response, defined by reductions in disease activity scores. Eosinophil counts were compared between responders and non-responders at multiple time points using t-tests. Logistic regression assessed the odds of achieving a clinical response based on baseline eosinophil counts. RESULTS Among patients treated with ustekinumab for UC, responders had significantly higher baseline eosinophil counts compared to non-responders (0.21 × 109/L vs 0.18 × 109/L, P = .042). By week 8, responders showed a greater absolute (-0.07 × 109/L vs -0.01 × 109/L, P < .001) and percent decline (-33.33% vs -5.55%, P = .027) in eosinophil counts. In CD, ustekinumab responders also had higher baseline eosinophil counts and showed significant reductions by week 8. However, no significant differences in eosinophil counts were observed among CD patients treated with adalimumab or UC patients treated with vedolizumab. CONCLUSION Eosinophil reduction was identified as a marker for early response to ustekinumab in both UC and CD, but not adalimumab. No difference was observed among UC patients treated with vedolizumab either. Targeting the IL-12/IL-23 pathway may be more effective in managing eosinophil-associated inflammation in IBD.
Collapse
Affiliation(s)
- Emily C L Wong
- Department of Medicine (Division of Gastroenterology) and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Parambir S Dulai
- Division of Gastroenterology, Northwestern University, Chicago, IL 60208, United States
| | - John K Marshall
- Department of Medicine (Division of Gastroenterology) and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Vipul Jairath
- Department of Medicine, Division of Gastroenterology, Western University, London, ON N6A 3K7, Canada
| | - Walter Reinisch
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Neeraj Narula
- Department of Medicine (Division of Gastroenterology) and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
3
|
Carriera L, Caporuscio S, Fantò M, D'Abramo A, Puzio G, Triolo L, Coppola A. Combination treatment with monoclonal antibodies for the management of severe asthma and immune-mediated inflammatory diseases: a comprehensive review. Monaldi Arch Chest Dis 2024. [PMID: 39373458 DOI: 10.4081/monaldi.2024.3079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
Biological drugs have revolutionized the management of severe asthma, and a tailored treatment approach made it possible to consider remission as an achievable treatment target. The incidence of autoimmune diseases is increasing in many parts of the world. Patients suffering from severe asthma, eligible or already treated with an asthma-approved biologic agent, may suffer from another immune-mediated inflammatory disease (IMID) that could require the simultaneous use of a second monoclonal antibody. The real-life studies available in the literature describing the concurrent administration of an asthma-approved biologic agent with another biologic for a different immune disease, obtained through a systematic search on online databases based on monoclonal antibodies, were collected and analyzed. 26 articles were included in this review according to the prespecified inclusion and exclusion criteria. All included papers were retrospective in nature. Study designs were case reports (n=18), case series (n=3), retrospective chart reviews (n=3), retrospective observational studies (n=1), and cohort studies (n=1). The study is intended to present, within the current literature, all the administered combinations of severe asthma-approved biologics with monoclonal antibodies for a different indication. Those were grouped according to the IMID for whom the second biologic agent, with a different mechanism of action, was prescribed. The combinations prescribed to the cohort of patients specifically treating uncontrolled severe asthma were deeper evaluated in the discussion section, since an analysis of these therapeutic combinations deriving from real-life experiences may be useful to optimize the management of patients with severe asthma, ultimately leading to improved patient care and outcomes. Prospective registries and future studies are required to assess the safety and efficacy of combination therapies for severe asthmatic patients who suffer from an IMID.
Collapse
Affiliation(s)
- Lorenzo Carriera
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome.
| | - Sara Caporuscio
- Internal Medicine Complex Operational Unit, Ospedale San Filippo Neri, Local Health Unit Roma 1, Rome.
| | - Marta Fantò
- Casa di Cura Villa Benedetta, Villa Benedetta Group SRL, Rome.
| | - Alice D'Abramo
- Pulmonology Complex Operational Unit, Ospedale San Filippo Neri, ASL Roma 1, Rome.
| | - Genesio Puzio
- Pulmonology Complex Operational Unit, Ospedale San Filippo Neri, ASL Roma 1, Rome.
| | - Luca Triolo
- Pulmonology Complex Operational Unit, Ospedale San Filippo Neri, ASL Roma 1, Rome.
| | - Angelo Coppola
- Pulmonology Complex Operational Unit, Ospedale San Filippo Neri, ASL Roma 1, Rome; Saint Camillus International University of Health Sciences, Rome.
| |
Collapse
|
4
|
Wang J, Zhou Y, Zhang H, Hu L, Liu J, Wang L, Wang T, Zhang H, Cong L, Wang Q. Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:138. [PMID: 36964157 PMCID: PMC10039055 DOI: 10.1038/s41392-023-01344-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 03/26/2023] Open
Abstract
Allergic diseases such as allergic rhinitis (AR), allergic asthma (AAS), atopic dermatitis (AD), food allergy (FA), and eczema are systemic diseases caused by an impaired immune system. Accompanied by high recurrence rates, the steadily rising incidence rates of these diseases are attracting increasing attention. The pathogenesis of allergic diseases is complex and involves many factors, including maternal-fetal environment, living environment, genetics, epigenetics, and the body's immune status. The pathogenesis of allergic diseases exhibits a marked heterogeneity, with phenotype and endotype defining visible features and associated molecular mechanisms, respectively. With the rapid development of immunology, molecular biology, and biotechnology, many new biological drugs have been designed for the treatment of allergic diseases, including anti-immunoglobulin E (IgE), anti-interleukin (IL)-5, and anti-thymic stromal lymphopoietin (TSLP)/IL-4, to control symptoms. For doctors and scientists, it is becoming more and more important to understand the influencing factors, pathogenesis, and treatment progress of allergic diseases. This review aimed to assess the epidemiology, pathogenesis, and therapeutic interventions of allergic diseases, including AR, AAS, AD, and FA. We hope to help doctors and scientists understand allergic diseases systematically.
Collapse
Affiliation(s)
- Ji Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Yumei Zhou
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Honglei Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linhan Hu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Juntong Liu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Lei Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 1000210, China
| | - Tianyi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Haiyun Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linpeng Cong
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Qi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China.
| |
Collapse
|
5
|
Leite CDS, Bonafé GA, Pires OC, dos Santos TW, Pereira GP, Pereira JA, Rocha T, Martinez CAR, Ortega MM, Ribeiro ML. Dipotassium Glycyrrhizininate Improves Skin Wound Healing by Modulating Inflammatory Process. Int J Mol Sci 2023; 24:ijms24043839. [PMID: 36835248 PMCID: PMC9965141 DOI: 10.3390/ijms24043839] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Wound healing is characterized by a systemic and complex process of cellular and molecular activities. Dipotassium Glycyrrhizinate (DPG), a side product derived from glycyrrhizic acid, has several biological effects, such as being antiallergic, antioxidant, antibacterial, antiviral, gastroprotective, antitumoral, and anti-inflammatory. This study aimed to evaluate the anti-inflammatory effect of topical DPG on the healing of cutaneous wounds by secondary intention in an in vivo experimental model. Twenty-four male Wistar rats were used in the experiment, and were randomly divided into six groups of four. Circular excisions were performed and topically treated for 14 days after wound induction. Macroscopic and histopathological analyses were performed. Gene expression was evaluated by real-time qPCR. Our results showed that treatment with DPG caused a decrease in the inflammatory exudate as well as an absence of active hyperemia. Increases in granulation tissue, tissue reepithelization, and total collagen were also observed. Furthermore, DPG treatment reduced the expression of pro-inflammatory cytokines (Tnf-α, Cox-2, Il-8, Irak-2, Nf-kB, and Il-1) while increasing the expression of Il-10, demonstrating anti-inflammatory effects across all three treatment periods. Based on our results, we conclude that DPG attenuates the inflammatory process by promoting skin wound healing through the modulation of distinct mechanisms and signaling pathways, including anti-inflammatory ones. This involves modulation of the expression of pro- and anti-inflammatory cytokine expression; promotion of new granulation tissue; angiogenesis; and tissue re-epithelialization, all of which contribute to tissue remodeling.
Collapse
Affiliation(s)
- Camila dos Santos Leite
- Laboratory of Immunopharmacology and Molecular Biology, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Gabriel Alves Bonafé
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Oscar César Pires
- Laboratory of Pharmacology, Taubaté University (UNITAU), Taubaté, São Paulo 12030-180, Brazil
| | - Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Geovanna Pacciulli Pereira
- Department of Surgery and Proctology, São Francisco University (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - José Aires Pereira
- Department of Surgery and Proctology, São Francisco University (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Thalita Rocha
- Postgraduate Program in Biomaterials and Regenerative Medicine, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo, São Paulo 05014-901, Brazil
| | - Carlos Augusto Real Martinez
- Department of Surgery and Proctology, São Francisco University (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
- Correspondence:
| |
Collapse
|
6
|
Li H, Yan L, Li B, Wei G, Ju R. Inflammatory factor tumor necrosis factor-α (TNF-α) activates P-glycoprotein (P-gp) by phosphorylating c-Jun and thus promotes transportation in placental cells. Transl Pediatr 2022; 11:1470-1481. [PMID: 36247888 PMCID: PMC9561510 DOI: 10.21037/tp-22-43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 08/07/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND P-glycoprotein (P-gp), encoded by the ABCB1 gene, actively pumps drugs and other xenobiotics from trophoblast cells back into the maternal circulation and thus acts as one of the most critical protectors of the fetus. The effect of tumor necrosis factor-α (TNF-α) on P-gp and molecule-transporting activity remains unknown. The goal of this study was to investigate the role of TNF-α in placental molecule-transporting activity and the underlies mechanisms. METHODS Cultured human placental choriocarcinoma cell lines, Bewo, JEG-3 and JAR, were used in this study. Cultured cells were incubated with 5, 10 and 20 ng/mL of recombinant TNF-α (rTNF-α) for 24 h, respectively, for follow-up experiments. The dimer form and expression of activator protein-1 (AP-1) family members were detected using Western blot (WB) and chromatin immunoprecipitation (ChIP). mRNA and protein expression of ABCB1 were detected using reverse transcriptional quantitative polymerase chain reaction (RT-qPCR) and WB, respectively. Double luciferase labeling was used to verify the concentration of digoxin. Electromobility shift assay (EMSA) and ChIP were used to identify the binding ability of c-Jun to ABCB1 gene promoter. Proliferation and apoptosis of Bewo cells were determined using flow cytometry. Digoxin concentration were determined using dual luciferase labeling method. RESULTS Administration of rTNF-α upregulated the expression of c-Jun but not JunB or JunD in a dose-dependent manner and promoted the binding of c-Jun to the ABCB1 promoter region in Bewo cells. rTNF-α also increased the uptake of two P-gp-specific substrates, Rh123 and DiOC2(3), a function reversed by the addition of SP600125 and SR11302. We also found that rTNF-α increased the efflux ratio of digoxin, an outcome that was reversed, as expected, by inhibiting c-Jun and P-gp binding activities. Furthermore, we identified that rTNF-α tightly regulates the molecule-transporting activity of P-gp by promoting the phosphorylation of c-Jun. CONCLUSIONS TNF-α activates P-gp to promote placental molecule-transporting activity by directly upregulating c-Jun expression and phosphorylation. These findings demonstrate the clinical significance of TNF-α in modulating the placental barrier, which plays an important role in protecting fetus against harmful drugs.
Collapse
Affiliation(s)
- Huaying Li
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Yan
- Department of Respiration Center, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Biao Li
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Guoqing Wei
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rong Ju
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Dirani E, Bou Khalil R, Raad G, Richa S. Eosinophils to Lymphocytes Ratio (ELR) as a Potential Inflammatory Biomarker in Patients with Dual Diagnosis of Bipolar and Alcohol Use Disorders: A Retrospective Cohort Study. J Dual Diagn 2022; 18:144-152. [PMID: 35767724 DOI: 10.1080/15504263.2022.2090650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Objective: It is well-established that Bipolar Disorder (BD) has comorbidity with Alcohol Use Disorder (AUD) and could present the same symptoms of an underlying diagnosis of BD, therefore delaying the proper relevant treatment. Recent studies show the occurrence of alterations in the circulating levels of inflammatory mediators in patients dealing with AUD as well as those with BD. The objective of this study is to get an assessment of whether patients with AUD and BD comorbidity [BD(+)] would present different ratios of the Complete Blood Count (CBC) in comparison with patients with AUD but without a BD comorbidity [BD(-)]. Methods: This is a retrospective study, conducted through a selection of patients files who were admitted to the psychiatric department at Hôtel-Dieu de France University Hospital in Beirut, Lebanon, between January of the year 2016 and May of the year 2021. Overall, 83 files of patients dealing with AUD were included in this study. Results: Patients with BD(+) showed a higher Eosinophils to Lymphocytes Ratio (ELR) in comparison to those with BD(-). The Receiver Operation Characteristic (ROC) analysis had an area under the curve at 0.719 with a p = .001. The cutoff value of ELR that best differentiates BD(-) from BD(+) was 0.087 (Sensitivity = 81.3%; Specificity = 63.6%). The logistic regression analysis showed that an ELR superior to 0.087 presented a statistically significant difference, exposing patients belonging to the BD(+) group (OR = 11.66; p < .001). Conclusions: Our data suggest that ELR may be a valuable, reproducible, easily accessible, and cost-effective inflammatory marker, pointing at the presence of a BD comorbidity with AUD.
Collapse
Affiliation(s)
- Elina Dirani
- Hôtel Dieu de France, Beirut, Lebanon.,Department of Psychiatry, Saint Joseph University, Beirut, Lebanon
| | - Rami Bou Khalil
- Hôtel Dieu de France, Beirut, Lebanon.,Department of Psychiatry, Saint Joseph University, Beirut, Lebanon
| | - Georges Raad
- IVF Department, Al-Hadi Laboratory and Medical Center, Beirut, Lebanon
| | - Sami Richa
- Hôtel Dieu de France, Beirut, Lebanon.,Department of Psychiatry, Saint Joseph University, Beirut, Lebanon
| |
Collapse
|
8
|
Janson C, Bjermer L, Lehtimäki L, Kankaanranta H, Karjalainen J, Altraja A, Yasinska V, Aarli B, Rådinger M, Hellgren J, Lofdahl M, Howarth PH, Porsbjerg C. Eosinophilic airway diseases: basic science, clinical manifestations and future challenges. Eur Clin Respir J 2022; 9:2040707. [PMID: 35251534 PMCID: PMC8896196 DOI: 10.1080/20018525.2022.2040707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Eosinophils have a broad range of functions, both homeostatic and pathological, mediated through an array of cell surface receptors and specific secretory granules that promote interactions with their microenvironment. Eosinophil development, differentiation, activation, survival and recruitment are closely regulated by a number of type 2 cytokines, including interleukin (IL)-5, the key driver of eosinophilopoiesis. Evidence shows that type 2 inflammation, driven mainly by interleukin (IL)-4, IL-5 and IL-13, plays an important role in the pathophysiology of eosinophilic airway diseases, including asthma, chronic rhinosinusitis with nasal polyps, eosinophilic granulomatosis with polyangiitis and hypereosinophilic syndrome. Several biologic therapies have been developed to suppress type 2 inflammation, namely mepolizumab, reslizumab, benralizumab, dupilumab, omalizumab and tezepelumab. While these therapies have been associated with clinical benefits in a range of eosinophilic diseases, their development has highlighted several challenges and directions for future research. These include the need for further information on disease progression and identification of treatable traits, including clinical characteristics or biomarkers that will improve the prediction of treatment response. The Nordic countries have a long tradition of collaboration using patient registries and Nordic asthma registries provide unique opportunities to address these research questions. One example of such a registry is the NORdic Dataset for aSThmA Research (NORDSTAR), a longitudinal population-based dataset containing all 3.3 million individuals with asthma from four Nordic countries (Denmark, Finland, Norway and Sweden). Large-scale, real-world registry data such as those from Nordic countries may provide important information regarding the progression of eosinophilic asthma, in addition to clinical characteristics or biomarkers that could allow targeted treatment and ensure optimal patient outcomes.
Collapse
Affiliation(s)
- Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Skane University Hospital, Lund, Sweden
| | - Lauri Lehtimäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Allergy Centre, Tampere University Hospital, Tampere, Finland
| | - Hannu Kankaanranta
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Respiratory Medicine, Seinäjoki Central Hospital, Seinäjoki, Finland
| | - Jussi Karjalainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Allergy Centre, Tampere University Hospital, Tampere, Finland
| | - Alan Altraja
- Department of Pulmonology, University of Tartu and Lung Clinic, Tartu University Hospital, Tartu, Estonia
| | - Valentyna Yasinska
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Huddinge, Sweden
| | - Bernt Aarli
- Department of Clinical Science, University of Bergen and Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Madeleine Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Johan Hellgren
- Department of Otorhinolaryngology, University of Gothenburg, Gothenburg, Sweden
| | | | - Peter H Howarth
- Respiratory Medical Franchise, GSK, Brentford, Middlesex, UK
| | - Celeste Porsbjerg
- Department of Respiratory Medicine, Bispebjerg Hospital and Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
9
|
Dagher R, Kumar V, Copenhaver AM, Gallagher S, Ghaedi M, Boyd J, Newbold P, Humbles AA, Kolbeck R. Novel mechanisms of action contributing to Benralizumab's potent anti-eosinophilic activity. Eur Respir J 2021; 59:13993003.04306-2020. [PMID: 34289975 PMCID: PMC8923056 DOI: 10.1183/13993003.04306-2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 07/07/2021] [Indexed: 11/05/2022]
Abstract
Benralizumab is a humanised, anti-IL-5Rα monoclonal antibody with anti-eosinophilic activity. Lack of fucose (afucosylation) increases its affinity to CD16a and significantly enhances antibody-dependent cell-mediated cytotoxicity (ADCC) by NK cells. Although benralizumab proved clinically efficacious in clinical trials for patients with severe asthma and hypereosinophilic syndrome, in-depth characterisation of its anti-eosinophilic mechanisms of action remain elusive. Here, we further investigated the mechanisms involved in benralizumab's anti-eosinophilic activities. In the presence of NK cells benralizumab induced potent eosinophil apoptosis as demonstrated by the upstream induction of caspase 3/7 and upregulation of cytochrome C. In addition, we uncovered a previously unrecognised mechanism whereby benralizumab can induce eosinophil phagocytosis/efferocytosis by macrophages, a process called antibody-dependent cell phagocytosis (ADCP). Using live cell imaging we unravel the stepwise processes leading to eosinophil apoptosis and uptake by activated macrophages. Through careful observations of cellular co-culture assays we identified a novel role for macrophage derived TNF to further enhance benralizumab-mediated eosinophil apoptosis through activation of TNF-receptor 1 on eosinophils. TNF-induced eosinophil apoptosis was associated with Cytochrome C upregulation, mitochondrial membrane depolarisation, and increased caspase 3/7 activity. Moreover, activated NK cells were found to amplify this axis through the secretion of IFNγ, subsequently driving TNF expression by macrophages. Our data provide insights into the timely appearance of events leading to benralizumab-induced eosinophil apoptosis and suggest that additional mechanisms may contribute to the potent anti-eosinophilic activity of benralizumab in vivo Importantly, afucosylation of benralizumab strongly enhanced its potency for all mechanisms investigated.
Collapse
Affiliation(s)
- Rania Dagher
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, USA
| | - Varsha Kumar
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, USA
| | - Alan M Copenhaver
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, USA
| | - Sandra Gallagher
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, USA
| | - Mahboobe Ghaedi
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, USA
| | - Jonathan Boyd
- Imaging Core, ADPE, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, USA
| | - Paul Newbold
- Late Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, USA
| | - Alison A Humbles
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, USA
| | - Roland Kolbeck
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, USA
| |
Collapse
|
10
|
Fettrelet T, Gigon L, Karaulov A, Yousefi S, Simon HU. The Enigma of Eosinophil Degranulation. Int J Mol Sci 2021; 22:ijms22137091. [PMID: 34209362 PMCID: PMC8268949 DOI: 10.3390/ijms22137091] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Eosinophils are specialized white blood cells, which are involved in the pathology of diverse allergic and nonallergic inflammatory diseases. Eosinophils are traditionally known as cytotoxic effector cells but have been suggested to additionally play a role in immunomodulation and maintenance of homeostasis. The exact role of these granule-containing leukocytes in health and diseases is still a matter of debate. Degranulation is one of the key effector functions of eosinophils in response to diverse stimuli. The different degranulation patterns occurring in eosinophils (piecemeal degranulation, exocytosis and cytolysis) have been extensively studied in the last few years. However, the exact mechanism of the diverse degranulation types remains unknown and is still under investigation. In this review, we focus on recent findings and highlight the diversity of stimulation and methods used to evaluate eosinophil degranulation.
Collapse
Affiliation(s)
- Timothée Fettrelet
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (T.F.); (L.G.); (S.Y.)
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Lea Gigon
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (T.F.); (L.G.); (S.Y.)
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Sechenov University, 119991 Moscow, Russia;
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (T.F.); (L.G.); (S.Y.)
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; (T.F.); (L.G.); (S.Y.)
- Department of Clinical Immunology and Allergology, Sechenov University, 119991 Moscow, Russia;
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420012 Kazan, Russia
- Institute of Biochemistry, Medical School Brandenburg, D-16816 Neuruppin, Germany
- Correspondence: ; Tel.: +41-31-632-3281
| |
Collapse
|
11
|
Śmigielska P, Czarny J, Kowalski J, Wilkowska A, Nowicki RJ. Refractory eosinophilic fasciitis successfully treated with infliximab: A case report. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2021; 6:211-213. [PMID: 35386741 PMCID: PMC8892936 DOI: 10.1177/23971983211004399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 08/20/2024]
Abstract
Eosinophilic fasciitis is a rare connective tissue disease of unknown etiology. Therapeutic options include high-dose corticosteroids and other immunosuppressive drugs. We present a typical eosinophilic fasciitis case, which did not respond to first-line treatment, but improved remarkably after infliximab administration. This report demonstrates that in case of initial treatment failure, infliximab might be a relatively safe and effective way of eosinophilic fasciitis management.
Collapse
Affiliation(s)
- Paulina Śmigielska
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Justyna Czarny
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Jacek Kowalski
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Wilkowska
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Roman J. Nowicki
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
12
|
Khan MA, Khan ZA, Charles M, Pratap P, Naeem A, Siddiqui Z, Naqvi N, Srivastava S. Cytokine Storm and Mucus Hypersecretion in COVID-19: Review of Mechanisms. J Inflamm Res 2021; 14:175-189. [PMID: 33519225 PMCID: PMC7838037 DOI: 10.2147/jir.s271292] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022] Open
Abstract
Mucus is an integral part of the respiratory physiology. It protects the respiratory tract by acting as a physical barrier against inhaled particles and microbes. Excessive inflammation in conditions such as COVID-19 can result in over-production of mucus which obstructs the airway. Build-up of mucus can also contribute to recurrent airway infection, causing further obstruction. This article summarizes the current understanding and knowledge of respiratory mucus production and proposes the role of cytokine storm in inducing sudden mucus hypersecretion in COVID-19. Based on these cascades, the active constituents that inhibit or activate several potential targets are outlined for further research. These may be explored for the discovery and design of drugs to combat cytokine storm and its ensuing complications.
Collapse
Affiliation(s)
- Mohsin Ali Khan
- Reseach & Development Department, Era's Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| | - Zaw Ali Khan
- Reseach & Development Department, Era's Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| | - Mark Charles
- Metabolic Research Unit, Era's Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| | - Pushpendra Pratap
- Metabolic Research Unit, Era's Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| | - Abdul Naeem
- Metabolic Research Unit, Era's Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| | - Zainab Siddiqui
- Department of Pathology, Era's Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| | - Nigar Naqvi
- Department of Nutrition, Era's Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| | - Shikha Srivastava
- Department of Nutrition, Era's Lucknow Medical College & Hospital, Lucknow, Uttar Pradesh, India
| |
Collapse
|
13
|
Sciumè GD, Visaggi P, Sostilio A, Tarducci L, Pugno C, Frazzoni M, Ricchiuti A, Bellini M, Giannini EG, Marchi S, Savarino V, de Bortoli N. Eosinophilic esophagitis: novel concepts regarding pathogenesis and clinical manifestations. Minerva Gastroenterol (Torino) 2021; 68:23-39. [PMID: 33435660 DOI: 10.23736/s2724-5985.20.02807-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Eosinophilic esophagitis is a chronic disease whose incidence and prevalence are increasing, based on a genetic-driven interaction between environment and immune system. Several gene loci involved in the development of the disease have been identified. A two-step mechanism has been hypothesized: a thymic stromal lymphopoietin-induced allergic sensitization followed by upregulation of CAPN14-related esophageal-specific pathways. Environment seems to have a larger effect than genetic variants. Factors that could play a role are allergens, drugs, colonizing bacteria and possibly Helicobacter Pylori infection. Acting on these modifiable risk factors may be a tool to prevent the disease. EoE is characterized by a typical eosinophilic infiltrate limited to the esophageal epithelium, supported by a Th2-mediated immune response, found in other atopic conditions. The key of the pathogenesis is the disfunction of the epithelial barrier which allow the interaction between allergens and inflammatory cells. Eosinophilic-predominant inflammation leads to the typical wall remodeling, histologically characterized by epithelial and smooth muscle hyperplasia, lamina propria fibrosis and neo-angiogenesis. These alterations find their clinical expression in the pattern of symptoms: dysphagia, food impaction, chest pain, heartburn.
Collapse
Affiliation(s)
- Giusi D Sciumè
- Division of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Pierfrancesco Visaggi
- Division of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Andrea Sostilio
- Division of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Luca Tarducci
- Division of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Camilla Pugno
- Division of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marzio Frazzoni
- Digestive Pathophysiology Unit, Baggiovara Hospital, Modena, Italy
| | - Angelo Ricchiuti
- Division of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Massimo Bellini
- Division of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Edoardo G Giannini
- Gastrointestinal Unit, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Santino Marchi
- Division of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Vincenzo Savarino
- Gastrointestinal Unit, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Nicola de Bortoli
- Division of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy -
| |
Collapse
|
14
|
Mpitouli A, Kougkas N, Avgoustidis N, Ergazakis N, Karmiris K. Eosinophilic Fasciitis in a Patient With Crohn's Disease Treated With Infliximab. A Rare Coexistence or a Drug-related Manifestation? Inflamm Bowel Dis 2020; 26:e77-e78. [PMID: 32529216 DOI: 10.1093/ibd/izaa120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Afroditi Mpitouli
- Department of Gastroenterology, Venizeleio General Hospital, Heraklion, Greece
| | - Nikolaos Kougkas
- Department of Rheumatology, Clinical Immunology and Allergy, University Hospital of Heraklion, Heraklion, Greece
| | - Nestor Avgoustidis
- Department of Rheumatology, Clinical Immunology and Allergy, University Hospital of Heraklion, Heraklion, Greece
| | - Nikos Ergazakis
- Department of Magnetic Resonance Imaging, "Prognosis" Diagnostic Center, Larnaca, Cyprus
| | | |
Collapse
|
15
|
Pelaia C, Vatrella A, Crimi C, Gallelli L, Terracciano R, Pelaia G. Clinical relevance of understanding mitogen-activated protein kinases involved in asthma. Expert Rev Respir Med 2020; 14:501-510. [PMID: 32098546 DOI: 10.1080/17476348.2020.1735365] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Mitogen-activated protein kinases (MAPKs) are a large family of evolutionary conserved intracellular enzymes that play a pivotal role in signaling pathways mediating the biologic actions of a wide array of extracellular stimuli.Areas covered: MAPKs are implicated in most pathogenic events involved in asthma, including both inflammatory and structural changes occurring in the airways. Indeed, MAPKs are located at the level of crucial convergence points within the signal transduction networks activated by many cytokines, chemokines, growth factors, and other inducers of bronchial inflammation and remodeling such as immunoglobulin E (IgE) and oxidative stress.Expert opinion: Therefore, given the growing importance of MAPKs in asthma pathobiology, these signaling enzymes are emerging as key intracellular pathways whose upstream activation can be inhibited by biological drugs such as anti-cytokines and anti-IgE.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Luca Gallelli
- Department of Health Science, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Rosa Terracciano
- Department of Health Science, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Girolamo Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
16
|
Matucci A, Maggi E, Vultaggio A. Eosinophils, the IL-5/IL-5Rα axis, and the biologic effects of benralizumab in severe asthma. Respir Med 2019; 160:105819. [PMID: 31734469 DOI: 10.1016/j.rmed.2019.105819] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bronchial asthma is a chronic inflammatory disease characterized, in a percentage of patients, as an eosinophilic inflammation of the airways. Eosinophils are recognized as a proinflammatory granulocyte playing a major role in the T2-high phenotype, which includes severe eosinophilic asthma. Eosinophilic asthma represents the majority of the phenotypic variants clinically characterized by severity and frequent exacerbations. For patients with severe uncontrolled asthma, monoclonal antibodies are used as add-on treatments. Among them, in addition to anti-immunoglobulin E therapy, biologic agents directed toward the interleukin (IL)-5/IL-5Rα axis and, thus, interfering with the pathologic functions of eosinophils, are now available. Unlike the other anti‒IL-5 monoclonal antibodies which exert an indirect effect on eosinophils, benralizumab, an afucosylated IgG1 kappa antibody directed against the α subunit of IL-5R, directly depletes eosinophils and their associated bone marrow progenitor cells through induction of antibody-dependent cell-mediated cytotoxicity, through recruitment of natural killer cells. This article reviews the role of eosinophils in the pathogenesis of bronchial asthma and discusses the potential advantageous biologic effects of benralizumab in comparison with other monoclonal antibodies targeting the IL-5 ligand.
Collapse
Affiliation(s)
- Andrea Matucci
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.
| | - Enrico Maggi
- IRCCS Pediatric Hospital Bambino Gesù, Rome, Italy
| | - Alessandra Vultaggio
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| |
Collapse
|
17
|
Nosenko MA, Ambaryan SG, Drutskaya MS. Proinflammatory Cytokines and Skin Wound Healing in Mice. Mol Biol 2019. [DOI: 10.1134/s0026893319050121] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Yamada H, Hida N, Kurashima Y, Satoh H, Saito T, Hizawa N. A case of severe eosinophilic asthma and refractory rheumatoid arthritis well controlled by combination of IL-5Rα antibody and TNFα inhibitor. Allergol Int 2019; 68:536-538. [PMID: 31027977 DOI: 10.1016/j.alit.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/03/2019] [Accepted: 03/21/2019] [Indexed: 11/25/2022] Open
|
19
|
Caramori G, Coppolino I, Cannavò MF, Nucera F, Proietto A, Mumby S, Ruggeri P, Adcock IM. Transcription inhibitors and inflammatory cell activity. Curr Opin Pharmacol 2019; 46:82-89. [PMID: 31207387 DOI: 10.1016/j.coph.2019.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/04/2019] [Accepted: 05/15/2019] [Indexed: 12/24/2022]
Abstract
Inflammation is a central feature of asthma and chronic obstructive pulmonary disease (COPD). Despite recent advances in the knowledge of the pathogenesis of asthma and COPD, much more research on the molecular mechanisms of asthma and COPD are needed to aid the logical development of new therapies for these common and important diseases, particularly in COPD where no new effective treatments currently exist. In the future the role of the activation/repression of different transcription factors and the genetic regulation of their expression in asthma and COPD may be an increasingly important aspect of research, as this may be one of the critical mechanisms regulating the expression of different clinical phenotypes and their responsiveness to therapy, particularly to anti-inflammatory drugs.
Collapse
Affiliation(s)
- Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy.
| | - Irene Coppolino
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Mario Francesco Cannavò
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Alfio Proietto
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Sharon Mumby
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, UK
| | - Paolo Ruggeri
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
20
|
Akdogan N, Dogan S, Atakan N. Long-term effects of biologic therapies on peripheral blood eosinophils in patients with psoriasis: a 3-year single-center study. J DERMATOL TREAT 2019; 31:702-706. [PMID: 30958710 DOI: 10.1080/09546634.2019.1605139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background: Biologic therapies (BTs), etanercept, infliximab, adalimumab, and ustekinumab, are generally well-tolerated and safe agents in psoriasis management.Objectives: To determine the overall effect of BTs on peripheral blood eosinophil count (PBEc) and percentage (PBEp), peripheral blood basophil count (PBBc) and percentage (PBBp), white blood cell count (WBCc), erythrocyte sedimentation rate (ESR), and serum C-reactive protein (s-CRP) level during a 3-year follow-up in patients with psoriasis.Methods: This retrospective cohort study included 200 patients (116 men; 84 women) treated continuously with BTs for 3 years for plaque-type, pustular, or nail psoriasis. Patient data were reviewed from medical charts. During routine laboratory investigation at baseline and every 3 months thereafter up to 3 years, the PBEp, PBEc, PBBp, PBBc, WBCc, ESR, and s-CRP level were monitored. Generalized estimating equations were used to compare consecutive data.Results: Seventy patients received infliximab (35%); 34 (17%), etanercept; 44 (22%), adalimumab; and 52 (26%), ustekinumab. The mean PBEp and PBEc significantly increased starting from 3 months after BT (both p<.001). The mean PBEp and PBEc significantly increased during follow-up compared with the baseline values (PBEp (%): 1.49 ± 0.1 (1st month) vs. 2.29 ± 0.14 (3rd month), p<.001 and 1.49 ± 0.1 (1st month) vs. 2.17 ± 0.18 (36th month), p=.004; PBEc (×103/µL): 115.80 ± 6.32 (1st month) vs. 174.9 ± 10.08 (3rd month), p<.001 and 115.80 ± 6.32 (1st month) vs. 162.9 ± 12.86 (36th month), p<.001). However, the mean PBBp, PBBc, WBCc, ESR, and s-CRP level did not change significantly.Conclusions: The PBEc and PBEp increase with BTs up to 3 years in patients with psoriasis. This increase is observed at as early as 3 months of BT and maintained thereafter.
Collapse
Affiliation(s)
- Neslihan Akdogan
- Department of Dermatology and Venereology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Sibel Dogan
- Department of Dermatology and Venereology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Nilgun Atakan
- Department of Dermatology and Venereology, School of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
21
|
Yelins’ka AM, Akimov OY, Kostenko VO. Role of AP-1 transcriptional factor in development of oxidative and nitrosative stress in periodontal tissues during systemic inflammatory response. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.01.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
22
|
Matucci A, Maggi E, Vultaggio A. WITHDRAWN: Eosinophils, the IL-5/IL-5Rα axis, and the biologic effects of benralizumab in severe asthma. RESPIRATORY MEDICINE: X 2019. [DOI: 10.1016/j.yrmex.2019.100007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
23
|
Ahmad S, Azid NA, Boer JC, Lim J, Chen X, Plebanski M, Mohamud R. The Key Role of TNF-TNFR2 Interactions in the Modulation of Allergic Inflammation: A Review. Front Immunol 2018; 9:2572. [PMID: 30473698 PMCID: PMC6238659 DOI: 10.3389/fimmu.2018.02572] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF) is a pleiotropic cytokine, which is thought to play a major role in the pathogenesis of inflammatory diseases, including allergy. TNF is produced at the early stage of allergen sensitization, and then continues to promote the inflammation cascade in the effector phase of allergic reactions. Consequently, anti-TNF treatment has been proposed as a potential therapeutic option. However, recent studies reveal anti-intuitive effects of TNF in the activation and proliferative expansion of immunosuppressive Tregs, tolerogenic DCs and MDSCs. This immunosuppressive effect of TNF is mediated by TNFR2, which is preferentially expressed by immunosuppressive cells. These findings redefine the role of TNF in allergic reaction, and suggest that targeting TNF-TNFR2 interaction itself may represent a novel strategy in the treatment of allergy.
Collapse
Affiliation(s)
- Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nor Azrini Azid
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Jennifer C Boer
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - JitKang Lim
- School of Chemical Engineering, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| | | | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
24
|
Ren J, Sun Y, Li G, Zhu XJ, Cui JG. Tumor necrosis factor-α, interleukin-8 and eosinophil cationic protein as serum markers of glucocorticoid efficacy in the treatment of bronchial asthma. Respir Physiol Neurobiol 2018; 258:86-90. [PMID: 29908291 DOI: 10.1016/j.resp.2018.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND Bronchial asthma (BA) is a common chronic respiratory disease that has exhibited a rising global incidence in recent years. Glucocorticoids are used for the treatment of BA. Emerging evidence has demonstrated the roles of tumor necrosis factor (TNF-α), interleukin-8 (IL-8) and eosinophil cationic protein (ECP) in BA. The present study investigated whether TNF-α, IL-8 and ECP were associated with the clinical stages and severity of BA and the efficacy of glucocorticoids in the treatment of BA. METHODS A total of 199 patients with BA and 174 healthy individuals were included in this study. Patients with BA underwent glucocorticoid treatment, and the TNF-α, IL-8 and ECP levels and lung functions of the subjects were measured. The correlations of the TNF-α, IL-8 and ECP levels with BA severity, clinical staging and lung functions were assessed. We investigated whether the TNF-α, IL-8 and ECP levels aided in evaluating the efficacy of using glucocorticoids for the treatment of BA. RESULTS TNF-α, IL-8 and ECP exhibited high levels in patients with BA, and glucocorticoid treatment notably decreased these levels. The TNF-α, IL-8 and ECP levels were positively correlated with the clinical stages and severity of BA and negatively correlated with lung function. TNF-α, IL-8 and ECP can be used as serum markers to predict the efficacy of glucocorticoids in the treatment of BA. CONCLUSION The key findings of this study collectively support a role for TNF-α, IL-8 and ECP in BA development, and TNF-α, IL-8 and ECP can be used as serum markers of glucocorticoid efficacy in BA.
Collapse
Affiliation(s)
- Jing Ren
- Tianjin Key Laboratory of Biomedical Detection and Instruments, Tianjin University, Tianjin, 300072, PR China; Precision Medicine Center, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Yong Sun
- Clinical Laboratory, Laiyang Central Hospital, Laiyang, 265200, PR China
| | - Gang Li
- Tianjin Key Laboratory of Biomedical Detection and Instruments, Tianjin University, Tianjin, 300072, PR China
| | - Xiao-Jue Zhu
- Clinical Laboratory, Zhangjiagang First People's Hospital, No. 68, Jiyang West Road, Zhangjiagang 215600, Jiangsu Province, PR China.
| | - Jin-Guo Cui
- Department of Internal Neurology, Dongchangfu People's Hospital of Liaocheng, No. 281, Dongguan Road, Liaocheng, 252002, Shandong Province, PR China.
| |
Collapse
|
25
|
Soman KV, Stafford SJ, Pazdrak K, Wu Z, Luo X, White WI, Wiktorowicz JE, Calhoun WJ, Kurosky A. Activation of Human Peripheral Blood Eosinophils by Cytokines in a Comparative Time-Course Proteomic/Phosphoproteomic Study. J Proteome Res 2017; 16:2663-2679. [PMID: 28679203 DOI: 10.1021/acs.jproteome.6b00367] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Activated eosinophils contribute to airway dysfunction and tissue remodeling in asthma and thus are considered to be important factors in asthma pathology. We report here comparative proteomic and phosphoproteomic changes upon activation of eosinophils using eight cytokines individually and in selected cytokine combinations in time-course reactions. Differential protein and phosphoprotein expressions were determined by mass spectrometry after 2-dimensional gel electrophoresis (2DGE) and by LC-MS/MS. We found that each cytokine-stimulation produced significantly different changes in the eosinophil proteome and phosphoproteome, with phosphoproteomic changes being more pronounced and having an earlier onset. Furthermore, we observed that IL-5, GM-CSF, and IL-3 showed the greatest change in protein expression and phosphorylation, and this expression differed markedly from those of the other five cytokines evaluated. Comprehensive univariate and multivariate statistical analyses were employed to evaluate the comparative results. We also monitored eosinophil activation using flow cytometry (FC) analysis of CD69. In agreement with our proteomic studies, FC indicated that IL-5, GM-CSF, and IL-3 were more effective than the other five cytokines studied in stimulating a cell surface CD69 increase indicative of eosinophil activation. Moreover, selected combinations of cytokines revealed proteomic patterns with many proteins in common with single cytokine expression patterns but also showed a greater effect of the two cytokines employed, indicating a more complex signaling pathway that was reflective of a more typical inflammatory pathology.
Collapse
Affiliation(s)
- Kizhake V Soman
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Susan J Stafford
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Konrad Pazdrak
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Institute for Translational Sciences, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Zheng Wu
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Xuemei Luo
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Wendy I White
- MedImmune LLC , One MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - John E Wiktorowicz
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Institute for Translational Sciences, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Institute for Human Immunity & Infection, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - William J Calhoun
- Department of Internal Medicine, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Alexander Kurosky
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, University of Texas Medical Branch , Galveston, Texas 77555, United States
| |
Collapse
|
26
|
Lim KJ, Lee SJ, Kim S, Lee SY, Lee MS, Park YA, Choi EJ, Lee EB, Jun HK, Cho JM, Lee S, Kwon KS, Lim BP, Jeon MS, Shin EC, Choi YS, Fudim E, Picard O, Yavzori M, Ben-Horin S, Chang SJ. Comparable Immune Function Inhibition by the Infliximab Biosimilar CT-P13: Implications for Treatment of Inflammatory Bowel Disease. J Crohns Colitis 2017; 11:593-602. [PMID: 28453766 DOI: 10.1093/ecco-jcc/jjw183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS CT-P13 is the first biosimilar monoclonal antibody to infliximab, and was recently approved in the European Union, Japan, Korea, and USA for all six indications of infliximab. However, studies directly assessing the biologic activity of CT-P13 versus inflximab in the context of inflammatory bowel disease [IBD] are still scanty. In the present study, we aimed to compare the biological activities of CT-P13 and infliximab with specific focus on intestinal cells so as to gain insight into the potential biosimilarity of these two agents for treatment of IBD. METHODS CT-P13 and infliximab were investigated and compared by in vitro experiments for their neutralisation ability of soluble tumour necrosis factor alpha [sTNFα] and membrane-bound tumour necrosis factor alpha [mTNFα], suppression of cytokine release by reverse signalling, induction of regulatory macrophages and wound healing, and antibody-dependent cell cytotoxicity [ADCC]. RESULTS CT-P13 showed similar biological activities to infliximab as gauged by neutralisation of soluble TNFα, as well as blockade of apoptosis and suppression of pro-inflammatory cytokines in intestinal Caco-2 cells. Infliximab and CT-P13 equally induced apoptosis and outside-to-inside signals through transmembrane TNFα [tmTNFα]. Moreover, regulatory macrophage induction and ensuing wound healing were similarly exerted by CT-P13 and infliximab. However, neither CT-P13 nor infliximab exerted any significant ADCC of ex vivo-stimulated peripheral blood monocytes or lamina propria mononuclear cells from IBD patients. CONCLUSIONS These findings indicate that CT-P13 and infliximab exert highly similar biological activities in intestinal cells, and further support a mechanistic comparability of these two drugs in the treatment of IBD.
Collapse
Affiliation(s)
- Ki Jung Lim
- R&D Division, Celltrion Inc., Incheon, Korea
| | - So Jung Lee
- R&D Division, Celltrion Inc., Incheon, Korea
| | | | - Su Yeon Lee
- R&D Division, Celltrion Inc., Incheon, Korea
| | | | - Yoon A Park
- R&D Division, Celltrion Inc., Incheon, Korea
| | | | | | | | | | | | | | | | - Myung-Shin Jeon
- Translational Research Center and Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon, Korea
| | - Eui Cheol Shin
- Laboratory of Immunology and Infectious Disease, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea
| | - Yong Sung Choi
- Department of Gastroenterology, Daehang Hospital, Seoul, Korea
| | - Ella Fudim
- Department of Gastroenterology, Sheba Medical Center & Sackler School of Medicine, Tel-Aviv University, Ramat-Gan, Israel
| | - Orit Picard
- Department of Gastroenterology, Sheba Medical Center & Sackler School of Medicine, Tel-Aviv University, Ramat-Gan, Israel
| | - Miri Yavzori
- Department of Gastroenterology, Sheba Medical Center & Sackler School of Medicine, Tel-Aviv University, Ramat-Gan, Israel
| | - Shomron Ben-Horin
- Department of Gastroenterology, Sheba Medical Center & Sackler School of Medicine, Tel-Aviv University, Ramat-Gan, Israel
| | | |
Collapse
|
27
|
Wang XP, Yu X, Yan XJ, Lei F, Chai YS, Jiang JF, Yuan ZY, Xing DM, Du LJ. TRPM8 in the negative regulation of TNFα expression during cold stress. Sci Rep 2017; 7:45155. [PMID: 28332601 PMCID: PMC5362914 DOI: 10.1038/srep45155] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/21/2017] [Indexed: 12/11/2022] Open
Abstract
Transient Receptor Potential Melastatin-8 (TRPM8) reportedly plays a fundamental role in a variety of processes including cold sensation, thermoregulation, pain transduction and tumorigenesis. However, the role of TRPM8 in inflammation under cold conditions is not well known. Since cooling allows the convergence of primary injury and injury-induced inflammation, we hypothesized that the mechanism of the protective effects of cooling might be related to TRPM8. We therefore investigated the involvement of TRPM8 activation in the regulation of inflammatory cytokines. The results showed that TRPM8 expression in the mouse hypothalamus was upregulated when the ambient temperature decreased; simultaneously, tumor necrosis factor-alpha (TNFα) was downregulated. The inhibitory effect of TRPM8 on TNFα was mediated by nuclear factor kappa B (NFκB). Specifically, cold stress stimulated the expression of TRPM8, which promoted the interaction of TRPM8 and NFκB, thereby suppressing NFκB nuclear localization. This suppression consequently led to the inhibition of TNFα gene transcription. The present data suggest a possible theoretical foundation for the anti-inflammatory role of TRPM8 activation, providing an experimental basis that could contribute to the advancement of cooling therapy for trauma patients.
Collapse
Affiliation(s)
- Xin-Pei Wang
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuan Yu
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao-Jin Yan
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fan Lei
- School of Pharmacology and Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yu-Shuang Chai
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jing-Fei Jiang
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhi-Yi Yuan
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dong-Ming Xing
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li-Jun Du
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
28
|
Khaddaj-Mallat R, Sirois C, Sirois M, Rizcallah E, Marouan S, Morin C, Rousseau É. Pro-Resolving Effects of Resolvin D2 in LTD4 and TNF-α Pre-Treated Human Bronchi. PLoS One 2016; 11:e0167058. [PMID: 27935998 PMCID: PMC5148597 DOI: 10.1371/journal.pone.0167058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/08/2016] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a major burden in respiratory diseases, resulting in airway hyperresponsiveness. Our hypothesis is that resolution of inflammation may represent a long-term solution in preventing human bronchial dysfunctions. The aim of the present study was to assess the anti-inflammatory effects of RvD2, a member of the D-series resolving family, with concomitant effects on ASM mechanical reactivity. The role and mode of action of RvD2 were assessed in an in vitro model of human bronchi under pro-inflammatory conditions, induced either by 1 μM LTD4 or 10 ng/ml TNF-α pre-treatment for 48h. TNF-α and LTD4 both induced hyperreactivity in response to pharmacological stimuli. Enhanced 5-Lipoxygenase (5-LOX) and cysteinyl leukotriene receptor 1 (CysLTR1) detection was documented in LTD4 or TNF-α pre-treated human bronchi when compared to control (untreated) human bronchi. In contrast, RvD2 treatments reversed 5-LOX/β-actin and CysLTR1/β-actin ratios and decreased the phosphorylation levels of AP-1 subunits (c-Fos, c-Jun) and p38-MAP kinase, while increasing the detection of the ALX/FPR2 receptor. Moreover, various pharmacological agents revealed the blunting effects of RvD2 on LTD4 or TNF-α induced hyper-responsiveness. Combined treatment with 300 nM RvD2 and 1 μM WRW4 (an ALX/FPR2 receptor inhibitor) blunted the pro-resolving and broncho-modulatory effects of RvD2. The present data provide new evidence regarding the role of RvD2 in a human model of airway inflammation and hyperrresponsiveness.
Collapse
Affiliation(s)
- Rayan Khaddaj-Mallat
- Department of Obstetrics-Gynecology Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Chantal Sirois
- Service of Thoracic Surgery, CHUS Felurimont, Sherbrooke, Quebec, Canada
| | - Marco Sirois
- Service of Thoracic Surgery, CHUS Felurimont, Sherbrooke, Quebec, Canada
| | - Edmond Rizcallah
- Department of Pathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sofia Marouan
- Department of Pathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Caroline Morin
- Nursery School, Université de Montréal, Montreal, Quebec, Canada
| | - Éric Rousseau
- Department of Obstetrics-Gynecology Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- * E-mail:
| |
Collapse
|
29
|
TNF α Affects Ciliary Beat Response to Increased Viscosity in Human Pediatric Airway Epithelium. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3628501. [PMID: 28025644 PMCID: PMC5153504 DOI: 10.1155/2016/3628501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/20/2016] [Accepted: 10/30/2016] [Indexed: 01/09/2023]
Abstract
In airway epithelium, mucociliary clearance (MCC) velocity depends on the ciliary beat frequency (CBF), and it is affected by mucus viscoelastic properties. Local inflammation induces secretion of cytokines (TNFα) that can alter mucus viscosity; however airway ciliated cells have an autoregulatory mechanism to prevent the collapse of CBF in response to increase in mucus viscosity, mechanism that is associated with an increment in intracellular Ca+2 level ([Ca2+]i). We studied the effect of TNFα on the autoregulatory mechanism that regulates CBF in response to increased viscosity using dextran solutions, in ciliated cells cultured from human pediatric epithelial adenoid tissue. Cultures were treated with TNFα, before and after the viscous load was changed. TNFα treatment produced a significantly larger decrease in CBF in cultures exposed to dextran. Furthermore, an increment in [Ca2+]i was observed, which was significantly larger after TNFα treatment. In conclusion, although TNFα has deleterious effects on ciliated cells in response to maintaining CBF after increasing viscous loading, it has a positive effect, since increasing [Ca2+]i may prevent the MCC collapse. These findings suggest that augmented levels of TNFα associated with an inflammatory response of the nasopharyngeal epithelium may have dual effects that contribute to maintaining the effectiveness of MCC in the upper airways.
Collapse
|
30
|
Reinisch W, Louis E, Danese S. The scientific and regulatory rationale for indication extrapolation: a case study based on the infliximab biosimilar CT-P13. Expert Rev Gastroenterol Hepatol 2016; 9 Suppl 1:17-26. [PMID: 26395531 DOI: 10.1586/17474124.2015.1091306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extrapolation of clinical data from other indications is an important concept in the development of biosimilars. This process depends on strict comparability exercises to establish similarity to the reference medicinal product. However, the extrapolation paradigm has prompted a fierce scientific debate. CT-P13 (Remsima(®), Inflectra(®)), an infliximab biosimilar, is a TNF antagonist used to treat immune-mediated inflammatory diseases. On the basis of totality of similarity data, the EMA approved CT-P13 for all indications held by its reference medicinal product (Remicade(®)) including inflammatory bowel disease. This article reviews the mechanisms of action of TNF antagonists in immune-mediated inflammatory diseases and illustrates the comparable profiles of CT-P13 and reference medicinal product on which the extrapolation of indications including inflammatory bowel disease is based.
Collapse
Affiliation(s)
- Walter Reinisch
- a 1 Division of Gastroenterology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Edouard Louis
- b 2 Department of Gastroenterology, University Hospital CHU of Liege, Liege, Belgium
| | - Silvio Danese
- c 3 Department of Gastroenterology, IBD Center, Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
31
|
Barnes PJ. Kinases as Novel Therapeutic Targets in Asthma and Chronic Obstructive Pulmonary Disease. Pharmacol Rev 2016; 68:788-815. [PMID: 27363440 DOI: 10.1124/pr.116.012518] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multiple kinases play a critical role in orchestrating the chronic inflammation and structural changes in the respiratory tract of patients with asthma and chronic obstructive pulmonary disease (COPD). Kinases activate signaling pathways that lead to contraction of airway smooth muscle and release of inflammatory mediators (such as cytokines, chemokines, growth factors) as well as cell migration, activation, and proliferation. For this reason there has been great interest in the development of kinase inhibitors as anti-inflammatory therapies, particular where corticosteroids are less effective, as in severe asthma and COPD. However, it has proven difficult to develop selective kinase inhibitors that are both effective and safe after oral administration and this has led to a search for inhaled kinase inhibitors, which would reduce systemic exposure. Although many kinases have been implicated in inflammation and remodeling of airway disease, very few classes of drug have reached the stage of clinical studies in these diseases. The most promising drugs are p38 MAP kinases, isoenzyme-selective PI3-kinases, Janus-activated kinases, and Syk-kinases, and inhaled formulations of these drugs are now in development. There has also been interest in developing inhibitors that block more than one kinase, because these drugs may be more effective and with less risk of losing efficacy with time. No kinase inhibitors are yet on the market for the treatment of airway diseases, but as kinase inhibitors are improved from other therapeutic areas there is hope that these drugs may eventually prove useful in treating refractory asthma and COPD.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
32
|
Hill DA, Spergel JM. The Immunologic Mechanisms of Eosinophilic Esophagitis. Curr Allergy Asthma Rep 2016; 16:9. [PMID: 26758862 DOI: 10.1007/s11882-015-0592-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Eosinophilic esophagitis (EoE) is a chronic allergic inflammatory disease that is triggered by food and/or environmental allergens and is characterized by a clinical and pathologic phenotype of progressive esophageal dysfunction due to tissue inflammation and fibrosis. EoE is suspected in patients with painful swallowing, among other symptoms, and is diagnosed by the presence of 15 or more eosinophils per high-power field in one or more of at least four esophageal biopsy specimens. The prevalence of EoE is increasing and has now reached rates similar to those of other chronic gastrointestinal disorders such as Crohn's disease. In recent years, our understanding of the immunologic mechanisms underlying this condition has grown considerably. Thanks to new genetic, molecular, cellular, animal, and translational studies, we can now postulate a detailed pathway by which exposure to allergens results in a complex and coordinated type 2 inflammatory cascade that, if not intervened upon, can result in pain on swallowing, esophageal strictures, and food impaction. Here, we review the most recent research in this field to synthesize and summarize our current understanding of this complex and important disease.
Collapse
Affiliation(s)
- David A Hill
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3550 Market St., Philadelphia, PA, 19104, USA
| | - Jonathan M Spergel
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA. .,Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3550 Market St., Philadelphia, PA, 19104, USA.
| |
Collapse
|
33
|
Inhibition of Extracellular Calcium Influx Results in Enhanced IL-12 Production in LPS-Treated Murine Macrophages by Downregulation of the CaMKKβ-AMPK-SIRT1 Signaling Pathway. Mediators Inflamm 2016; 2016:6152713. [PMID: 27313401 PMCID: PMC4904125 DOI: 10.1155/2016/6152713] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/19/2016] [Accepted: 04/27/2016] [Indexed: 12/18/2022] Open
Abstract
Activated macrophages are the primary sources of IL-12, a key cytokine bridging innate and adaptive immunity. However, macrophages produce low amounts of IL-12 upon stimulation and the underlying regulatory mechanism remains unclear. In this study, we found a new calcium-dependent mechanism that controlled IL-12 production in LPS-treated murine macrophages. First, LPS was demonstrated to induce extracellular calcium entry in murine peritoneal macrophages and inhibition of calcium influx resulted in marked enhancement in IL-12 production. Then, withdrawal of extracellular calcium was found to suppress CaMKKβ and AMPK activation triggered by LPS while chemical inhibition or genetic knockdown of these two kinases augmented LPS induced IL-12 production. AMPK activation increased the NAD+/NADH ratio and activated Sirtuin 1 (SIRT1), a NAD+-dependent deacetylating enzyme and negative regulator of inflammation. Chemical inhibitor or siRNA of SIRT1 enhanced IL-12 release while its agonist suppressed IL-12 production. Finally, it was found that SIRT1 selectively affected the transcriptional activity of NF-κB which thereby inhibited IL-12 production. Overall, our study demonstrates a new role of transmembrane calcium mobilization in immunity modulation such that inhibition of calcium influx leads to impaired activation of CaMKKβ-AMPK-SIRT1 signaling pathway which lifts restriction on NF-κB activation and results in enhanced IL-12 production.
Collapse
|
34
|
Development of Eosinophilic Fasciitis during Infliximab Therapy for Psoriatic Arthritis. Case Rep Rheumatol 2016; 2016:7906013. [PMID: 27293946 PMCID: PMC4879227 DOI: 10.1155/2016/7906013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/24/2016] [Indexed: 12/12/2022] Open
Abstract
Eosinophilic fasciitis (EF) is a rare disorder involving chronic inflammation of the fascia and connective tissue surrounding muscles, nerves, and blood vessels. While its pathogenesis is not entirely understood, this disorder is thought to be autoimmune or allergic in nature. We present here a case of a 59-year-old male who developed peripheral eosinophilia and subsequent eosinophilic fasciitis during treatment with infliximab. To our knowledge, eosinophilic fasciitis has not been previously described in patients during treatment with an inhibitor of tumor necrosis factor α.
Collapse
|
35
|
Gangwar RS, Friedman S, Seaf M, Levi-Schaffer F. Mast cells and eosinophils in allergy: Close friends or just neighbors. Eur J Pharmacol 2016; 778:77-83. [DOI: 10.1016/j.ejphar.2015.10.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/21/2015] [Accepted: 10/21/2015] [Indexed: 12/15/2022]
|
36
|
Kankaanranta H, Kauppi P, Tuomisto LE, Ilmarinen P. Emerging Comorbidities in Adult Asthma: Risks, Clinical Associations, and Mechanisms. Mediators Inflamm 2016; 2016:3690628. [PMID: 27212806 PMCID: PMC4861800 DOI: 10.1155/2016/3690628] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 01/07/2023] Open
Abstract
Asthma is a heterogeneous disease with many phenotypes, and age at disease onset is an important factor in separating the phenotypes. Most studies with asthma have been performed in patients being otherwise healthy. However, in real life, comorbid diseases are very common in adult patients. We review here the emerging comorbid conditions to asthma such as obesity, metabolic syndrome, diabetes mellitus type 2 (DM2), and cardiac and psychiatric diseases. Their role as risk factors for incident asthma and whether they affect clinical asthma are evaluated. Obesity, independently or as a part of metabolic syndrome, DM2, and depression are risk factors for incident asthma. In contrast, the effects of comorbidities on clinical asthma are less well-known and mostly studies are lacking. Cross-sectional studies in obese asthmatics suggest that they may have less well controlled asthma and worse lung function. However, no long-term clinical follow-up studies with these comorbidities and asthma were identified. These emerging comorbidities often occur in the same multimorbid adult patient and may have in common metabolic pathways and inflammatory or other alterations such as early life exposures, systemic inflammation, inflammasome, adipokines, hyperglycemia, hyperinsulinemia, lung mechanics, mitochondrial dysfunction, disturbed nitric oxide metabolism, and leukotrienes.
Collapse
Affiliation(s)
- Hannu Kankaanranta
- Department of Respiratory Medicine, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland
- Department of Respiratory Medicine, University of Tampere, 33521 Tampere, Finland
| | - Paula Kauppi
- Department of Respiratory Medicine and Allergology, Skin and Allergy Hospital, Helsinki University Hospital and Helsinki University, 00029 Helsinki, Finland
| | - Leena E. Tuomisto
- Department of Respiratory Medicine, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland
| | - Pinja Ilmarinen
- Department of Respiratory Medicine, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland
| |
Collapse
|
37
|
Atashrazm F, Lowenthal RM, Woods GM, Holloway AF, Karpiniec SS, Dickinson JL. Fucoidan Suppresses the Growth of Human Acute Promyelocytic Leukemia Cells In Vitro and In Vivo. J Cell Physiol 2016; 231:688-97. [PMID: 26241708 DOI: 10.1002/jcp.25119] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/30/2015] [Indexed: 01/10/2023]
Abstract
Fucoidan, a natural component of seaweeds, is reported to have immunomodulatory and anti-tumor effects. The mechanisms underpinning these activities remain poorly understood. In this study, the cytotoxicity and anti-tumor activities of fucoidan were investigated in acute myeloid leukemia (AML) cells. The human AML cell lines NB4, KG1a, HL60, and K562 were treated with fucoidan and cell cycle, cell proliferation, and expression of apoptotic pathways molecules were analyzed. Fucoidan suppressed the proliferation and induced apoptosis through the intrinsic and extrinsic pathways in the acute promyelocytic leukemia (APL) cell lines NB4 and HL60, but not in KG1a and K562 cells. In NB4 cells, apoptosis was caspase-dependent as it was significantly attenuated by pre-treatment with a pan-caspase inhibitor. P21/WAF1/CIP1 was significantly up-regulated leading to cell cycle arrest. Fucoidan decreased the activation of ERK1/2 and down-regulated the activation of AKT through hypo-phosphorylation of Thr(308) residue but not Ser(473). In vivo, a xenograft model using the NB4 cells was employed. Mice were fed with fucoidan and tumor growth was measured following inoculation with NB4 cells. Subsequently, splenic natural killer (NK) cell cytotoxic activity was also examined. Oral doses of fucoidan significantly delayed tumor growth in the xenograft model and increased cytolytic activity of NK cells. Taken together, these data suggest that the selective inhibitory effect of fucoidan on APL cells and its protective effect against APL development in mice warrant further investigation of fucoidan as a useful agent in treatment of certain types of leukemia.
Collapse
Affiliation(s)
- Farzaneh Atashrazm
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Ray M Lowenthal
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.,School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Adele F Holloway
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Joanne L Dickinson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
38
|
Scipione CA, Sayegh SE, Romagnuolo R, Tsimikas S, Marcovina SM, Boffa MB, Koschinsky ML. Mechanistic insights into Lp(a)-induced IL-8 expression: a role for oxidized phospholipid modification of apo(a). J Lipid Res 2015; 56:2273-85. [PMID: 26474593 DOI: 10.1194/jlr.m060210] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Indexed: 12/14/2022] Open
Abstract
Elevated lipoprotein (a) [Lp(a)] levels are a causal risk factor for coronary heart disease. Accumulating evidence suggests that Lp(a) can stimulate cellular inflammatory responses through the kringle-containing apolipoprotein (a) [apo(a)] component. Here, we report that recombinant apo(a) containing 17 kringle (17K) IV domains elicits a dose-dependent increase in interleukin (IL)-8 mRNA and protein expression in THP-1 and U937 macrophages. This effect was blunted by mutation of the lysine binding site in apo(a) kringle IV type 10, which resulted in the loss of oxidized phospholipid (oxPL) on apo(a). Trypsin-digested 17K had the same stimulatory effect on IL-8 expression as intact apo(a), while enzymatic removal of oxPL from apo(a) significantly blunted this effect. Using siRNA to assess candidate receptors, we found that CD36 and TLR2 may play roles in apo(a)-mediated IL-8 stimulation. Downstream of these receptors, inhibitors of MAPKs, Jun N-terminal kinase and ERK1/2, abolished the effect of apo(a) on IL-8 gene expression. To assess the roles of downstream transcription factors, luciferase reporter gene experiments were conducted using an IL-8 promoter fragment. The apo(a)-induced expression of this reporter construct was eliminated by mutation of IL-8 promoter binding sites for either NF-κB or AP-1. Our results provide a mechanistic link between oxPL modification of apo(a) and stimulation of proinflammatory intracellular signaling pathways.
Collapse
Affiliation(s)
- Corey A Scipione
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Sera E Sayegh
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Rocco Romagnuolo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Sotirios Tsimikas
- Vascular Medicine Program, University of California San Diego, La Jolla, CA
| | - Santica M Marcovina
- Department of Medicine, Northwest Lipid Research Laboratories, University of Washington, Seattle, WA
| | - Michael B Boffa
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Marlys L Koschinsky
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
39
|
Hoppenot D, Malakauskas K, Lavinskiene S, Sakalauskas R. p-STAT6, PU.1, and NF-κB are involved in allergen-induced late-phase airway inflammation in asthma patients. BMC Pulm Med 2015; 15:122. [PMID: 26466682 PMCID: PMC4606997 DOI: 10.1186/s12890-015-0119-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 10/06/2015] [Indexed: 11/23/2022] Open
Abstract
Background Previous in vitro and animal studies demonstrated that transcription factors p-STAT6 and PU.1 are required to induce interleukin (IL)-9 secretion by T helper (Th) 9 cells. It is believed that n factor-kappaB (NF-κB) plays a role in eosinophil survival. The importance of these transcription factors in the pathogenesis of allergic asthma (AA) in humans is poorly understood. We evaluated p-STAT6 and PU.1 expression in peripheral blood Th9 cells and NF-κB expression in eosinophils during late-phase airway inflammation in AA patients. Methods Nineteen adults with AA and 14 adult healthy individuals (HI) were examined. Peripheral blood collected 24 h before (baseline) and 24 h after bronchial allergen challenge. CD4+ cells and eosinophils were isolated by high-density gradient centrifugation and magnetic separation. The percentage of Th9 cells and apoptotic eosinophils was estimated by flow cytometry. p-STAT6 and PU.1 expression was expressed as mean fluorescence intensity (MFI) in Th9 cells. NF-κB levels were expressed as MFI in peripheral blood eosinophils. Serum IL-9 and IL-5 levels were determined by enzyme-linked immunosorbent assay. Results At baseline, MFI of p-STAT6 and PU.1 in peripheral blood Th9 cells and MFI of NF-κB in eosinophils and, serum IL-5 and IL-9 levels were greater in AA patients (P < 0.05). Decreased eosinophil apoptosis was seen in the AA group compared with HI (P < 0.05). MFI of p-STAT6, PU.1, and NF-κB and serum levels of IL-5 and IL-9 were increased in the AA group 24 h after challenge compared with baseline (P < 0.05). In the AA group, a correlation between serum IL-9 and Th9 cells (r = 0.7, P = 0.001) and MFI of PU.1 (r = 0.6, P = 0.01) 24 h after bronchial allergen challenge was observed. A correlation between Th9 cells and MFI of p-STAT6 (r = 0.45, P = 0.03) as well as MFI of PU.1 (r = 0.5, P = 0.02) 24 h after challenge was only observed in AA patients. A correlation between the MFI of NF-κB and eosinophil apoptosis was observed in AA patients 24 h before (r = −0.46, P = 0.02) and after (r = −0.5, P = 0.02) challenge. Discussions p-STAT6 and PU.1 may be associated with Th9 cells and IL-9 production, whereas NF-κB and IL-5 may be associated with reduced eosinophil apoptosis in allergen-induced late-phase airway inflammation. Trial registration ClinicalTrials.gov NCT02214303 Electronic supplementary material The online version of this article (doi:10.1186/s12890-015-0119-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deimante Hoppenot
- Department of Pulmonology and Immunology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Kestutis Malakauskas
- Department of Pulmonology and Immunology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania. .,Laboratory of Pulmonology, Department of Pulmonology and Immunology, Medical Academ, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Simona Lavinskiene
- Department of Pulmonology and Immunology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania. .,Laboratory of Pulmonology, Department of Pulmonology and Immunology, Medical Academ, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Raimundas Sakalauskas
- Department of Pulmonology and Immunology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| |
Collapse
|
40
|
Schuliga M. NF-kappaB Signaling in Chronic Inflammatory Airway Disease. Biomolecules 2015; 5:1266-83. [PMID: 26131974 PMCID: PMC4598751 DOI: 10.3390/biom5031266] [Citation(s) in RCA: 326] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/31/2015] [Accepted: 06/04/2015] [Indexed: 12/21/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are obstructive airway disorders which differ in their underlying causes and phenotypes but overlap in patterns of pharmacological treatments. In both asthma and COPD, oxidative stress contributes to airway inflammation by inducing inflammatory gene expression. The redox-sensitive transcription factor, nuclear factor (NF)-kappaB (NF-κB), is an important participant in a broad spectrum of inflammatory networks that regulate cytokine activity in airway pathology. The anti-inflammatory actions of glucocorticoids (GCs), a mainstay treatment for asthma, involve inhibition of NF-κB induced gene transcription. Ligand bound GC receptors (GRs) bind NF-κB to suppress the transcription of NF-κB responsive genes (i.e., transrepression). However, in severe asthma and COPD, the transrepression of NF-κB by GCs is negated as a consequence of post-translational changes to GR and histones involved in chromatin remodeling. Therapeutics which target NF-κB activation, including inhibitors of IκB kinases (IKKs) are potential treatments for asthma and COPD. Furthermore, reversing GR/histone acetylation shows promise as a strategy to treat steroid refractory airway disease by augmenting NF-κB transrepression. This review examines NF-κB signaling in airway inflammation and its potential as target for treatment of asthma and COPD.
Collapse
Affiliation(s)
- Michael Schuliga
- Lung Health Research Centre (LHRC), Department Pharmacology and Therapeutics, University of Melbourne, Grattan St., Parkville 3010, Victoria, Australia.
| |
Collapse
|
41
|
Resistance is not futile: gliotoxin biosynthesis, functionality and utility. Trends Microbiol 2015; 23:419-28. [PMID: 25766143 DOI: 10.1016/j.tim.2015.02.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/02/2015] [Accepted: 02/17/2015] [Indexed: 12/27/2022]
Abstract
Gliotoxin biosynthesis is encoded by the gli gene cluster in Aspergillus fumigatus. The biosynthesis of gliotoxin is influenced by a suite of transcriptionally-active regulatory proteins and a bis-thiomethyltransferase. A self-protection system against gliotoxin is present in A. fumigatus. Several additional metabolites are also produced via the gliotoxin biosynthetic pathway. Moreover, the biosynthesis of unrelated natural products appears to be influenced either by gliotoxin or by the activity of specific reactions within the biosynthetic pathway. The activity of gliotoxin against animal cells and fungi, often mediated by interference with redox homeostasis or protein modification, is revealing new metabolic interactions within eukaryotic systems. Nature has provided a most useful natural product with which to reveal some of its many molecular secrets.
Collapse
|
42
|
Induction of eosinophil apoptosis by hydrogen peroxide promotes the resolution of allergic inflammation. Cell Death Dis 2015; 6:e1632. [PMID: 25675292 PMCID: PMC4669804 DOI: 10.1038/cddis.2014.580] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/07/2014] [Accepted: 11/19/2014] [Indexed: 01/13/2023]
Abstract
Eosinophils are effector cells that have an important role in the pathogenesis of allergic disease. Defective removal of these cells likely leads to chronic inflammatory diseases such as asthma. Thus, there is great interest in understanding the mechanisms responsible for the elimination of eosinophils from inflammatory sites. Previous studies have demonstrated a role for certain mediators and molecular pathways responsible for the survival and death of leukocytes at sites of inflammation. Reactive oxygen species have been described as proinflammatory mediators but their role in the resolution phase of inflammation is poorly understood. The aim of this study was to investigate the effect of reactive oxygen species in the resolution of allergic inflammatory responses. An eosinophilic cell line (Eol-1) was treated with hydrogen peroxide and apoptosis was measured. Allergic inflammation was induced in ovalbumin sensitized and challenged mouse models and reactive oxygen species were administered at the peak of inflammatory cell infiltrate. Inflammatory cell numbers, cytokine and chemokine levels, mucus production, inflammatory cell apoptosis and peribronchiolar matrix deposition was quantified in the lungs. Resistance and elastance were measured at baseline and after aerosolized methacholine. Hydrogen peroxide accelerates resolution of airway inflammation by induction of caspase-dependent apoptosis of eosinophils and decrease remodeling, mucus deposition, inflammatory cytokine production and airway hyperreactivity. Moreover, the inhibition of reactive oxygen species production by apocynin or in gp91phox−/− mice prolonged the inflammatory response. Hydrogen peroxide induces Eol-1 apoptosis in vitro and enhances the resolution of inflammation and improves lung function in vivo by inducing caspase-dependent apoptosis of eosinophils.
Collapse
|
43
|
Landolina N, Gangwar RS, Levi-Schaffer F. Mast cells' integrated actions with eosinophils and fibroblasts in allergic inflammation: implications for therapy. Adv Immunol 2015; 125:41-85. [PMID: 25591464 DOI: 10.1016/bs.ai.2014.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells (MCs) and eosinophils (Eos) are the key players in the development of allergic inflammation (AI). Their cross-talk, named the Allergic Effector Unit (AEU), takes place through an array of soluble mediators and ligands/receptors interactions that enhance the functions of both the cells. One of the salient features of the AEU is the CD48/2B4 receptor/ligand binding complex. Furthermore, MCs and Eos have been demonstrated to play a role not only in AI but also in the modulation of its consequence, i.e., fibrosis/tissue remodeling, by directly influencing fibroblasts (FBs), the main target cells of these processes. In turn, FBs can regulate the survival, activity, and phenotype of both MCs and Eos. Therefore, a complex three players, MCs/Eos/FBs interaction, can take place in various stages of AI. The characterization of the soluble and physical mediated cross talk among these three cells might lead to the identification of both better and novel targets for the treatment of allergy and its tissue remodeling consequences.
Collapse
Affiliation(s)
- Nadine Landolina
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roopesh Singh Gangwar
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
44
|
Gordy C, Liang J, Pua H, He YW. c-FLIP protects eosinophils from TNF-α-mediated cell death in vivo. PLoS One 2014; 9:e107724. [PMID: 25333625 PMCID: PMC4204828 DOI: 10.1371/journal.pone.0107724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/15/2014] [Indexed: 01/21/2023] Open
Abstract
Understanding the signals that regulate eosinophil survival and death is critical to developing new treatments for asthma, atopy, and gastrointestinal disease. Previous studies suggest that TNF-α stimulation protects eosinophils from apoptosis, and this TNF-α-mediated protection is mediated by the upregulation of an unknown protein by NF-κB. Here, we show for the first time that eosinophils express the caspase 8-inhibitory protein c-FLIP, and c-FLIP expression is upregulated upon TNF-α stimulation. Considering that c-FLIP expression is regulated by NF-κB, we hypothesized that c-FLIP might serve as the “molecular switch” that converts TNFRI activation to a pro-survival signal in eosinophils. Indeed, we found that one c-FLIP isoform, c-FLIPL, is required for mouse eosinophil survival in the presence of TNF-α both in vitro and in vivo. Importantly, our results suggest c-FLIP as a potential therapeutic target for the treatment of eosinophil-mediated disease.
Collapse
Affiliation(s)
- Claire Gordy
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| | - Jie Liang
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Heather Pua
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
45
|
Zhang H, Chu G, Pan C, Hu J, Guo C, Liu J, Wang Y, Wu J. A nutrient mixture reduces the expression of matrix metalloproteinases in an animal model of spinal cord injury by modulating matrix metalloproteinase-2 and matrix metalloproteinase-9 promoter activities. Exp Ther Med 2014; 8:1835-1840. [PMID: 25371741 PMCID: PMC4218658 DOI: 10.3892/etm.2014.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 09/08/2014] [Indexed: 12/15/2022] Open
Abstract
This study aimed to determine whether a novel nutrient mixture (NM), composed of lysine, ascorbic acid, proline, green tea extracts and other micronutrients, attenuates impairments induced by spinal cord injury (SCI) and to investigate the related molecular mechanisms. A mouse model of SCI was established. Thirty-two mice were divided into four groups. The sham group received vehicle only. The SCI groups were treated orally with saline (saline group), a low dose (500 μg 3 times/day) of NM (NM-LD group) or a high dose (2,000 μg 3 times/day) of NM (NM-HD group). The levels of mouse hindlimb movement were determined every day in the first week post-surgery. The protein expression levels of matrix metalloproteinase (MMP)-2 and MMP-9 were determined by western blotting. Wild-type and mutant MMP-2- and MMP-9-directed luciferase constructs were generated and their luciferase activities were determined. NM significantly facilitated the recovery of hindlimb movement of the mice in comparison to that in the saline group. The expression levels of MMP-2 in the NM-LD and NM-HD groups were decreased by ~50% compared with the saline group as indicated by western blotting results. The expression levels of MMP-9 in the NM-LD and NM-HD groups were decreased to ~25 and ~10%, respectively. These results suggest that NM significantly inhibits the expression of MMP-2 and MMP-9 proteins. Reverse transcription quantitative polymerase chain reaction results indicated that NM reduced the levels of MMP-2 and MMP-9 mRNA. Furthermore, the luciferase results indicated that site-directed mutagenesis comprising a −1306 C to T (C/T) base change in the MMP-2 promoter and a −1562 C/T base change in the MMP-9 promoter abolished the inhibitory effects of NM on MMP-2 and MMP-9 promoters. These results suggest that NM attenuates SCI-induced impairments in mice movement by negatively affecting the promoter activity of MMP-2 and MMP-9 genes and thus decreasing the expression of MMP-2 and MMP-9 proteins.
Collapse
Affiliation(s)
- Hongqi Zhang
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Ge Chu
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Chao Pan
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Jianzhong Hu
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Chaofeng Guo
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Jinyang Liu
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Yuxiang Wang
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Jianhuang Wu
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
46
|
Wang Y, Zhang Z, Guo W, Sun W, Miao X, Wu H, Cong X, Wintergerst KA, Kong X, Cai L. Sulforaphane reduction of testicular apoptotic cell death in diabetic mice is associated with the upregulation of Nrf2 expression and function. Am J Physiol Endocrinol Metab 2014; 307:E14-E23. [PMID: 24801392 DOI: 10.1152/ajpendo.00702.2013] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes-induced testicular cell death is due predominantly to oxidative stress. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is an important transcription factor in controlling the antioxidative system and is inducible by sulforaphane (SFN). To test whether SFN prevents diabetes-induced testicular cell death, an insulin-defective stage of type 2 diabetes (IDS-T2DM) was induced in mice. This was accomplished by feeding them a high-fat diet (HFD) for 3 mo to induce insulin resistance and then giving one intraperitoneal injection of streptozotocin to induce hyperglycemia while age-matched control mice were fed a normal diet (ND). IDS-T2DM and ND-fed control mice were then further subdivided into those with or without 4-mo SFN treatment. IDS-T2DM induced significant increases in testicular cell death presumably through receptor and mitochondrial pathways, shown by increased ratio of Bax/Bcl2 expression and cleavage of caspase-3 and caspase-8 without significant change of endoplasmic reticulum stress. Diabetes also significantly increased testicular oxidative damage and inflammation. All of these diabetic effects were significantly prevented by SFN treatment with upregulated Nrf2 expression. These results suggest that IDS-T2DM induces testicular cell death presumably through caspase-8 activation and mitochondria-mediated cell death pathways and also by significantly downregulating testicular Nrf2 expression and function. SFN upregulates testicular Nrf2 expression and its target antioxidant expression, which was associated with significant protection of the testis from IDS-T2DM-induced germ cell death.
Collapse
Affiliation(s)
- Yonggang Wang
- China-Japan Union Hospital of Jilin University, Changchun, China; Kosair Children's Hospital Research Institute, the Department of Pediatrics of the University of Louisville, Louisville, Kentucky
| | - Zhiguo Zhang
- Kosair Children's Hospital Research Institute, the Department of Pediatrics of the University of Louisville, Louisville, Kentucky; The First Hospital of Jilin University, Changchun, China
| | - Weiying Guo
- Kosair Children's Hospital Research Institute, the Department of Pediatrics of the University of Louisville, Louisville, Kentucky; The First Hospital of Jilin University, Changchun, China
| | - Weixia Sun
- Kosair Children's Hospital Research Institute, the Department of Pediatrics of the University of Louisville, Louisville, Kentucky; The First Hospital of Jilin University, Changchun, China
| | - Xiao Miao
- Kosair Children's Hospital Research Institute, the Department of Pediatrics of the University of Louisville, Louisville, Kentucky; The Second Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Kosair Children's Hospital Research Institute, the Department of Pediatrics of the University of Louisville, Louisville, Kentucky; The Second Hospital of Jilin University, Changchun, China
| | - Xianling Cong
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kupper A Wintergerst
- Department of Pediatrics, Division of Endocrinology, University of Louisville, Wendy L. Novak Diabetes Care Center, Kosair Children's Hospital, Louisville, Kentucky; and
| | - Xiangbo Kong
- China-Japan Union Hospital of Jilin University, Changchun, China;
| | - Lu Cai
- Kosair Children's Hospital Research Institute, the Department of Pediatrics of the University of Louisville, Louisville, Kentucky; Departments of Radiation Oncology, Pharmacology, and Toxicology, University of Louisville, Louisville, Kentucky
| |
Collapse
|