1
|
Mignozzi S, De Pinto G, Guglielmetti S, Riso P, Cintolo M, Penagini R, Gargari G, Marino M, Ciafardini C, Ferraroni M, Bonzi R, Mutignani M, La Vecchia C, Rossi M. Role of aspirin on colorectal cancer risk and bacterial translocation to bloodstream. PLoS One 2025; 20:e0319750. [PMID: 40153368 PMCID: PMC11952268 DOI: 10.1371/journal.pone.0319750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 02/06/2025] [Indexed: 03/30/2025] Open
Abstract
An involvement of gut microbiota on the possible role of aspirin against intestinal adenoma (IA) and colorectal cancer (CRC) has been suggested. To further investigate this issue, we analyzed data from an Italian case-control study including 100 incident histologically confirmed CRC cases, as well as 100 IA and 100 controls without lesions from colonoscopy, matched to cases by center, sex and age. Serum zonulin was assessed by ELISA kit and blood bacterial DNA by qPCR and 16S rRNA gene profiling. Fifty-eight subjects (19.3%) reported aspirin use of ≥ 100 mg/day for cardiovascular prevention for at least six months. To evaluate the relationship between aspirin and IA and CRC risks, the odds ratios (OR) of IA and CRC and the corresponding 95% confidence intervals (CI) for aspirin use were estimated using a logistic regression model conditioned on the matching variable and adjusted for education and a model adjusted for several potential confounders including BMI and cardiovascular diseases. We evaluated whether the levels of zonulin and bacterial DNA data were different in aspirin users vs non-users through the rank sum and chi-square tests. Aspirin use was associated with a reduced risk of IA (OR = 0.45, 95% CI = 0.21-0.94) and CRC (OR = 0.43, 95% CI = 0.19-0.96). Similar results were obtained using the fully adjusted model. We found lower genera and operational taxonomic units (OTUs) richness of blood bacterial community in aspirin users vs non-users overall and in cases and controls. The genera Cutibacterium, Sphingomonas, Gaiella, Delftia and Romboutsia, order Microtrichales and class Deltaproteobacteria were different according to aspirin use. This study provides additional data on the favorable role of aspirin on IA and CRC risks and supports the hypothesis of an involvement of intestinal bacterial translocation to the bloodstream.
Collapse
Affiliation(s)
- Silvia Mignozzi
- Department of Clinical Science and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| | - Giuseppe De Pinto
- Department of Clinical Science and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| | - Simone Guglielmetti
- Department of Biotechnology and Biosciences, University of Milan Bicocca, Milan, Italy
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Marcello Cintolo
- Digestive and Interventional Endoscopy Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Roberto Penagini
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Gargari
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Mirko Marino
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Clorinda Ciafardini
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Monica Ferraroni
- Department of Clinical Science and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rossella Bonzi
- Department of Clinical Science and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| | - Massimiliano Mutignani
- Digestive and Interventional Endoscopy Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Carlo La Vecchia
- Department of Clinical Science and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| | - Marta Rossi
- Department of Clinical Science and Community Health, Dipartimento di Eccellenza 2023-2027, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Thoraval L, Varin-Simon J, Ohl X, Velard F, Reffuveille F, Tang-Fichaux M. Cutibacterium acnes and its complex host interaction in prosthetic joint infection: Current insights and future directions. Res Microbiol 2025; 176:104265. [PMID: 39701197 DOI: 10.1016/j.resmic.2024.104265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/26/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
Cutibacterium acnes is a commensal Gram-positive anaerobic bacterium that can also act as an opportunistic pathogen in various diseases, particularly in prosthetic joint infections (PJI). Throughout this review, we delve into the current understanding of the intricate interactions between C. acnes and host cells and discuss bacterial persistence in the host. C. acnes colonization and subsequent PJI set-up represent complex processes involving bacterial adhesion, immune recognition, and host response mechanisms. We highlight existing knowledge and gaps in specific host-pathogen interactions and stress the importance of acquiring additional information to develop targeted strategies for preventing and treating C. acnes-related PIJ.
Collapse
Affiliation(s)
- Léa Thoraval
- Université de Reims Champagne-Ardenne, BIOS, Reims, France
| | | | - Xavier Ohl
- Université de Reims Champagne-Ardenne, CHU Reims, BIOS, Service D'Orthopédie et Traumatologie, Reims, France
| | | | - Fany Reffuveille
- Université de Reims Champagne-Ardenne, BIOS, UFR Pharmacie, Reims, France.
| | | |
Collapse
|
3
|
Ladoukakis E, Oliver T, Wilks M, Lane EF, Chinegwundoh F, Shaw G, Nedjai B. Exploring the Link Between Obligate Anaerobe-Related Dysbiosis and Prostate Cancer Development: A Pilot Study. Cancers (Basel) 2024; 17:70. [PMID: 39796699 PMCID: PMC11720123 DOI: 10.3390/cancers17010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES Several independent studies have associated prostate cancer (PCa) with specific groups of bacteria, most of them reporting the presence of anaerobic or microaerophilic species such as Cutibacterium acnes (C. acnes). Such findings suggest a prostate cancer-related bacterial dysbiosis, in a manner similar to the association between Helicobacter pylori infection and gastric cancer. In an earlier exploratory study looking for such dysbiosis events, using a culturomics approach, we discovered that the presence of obligate anaerobes (OAs) along with C. acnes was associated with increased prostate-specific antigen (PSA) levels in 39 participants. METHODS Building on this, in this study, we analyzed 89 post-rectal examination urine samples, from men with prostate cancer attending the PROVENT trial, using 16S rDNA sequencing. Our investigation focused on the impact of six previously identified OA genera (Finegoldia, Fusobacterium, Prevotella, Peptoniphilus_A, Peptostreptococcus, and Veillonella_A) on PSA levels. However, an additional data-driven approach was followed to uncover more taxa linked to increased PSA. RESULTS Our analysis revealed a statistically significant association between Peptostreptococcus and elevated PSA levels. Additionally, there were potential interactions between Prevotella and Fusobacterium. Interestingly, we also found that an aerobe, Ochrobactrum_A,was significantly linked to higher PSA levels. CONCLUSIONS These findings suggest that OA-related dysbiosis may contribute to elevated PSA levels through prostate cell damage even before prostate cancer develops, possibly playing a role in chronic inflammation and the hypervascular changes seen in precancerous lesions. Future clinical trials with larger cohorts are needed to further evaluate the role of OA in prostate cancer development and progression.
Collapse
Affiliation(s)
- Efthymios Ladoukakis
- Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (E.L.); (E.F.L.)
| | - Tim Oliver
- Barts Cancer Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AU, UK;
| | - Mark Wilks
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (M.W.); (F.C.)
| | - Emily F. Lane
- Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (E.L.); (E.F.L.)
| | - Frank Chinegwundoh
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (M.W.); (F.C.)
| | - Greg Shaw
- Division of Surgery and Interventional Science, University College London, London WC1E 6BT, UK
| | - Belinda Nedjai
- Wolfson Institute of Population Health, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (E.L.); (E.F.L.)
| |
Collapse
|
4
|
Malat I, Drancourt M, Grine G. Methanobrevibacter smithii cell variants in human physiology and pathology: A review. Heliyon 2024; 10:e36742. [PMID: 39347381 PMCID: PMC11437934 DOI: 10.1016/j.heliyon.2024.e36742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Methanobrevibacter smithii (M. smithii), initially isolated from human feces, has been recognised as a distinct taxon within the Archaea domain following comprehensive phenotypic, genetic, and genomic analyses confirming its uniqueness among methanogens. Its diversity, encompassing 15 genotypes, mirrors that of biotic and host-associated ecosystems in which M. smithii plays a crucial role in detoxifying hydrogen from bacterial fermentations, converting it into mechanically expelled gaseous methane. In microbiota in contact with host epithelial mucosae, M. smithii centres metabolism-driven microbial networks with Bacteroides, Prevotella, Ruminococcus, Veillonella, Enterococcus, Escherichia, Enterobacter, Klebsiella, whereas symbiotic association with the nanoarchaea Candidatus Nanopusillus phoceensis determines small and large cell variants of M. smithii. The former translocate with bacteria to induce detectable inflammatory and serological responses and are co-cultured from blood, urine, and tissular abscesses with bacteria, prototyping M. smithii as a model organism for pathogenicity by association. The sources, mechanisms and dynamics of in utero and lifespan M. smithii acquisition, its diversity, and its susceptibility to molecules of environmental, veterinary, and medical interest still have to be deeply investigated, as only four strains of M. smithii are available in microbial collections, despite the pivotal role this neglected microorganism plays in microbiota physiology and pathologies.
Collapse
Affiliation(s)
- Ihab Malat
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| | - Michel Drancourt
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| | - Ghiles Grine
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| |
Collapse
|
5
|
Shyanti RK, Greggs J, Malik S, Mishra M. Gut dysbiosis impacts the immune system and promotes prostate cancer. Immunol Lett 2024; 268:106883. [PMID: 38852888 PMCID: PMC11249078 DOI: 10.1016/j.imlet.2024.106883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
The gut microbiota is a system of microorganisms in the human gastrointestinal (GI) system, consisting of trillions of microorganisms residing in epithelial surfaces of the body. Gut microbiota are exposed to various external and internal factors and form a unique gut-associated immunity maintained through a balancing act among diverse groups of microorganisms. The role of microbiota in dysbiosis of the gut in aiding prostate cancer development has created an urgency for extending research toward comprehension and preventative measures. The gut microbiota varies among persons based on diet, race, genetic background, and geographic location. Bacteriome, mainly, has been linked to GI complications, metabolism, weight gain, and high blood sugar. Studies have shown that manipulating the microbiome (bacteriome, virome, and mycobiome) through the dietary intake of phytochemicals positively influences physical and emotional health, preventing and delaying diseases caused by microbiota. In this review, we discuss the wealth of knowledge about the GI tract and factors associated with dysbiosis-mediated compromised gut immunity. This review also focuses on the relationship of dysbiosis to prostate cancer, the impact of microbial metabolites short-chain fatty acids (SCFAs) on host health, and the phytochemicals improving health while inhibiting prostate cancer.
Collapse
Affiliation(s)
- Ritis K Shyanti
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36104, USA
| | - Jazmyn Greggs
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36104, USA
| | - Shalie Malik
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Manoj Mishra
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36104, USA.
| |
Collapse
|
6
|
Ashida S, Kawada C, Tanaka H, Kurabayashi A, Yagyu KI, Sakamoto S, Maejima K, Miyano S, Daibata M, Nakagawa H, Inoue K. Cutibacterium acnes invades prostate epithelial cells to induce BRCAness as a possible pathogen of prostate cancer. Prostate 2024; 84:1056-1066. [PMID: 38721925 DOI: 10.1002/pros.24723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/15/2024] [Accepted: 04/17/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Abundant evidence suggests that chronic inflammation is linked to prostate cancer and that infection is a possible cause of prostate cancer. METHODS To identify microbiota or pathogens associated with prostate cancer, we investigated the transcriptomes of 20 human prostate cancer tissues. We performed de novo assembly of nonhuman sequences from RNA-seq data. RESULTS We identified four bacteria as candidate microbiota in the prostate, including Moraxella osloensis, Uncultured chroococcidiopsis, Cutibacterium acnes, and Micrococcus luteus. Among these, C. acnes was detected in 19 of 20 prostate cancer tissue samples by immunohistochemistry. We then analyzed the gene expression profiles of prostate epithelial cells infected in vitro with C. acnes and found significant changes in homologous recombination (HR) and the Fanconi anemia pathway. Notably, electron microscopy demonstrated that C. acnes invaded prostate epithelial cells and localized in perinuclear vesicles, whereas analysis of γH2AX foci and HR assays demonstrated impaired HR repair. In particular, BRCA2 was significantly downregulated in C. acnes-infected cells. CONCLUSIONS These findings suggest that C. acnes infection in the prostate could lead to HR deficiency (BRCAness) which promotes DNA double-strand breaks, thereby increasing the risk of cancer development.
Collapse
Affiliation(s)
- Shingo Ashida
- Department of Urology, Kochi Medical School, Nankoku, Japan
| | - Chiaki Kawada
- Department of Urology, Kochi Medical School, Nankoku, Japan
| | - Hiroko Tanaka
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Ken-Ichi Yagyu
- Division of Biological Research, Science Research Center, Kochi Medical School, Nankoku, Japan
| | - Shuji Sakamoto
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Nankoku, Japan
| | - Kazuhiro Maejima
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanori Daibata
- Department of Microbiology and Infection, Kochi Medical School, Nankoku, Japan
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Keiji Inoue
- Department of Urology, Kochi Medical School, Nankoku, Japan
| |
Collapse
|
7
|
Cheng W, He L, Ren W, Yue T, Xie X, Sun J, Chen X, Wu Z, Li F, Piao JG. Bacteria-nanodrug cancer treatment system: The combination of dual swords and the confrontation of needle tips. NANO TRANSMED 2023; 2:100008. [DOI: 10.1016/j.ntm.2023.100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2023]
|
8
|
Cheng W, He L, Ren W, Yue T, Xie X, Sun J, Chen X, Wu Z, Li F, Piao JG. Bacteria-nanodrug cancer treatment system: The combination of dual swords and the confrontation of needle tips. NANO TRANSMED 2023; 2:100008. [DOI: 10.1016/j.ntm.2023.100008 received in revised form 24 august 2023; acce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2023]
|
9
|
Jain V, Baraniya D, El-Hadedy DE, Chen T, Slifker M, Alakwaa F, Cai KQ, Chitrala KN, Fundakowski C, Al-Hebshi NN. Integrative Metatranscriptomic Analysis Reveals Disease-specific Microbiome-host Interactions in Oral Squamous Cell Carcinoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:807-820. [PMID: 37377901 PMCID: PMC10166004 DOI: 10.1158/2767-9764.crc-22-0349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/05/2023] [Accepted: 04/13/2023] [Indexed: 06/29/2023]
Abstract
Studies on the microbiome of oral squamous cell carcinoma (OSCC) have been limited to 16S rRNA gene sequencing. Here, laser microdissection coupled with brute-force, deep metatranscriptome sequencing was employed to simultaneously characterize the microbiome and host transcriptomes and predict their interaction in OSCC. The analysis involved 20 HPV16/18-negative OSCC tumor/adjacent normal tissue pairs (TT and ANT) along with deep tongue scrapings from 20 matched healthy controls (HC). Standard bioinformatic tools coupled with in-house algorithms were used to map, analyze, and integrate microbial and host data. Host transcriptome analysis identified enrichment of known cancer-related gene sets, not only in TT versus ANT and HC, but also in the ANT versus HC contrast, consistent with field cancerization. Microbial analysis identified a low abundance yet transcriptionally active, unique multi-kingdom microbiome in OSCC tissues predominated by bacteria and bacteriophages. HC showed a different taxonomic profile yet shared major microbial enzyme classes and pathways with TT/ANT, consistent with functional redundancy. Key taxa enriched in TT/ANT compared with HC were Cutibacterium acnes, Malassezia restricta, Human Herpes Virus 6B, and bacteriophage Yuavirus. Functionally, hyaluronate lyase was overexpressed by C. acnes in TT/ANT. Microbiome-host data integration revealed that OSCC-enriched taxa were associated with upregulation of proliferation-related pathways. In a preliminary in vitro validation experiment, infection of SCC25 oral cancer cells with C. acnes resulted in upregulation of MYC expression. The study provides a new insight into potential mechanisms by which the microbiome can contribute to oral carcinogenesis, which can be validated in future experimental studies. Significance Studies have shown that a distinct microbiome is associated with OSCC, but how the microbiome functions within the tumor interacts with the host cells remains unclear. By simultaneously characterizing the microbial and host transcriptomes in OSCC and control tissues, the study provides novel insights into microbiome-host interactions in OSCC which can be validated in future mechanistic studies.
Collapse
Affiliation(s)
- Vinay Jain
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania
- Low level Radiation Research Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Divyashri Baraniya
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania
| | - Doaa E. El-Hadedy
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania
| | - Tsute Chen
- Department of Microbiology, Forsyth Institute, Cambridge, Massachusetts
| | - Michael Slifker
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Fadhl Alakwaa
- Department of Internal Medicine, Nephrology Division, University of Michigan, Ann Arbor, Michigan
| | - Kathy Q. Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kumaraswamy N. Chitrala
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | | | - Nezar N. Al-Hebshi
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Liu Y, Niu L, Li N, Wang Y, Liu M, Su X, Bao X, Yin B, Shen S. Bacterial-Mediated Tumor Therapy: Old Treatment in a New Context. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205641. [PMID: 36908053 PMCID: PMC10131876 DOI: 10.1002/advs.202205641] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Targeted therapy and immunotherapy have brought hopes for precision cancer treatment. However, complex physiological barriers and tumor immunosuppression result in poor efficacy, side effects, and resistance to antitumor therapies. Bacteria-mediated antitumor therapy provides new options to address these challenges. Thanks to their special characteristics, bacteria have excellent ability to destroy tumor cells from the inside and induce innate and adaptive antitumor immune responses. Furthermore, bacterial components, including bacterial vesicles, spores, toxins, metabolites, and other active substances, similarly inherit their unique targeting properties and antitumor capabilities. Bacteria and their accessory products can even be reprogrammed to produce and deliver antitumor agents according to clinical needs. This review first discusses the role of different bacteria in the development of tumorigenesis and the latest advances in bacteria-based delivery platforms and the existing obstacles for application. Moreover, the prospect and challenges of clinical transformation of engineered bacteria are also summarized.
Collapse
Affiliation(s)
- Yao Liu
- Key Laboratory of Spine and Spinal Cord Injury Repairand Regeneration of Ministry of EducationOrthopaedic Department of Tongji Hospital, The Institute for Biomedical Engineering and Nano ScienceTongji University School of MedicineShanghai200092P. R. China
- Pharmacy Department and Center for Medical Research and InnovationShanghai Pudong HospitalFudan University Pudong Medical CenterShanghai201399China
| | - Lili Niu
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Nannan Li
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Yang Wang
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Mingyang Liu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Xiaomin Su
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Xuhui Bao
- Institute for Therapeutic Cancer VaccinesFudan University Pudong Medical CenterShanghai201399China
| | - Bo Yin
- Institute for Therapeutic Cancer Vaccines and Department of OncologyFudan University Pudong Medical CenterShanghai201399China
| | - Shun Shen
- Pharmacy Department and Center for Medical Research and InnovationShanghai Pudong HospitalFudan University Pudong Medical CenterShanghai201399China
| |
Collapse
|
11
|
Potential Association of Cutibacterium acnes with Sarcoidosis as an Endogenous Hypersensitivity Infection. Microorganisms 2023; 11:microorganisms11020289. [PMID: 36838255 PMCID: PMC9964181 DOI: 10.3390/microorganisms11020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The immunohistochemical detection of Cutibacterium acnes in sarcoid granulomas suggests its potential role in granuloma formation. C. acnes is the sole microorganism ever isolated from sarcoid lesions. Histopathologic analysis of some sarcoid lymph nodes reveals latent infection and intracellular proliferation of cell-wall-deficient C. acnes followed by insoluble immune-complex formation. Activation of T helper type 1 (Th1) immune responses by C. acnes is generally higher in sarcoidosis patients than in healthy individuals. Pulmonary granulomatosis caused by an experimental adjuvant-induced allergic immune response to C. acnes is preventable by antimicrobials, suggesting that the allergic reaction targets C. acnes commensal in the lungs. C. acnes is the most common bacterium detected intracellularly in human peripheral lungs and mediastinal lymph nodes. Some sarcoidosis patients have increased amounts of C. acnes-derived circulating immune complexes, which suggests the proliferation of C. acnes in affected organs. In predisposed individuals with hypersensitive Th1 immune responses to C. acnes, granulomas may form to confine the intracellular proliferation of latent C. acnes triggered by certain host-related or drug-induced conditions. Current clinical trials in patients with cardiac sarcoidosis are evaluating combined treatment with steroids and antimicrobials during active disease with continued antimicrobial therapy while tapering off steroids after the disease subsides.
Collapse
|
12
|
Zhao M, Guo J, Gao QH, Wang H, Wang F, Wang ZR, Liu SJ, Deng YJ, Zhao ZW, Zhang YY, Yu WX. Relationship between pyroptosis-mediated inflammation and the pathogenesis of prostate disease. Front Med (Lausanne) 2023; 10:1084129. [PMID: 36744134 PMCID: PMC9892550 DOI: 10.3389/fmed.2023.1084129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
The largest solid organ of the male genitalia, the prostate gland, is comprised of a variety of cells such as prostate epithelial cells, smooth muscle cells, fibroblasts, and endothelial cells. Prostate diseases, especially prostate cancer and prostatitis, are often accompanied by acute/chronic inflammatory responses or even cell death. Pyroptosis, a cell death distinct from necrosis and apoptosis, which mediate inflammation may be closely associated with the development of prostate disease. Pyroptosis is characterized by inflammasome activation via pattern recognition receptors (PRR) upon recognition of external stimuli, which is manifested downstream by translocation of gasdermin (GSDM) protein to the membrane to form pores and release of inflammatory factors interleukin (IL)-1β and IL-18, a process that is Caspase-dependent. Over the past number of years, many studies have investigated the role of inflammation in prostate disease and have suggested that pyroptosis may be an important driver. Understanding the precise mechanism is of major consequence for the development of targeted therapeutic strategies. This review summarizes the molecular mechanisms, regulation, and cellular effects of pyroptosis briefly and then discuss the current pyroptosis studies in prostate disease research and the inspiration for us.
Collapse
Affiliation(s)
- Ming Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Guo
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing-He Gao
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Wang
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Fu Wang
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zi-Rui Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Sheng-Jing Liu
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying-Jun Deng
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zi-Wei Zhao
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue-Yang Zhang
- Department of Andrology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-Xiao Yu
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Wen-Xiao Yu,
| |
Collapse
|
13
|
Kustrimovic N, Bombelli R, Baci D, Mortara L. Microbiome and Prostate Cancer: A Novel Target for Prevention and Treatment. Int J Mol Sci 2023; 24:ijms24021511. [PMID: 36675055 PMCID: PMC9860633 DOI: 10.3390/ijms24021511] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Growing evidence of the microbiome's role in human health and disease has emerged since the creation of the Human Microbiome Project. Recent studies suggest that alterations in microbiota composition (dysbiosis) may play an essential role in the occurrence, development, and prognosis of prostate cancer (PCa), which remains the second most frequent male malignancy worldwide. Current advances in biological technologies, such as high-throughput sequencing, transcriptomics, and metabolomics, have enabled research on the gut, urinary, and intra-prostate microbiome signature and the correlation with local and systemic inflammation, host immunity response, and PCa progression. Several microbial species and their metabolites facilitate PCa insurgence through genotoxin-mediated mutagenesis or by driving tumor-promoting inflammation and dysfunctional immunosurveillance. However, the impact of the microbiome on PCa development, progression, and response to treatment is complex and needs to be fully understood. This review addresses the current knowledge on the host-microbe interaction and the risk of PCa, providing novel insights into the intraprostatic, gut, and urinary microbiome mechanisms leading to PCa carcinogenesis and treatment response. In this paper, we provide a detailed overview of diet changes, gut microbiome, and emerging therapeutic approaches related to the microbiome and PCa. Further investigation on the prostate-related microbiome and large-scale clinical trials testing the efficacy of microbiota modulation approaches may improve patient outcomes while fulfilling the literature gap of microbial-immune-cancer-cell mechanistic interactions.
Collapse
Affiliation(s)
- Natasa Kustrimovic
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Raffaella Bombelli
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Denisa Baci
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- Correspondence:
| |
Collapse
|
14
|
Huang Q, Wei X, Li W, Ma Y, Chen G, Zhao L, Jiang Y, Xie S, Chen Q, Chen T. Endogenous Propionibacterium acnes Promotes Ovarian Cancer Progression via Regulating Hedgehog Signalling Pathway. Cancers (Basel) 2022; 14:5178. [PMID: 36358596 PMCID: PMC9658903 DOI: 10.3390/cancers14215178] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND The oncogenesis and progression of epithelial ovarian cancer (EOC) is a complicated process involving several key molecules and factors, yet whether microbiota are present in EOC, and their role in the development of EOC, remains greatly unknown. METHODS In this study, 20 patients were enrolled to compare the similarities and differences of intratumour microbiota among patients with epithelial benign ovarian tumours (EBOTs) and patients with EOC based on the high-throughput sequencing method. Subsequently, we further isolated the specific EOC-related bacteria and defined Propionibacterium acnes as a key strain in facilitating EOC progression. More importantly, we constructed a mouse EOC model to evaluate the effect of the P. acnes strain on EOC using immunohistochemistry, Western blotting, and RT-qPCR. RESULTS The high-throughput sequencing showed that the intratumour microbiota in EOC tissues had a higher microbial diversity and richness compared to EBOT tissues. The abundance of previously considered pathogens, Actinomycetales, Acinetobacter, Streptococcus, Ochrobacterium, and Pseudomonadaceae Pseudomonas, was increased in the EOC tissues. Meanwhile, we discovered the facilitating role of the P. acnes strain in the progression of EOC, which may be partially associated with the increased inflammatory response to activate the hedgehog (Hh) signalling pathway. This microbial-induced EOC progression mechanism is further confirmed using the inhibitor GANT61. CONCLUSIONS This study profiled the intratumour microbiota of EBOT and EOC tissues and demonstrated that the diversity and composition of the intratumour microbiota were significantly different. Furthermore, through in vivo and in vitro experiments, we confirmed the molecular mechanism of intratumour microbiota promotion of EOC progression in mice, which induces inflammation to activate the Hh signalling pathway. This could provide us clues for improving EOC treatment.
Collapse
Affiliation(s)
- Qifa Huang
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xin Wei
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wenyu Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Yanbing Ma
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Guanxiang Chen
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Lu Zhao
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ying Jiang
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Siqi Xie
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qi Chen
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Tingtao Chen
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| |
Collapse
|
15
|
Lawson JS, Glenn WK. Multiple pathogens and prostate cancer. Infect Agent Cancer 2022; 17:23. [PMID: 35637508 PMCID: PMC9150368 DOI: 10.1186/s13027-022-00427-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/18/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The aim of this review is to consider whether multiple pathogens have roles in prostate cancer. METHODS We have reviewed case control studies in which infectious pathogens in prostate cancer were compared to normal and benign prostate tissues. We also reviewed additional evidence from relevant published articles. RESULTS We confirmed that high risk human papilloma viruses are a probable cause of prostate cancer. We judged Escherichia coli, Cutibacterium acnes, Neisseria gonorrhoea, Herpes simplex, Epstein Barr virus and Mycoplasmas as each having possible but unproven roles in chronic prostatic inflammation and prostate cancer. We judged Cytomegalovirus, Chlamydia trachomatis, Trichomonas vaginalis and the Polyoma viruses as possible but unlikely to have a role in prostate cancer. CONCLUSIONS AND ACTIONS The most influential cause of prostate cancer appears to be infection induced chronic inflammation. Given the high prevalence of prostate cancer it is important for action to can be taken without waiting for additional conclusive evidence. These include: 1. Encouragement of all boys (as well as girls) to have HPV vaccines 2. The vigorous use of antibiotics to treat all bacterial pathogens identified in the urogenital tract 3. The use of antiviral medications to control herpes infections 4. Education about safe sexual practices.
Collapse
Affiliation(s)
- James S. Lawson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052 Australia
| | - Wendy K. Glenn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052 Australia
| |
Collapse
|
16
|
Ritter L, Bergoza L, Possa E, Tasso L. Is clindamycin a potential treatment for prostatitis? APMIS 2022; 130:197-205. [PMID: 34978745 DOI: 10.1111/apm.13205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/02/2022] [Indexed: 11/29/2022]
Abstract
Cutibacterium acnes has been associated with chronic prostatitis, which can potentially favor the appearance of tumors in the prostate. Prostatitis is difficult to treat, and the drug needs to be able to penetrate the prostate. The aim was to investigate the pharmacokinetics of clindamycin in the interstitial fluid of rat prostate using microdialysis. Microdialysis probes were recovered in vitro and in vivo. Clindamycin was administered at 80 mg/kg iv bolus for plasma and tissue pharmacokinetic experiments. A microdialysis probe was implanted in the prostate gland for collections over an 8-hour period. The pharmacokinetic parameters were determined by both compartmental and non-compartmental approaches. Penetration was determined as the ratio between the area under the curve and the time of the clindamycin measurement in the prostate. The recovery of the in vivo probes was 38.11 ± 1.14%. The plasma profile was modeled by a two-compartment pharmacokinetic model. Clindamycin presented a prostate/plasma ratio of 1.02, with free concentrations above the minimum inhibitory concentration for Cutibacterium acnes isolates. This was the first study that determined clindamycin free concentrations in the prostatic fluid of rats. These findings suggest that clindamycin may be an effective alternative for the treatment of prostatitis caused by Cutibacterium acnes.
Collapse
Affiliation(s)
- Lisiani Ritter
- College of Pharmacy, University of Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Larissa Bergoza
- College of Pharmacy, University of Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Eduarda Possa
- College of Pharmacy, University of Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Leandro Tasso
- College of Pharmacy, University of Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil.,Laboratory of Pharmacokinetics, Health Sciences Postgraduate Program and Biotechnology Postgraduate Program, University of Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| |
Collapse
|
17
|
Dubus M, Varin J, Papa S, Chevrier J, Quilès F, Francius G, Audonnet S, Mauprivez C, Gangloff S, Siboni R, Ohl X, Reffuveille F, Kerdjoudj H. Bone marrow mesenchymal stem cells offer an immune-privileged niche to Cutibacterium acnes in case of implant-associated osteomyelitis. Acta Biomater 2022; 137:305-315. [PMID: 34678484 DOI: 10.1016/j.actbio.2021.10.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/23/2021] [Accepted: 10/15/2021] [Indexed: 12/20/2022]
Abstract
Considered as some of the most devastating complications, Cutibacterium acnes (C. acnes)-related osteomyelitis are among the hardest infections to diagnose and treat. Mesenchymal stem cells (MSCs) secrete number of immunomodulatory and antimicrobial soluble factors, making them an attractive treatment for bacterial infection. In this study, we examined MSCs/C. acnes interaction and analyzed the subsequent MSCs and bacteria's behaviors. Human bone marrow-derived MSCs were infected by C. acnes clinical strain harvested from non-infected bone site. Following 3 h of interaction, around 4% of bacteria were found in the intracellular compartment. Infected MSCs increased the secretion of prostaglandin E2 and indolamine 2,3 dioxygenase immunomodulatory mediators. Viable intracellular bacteria analyzed by infrared spectroscopy and atomic force microscopy revealed deep modifications in the wall features. In comparison with unchallenged bacteria, the viable intracellular bacteria showed (i) an increase in biofilm formation on orthopaedical-based materials, (ii) an increase in the invasiveness of osteoblasts and (iii) persistence in macrophage, suggesting the acquisition of virulence factors. Overall, these results showed a direct impact of C. acnes on bone marrow-derived MSCs, suggesting that blocking the C. acnes/MSCs interactions may represent an important new approach to manage chronic osteomyelitis infections. STATEMENT OF SIGNIFICANCE: The interaction of bone commensal C. acnes with bone marrow mesenchymal stem cells induces modifications in C. acnes wall characteristics. These bacteria increased (i) the biofilm formation on orthopaedical-based materials, (ii) the invasiveness of bone forming cells and (iii) the resistance to macrophage clearance through the modification of the wall nano-features and/or the increase in catalase production.
Collapse
|
18
|
Davidsson S, Carlsson J, Greenberg L, Wijkander J, Söderquist B, Erlandsson A. Cutibacterium acnes Induces the Expression of Immunosuppressive Genes in Macrophages and is Associated with an Increase of Regulatory T-Cells in Prostate Cancer. Microbiol Spectr 2021; 9:e0149721. [PMID: 34937192 PMCID: PMC8694172 DOI: 10.1128/spectrum.01497-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022] Open
Abstract
Tumors and infectious agents both benefit from an immunosuppressive environment. Cutibacterium acnes (C. acnes) is a bacterium in the normal skin microbiota, which has the ability to survive intracellularly in macrophages and is significantly more common in prostate cancer tissue compared with normal prostate tissue. This study investigated if prostate cancer tissue culture positive for C. acnes has a higher infiltration of regulatory T-cells (Tregs) and if macrophages stimulated with C. acnes induced the expression of immunosuppressive genes that could be linked to an increase of Tregs in prostate cancer. Real-time PCR and enzyme-linked immunosorbent spot assay (ELISA) were used to examine the expression of immunosuppressive genes in human macrophages stimulated in vitro with C. acnes, and associations between the presence of C. acnes and infiltration of Tregs were investigated by statistically analyzing data generated in two previous studies. The in vitro results demonstrated that macrophages stimulated with C. acnes significantly increased their expression of PD-L1, CCL17, and CCL18 mRNA and protein (p <0.05). In the cohort, Tregs in tumor stroma and tumor epithelia were positively associated with the presence of C. acnes (P = 0.0004 and P = 0.046, respectively). Since the macrophages stimulated with C. acnes in vitro increased the expression of immunosuppressive genes, and prostate cancer patients with prostatic C. acnes infection had higher infiltration of Tregs than their noninfected counterparts, we suggest that C. acnes may contribute to an immunosuppressive tumor environment that is vital for prostate cancer progression. IMPORTANCE In an immune suppressive tumor microenvironment constituted by immunosuppressive cells and immunosuppressive mediators, tumors may improve their ability to give rise to a clinically relevant cancer. In the present study, we found that C. acnes might contribute to an immunosuppressive environment by recruiting Tregs and by increasing the expression of immunosuppressive mediators such as PD-L1, CCL17, and CCL18. We believe that our data add support to the hypothesis of a contributing role of C. acnes in prostate cancer development. If established that C. acnes stimulates prostate cancer progression it may open up avenues for targeted prostate cancer treatment.
Collapse
Affiliation(s)
- Sabina Davidsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Jessica Carlsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Larry Greenberg
- Department of Environmental and Life Sciences/Biology, Faculty of Health, Science and Technology, Karlstad University, Karlstad, Sweden
| | - Jonny Wijkander
- Department of Health Sciences, Faculty of Health, Science and Technology, Karlstad University, Karlstad, Sweden
| | - Bo Söderquist
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ann Erlandsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Environmental and Life Sciences/Biology, Faculty of Health, Science and Technology, Karlstad University, Karlstad, Sweden
| |
Collapse
|
19
|
Che B, Zhang W, Xu S, Yin J, He J, Huang T, Li W, Yu Y, Tang K. Prostate Microbiota and Prostate Cancer: A New Trend in Treatment. Front Oncol 2021; 11:805459. [PMID: 34956913 PMCID: PMC8702560 DOI: 10.3389/fonc.2021.805459] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
Although the incidence and mortality of prostate cancer have gradually begun to decline in the past few years, it is still one of the leading causes of death from malignant tumors in the world. The occurrence and development of prostate cancer are affected by race, family history, microenvironment, and other factors. In recent decades, more and more studies have confirmed that prostate microflora in the tumor microenvironment may play an important role in the occurrence, development, and prognosis of prostate cancer. Microorganisms or their metabolites may affect the occurrence and metastasis of cancer cells or regulate anti-cancer immune surveillance. In addition, the use of tumor microenvironment bacteria in interventional targeting therapy of tumors also shows a unique advantage. In this review, we introduce the pathway of microbiota into prostate cancer, focusing on the mechanism of microorganisms in tumorigenesis and development, as well as the prospect and significance of microorganisms as tumor biomarkers and tumor prevention and treatment.
Collapse
Affiliation(s)
- Bangwei Che
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shenghan Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jingju Yin
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun He
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Yu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kaifa Tang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Institute of Medical Science of Guizhou Medical University, Guiyang, China
| |
Collapse
|
20
|
Uchida K, Furukawa A, Yoneyama A, Furusawa H, Kobayashi D, Ito T, Yamamoto K, Sekine M, Miura K, Akashi T, Eishi Y, Ohashi K. Propionibacterium acnes-Derived Circulating Immune Complexes in Sarcoidosis Patients. Microorganisms 2021; 9:microorganisms9112194. [PMID: 34835320 PMCID: PMC8625486 DOI: 10.3390/microorganisms9112194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Propionibacterium acnes is a potential etiologic agent of sarcoidosis and a dysregulated immune response to the commensal bacterium is suspected to cause granuloma formation. P. acnes-derived insoluble immune complexes were recently demonstrated in sinus macrophages of sarcoidosis lymph nodes, suggesting local proliferation of the bacterium in affected organs. In the present study, we developed a method for detecting P. acnes-derived immune complexes in human blood by measuring the concentration of P. acnes-specific lipoteichoic acid (PLTA) detectable after an antigen retrieval pretreatment of plasma samples. Before pretreatment, anti-PLTA antibody was detected and PLTA could not be detected, in all plasma samples from 51 sarcoidosis patients and 35 healthy volunteers. After pretreatment, however, a significant level of PLTA (>105 ng/mL) was detected in 33 (65%) sarcoidosis patients and 5 (14%) control subjects, with 86% specificity and 65% sensitivity for sarcoidosis. In both groups, plasma anti-PLTA antibody titers did not differ between samples with and without detection of PLTA. PLTA levels were abnormally increased (>202 ng/mL) in 21 (41%) sarcoidosis patients. These findings suggest that P. acnes-derived circulating immune complexes present in human blood are abnormally increased in many sarcoidosis patients, presumably due to local proliferation of the bacterium in the affected organs.
Collapse
Affiliation(s)
- Keisuke Uchida
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo 113-8510, Japan; (K.U.); (M.S.); (K.M.); (T.A.)
| | - Asuka Furukawa
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (A.F.); (D.K.); (T.I.); (K.Y.); (K.O.)
| | - Akiko Yoneyama
- Division of Nutrition Services, Tokyo Medical and Dental University Hospital, Tokyo 113-8510, Japan;
| | - Haruhiko Furusawa
- Department of Integrated Pulmonology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University Hospital, Tokyo 113-8510, Japan;
| | - Daisuke Kobayashi
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (A.F.); (D.K.); (T.I.); (K.Y.); (K.O.)
| | - Takashi Ito
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (A.F.); (D.K.); (T.I.); (K.Y.); (K.O.)
| | - Kurara Yamamoto
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (A.F.); (D.K.); (T.I.); (K.Y.); (K.O.)
| | - Masaki Sekine
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo 113-8510, Japan; (K.U.); (M.S.); (K.M.); (T.A.)
| | - Keiko Miura
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo 113-8510, Japan; (K.U.); (M.S.); (K.M.); (T.A.)
| | - Takumi Akashi
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo 113-8510, Japan; (K.U.); (M.S.); (K.M.); (T.A.)
| | - Yoshinobu Eishi
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (A.F.); (D.K.); (T.I.); (K.Y.); (K.O.)
- Correspondence:
| | - Kenichi Ohashi
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (A.F.); (D.K.); (T.I.); (K.Y.); (K.O.)
| |
Collapse
|
21
|
Brüggemann H, Salar-Vidal L, Gollnick HPM, Lood R. A Janus-Faced Bacterium: Host-Beneficial and -Detrimental Roles of Cutibacterium acnes. Front Microbiol 2021; 12:673845. [PMID: 34135880 PMCID: PMC8200545 DOI: 10.3389/fmicb.2021.673845] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
The bacterial species Cutibacterium acnes (formerly known as Propionibacterium acnes) is tightly associated with humans. It is the dominant bacterium in sebaceous regions of the human skin, where it preferentially colonizes the pilosebaceous unit. Multiple strains of C. acnes that belong to phylogenetically distinct types can co-exist. In this review we summarize and discuss the current knowledge of C. acnes regarding bacterial properties and traits that allow host colonization and play major roles in host-bacterium interactions and also regarding the host responses that C. acnes can trigger. These responses can have beneficial or detrimental consequences for the host. In the first part of the review, we highlight and critically review disease associations of C. acnes, in particular acne vulgaris, implant-associated infections and native infections. Here, we also analyse the current evidence for a direct or indirect role of a C. acnes-related dysbiosis in disease development or progression, i.e., reduced C. acnes strain diversity and/or the predominance of a certain phylotype. In the second part of the review, we highlight historical and recent findings demonstrating beneficial aspects of colonization by C. acnes such as colonization resistance, immune system interactions, and oxidant protection, and discuss the molecular mechanisms behind these effects. This new insight led to efforts in skin microbiota manipulation, such as the use of C. acnes strains as probiotic options to treat skin disorders.
Collapse
Affiliation(s)
| | - Llanos Salar-Vidal
- Department of Clinical Microbiology, Fundacion Jimenez Diaz University Hospital, Madrid, Spain
| | - Harald P. M. Gollnick
- Department of Dermatology and Venerology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Rolf Lood
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
22
|
Yamaguchi T, Costabel U, McDowell A, Guzman J, Uchida K, Ohashi K, Eishi Y. Immunohistochemical Detection of Potential Microbial Antigens in Granulomas in the Diagnosis of Sarcoidosis. J Clin Med 2021; 10:jcm10050983. [PMID: 33801218 PMCID: PMC7957865 DOI: 10.3390/jcm10050983] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 01/06/2023] Open
Abstract
Sarcoidosis may have more than a single causative agent, including infectious and non-infectious agents. Among the potential infectious causes of sarcoidosis, Mycobacterium tuberculosis and Propionibacterium acnes are the most likely microorganisms. Potential latent infection by both microorganisms complicates the findings of molecular and immunologic studies. Immune responses to potential infectious agents of sarcoidosis should be considered together with the microorganisms detected in sarcoid granulomas, because immunologic reactivities to infectious agents reflect current and past infection, including latent infection unrelated to the cause of the granuloma formation. Histopathologic data more readily support P. acnes as a cause of sarcoidosis compared with M. tuberculosis, suggesting that normally symbiotic P. acnes leads to granuloma formation in some predisposed individuals with Th1 hypersensitivity against intracellular proliferation of latent P. acnes, which may be triggered by certain host or drug-induced conditions. Detection of bacterial nucleic acids in granulomas does not necessarily indicate co-localization of the bacterial proteins in the granulomas. In the histopathologic diagnosis of sarcoidosis, M. tuberculosis-associated and P. acnes-associated sarcoidosis will possibly be differentiated in some patients by immunohistochemistry with appropriate antibodies that specifically react with mycobacterial and propionibacterial antigens, respectively, for each etiology-based diagnosis and potential antimicrobial intervention against sarcoidosis.
Collapse
Affiliation(s)
- Tetsuo Yamaguchi
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (T.Y.); (K.U.); (K.O.)
- Department of Pulmonology, Shinjuku Tsurukame Clinic, Tokyo 151-0053, Japan
| | - Ulrich Costabel
- Department of Pneumology, Ruhrlandklinik, Medical Faculty, University of Duisburg-Essen, 45239 Essen, Germany;
| | - Andrew McDowell
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK;
| | - Josune Guzman
- Department of General and Experimental Pathology, Ruhr University, 44801 Bochum, Germany;
| | - Keisuke Uchida
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (T.Y.); (K.U.); (K.O.)
| | - Kenichi Ohashi
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (T.Y.); (K.U.); (K.O.)
| | - Yoshinobu Eishi
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (T.Y.); (K.U.); (K.O.)
- Correspondence: ; Tel.: +81-90-3332-0948
| |
Collapse
|
23
|
Capoor MN, Konieczna A, McDowell A, Ruzicka F, Smrcka M, Jancalek R, Maca K, Lujc M, Ahmed FS, Birkenmaier C, Dudli S, Slaby O. Pro-Inflammatory and Neurotrophic Factor Responses of Cells Derived from Degenerative Human Intervertebral Discs to the Opportunistic Pathogen Cutibacterium acnes. Int J Mol Sci 2021; 22:ijms22052347. [PMID: 33652921 PMCID: PMC7956678 DOI: 10.3390/ijms22052347] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/16/2021] [Accepted: 02/21/2021] [Indexed: 12/20/2022] Open
Abstract
Previously, we proposed the hypothesis that similarities in the inflammatory response observed in acne vulgaris and degenerative disc disease (DDD), especially the central role of interleukin (IL)-1β, may be further evidence of the role of the anaerobic bacterium Cutibacterium (previously Propionibacterium) acnes in the underlying aetiology of disc degeneration. To investigate this, we examined the upregulation of IL-1β, and other known IL-1β-induced inflammatory markers and neurotrophic factors, from nucleus-pulposus-derived disc cells infected in vitro with C. acnes for up to 48 h. Upon infection, significant upregulation of IL-1β, alongside IL-6, IL-8, chemokine (C-C motif) ligand 3 (CCL3), chemokine (C-C motif) ligand 4 (CCL4), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), was observed with cells isolated from the degenerative discs of eight patients versus non-infected controls. Expression levels did, however, depend on gene target, multiplicity and period of infection and, notably, donor response. Pre-treatment of cells with clindamycin prior to infection significantly reduced the production of pro-inflammatory mediators. This study confirms that C. acnes can stimulate the expression of IL-1β and other host molecules previously associated with pathological changes in disc tissue, including neo-innervation. While still controversial, the role of C. acnes in DDD remains biologically credible, and its ability to cause disease likely reflects a combination of factors, particularly individualised response to infection.
Collapse
Affiliation(s)
- Manu N. Capoor
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
- Correspondence: (M.N.C.); (O.S.)
| | - Anna Konieczna
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; (A.K.); (F.S.A.)
| | - Andrew McDowell
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK;
| | - Filip Ruzicka
- Department of Microbiology, Faculty of Medicine, St. Anne’s University Hospital, Masaryk University, 656 91 Brno, Czech Republic;
| | - Martin Smrcka
- Department of Neurosurgery, University Hospital Brno, Masaryk University, 625 00 Brno, Czech Republic; (M.S.); (K.M.)
| | - Radim Jancalek
- Department of Neurosurgery, St. Anne’s University Hospital, Masaryk University, 656 91 Brno, Czech Republic;
| | - Karel Maca
- Department of Neurosurgery, University Hospital Brno, Masaryk University, 625 00 Brno, Czech Republic; (M.S.); (K.M.)
| | - Michael Lujc
- Department of Orthopaedic Surgery, University Hospital Brno, Masaryk University, 625 00 Brno, Czech Republic;
| | - Fahad S. Ahmed
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; (A.K.); (F.S.A.)
| | - Christof Birkenmaier
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University of Munich, 80331 Munich, Germany;
| | - Stefan Dudli
- Centre of Experimental Rheumatology, Department of Rheumatology, University Hospital, University of Zurich, 8091 Zurich, Switzerland;
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, 8091 Zurich, Switzerland
| | - Ondrej Slaby
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; (A.K.); (F.S.A.)
- Department of Biology, Faculty of Medicine, Masaryk University, 601 77 Brno, Czech Republic
- Correspondence: (M.N.C.); (O.S.)
| |
Collapse
|
24
|
Hudek R, Brobeil A, Brüggemann H, Sommer F, Gattenlöhner S, Gohlke F. Cutibacterium acnes is an intracellular and intra-articular commensal of the human shoulder joint. J Shoulder Elbow Surg 2021; 30:16-26. [PMID: 32741563 DOI: 10.1016/j.jse.2020.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/03/2020] [Accepted: 04/12/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Cutibacterium acnes (C acnes) is a mysterious member of the shoulder microbiome and is associated with chronic postoperative complications and low-grade infections. Nevertheless, it is unclear whether it represents a contaminant or whether it accounts for true infections. Because it can persist intracellularly in macrophages at several body sites, it might in fact be an intra-articular commensal of the shoulder joint. METHODS In 23 consecutive, otherwise healthy patients (17 male, 6 female; 58 years) who had no previous injections, multiple specimens were taken from the intra-articular tissue during first-time arthroscopic and open shoulder surgery. The samples were investigated by cultivation, genetic phylotyping, and immunohistochemistry using C acnes-specific antibodies and confocal laser scanning microscopy. RESULTS In 10 patients (43.5%), cultures were C acnes-positive. Phylotype IA1 dominated the subcutaneous samples (71%), whereas type II dominated the deep tissue samples (57%). Sixteen of 23 patients (69.6%) were C acnes-positive by immunohistochemistry; in total, 25 of 40 samples were positive (62.5%). Overall, 56.3% of glenohumeral immunohistochemical samples, 62.5% of subacromial samples, and 75% of acromioclavicular (AC) joint samples were positive. In 62.5% of the tested patients, C acnes was detected immunohistochemically to reside intracellularly within stromal cells and macrophages. DISCUSSION These data indicate that C acnes is a commensal of the human shoulder joint, where it persists within macrophages and stromal cells. Compared with culture-based methods, immunohistochemical staining can increase C acnes detection. Phylotype II seems to be most prevalent in the deep shoulder tissue. The high detection rate of C acnes in osteoarthritic AC joints might link its intra-articular presence to the initiation of osteoarthritis.
Collapse
Affiliation(s)
- Robert Hudek
- Rhön-Klinikum Campus Bad Neustadt, Department for Shoulder and Elbow Surgery, Bad Neustadt a. d. Saale, Germany.
| | - Alexander Brobeil
- Justus-Liebig-University Gießen, Institute for Pathology, Gießen, Germany
| | | | - Frank Sommer
- Phillipps-University Marburg, Institute for Medical Microbiology and Hospital Hygiene, Marburg, Germany
| | | | - Frank Gohlke
- Rhön-Klinikum Campus Bad Neustadt, Department for Shoulder and Elbow Surgery, Bad Neustadt a. d. Saale, Germany
| |
Collapse
|
25
|
Abstract
The role of microbiome milieu in the urinary tract, their interplay in diverse urological conditions and their therapeutic implications are not completely understood. The microbiome has contributed towards urinary tract infections, urolithiasis and urological cancers. The possibility of manipulating microbiome for diagnosis and treatment is evolving. Probiotics might help in overcoming the problems of recurrent infection and antibiotic resistance. Novel applications like stents and catheters coated with non-pathogenic organisms are being developed. Research in the urinary microbiome has progressed from using mouse models to the presently available three- dimensional cultured organoids, thus making it more feasible. As our knowledge regarding the urinary microbiome increases, justice can be done to many patients in whom the advancements can be used for prophylaxis, diagnosis, treatment and even in improving their quality of life. The growing amount of antibiotic resistance is also a matter of concern and probiotics might be the answer to this upcoming calamity. In this review, we have discussed the role of the urinary microbiome in pathogenesis, diagnosis and treatment of urological conditions and pondered upon its future prospects.
Collapse
|
26
|
Brüggemann H, Al-Zeer MA. Bacterial signatures and their inflammatory potentials associated with prostate cancer. APMIS 2020; 128:80-91. [PMID: 31990107 DOI: 10.1111/apm.13021] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Chronic inflammation can create a microenvironment that can contribute to the formation of prostate pathologies. Far less well understood is the origin of inflammation in the prostate. One potential source is microbial infections of the prostate. This review summarizes recent findings regarding the presence of bacteria in the prostate and the dysbiosis of bacterial populations in the urinary tract and the gastrointestinal tract related to prostate cancer, thereby focusing on next-generation sequencing (NGS)-generated data. The current limitations regarding NGS-based detection methods and other difficulties in the quest for a microbial etiology for prostate cancer are discussed. We then focus on a few bacterial species, including Cutibacterium acnes and Escherichia coli that are often NGS-detected in prostatic tissue specimens, and discuss their possible contribution as initiator or enhancer of prostate inflammation and prostate carcinogenesis.
Collapse
Affiliation(s)
| | - Munir A Al-Zeer
- Institute of Biotechnology, Department of Applied Biochemistry, Technical University of Berlin, Berlin, Germany
| |
Collapse
|
27
|
A review of microscopy-based evidence for the association of Propionibacterium acnes biofilms in degenerative disc disease and other diseased human tissue. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2019; 28:2951-2971. [PMID: 31359216 DOI: 10.1007/s00586-019-06086-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Recent research shows an increasing recognition that organisms not traditionally considered infectious in nature contribute to disease processes. Propionibacterium acnes (P. acnes) is a gram-positive, aerotolerant anaerobe prevalent in the sebaceous gland-rich areas of the human skin. A ubiquitous slow-growing organism with the capacity to form biofilm, P. acnes, recognized for its role in acne vulgaris and medical device-related infections, is now also linked to a number of other human diseases. While bacterial culture and molecular techniques are used to investigate the involvement of P. acnes in such diseases, definitive demonstration of P. acnes infection requires a technique (or techniques) sensitive to the presence of biofilms and insensitive to the presence of potential contamination. Fortunately, there are imaging techniques meeting these criteria, in particular, fluorescence in situ hybridization and immunofluorescence coupled with confocal laser scanning microscopy, as well as immunohistochemistry. METHODS Our literature review considers a range of microscopy-based studies that provides definitive evidence of P. acnes colonization within tissue from a number of human diseases (acne vulgaris, degenerative disc and prostate disease and atherosclerosis), some of which are currently not considered to have an infectious etiology. RESULTS/CONCLUSION We conclude that P. acnes is an opportunistic pathogen with a likely underestimated role in the development of various human diseases associated with significant morbidity and, in some cases, mortality. As such, these findings offer the potential for new studies aimed at understanding the pathological mechanisms driving the observed disease associations, as well as novel diagnostic strategies and treatment strategies, particularly for degenerative disc disease. These slides can be retrieved under Electronic Supplementary Material.
Collapse
|
28
|
Bernard C, Lemoine V, Hoogenkamp MA, Girardot M, Krom BP, Imbert C. Candida albicans enhances initial biofilm growth of Cutibacterium acnes under aerobic conditions. BIOFOULING 2019; 35:350-360. [PMID: 31088179 DOI: 10.1080/08927014.2019.1608966] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Candida albicans and Cutibacterium acnes are opportunistic pathogens that co-colonize the human body. They are involved in biofilm-related infections of implanted medical devices. The objective of this study was to evaluate the ability of these species to interact and form polymicrobial biofilms. SEM imaging and adhesion assays showed that C. acnes adhesion to C. albicans did not have a preference for a specific morphological state of C. albicans; bacteria adhered to both hyphal and yeast forms of C. albicans. C. albicans did not influence growth of C. acnes under anaerobic growth conditions, however under aerobic growth condition, C. albicans enhanced early C. acnes biofilm formation. This favorable impact of C. albicans was not mediated by secreted compounds accumulating in the medium, but required the presence of metabolically active C. albicans. The ability of these microorganisms to interact together could modulate the physiopathology of infections.
Collapse
Affiliation(s)
- Clément Bernard
- a Laboratoire Ecologie Biologie des Interactions - UMR CNRS 7267 , Université de Poitiers , Poitiers , France
| | - Virginie Lemoine
- a Laboratoire Ecologie Biologie des Interactions - UMR CNRS 7267 , Université de Poitiers , Poitiers , France
| | - Michel A Hoogenkamp
- b Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA) , Vrije Universiteit Amsterdam and the University of Amsterdam , Amsterdam , The Netherlands
| | - Marion Girardot
- a Laboratoire Ecologie Biologie des Interactions - UMR CNRS 7267 , Université de Poitiers , Poitiers , France
| | - Bastiaan P Krom
- b Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA) , Vrije Universiteit Amsterdam and the University of Amsterdam , Amsterdam , The Netherlands
- c ESCMID Study Group for Biofilms (ESGB)
| | - Christine Imbert
- a Laboratoire Ecologie Biologie des Interactions - UMR CNRS 7267 , Université de Poitiers , Poitiers , France
- c ESCMID Study Group for Biofilms (ESGB)
| |
Collapse
|
29
|
Merrell DS, McAvoy TJ, King MC, Sittig M, Millar EV, Nieroda C, Metcalf JL, Blum FC, Testerman TL, Sardi A. Pre- and post-operative antibiotics in conjunction with cytoreductive surgery and heated intraperitoneal chemotherapy (HIPEC) should be considered for pseudomyxoma peritonei (PMP) treatment. Eur J Surg Oncol 2019; 45:1723-1726. [PMID: 30770164 DOI: 10.1016/j.ejso.2019.01.223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/29/2019] [Indexed: 11/17/2022] Open
Abstract
Pseudomyxoma peritonei (PMP) is a subtype of peritoneal carcinomatosis that is traditionally treated by cytoreductive surgery (CRS) followed by hyperthermic intraperitoneal chemotherapy (HIPEC). A growing body of evidence suggests that microbes are associated with various tumor types and have been found in organs and cavities that were once considered sterile. Prior and ongoing research from our consortium of PMP researchers strongly suggests that bacteria are associated with PMP tumors. While the significance of this association is unclear, in our opinion, further research is warranted to understand whether these bacteria contribute to the development, maintenance and/or progression of PMP. Elucidation of a possible causal role for bacteria in PMP could suggest a benefit for supplementation of antibiotics to current treatment protocols.
Collapse
Affiliation(s)
- D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA; Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Thomas J McAvoy
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA.
| | - Mary Caitlin King
- Department of Surgical Oncology, Mercy Medical Center, Baltimore, MD, 21202, USA
| | - Michelle Sittig
- Department of Surgical Oncology, Mercy Medical Center, Baltimore, MD, 21202, USA
| | - Eugene V Millar
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, USA
| | - Carol Nieroda
- Department of Surgical Oncology, Mercy Medical Center, Baltimore, MD, 21202, USA
| | - Jessica L Metcalf
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - Faith C Blum
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | | | - Armando Sardi
- Department of Surgical Oncology, Mercy Medical Center, Baltimore, MD, 21202, USA.
| |
Collapse
|
30
|
Zimmermann P, Curtis N. The role of Cutibacterium acnes in auto-inflammatory bone disorders. Eur J Pediatr 2019; 178:89-95. [PMID: 30324232 DOI: 10.1007/s00431-018-3263-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/10/2018] [Accepted: 09/24/2018] [Indexed: 12/15/2022]
Abstract
Chronic nonbacterial osteomyelitis (CNO) and SAPHO (synovitis, acne, pustulosis, hyperostosis and osteitis) syndrome are auto-inflammatory disorders manifesting as chronic inflammation of bones and joints, which in SAPHO is often accompanying by skin changes. The aetiology of these diseases is unknown, but includes genetic, infectious and immunological components. It has been proposed that Cutibacterium (formerly Propionibacterium) acnes plays a role in the pathogenesis. In this review, we summarise reported cases of CNO or SAPHO syndrome in which C. acnes has been isolated from bones. To identify cases, a search was done in May 2018 using the MEDLINE Ovid interface (1946 to present). We found 14 publications reporting 98 patients with auto-inflammatory bone disorders, of whom 48 (49%) had positive bone biopsies for C. acnes. This bacterium was more frequently isolated from open biopsies than percutaneous ones (43/69 (62%) vs 1/7 (14%); p = 0.04) and biopsies were more frequently positive in patients who presented with simultaneous skin manifestations (19/36 (53%) vs 4/12 (33%); p = 0.03).Conclusion: In patients with CNO or SAPHO, C. acnes can be isolated from open biopsies suggesting that in these patients, C. acnes might be a pathogen rather than a contaminant. The fact that biopsies are more frequently positive in patients who present with simultaneous skin manifestations suggests that these individuals might have a genetic predisposition for impaired clearance of C. acnes. What is known • Chronic nonbacterial osteomyelitis (CNO) and SAPHO (synovitis, acne, pustulosis, hyperostosis and osteitis) syndrome are auto-inflammatory disorders manifesting as inflammation of bones. Both diseases are an important differential diagnosis in children who present with symptoms of (multifocal) osteomyelitis. • The pathogenesis of CNO and SAPHO is multifactorial emcompassing genetic, infectious and immunological components, including interleukin (IL)-1 dysregulation. There is a controversy as to whether Cutibacterium (formerly Propionibacterium) acnes plays a role in the aetiology of CNO and SAPHO. It has been postulated that the presence of C. acnes might trigger auto-inflammatory chronic inflammation in genetically predisposed individuals. What is new • In patients with CNO or SAPHO, C. acnes can be isolated more frequently from open biopsies, than from percutaneous ones, suggesting that C. acnes might be a pathogen rather than a contaminant. • Biopsies are more frequently positive in patients who present with simultaneous skin manifestations suggesting that these individuals might have a genetic predisposition for impaired clearance of C. acnes. Impaired C. acnes clearance likely leads to increased IL-1 beta (β) production by skin cells, bone cells and phagocytes, which is one of the main cytokines underlying chronic inflammatory bone disorders.
Collapse
Affiliation(s)
- Petra Zimmermann
- Department of Paediatrics, The University of Melbourne, Parkville, Australia. .,Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, 3052, Australia. .,Infectious Diseases & Microbiology Research Group, Murdoch Children's Research Institute, Parkville, Australia. .,Infectious Diseases Unit, University of Basel Children's Hospital, Basel, Switzerland.
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Australia. .,Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, 3052, Australia. .,Infectious Diseases & Microbiology Research Group, Murdoch Children's Research Institute, Parkville, Australia.
| |
Collapse
|
31
|
Ugge H, Carlsson J, Söderquist B, Fall K, Andén O, Davidsson S. The influence of prostatic Cutibacterium acnes infection on serum levels of IL6 and CXCL8 in prostate cancer patients. Infect Agent Cancer 2018; 13:34. [PMID: 30473726 PMCID: PMC6234669 DOI: 10.1186/s13027-018-0204-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/12/2018] [Indexed: 12/27/2022] Open
Abstract
Background Chronic prostatic inflammation, caused by Cutibacterium acnes (C. acnes), has been proposed to influence the risk of prostate cancer development. In vitro studies have demonstrated the capacity of C. acnes to induce secretion of Interleukin 6 (IL6) and C-X-C motif chemokine ligand 8 (CXCL8) by prostate epithelial cells. Both these inflammatory mediators have been implicated in prostate cancer pathophysiology. In this cohort study, we aimed to investigate the influence of prostatic C. acnes on serum levels of IL6 and CXCL8. Methods We recruited 99 prostate cancer patients who underwent radical prostatectomy at Örebro University Hospital. The cultivation of pre-operatively obtained prostate biopsies identified C. acnes in 60 of the 99 patients. Levels of IL6 and CXCL8 in pre-operative serum samples were analyzed using ELISA, and concentrations were compared between prostate cancer patients with and without prostatic C. acnes infection using standard statistical methods. Results No statistical differences were observed in serum levels of IL6 and CXCL8 between subjects with and without prostatic C. acnes infection. Conclusions Our results indicate that prostatic C. acnes infection may give rise to low-grade inflammation with little effect on systemic levels of IL6 and CXCL8.
Collapse
Affiliation(s)
- Henrik Ugge
- 1Department of Urology, Faculty of Medicine and Health, Örebro University, 701 85 Örebro, Sweden
| | - Jessica Carlsson
- 1Department of Urology, Faculty of Medicine and Health, Örebro University, 701 85 Örebro, Sweden
| | - Bo Söderquist
- 2Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Katja Fall
- 3Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden.,4Department of Medical Epidemiology, Karolinska Institutet, Stockholm, Sweden
| | - Ove Andén
- 1Department of Urology, Faculty of Medicine and Health, Örebro University, 701 85 Örebro, Sweden
| | - Sabina Davidsson
- 1Department of Urology, Faculty of Medicine and Health, Örebro University, 701 85 Örebro, Sweden
| |
Collapse
|
32
|
Zhang X, Lin Y, Xie X, Shen M, Huang G, Yang Y. Is acne in adolescence associated with prostate cancer risk? Evidence from a meta-analysis. PLoS One 2018; 13:e0206249. [PMID: 30403728 PMCID: PMC6221330 DOI: 10.1371/journal.pone.0206249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022] Open
Abstract
Introduction Previous studies regarding the relationship between acne and prostate cancer risk have reported inconsistent results. We performed the present meta-analysis of observational studies to summarize the evidence on this association. Methods A comprehensive literature search up to March 2018 was performed in PubMed, Scopus, Web of Science, and Chinese National Knowledge Infrastructure (CNKI) databases. Summary odds ratios (ORs) with 95% confidence intervals (CIs) were estimated with a random effects model. The Q statistic and the I2 index were used to evaluate the heterogeneity across the studies. Results Eight studies were ultimately included in this meta-analysis. In the overall analysis, no significant association was found between acne and prostate cancer risk (OR = 1.08, 95% CI 0.93–1.25). A significant heterogeneity was observed across studies (P = 0.006, I2 = 64.5%). In the subgroup analysis by study design, a significant association was observed in the cohort studies (OR = 1.51, 95% CI 1.19–1.93) but not in the case-control studies (OR = 0.98, 95% CI 0.86–1.12). Conclusions In summary, this meta-analysis did not find an association between acne in adolescence and prostate cancer risk. However, because there was some heterogeneity in the overall analysis and a significant association was observed in the meta-analysis of the cohort studies, further well-designed large prospective studies are warranted to confirm our results.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Lin
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoning Xie
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Meiya Shen
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guoping Huang
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunmei Yang
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
33
|
Integrative metabolic and transcriptomic profiling of prostate cancer tissue containing reactive stroma. Sci Rep 2018; 8:14269. [PMID: 30250137 PMCID: PMC6155140 DOI: 10.1038/s41598-018-32549-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
Reactive stroma is a tissue feature commonly observed in the tumor microenvironment of prostate cancer and has previously been associated with more aggressive tumors. The aim of this study was to detect differentially expressed genes and metabolites according to reactive stroma content measured on the exact same prostate cancer tissue sample. Reactive stroma was evaluated using histopathology from 108 fresh frozen prostate cancer samples gathered from 43 patients after prostatectomy (Biobank1). A subset of the samples was analyzed both for metabolic (n = 85) and transcriptomic alterations (n = 78) using high resolution magic angle spinning magnetic resonance spectroscopy (HR-MAS MRS) and RNA microarray, respectively. Recurrence-free survival was assessed in patients with clinical follow-up of minimum five years (n = 38) using biochemical recurrence (BCR) as endpoint. Multivariate metabolomics and gene expression analysis compared low (≤15%) against high reactive stroma content (≥16%). High reactive stroma content was associated with BCR in prostate cancer patients even when accounting for the influence of Grade Group (Cox hazard proportional analysis, p = 0.013). In samples with high reactive stroma content, metabolites and genes linked to immune functions and extracellular matrix (ECM) remodeling were significantly upregulated. Future validation of these findings is important to reveal novel biomarkers and drug targets connected to immune mechanisms and ECM in prostate cancer. The fact that high reactive stroma grading is connected to BCR adds further support for the clinical integration of this histopathological evaluation.
Collapse
|
34
|
Rajakaruna GA, Negi M, Uchida K, Sekine M, Furukawa A, Ito T, Kobayashi D, Suzuki Y, Akashi T, Umeda M, Meinzer W, Izumi Y, Eishi Y. Localization and density of Porphyromonas gingivalis and Tannerella forsythia in gingival and subgingival granulation tissues affected by chronic or aggressive periodontitis. Sci Rep 2018; 8:9507. [PMID: 29934515 PMCID: PMC6014976 DOI: 10.1038/s41598-018-27766-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 06/08/2018] [Indexed: 12/16/2022] Open
Abstract
Porphyromonas gingivalis and Tannerella forsythia have been thought to be associated with periodontitis; however comprehensive histopathological localization of bacteria in affected human periodontal tissues is not well documented. In the present study, we examined formalin-fixed paraffin-embedded gingival and subgingival granulation tissues from 71 patients with chronic periodontitis and 11 patients with aggressive periodontitis, using immunohistochemistry with novel monoclonal antibodies specific to P. gingivalis or T. forsythia, together with quantitative real-time polymerase chain reaction for each bacterial DNA. Immunohistochemisty revealed both bacterial species extracellularly, as aggregates or within bacterial plaque, and intracellularly in stromal inflammatory cells, squamous epithelium, and capillary endothelium of granulation tissue. Combined analysis with the results from polymerase chain reaction suggested that localization and density of T. forsythia is closely associated with those of P. gingivalis, and that bacterial density is a factor responsible for the cell-invasiveness and tissue-invasiveness of these periodontal bacteria. Detection of these bacteria in the capillary endothelium in some samples suggested possible bacterial translocation into the systemic circulation from inflamed gingival and subgingival granulation tissues. Immunohistochemistry with the novel antibodies showed high specificity and sensitivity, and can be used to locate these periodontal bacteria in routinely-used formalin-fixed paraffin-embedded human tissue sections from systemic locations.
Collapse
Affiliation(s)
- G Amodini Rajakaruna
- Department of Periodontology, Graduate School and Faculty of Dentistry, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.,Global Center of Excellence for Tooth and Bone Research, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.,Research Fellow, International Scientific Exchange Fund Program, Japan Dental Association, Tokyo, Japan
| | - Mariko Negi
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Keisuke Uchida
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo, 113-8510, Japan
| | - Masaki Sekine
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo, 113-8510, Japan
| | - Asuka Furukawa
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Takashi Ito
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Daisuke Kobayashi
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Yoshimi Suzuki
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Takumi Akashi
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo, 113-8510, Japan
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Osaka, 540-0008, Japan
| | - Walter Meinzer
- Department of Periodontology, Graduate School and Faculty of Dentistry, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School and Faculty of Dentistry, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.,Global Center of Excellence for Tooth and Bone Research, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Yoshinobu Eishi
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan. .,Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo, 113-8510, Japan.
| |
Collapse
|
35
|
Rosenfeld CS, Javurek AB, Johnson SA, Lei Z, Sumner LW, Hess RA. Seminal fluid metabolome and epididymal changes after antibiotic treatment in mice. Reproduction 2018; 156:1-10. [PMID: 29692359 DOI: 10.1530/rep-18-0072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/23/2018] [Indexed: 01/19/2023]
Abstract
Paternal environment can induce detrimental developmental origins of health and disease (DOHaD) effects in resulting offspring and even future descendants. Such paternal-induced DOHaD effects might originate from alterations in a possible seminal fluid microbiome (SFM) and composite metabolome. Seminal vesicles secrete a slightly basic product enriched with fructose and other carbohydrates, providing an ideal habitat for microorganisms. Past studies confirm the existence of a SFM that is influenced by genetic and nutritional status. Herein, we sought to determine whether treatment of male mice with a combination of antibiotics designed to target SFM induces metabolic alterations in seminal vesicle gland secretions (seminal fluid) and histopathological changes in testes and epididymides. Adult (10- to 12-week-old) National Institutes of Health (NIH) Swiss males (n = 10 per group) were treated with Clindamycin 0.06 mg/kg day, Unasyn (ampicillin/sulbactam) 40 mg/kg day and Baytril (enrofloxacin) 50 mg/kg day designed to target the primary bacteria within the SFM or saline vehicle alone. Fourteen-day antibiotic treatment of males induced metabolomic changes in seminal vesicles with inosine, xanthine and l-glutamic acid decreased but d-fructose increased in glandular secretions. While spermatogenesis was not affected in treated males, increased number of epididymal tubules showed cribriform growth in this group (7 antibiotic-treated males: 3 saline control males; P = 0.01). Antibiotic-treated males showed more severe cribriform cysts. Current findings suggest antibiotic treatment of male mice results in seminal fluid metabolome and epididymal histopathological alterations. It remains to be determined whether such changes compromise male reproductive function or lead to DOHaD effects in resulting offspring.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences CenterUniversity of Missouri, Columbia, Missouri, USA .,Department of Biomedical SciencesUniversity of Missouri, Columbia, Missouri, USA.,Thompson Center for Autism and Neurobehavioral DisordersUniversity of Missouri, Columbia, Missouri, USA.,Genetics Area Program Faculty MemberUniversity of Missouri, Columbia, Missouri, USA
| | - Angela B Javurek
- Department of Occupational and Environmental Health SciencesWest Virginia University, Morgantown, West Virginia, USA
| | - Sarah A Johnson
- Bond Life Sciences CenterUniversity of Missouri, Columbia, Missouri, USA.,Department of Biomedical SciencesUniversity of Missouri, Columbia, Missouri, USA.,Department of GastroenterologySchool of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Zhentian Lei
- Bond Life Sciences CenterUniversity of Missouri, Columbia, Missouri, USA.,Department of BiochemistryUniversity of Missouri, Columbia, Missouri, USA.,MU Metabolomics CenterUniversity of Missouri, Columbia, Missouri, USA
| | - Lloyd W Sumner
- Bond Life Sciences CenterUniversity of Missouri, Columbia, Missouri, USA.,Department of BiochemistryUniversity of Missouri, Columbia, Missouri, USA.,MU Metabolomics CenterUniversity of Missouri, Columbia, Missouri, USA
| | - Rex A Hess
- Department of Comparative BiosciencesCollege of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, USA
| |
Collapse
|
36
|
Davidsson S, Carlsson J, Mölling P, Gashi N, Andrén O, Andersson SO, Brzuszkiewicz E, Poehlein A, Al-Zeer MA, Brinkmann V, Scavenius C, Nazipi S, Söderquist B, Brüggemann H. Prevalence of Flp Pili-Encoding Plasmids in Cutibacterium acnes Isolates Obtained from Prostatic Tissue. Front Microbiol 2017; 8:2241. [PMID: 29201018 PMCID: PMC5696575 DOI: 10.3389/fmicb.2017.02241] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/31/2017] [Indexed: 12/14/2022] Open
Abstract
Inflammation is one of the hallmarks of prostate cancer. The origin of inflammation is unknown, but microbial infections are suspected to play a role. In previous studies, the Gram-positive, low virulent bacterium Cutibacterium (formerly Propionibacterium) acnes was frequently isolated from prostatic tissue. It is unclear if the presence of the bacterium represents a true infection or a contamination. Here we investigated Cutibacterium acnes type II, also called subspecies defendens, which is the most prevalent type among prostatic C. acnes isolates. Genome sequencing of type II isolates identified large plasmids in several genomes. The plasmids are highly similar to previously identified linear plasmids of type I C. acnes strains associated with acne vulgaris. A PCR-based analysis revealed that 28.4% (21 out of 74) of all type II strains isolated from cancerous prostates carry a plasmid. The plasmid shows signatures for conjugative transfer. In addition, it contains a gene locus for tight adherence (tad) that is predicted to encode adhesive Flp (fimbrial low-molecular weight protein) pili. In subsequent experiments a tad locus-encoded putative pilin subunit was identified in the surface-exposed protein fraction of plasmid-positive C. acnes type II strains by mass spectrometry, indicating that the tad locus is functional. Additional plasmid-encoded proteins were detected in the secreted protein fraction, including two signal peptide-harboring proteins; the corresponding genes are specific for type II C. acnes, thus lacking from plasmid-positive type I C. acnes strains. Further support for the presence of Flp pili in C. acnes type II was provided by electron microscopy, revealing cell appendages in tad locus-positive strains. Our study provides new insight in the most prevalent prostatic subspecies of C. acnes, subsp. defendens, and indicates the existence of Flp pili in plasmid-positive strains. Such pili may support colonization and persistent infection of human prostates by C. acnes.
Collapse
Affiliation(s)
- Sabina Davidsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Jessica Carlsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Paula Mölling
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Natyra Gashi
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ove Andrén
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Swen-Olof Andersson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Elzbieta Brzuszkiewicz
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Munir A Al-Zeer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Volker Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Seven Nazipi
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bo Söderquist
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | |
Collapse
|
37
|
Capoor MN, Ruzicka F, Schmitz JE, James GA, Machackova T, Jancalek R, Smrcka M, Lipina R, Ahmed FS, Alamin TF, Anand N, Baird JC, Bhatia N, Demir-Deviren S, Eastlack RK, Fisher S, Garfin SR, Gogia JS, Gokaslan ZL, Kuo CC, Lee YP, Mavrommatis K, Michu E, Noskova H, Raz A, Sana J, Shamie AN, Stewart PS, Stonemetz JL, Wang JC, Witham TF, Coscia MF, Birkenmaier C, Fischetti VA, Slaby O. Propionibacterium acnes biofilm is present in intervertebral discs of patients undergoing microdiscectomy. PLoS One 2017; 12:e0174518. [PMID: 28369127 PMCID: PMC5378350 DOI: 10.1371/journal.pone.0174518] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/10/2017] [Indexed: 01/31/2023] Open
Abstract
Background In previous studies, Propionibacterium acnes was cultured from intervertebral disc tissue of ~25% of patients undergoing microdiscectomy, suggesting a possible link between chronic bacterial infection and disc degeneration. However, given the prominence of P. acnes as a skin commensal, such analyses often struggled to exclude the alternate possibility that these organisms represent perioperative microbiologic contamination. This investigation seeks to validate P. acnes prevalence in resected disc cultures, while providing microscopic evidence of P. acnes biofilm in the intervertebral discs. Methods Specimens from 368 patients undergoing microdiscectomy for disc herniation were divided into several fragments, one being homogenized, subjected to quantitative anaerobic culture, and assessed for bacterial growth, and a second fragment frozen for additional analyses. Colonies were identified by MALDI-TOF mass spectrometry and P. acnes phylotyping was conducted by multiplex PCR. For a sub-set of specimens, bacteria localization within the disc was assessed by microscopy using confocal laser scanning and FISH. Results Bacteria were cultured from 162 discs (44%), including 119 cases (32.3%) with P. acnes. In 89 cases, P. acnes was cultured exclusively; in 30 cases, it was isolated in combination with other bacteria (primarily coagulase-negative Staphylococcus spp.) Among positive specimens, the median P. acnes bacterial burden was 350 CFU/g (12 - ~20,000 CFU/g). Thirty-eight P. acnes isolates were subjected to molecular sub-typing, identifying 4 of 6 defined phylogroups: IA1, IB, IC, and II. Eight culture-positive specimens were evaluated by fluorescence microscopy and revealed P. acnes in situ. Notably, these bacteria demonstrated a biofilm distribution within the disc matrix. P. acnes bacteria were more prevalent in males than females (39% vs. 23%, p = 0.0013). Conclusions This study confirms that P. acnes is prevalent in herniated disc tissue. Moreover, it provides the first visual evidence of P. acnes biofilms within such specimens, consistent with infection rather than microbiologic contamination.
Collapse
Affiliation(s)
- Manu N Capoor
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, United States of America.,Department of Molecular Oncology, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Filip Ruzicka
- Department of Microbiology, Faculty of Medicine, Masaryk university, St. Anne's Faculty Hospital, Brno, Czech Republic
| | - Jonathan E Schmitz
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Garth A James
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
| | - Tana Machackova
- Department of Molecular Oncology, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Radim Jancalek
- Department of Neurosurgery, St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| | - Martin Smrcka
- Department of Neurosurgery, University Hospital Brno, Masaryk University, Brno, Czech Republic
| | - Radim Lipina
- Department of Neurosurgery, University Hospital Ostrava, Ostrava University, Ostrava, Czech Republic
| | - Fahad S Ahmed
- Department of Molecular Oncology, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Todd F Alamin
- Department of Orthopedic Surgery, Stanford University Medical Center, Stanford University, Stanford, California, United States of America
| | - Neel Anand
- Cedars-Sinai Institute for Spinal Disorders, Los Angeles, California, United States of America
| | - John C Baird
- Department of Molecular Oncology, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Nitin Bhatia
- Department of Orthopaedic Surgery, University of California Irvine, School of Medicine, Irvine, California, United States of America
| | - Sibel Demir-Deviren
- Spine Center, UCSF Medical Center, San Francisco, California, United States of America
| | - Robert K Eastlack
- Scripps Clinic Division of Orthopedic Surgery, San Diego, California, United States of America
| | - Steve Fisher
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
| | - Steven R Garfin
- Department of Orthopaedic Surgery, University of California San Diego, San Diego, California, United States of America
| | - Jaspaul S Gogia
- Department of Orthopedic Surgery, Kaiser Permanente-San Jose Medical Center, San Jose, California, United States of America
| | - Ziya L Gokaslan
- Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, United States of America
| | - Calvin C Kuo
- Department of Orthopedic Surgery, Kaiser Permanente-Oakland Medical Center, Oakland, California, United States of America
| | - Yu-Po Lee
- Department of Orthopaedic Surgery, University of California Irvine, School of Medicine, Irvine, California, United States of America
| | - Konstantinos Mavrommatis
- Celgene Corporation, Information Knowledge and Utilization, San Francisco, California, United States of America
| | - Elleni Michu
- Department of Molecular Oncology, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Hana Noskova
- Department of Molecular Oncology, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Assaf Raz
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, United States of America
| | - Jiri Sana
- Department of Molecular Oncology, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - A Nick Shamie
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Philip S Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
| | - Jerry L Stonemetz
- Department of Anesthesia, The Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Jeffrey C Wang
- Department of Orthopedic Surgery, University Southern California, Los Angeles, California, United States of America
| | - Timothy F Witham
- Department of Neurosurgery, The Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Michael F Coscia
- Department of Orthopedic Surgery, OrthoIndy Hospital, Indianapolis, Indiana, United States of America
| | - Christof Birkenmaier
- Department of Orthopedics, Physical Medicine & Rehabilitation, University of Munich (LMU), Munich, Germany
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, United States of America
| | - Ondrej Slaby
- Department of Molecular Oncology, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| |
Collapse
|
38
|
Leheste JR, Ruvolo KE, Chrostowski JE, Rivera K, Husko C, Miceli A, Selig MK, Brüggemann H, Torres G. P. acnes-Driven Disease Pathology: Current Knowledge and Future Directions. Front Cell Infect Microbiol 2017; 7:81. [PMID: 28352613 PMCID: PMC5348501 DOI: 10.3389/fcimb.2017.00081] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 03/01/2017] [Indexed: 01/10/2023] Open
Abstract
This review discusses the biology and behavior of Propionibacterium acnes (P. acnes), a dominant bacterium species of the skin biogeography thought to be associated with transmission, recurrence and severity of disease. More specifically, we discuss the ability of P. acnes to invade and persist in epithelial cells and circulating macrophages to subsequently induce bouts of sarcoidosis, low-grade inflammation and metastatic cell growth in the prostate gland. Finally, we discuss the possibility of P. acnes infiltrating the brain parenchyma to indirectly contribute to pathogenic processes in neurodegenerative disorders such as those observed in Parkinson's disease (PD).
Collapse
Affiliation(s)
- Joerg R Leheste
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine Old Westbury, NY, USA
| | - Kathryn E Ruvolo
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine Old Westbury, NY, USA
| | - Joanna E Chrostowski
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine Old Westbury, NY, USA
| | - Kristin Rivera
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine Old Westbury, NY, USA
| | - Christopher Husko
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine Old Westbury, NY, USA
| | - Alyssa Miceli
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine Old Westbury, NY, USA
| | - Martin K Selig
- Molecular Pathology Division, Massachusetts General Hospital and Harvard Medical School Boston, MA, USA
| | | | - German Torres
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine Old Westbury, NY, USA
| |
Collapse
|
39
|
Kakegawa T, Bae Y, Ito T, Uchida K, Sekine M, Nakajima Y, Furukawa A, Suzuki Y, Kumagai J, Akashi T, Eishi Y. Frequency of Propionibacterium acnes Infection in Prostate Glands with Negative Biopsy Results Is an Independent Risk Factor for Prostate Cancer in Patients with Increased Serum PSA Titers. PLoS One 2017; 12:e0169984. [PMID: 28081259 PMCID: PMC5231393 DOI: 10.1371/journal.pone.0169984] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/27/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Propionibacterium acnes has recently been implicated as a cause of chronic prostatitis and this commensal bacterium may be linked to prostate carcinogenesis. The occurrence of intracellular P. acnes infection in prostate glands and the higher frequency of P. acnes-positive glands in radical prostatectomy specimens from patients with prostate cancer (PCa) than in those from patients without PCa led us to examine whether the P. acnes-positive gland frequency can be used to assess the risk for PCa in patients whose first prostate biopsy, performed due to an increased prostate-specific antigen (PSA) titer, was negative. METHODS We retrospectively collected the first and last prostate biopsy samples from 44 patients that were diagnosed PCa within 4 years after the first negative biopsy and from 36 control patients with no PCa found in repeated biopsy for at least 3 years after the first biopsy. We evaluated P. acnes-positive gland frequency and P. acnes-positive macrophage number using enzyme-immunohistochemistry with a P. acnes-specific monoclonal antibody (PAL antibody). RESULTS The frequency of P. acnes-positive glands was higher in PCa samples than in control samples in both first biopsy samples and in combined first and last biopsy samples (P < 0.001). A frequency greater than the threshold (18.5 and 17.7, respectively) obtained by each receiver operating characteristic curve was an independent risk factor for PCa (P = 0.003 and 0.001, respectively) with odds ratios (14.8 and 13.9, respectively) higher than those of serum PSA titers of patients just before each biopsy (4.6 and 2.3, respectively). The number of P. acnes-positive macrophages did not differ significantly between PCa and control samples. CONCLUSIONS These results suggested that the frequency of P. acnes-positive glands in the first negative prostate biopsy performed due to increased PSA titers can be supportive information for urologists in planning repeated biopsy or follow-up strategies.
Collapse
Affiliation(s)
- Tomoya Kakegawa
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuan Bae
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Takashi Ito
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keisuke Uchida
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Masaki Sekine
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Yutaka Nakajima
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Asuka Furukawa
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimi Suzuki
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jiro Kumagai
- Department of Pathology, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Takumi Akashi
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Yoshinobu Eishi
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| |
Collapse
|
40
|
Abstract
STUDY DESIGN Patients scheduled for spinal surgery were screened prospectively for a microbial presence associated with intervertebral disc specimens. Inclusion was limited to patients requiring surgery for any of five conditions: study patients with cervical spine intervertebral herniation (IVH), lumbar spine IVH, lumbar spine discogenic pain, and control patients with idiopathic scoliosis/Scheurermann's kyphosis or trauma/neuromuscular deformity. Exclusion criteria included ongoing systemic infection, abnormal pre-operative white cell counts, documented or suspected spinal infection, or previous surgery to the involved disc. OBJECTIVE The aim of this study was to test for an association between the presence of a bacterial entity in operated discs and a diagnosis of pathologic disc disease. SUMMARY OF BACKGROUND DATA An association has been described between microbial colonization and progressive intervertebral disc degeneration in 36 herniation patients undergoing microdiscectomies. A total of 19 patients had positive cultures on long-term incubation, with Propionibacterium acnes present in 84% of discs. MATERIALS AND METHODS Discs were harvested during surgery, using strict sterile technique. Each disc was divided, with half the sample sealed in a sterile, commercially prepared anaerobic culture transport container, and half fixed in formalin. Live specimens were cultured for bacteria at a university-affiliated laboratory in a blinded fashion. Fixed pathologic specimens were gram-stained and read by a board-certified pathologist. RESULTS A total of 169 intervertebral discs from 87 patients were evaluated (46 males, 41 females). Positive cultures were noted in 76 of 169 discs (45%), with 34 discs positive for P. acnes and 30 discs positive for Staphylococcus. No pathologic evidence was seen of microorganisms, acute or chronic inflammation, or infection. Pooling the IVH and discogenic pain patients and contrasting them with control patients showed a significant association of IVH with positive bacterial cultures (χ = 15.37; P = 0.000088). CONCLUSION Endemic bacterial biofilms are significantly associated with IVH and discogenic pain. LEVEL OF EVIDENCE N/A.
Collapse
|
41
|
Sayanjali B, Christensen GJ, Al-Zeer MA, Mollenkopf HJ, Meyer TF, Brüggemann H. Propionibacterium acnes inhibits FOXM1 and induces cell cycle alterations in human primary prostate cells. Int J Med Microbiol 2016; 306:517-528. [DOI: 10.1016/j.ijmm.2016.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/17/2016] [Accepted: 06/27/2016] [Indexed: 12/29/2022] Open
|
42
|
McDowell A, Barnard E, Liu J, Li H, Patrick S. Emendation of Propionibacterium acnes subsp. acnes (Deiko et al. 2015) and proposal of Propionibacterium acnes type II as Propionibacterium acnes subsp. defendens subsp. nov. Int J Syst Evol Microbiol 2016; 66:5358-5365. [PMID: 27670798 DOI: 10.1099/ijsem.0.001521] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recently, it has been proposed that strains of Propionibacterium acnes from the type III genetic division should be classified as P. acnessubsp. elongatum subsp. nov., with strains from the type I and II divisions collectively classified as P. acnessubsp. acnes subsp. nov. Under such a taxonomic re-appraisal, we believe that types I and II should also have their own separate rank of subspecies. In support of this, we describe a polyphasic taxonomic study based on the analysis of publicly available multilocus and whole-genome sequence datasets, alongside a systematic review of previously published phylogenetic, genomic, phenotypic and clinical data. Strains of types I and II form highly distinct clades on the basis of multilocus sequence analysis (MLSA) and whole-genome phylogenetic reconstructions. In silico or digital DNA-DNA similarity values also fall within the 70-80 % boundary recommended for bacterial subspecies. Furthermore, we see important differences in genome content, including the presence of an active CRISPR/Cas system in type II strains, but not type I, and evidence for increasing linkage equilibrium within the separate divisions. Key biochemical differences include positive test results for β-haemolytic, neuraminidase and sorbitol fermentation activities with type I strains, but not type II. We now propose that type I strains should be classified as P. acnessubsp. acnes subsp. nov., and type II as P. acnessubsp. defendens subsp. nov. The type strain of P. acnessubsp. acnes subsp. nov. is NCTC 737T (=ATCC 6919T=JCM 6425T=DSM 1897T=CCUG 1794T), while the type strain of P. acnessubsp. defendens subsp. nov. is ATCC 11828 (=JCM 6473=CCUG 6369).
Collapse
Affiliation(s)
- Andrew McDowell
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, C- TRIC Building, Altnagelvin Area Hospital, University of Ulster, Londonderry, UK
| | - Emma Barnard
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Jared Liu
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Huiying Li
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California, USA
| | - Sheila Patrick
- Centre for Infection & Immunity, School of Medicine, Dentistry & Biomedical Sciences, Queen's University, Belfast, UK
| |
Collapse
|
43
|
Prevalence of Propionibacterium acnes in Intervertebral Discs of Patients Undergoing Lumbar Microdiscectomy: A Prospective Cross-Sectional Study. PLoS One 2016; 11:e0161676. [PMID: 27536784 PMCID: PMC4990245 DOI: 10.1371/journal.pone.0161676] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/09/2016] [Indexed: 11/20/2022] Open
Abstract
Background The relationship between intervertebral disc degeneration and chronic infection by Propionibacterium acnes is controversial with contradictory evidence available in the literature. Previous studies investigating these relationships were under-powered and fraught with methodical differences; moreover, they have not taken into consideration P. acnes’ ability to form biofilms or attempted to quantitate the bioburden with regard to determining bacterial counts/genome equivalents as criteria to differentiate true infection from contamination. The aim of this prospective cross-sectional study was to determine the prevalence of P. acnes in patients undergoing lumbar disc microdiscectomy. Methods and Findings The sample consisted of 290 adult patients undergoing lumbar microdiscectomy for symptomatic lumbar disc herniation. An intraoperative biopsy and pre-operative clinical data were taken in all cases. One biopsy fragment was homogenized and used for quantitative anaerobic culture and a second was frozen and used for real-time PCR-based quantification of P. acnes genomes. P. acnes was identified in 115 cases (40%), coagulase-negative staphylococci in 31 cases (11%) and alpha-hemolytic streptococci in 8 cases (3%). P. acnes counts ranged from 100 to 9000 CFU/ml with a median of 400 CFU/ml. The prevalence of intervertebral discs with abundant P. acnes (≥ 1x103 CFU/ml) was 11% (39 cases). There was significant correlation between the bacterial counts obtained by culture and the number of P. acnes genomes detected by real-time PCR (r = 0.4363, p<0.0001). Conclusions In a large series of patients, the prevalence of discs with abundant P. acnes was 11%. We believe, disc tissue homogenization releases P. acnes from the biofilm so that they can then potentially be cultured, reducing the rate of false-negative cultures. Further, quantification study revealing significant bioburden based on both culture and real-time PCR minimize the likelihood that observed findings are due to contamination and supports the hypothesis P. acnes acts as a pathogen in these cases of degenerative disc disease.
Collapse
|
44
|
Nakamura T, Furukawa A, Uchida K, Ogawa T, Tamura T, Sakonishi D, Wada Y, Suzuki Y, Ishige Y, Minami J, Akashi T, Eishi Y. Autophagy Induced by Intracellular Infection of Propionibacterium acnes. PLoS One 2016; 11:e0156298. [PMID: 27219015 PMCID: PMC4878785 DOI: 10.1371/journal.pone.0156298] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/12/2016] [Indexed: 12/14/2022] Open
Abstract
Background Sarcoidosis is caused by Th1-type immune responses to unknown agents, and is linked to the infectious agent Propionibacterium acnes. Many strains of P. acnes isolated from sarcoid lesions cause intracellular infection and autophagy may contribute to the pathogenesis of sarcoidosis. We examined whether P. acnes induces autophagy. Methods Three cell lines from macrophages (Raw264.7), mesenchymal cells (MEF), and epithelial cells (HeLa) were infected by viable or heat-killed P. acnes (clinical isolate from sarcoid lymph node) at a multiplicity of infection (MOI) of 100 or 1000 for 1 h. Extracellular bacteria were killed by washing and culturing infected cells with antibiotics. Samples were examined by colony assay, electron-microscopy, and fluorescence-microscopy with anti-LC3 and anti-LAMP1 antibodies. Autophagy-deficient (Atg5-/-) MEF cells were also used. Results Small and large (≥5 μm in diameter) LC3-positive vacuoles containing few or many P. acnes cells (LC3-positive P. acnes) were frequently found in the three cell lines when infected by viable P. acnes at MOI 1000. LC3-positive large vacuoles were mostly LAMP1-positive. A few small LC3-positive/LAMP1-negative vacuoles were consistently observed in some infected cells for 24 h postinfection. The number of LC3-positive P. acnes was decreased at MOI 100 and completely abolished when heat-killed P. acnes was used. LC3-positive P. acnes was not found in autophagy-deficient Atg5-/- cells where the rate of infection was 25.3 and 17.6 times greater than that in wild-type Atg5+/+ cells at 48 h postinfection at MOI 100 and 1000, respectively. Electron-microscopic examination revealed bacterial cells surrounded mostly by a single-membrane including the large vacuoles and sometimes a double or multi-layered membrane, with occasional undigested bacterial cells in ruptured late endosomes or in the cytoplasm. Conclusion Autophagy was induced by intracellular P. acnes infection and contributed to intracellular bacterial killing as an additional host defense mechanism to endocytosis or phagocytosis.
Collapse
Affiliation(s)
- Teruko Nakamura
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo 113–8510, Japan
| | - Asuka Furukawa
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo 113–8510, Japan
| | - Keisuke Uchida
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo 113–8510, Japan
| | - Tomohisa Ogawa
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo 113–8510, Japan
| | - Tomoki Tamura
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo 113–8510, Japan
| | - Daisuke Sakonishi
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo 113–8510, Japan
| | - Yuriko Wada
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo 113–8510, Japan
| | - Yoshimi Suzuki
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo 113–8510, Japan
| | - Yuki Ishige
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo 113–8510, Japan
| | - Junko Minami
- Department of Clinical Engineering, School of Health Sciences, Tokyo University of Technology, Tokyo 144–8650, Japan
| | - Takumi Akashi
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo 113–8510, Japan
| | - Yoshinobu Eishi
- Department of Human Pathology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo 113–8510, Japan
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Tokyo 113–8510, Japan
- * E-mail:
| |
Collapse
|
45
|
Konta A, Ozaki K, Sakata Y, Takahashi A, Morizono T, Suna S, Onouchi Y, Tsunoda T, Kubo M, Komuro I, Eishi Y, Tanaka T. A functional SNP in FLT1 increases risk of coronary artery disease in a Japanese population. J Hum Genet 2016; 61:435-41. [PMID: 26791355 DOI: 10.1038/jhg.2015.171] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/18/2015] [Accepted: 12/20/2015] [Indexed: 11/09/2022]
Abstract
Coronary artery disease (CAD) including myocardial infarction is one of the leading causes of death in many countries. Similar to other common diseases, its pathogenesis is thought to result from complex interactions among multiple genetic and environmental factors. Recent large-scale genetic association analysis for CAD identified 15 new loci. We examined the reproducibility of these previous association findings with 7990 cases and 6582 controls in a Japanese population. We found a convincing association of rs9319428 in FLT1, encoding fms-related tyrosine kinase 1 (P=5.98 × 10(-8)). Fine mapping using tag single-nucleotide polymorphisms (SNPs) at FLT1 locus revealed that another SNP (rs74412485) showed more profound genetic effect for CAD (P=2.85 × 10(-12)). The SNP, located in intron 1 in FLT1, enhanced the transcriptional level of FLT1. RNA interference experiment against FLT1 showed that the suppression of FLT1 resulted in decreased expression of inflammatory adhesion molecules. Expression of FLT1 was observed in endothelial cells of human coronary artery. Our results indicate that the genetically coded increased expression of FLT1 by a functional SNP implicates activation in an inflammatory cascade that might eventually lead to CAD.
Collapse
Affiliation(s)
- Atsuko Konta
- Laboratory for Cardiovascular Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Human Pathology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Kouichi Ozaki
- Laboratory for Cardiovascular Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yasuhiko Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takashi Morizono
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shinichiro Suna
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshihiro Onouchi
- Laboratory for Cardiovascular Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshinobu Eishi
- Department of Human Pathology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Toshihiro Tanaka
- Laboratory for Cardiovascular Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Human Genetics and Disease Diversity, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan.,Bioresourse Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|