1
|
Li Y, Yang X, Wei Z, Niu H, Wu L, Chen C, Liu H, Cai T, Fan H. Sulforaphane Wrapped in Self-Assembled Nanomicelle Enhances the Effect of Sonodynamic Therapy on Glioma. Pharmaceutics 2024; 17:34. [PMID: 39861683 PMCID: PMC11769538 DOI: 10.3390/pharmaceutics17010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The two obstacles for treating glioma are the skull and the blood brain-barrier (BBB), the first of which forms a physical shield that increases the difficulties of traditional surgery or radiotherapy, while the latter prevents antitumor drugs reaching tumor sites. To conquer these issues, we take advantage of the high penetrating ability of sonodynamic therapy (SDT), combined with a novel nanocomplex that can easily pass the BBB. Methods: Through ultrasonic polymerization, the amphiphilic peptides (C18GR7RGDS) were self-assembled as a spherical shell encapsulating a sonosensitizer Rose Bengal (RB) and a plant-derived compound, sulforaphane (SFN), to form the nanocomplex SFN@RB@SPM. Results/Conclusions: SFN@RB@SPM can be internalized by the glioma cells through the tumor-targeting motif RGDS (abbreviated for the peptide sequence composed of arginine, glycine, aspartic acid, and serine), and further executes antitumor function during SDT. Also, SFN@RB@SPM could be easily taken up by U87-MG cells and cross the BBB in glioma-bearing mice during SDT. The mechanism investigation revealed that, compared with the SFN-free nanocomplex (RB@SPM), SFN@RB@SPM induced much more apoptosis of U87-MG cells in an ROS-dependent manner through the depletion of glutathione by SFN and the cavitation effect by SDT. In animal experiments, besides a significant reduction in tumor volume and a delay in losing body weight, H&E staining showed a massive infiltration of neutrophils adjacent to the tumor sites, indicating this novel nanocomplex SFN@RB@SPM can synergistically augment SDT efficacy, partially by enhancing the antitumor function of innate immunity.
Collapse
Affiliation(s)
- Yihong Li
- Ningbo No. 2 Hospital, Ningbo 315099, China; (Z.W.); (H.N.); (C.C.); (H.L.); (T.C.)
- Innovation Center for Diagnosis and Treatment of Neurological Diseases, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China; (X.Y.); (L.W.)
- Lab of Nanopharmacology Research for Neurodegeneration, Department of Research and Development of Science and Technology, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
| | - Xuejie Yang
- Innovation Center for Diagnosis and Treatment of Neurological Diseases, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China; (X.Y.); (L.W.)
- Lab of Nanopharmacology Research for Neurodegeneration, Department of Research and Development of Science and Technology, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
| | - Zhen Wei
- Ningbo No. 2 Hospital, Ningbo 315099, China; (Z.W.); (H.N.); (C.C.); (H.L.); (T.C.)
| | - Heng Niu
- Ningbo No. 2 Hospital, Ningbo 315099, China; (Z.W.); (H.N.); (C.C.); (H.L.); (T.C.)
| | - Liyang Wu
- Innovation Center for Diagnosis and Treatment of Neurological Diseases, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China; (X.Y.); (L.W.)
- Lab of Nanopharmacology Research for Neurodegeneration, Department of Research and Development of Science and Technology, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
| | - Caijing Chen
- Ningbo No. 2 Hospital, Ningbo 315099, China; (Z.W.); (H.N.); (C.C.); (H.L.); (T.C.)
| | - Huina Liu
- Ningbo No. 2 Hospital, Ningbo 315099, China; (Z.W.); (H.N.); (C.C.); (H.L.); (T.C.)
- Innovation Center for Diagnosis and Treatment of Neurological Diseases, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China; (X.Y.); (L.W.)
| | - Ting Cai
- Ningbo No. 2 Hospital, Ningbo 315099, China; (Z.W.); (H.N.); (C.C.); (H.L.); (T.C.)
- Innovation Center for Diagnosis and Treatment of Neurological Diseases, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China; (X.Y.); (L.W.)
| | - Huadong Fan
- Ningbo No. 2 Hospital, Ningbo 315099, China; (Z.W.); (H.N.); (C.C.); (H.L.); (T.C.)
- Innovation Center for Diagnosis and Treatment of Neurological Diseases, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China; (X.Y.); (L.W.)
- Lab of Dementia and Neurorehabilitation Research, Department of Research and Development of Science and Technology, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, China
| |
Collapse
|
2
|
Liu P, Zhang B, Li Y, Yuan Q. Potential mechanisms of cancer prevention and treatment by sulforaphane, a natural small molecule compound of plant-derived. Mol Med 2024; 30:94. [PMID: 38902597 PMCID: PMC11191161 DOI: 10.1186/s10020-024-00842-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Despite recent advances in tumor diagnosis and treatment technologies, the number of cancer cases and deaths worldwide continues to increase yearly, creating an urgent need to find new methods to prevent or treat cancer. Sulforaphane (SFN), as a member of the isothiocyanates (ITCs) family, which is the hydrolysis product of glucosinolates (GLs), has been shown to have significant preventive and therapeutic cancer effects in different human cancers. Early studies have shown that SFN scavenges oxygen radicals by increasing cellular defenses against oxidative damage, mainly through the induction of phase II detoxification enzymes by nuclear factor erythroid 2-related factor 2 (Nrf2). More and more studies have shown that the anticancer mechanism of SFN also includes induction of apoptotic pathway in tumor cells, inhibition of cell cycle progression, and suppression of tumor stem cells. Therefore, the application of SFN is expected to be a necessary new approach to treating cancer. In this paper, we review the multiple molecular mechanisms of SFN in cancer prevention and treatment in recent years, which can provide a new vision for cancer treatment.
Collapse
Affiliation(s)
- Pengtao Liu
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Bo Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yuanqiang Li
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China.
| |
Collapse
|
3
|
Hui San S, Ching Ngai S. E-cadherin re-expression: Its potential in combating TRAIL resistance and reversing epithelial-to-mesenchymal transition. Gene 2024; 909:148293. [PMID: 38373660 DOI: 10.1016/j.gene.2024.148293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
The major limitation of conventional chemotherapy drugs is their lack of specificity for cancer cells. As a selective apoptosis-inducing agent, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has emerged as an attractive alternative. However, most of the cancer cells are found to be either intrinsically resistant to the TRAIL protein or may develop resistance after multiple treatments, and TRAIL resistance can induce epithelial-to-mesenchymal transition (EMT) at a later stage, promoting cancer invasion and migration. Interestingly, E-cadherin loss has been linked to TRAIL resistance and initiation of EMT, making E-cadherin re-expression a potential target to overcome these obstacles. Recent research suggests that re-expressing E-cadherin may reduce TRAIL resistance by enhancing TRAIL-induced apoptosis and preventing EMT by modulating EMT signalling factors. This reversal of EMT, can also aid in improving TRAIL-induced apoptosis. Therefore, this review provides remarkable insights into the mechanisms underlying E-cadherin re-expression, clinical implications, and potentiation, as well as the research gaps of E-cadherin re-expression in the current cancer treatment.
Collapse
Affiliation(s)
- Ser Hui San
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
4
|
Evaluation of Anti-angiogenic Agent F16 for Targeting Glioblastoma Xenograft Tumors. Cancer Genet 2022; 264-265:71-89. [DOI: 10.1016/j.cancergen.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 11/19/2022]
|
5
|
Gasparello J, Papi C, Zurlo M, Gambari L, Rozzi A, Manicardi A, Corradini R, Gambari R, Finotti A. Treatment of Human Glioblastoma U251 Cells with Sulforaphane and a Peptide Nucleic Acid (PNA) Targeting miR-15b-5p: Synergistic Effects on Induction of Apoptosis. Molecules 2022; 27:molecules27041299. [PMID: 35209084 PMCID: PMC8875359 DOI: 10.3390/molecules27041299] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a lethal malignant tumor accounting for 42% of the tumors of the central nervous system, the median survival being 15 months. At present, no curative treatment is available for GBM and new drugs and therapeutic protocols are urgently needed. In this context, combined therapy appears to be a very interesting approach. The isothiocyanate sulforaphane (SFN) has been previously shown to induce apoptosis and inhibit the growth and invasion of GBM cells. On the other hand, the microRNA miR-15b is involved in invasiveness and proliferation in GBM and its inhibition is associated with the induction of apoptosis. On the basis of these observations, the objective of the present study was to determine whether a combined treatment using SFN and a peptide nucleic acid interfering with miR-15b-5p (PNA-a15b) might be proposed for increasing the pro-apoptotic effects of the single agents. To verify this hypothesis, we have treated GMB U251 cells with SFN alone, PNA-a15b alone or their combination. The cell viability, apoptosis and combination index were, respectively, analyzed by calcein staining, annexin-V and caspase-3/7 assays, and RT-qPCR for genes involved in apoptosis. The efficacy of the PNA-a15b determined the miR-15b-5p content analyzed by RT-qPCR. The results obtained indicate that SFN and PNA-a15b synergistically act in inducing the apoptosis of U251 cells. Therefore, the PNA-a15b might be proposed in a “combo-therapy” associated with SFN. Overall, this study suggests the feasibility of using combined treatments based on PNAs targeting miRNA involved in GBM and nutraceuticals able to stimulate apoptosis.
Collapse
Affiliation(s)
- Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.)
| | - Chiara Papi
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.)
| | - Matteo Zurlo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.)
| | - Laura Gambari
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Andrea Rozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (A.R.); (A.M.); (R.C.)
| | - Alex Manicardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (A.R.); (A.M.); (R.C.)
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (A.R.); (A.M.); (R.C.)
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.)
- Correspondence: (R.G.); (A.F.); Tel.: +39-0532-974443 (R.G.); +39-0532-974510 (A.F.); Fax: +39-0532-974500 (R.G. & A.F.)
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.)
- Correspondence: (R.G.); (A.F.); Tel.: +39-0532-974443 (R.G.); +39-0532-974510 (A.F.); Fax: +39-0532-974500 (R.G. & A.F.)
| |
Collapse
|
6
|
Sulforaphane Causes Cell Cycle Arrest and Apoptosis in Human Glioblastoma U87MG and U373MG Cell Lines under Hypoxic Conditions. Int J Mol Sci 2021; 22:ijms222011201. [PMID: 34681862 PMCID: PMC8541491 DOI: 10.3390/ijms222011201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumor. The median survival rate from diagnosis ranges from 15 to 17 months because the tumor is resistant to most therapeutic strategies. GBM exhibits microvascular hyperplasia and pronounced necrosis triggered by hypoxia. Sulforaphane (SFN), an isothiocyanate derived from cruciferous vegetables, has already demonstrated the ability to inhibit cell proliferation, by provoking cell cycle arrest, and leading to apoptosis in many cell lines. In this study, we investigated the antineoplastic effects of SFN [20-80 μM for 48 h] in GBM cells under normoxic and hypoxic conditions. Cell viability assays, flow cytometry, and Western blot results revealed that SFN could induce apoptosis of GBM cells in a dose-dependent manner, under both conditions. In particular, SFN significantly induced caspase 3/7 activation and DNA fragmentation. Moreover, our results demonstrated that SFN suppressed GBM cells proliferation by arresting the cell cycle at the S-phase, also under hypoxic condition, and that these effects may be due in part to its ability to induce oxidative stress by reducing glutathione levels and to increase the phosphorylation of extracellular signal-regulated kinases (ERKs). Overall, we hypothesized that SFN treatment might serve as a potential therapeutic strategy, alone or in combination, against GBM.
Collapse
|
7
|
Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential. Cancers (Basel) 2021; 13:cancers13194796. [PMID: 34638282 PMCID: PMC8508555 DOI: 10.3390/cancers13194796] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary As of the past decade, phytochemicals have become a major target of interest in cancer chemopreventive and chemotherapeutic research. Sulforaphane (SFN) is a metabolite of the phytochemical glucoraphanin, which is found in high abundance in cruciferous vegetables, such as broccoli, watercress, Brussels sprouts, and cabbage. In both distant and recent research, SFN has been shown to have a multitude of anticancer effects, increasing the need for a comprehensive review of the literature. In this review, we critically evaluate SFN as an anticancer agent and its mechanisms of action based on an impressive number of in vitro, in vivo, and clinical studies. Abstract There is substantial and promising evidence on the health benefits of consuming broccoli and other cruciferous vegetables. The most important compound in broccoli, glucoraphanin, is metabolized to SFN by the thioglucosidase enzyme myrosinase. SFN is the major mediator of the health benefits that have been recognized for broccoli consumption. SFN represents a phytochemical of high interest as it may be useful in preventing the occurrence and/or mitigating the progression of cancer. Although several prior publications provide an excellent overview of the effect of SFN in cancer, these reports represent narrative reviews that focused mainly on SFN’s source, biosynthesis, and mechanisms of action in modulating specific pathways involved in cancer without a comprehensive review of SFN’s role or value for prevention of various human malignancies. This review evaluates the most recent state of knowledge concerning SFN’s efficacy in preventing or reversing a variety of neoplasms. In this work, we have analyzed published reports based on in vitro, in vivo, and clinical studies to determine SFN’s potential as a chemopreventive agent. Furthermore, we have discussed the current limitations and challenges associated with SFN research and suggested future research directions before broccoli-derived products, especially SFN, can be used for human cancer prevention and intervention.
Collapse
|
8
|
Uddin MS, Kabir MT, Mamun AA, Sarwar MS, Nasrin F, Emran TB, Alanazi IS, Rauf A, Albadrani GM, Sayed AA, Mousa SA, Abdel-Daim MM. Natural Small Molecules Targeting NF-κB Signaling in Glioblastoma. Front Pharmacol 2021; 12:703761. [PMID: 34512336 PMCID: PMC8429794 DOI: 10.3389/fphar.2021.703761] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor-κB (NF-κB) is a transcription factor that regulates various genes that mediate various cellular activities, including propagation, differentiation, motility, and survival. Abnormal activation of NF-κB is a common incidence in several cancers. Glioblastoma multiforme (GBM) is the most aggressive brain cancer described by high cellular heterogeneity and almost unavoidable relapse following surgery and resistance to traditional therapy. In GBM, NF-κB is abnormally activated by various stimuli. Its function has been associated with different processes, including regulation of cancer cells with stem-like phenotypes, invasion of cancer cells, and radiotherapy resistance identification of mesenchymal cells. Even though multimodal therapeutic approaches such as surgery, radiation therapy, and chemotherapeutic drugs are used for treating GBM, however; the estimated mortality rate for GBM patients is around 1 year. Therefore, it is necessary to find out new therapeutic approaches for treating GBM. Many studies are focusing on therapeutics having less adverse effects owing to the failure of conventional chemotherapy and targeted agents. Several studies of compounds suggested the involvement of NF-κB signaling pathways in the growth and development of a tumor and GBM cell apoptosis. In this review, we highlight the involvement of NF-κB signaling in the molecular understanding of GBM and natural compounds targeting NF-κB signaling.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Md. Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Fatema Nasrin
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, QLD, Australia
- School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Ibtesam S. Alanazi
- Department of Biology, Faculty of Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
9
|
Yu CL, Yu YL, Yang SF, Hsu CE, Lin CL, Hsieh YH, Chiou HL. Praeruptorin A reduces metastasis of human hepatocellular carcinoma cells by targeting ERK/MMP1 signaling pathway. ENVIRONMENTAL TOXICOLOGY 2021; 36:540-549. [PMID: 33226171 DOI: 10.1002/tox.23059] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Praeruptorin A (PA) is one of the active ingredients found in the dried root of Peucedanum praeruptorum Dunn, has been reported to possess anticancer effects against various types of cancer. However, the effect of PA on human hepatocellular carcinoma (HCC) remains uncleared. In this study, our results indicated that PA did not induce cytotoxicity or alter cell cycle distribution in human HCC cells (Huh-7, SK-Hep-1, and PLC/PRF/5 cells). Instead, PA inhibited the migration and invasion of human HCC cells while downregulating the expression of matrix metalloproteinase-1 (MMP1) and activating the extracellular signal-regulated kinase (ERK) signaling pathways. Furthermore, blocking the ERK signaling pathway through siERK restored the expression of MMP1 and the invasive ability of PA-treated HCC cells. In conclusion, our results demonstrate the antimetastatic activity of PA against human HCC cells, supporting its potential as a therapeutic agent of HCC treatments.
Collapse
Affiliation(s)
- Chen-Lin Yu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yung-Luen Yu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chung-En Hsu
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Liang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
10
|
Zhou Y, Wang Y, Wu S, Yan Y, Hu Y, Zheng Z, Li J, Wu W. Sulforaphane-cysteine inhibited migration and invasion via enhancing mitophagosome fusion to lysosome in human glioblastoma cells. Cell Death Dis 2020; 11:819. [PMID: 33004792 PMCID: PMC7530759 DOI: 10.1038/s41419-020-03024-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/24/2022]
Abstract
Here we uncovered the involved subcellular mechanisms that sulforaphane-cysteine (SFN-Cys) inhibited invasion in human glioblastoma (GBM). SFN-Cys significantly upregulated 45 and downregulated 14 microtubule-, mitophagy-, and invasion-associated proteins in GBM cells via HPLC-MS/MS and GEO ontology analysis; SFN-Cys disrupted microtubule by ERK1/2 phosphorylation-mediated downregulation of α-tubulin and Stathmin-1 leading to the inhibition of cell migration and invasion; SFN-Cys downregulated invasion-associated Claudin-5 and S100A4, and decreased the interaction of α-tubulin to Claudin-5. Knockdown of Claudin-5 and S100A4 significantly reduced the migration and invasion. Besides, SFN-Cys lowered the expressions of α-tubulin-mediated mitophagy-associated proteins Bnip3 and Nix. Transmission electron microscopy showed more membrane-deficient mitochondria and accumulated mitophagosomes in GBM cells, and mitochondria fusion might be downregulated because that SFN-Cys downregulated mitochondrial fusion protein OPA1. SFN-Cys increased the colocalization and interplay of LC3 to lysosomal membrane-associated protein LAMP1, aggravating the fusion of mitophagosome to lysosome. Nevertheless, SFN-Cys inhibited the lysosomal proteolytic capacity causing LC3II/LC3I elevation but autophagy substrate SQSTM1/p62 was not changed, mitophagosome accumulation, and the inhibition of migration and invasion in GBM cells. These results will help us develop high-efficiency and low-toxicity anticancer drugs to inhibit migration and invasion in GBM.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yalin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Sai Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yuting Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yabin Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zhongnan Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Juntao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China. .,Beijing Key Laboratory for Invasion and Metastasis, Capital Medical University, No. 10, Xitoutiao, You An Men Wai Ave., Feng Tai District, Beijing, 100069, China.
| |
Collapse
|
11
|
Li J, Zhou Y, Yan Y, Zheng Z, Hu Y, Wu W. Sulforaphane-cysteine downregulates CDK4 /CDK6 and inhibits tubulin polymerization contributing to cell cycle arrest and apoptosis in human glioblastoma cells. Aging (Albany NY) 2020; 12:16837-16851. [PMID: 32860670 PMCID: PMC7521484 DOI: 10.18632/aging.103537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/27/2020] [Indexed: 01/24/2023]
Abstract
Here we demonstrated that sulforaphane-cysteine (SFN-Cys) regulated cell cycle-related protein expressions in G0/G1 and G2/M phases of U87MG cells via High Performance Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (HPLC-MS/MS) and proteomics analysis. Further, mRNA products of CDK4, CDK6 and α-tubulin were significantly higher in glioblastoma than those in normal tissues, and these results were significantly correlated to pathological grades and clinical prognosis via analyzing TCGA and CGGA databases. Furthermore, Western blot showed that SFN-Cys downregulated CDK4, CDK6 and p-Rb in a dose-dependent manner and these results were reversed by p-ERK1/2 blocker PD98059 in U87MG and U373MG cells. The reductions of CDK4, CDK6 and p-Rb were reversed by proteasome inhibitor MG132; similarly, the upregulation of 26S proteasome by SFN-Cys was reversed by PD98059. Interestingly, SFN-Cys decreased CDK4 and CDK6 by phosphorylated ERK1/2-caused proteasomal degradation resulting in decreased Rb phosphorylation contributing to cell cycle arrest in G0/G1 phase. Besides, Western blot showed that SFN-Cys downregulated α-tubulin resulting in microtubule disruption and aggregation, and cell cycle arrest in G2/M phase and apoptosis. These results might help us understand the molecular etiology of glioblastoma progression to establish brand-new anti-cancer therapies.
Collapse
Affiliation(s)
- Juntao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China,Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, China
| | - Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China,Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, China
| | - Yuting Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China,Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, China
| | - Zhongnan Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China,Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, China
| | - Yabin Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China,Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, China
| | - Wei Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China,Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Bladder Cancer Metastasis Induced by Chronic Everolimus Application Can Be Counteracted by Sulforaphane In Vitro. Int J Mol Sci 2020; 21:ijms21155582. [PMID: 32759798 PMCID: PMC7432076 DOI: 10.3390/ijms21155582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic treatment with the mTOR inhibitor, everolimus, fails long-term in preventing tumor growth and dissemination in cancer patients. Thus, patients experiencing treatment resistance seek complementary measures, hoping to improve therapeutic efficacy. This study investigated metastatic characteristics of bladder carcinoma cells exposed to everolimus combined with the isothiocyanate sulforaphane (SFN), which has been shown to exert cancer inhibiting properties. RT112, UMUC3, or TCCSUP bladder carcinoma cells were exposed short- (24 h) or long-term (8 weeks) to everolimus (0.5 nM) or SFN (2.5 µM), alone or in combination. Adhesion and chemotaxis along with profiling details of CD44 receptor variants (v) and integrin α and β subtypes were evaluated. The functional impact of CD44 and integrins was explored by blocking studies and siRNA knock-down. Long-term exposure to everolimus enhanced chemotactic activity, whereas long-term exposure to SFN or the SFN-everolimus combination diminished chemotaxis. CD44v4 and v7 increased on RT112 cells following exposure to SFN or SFN-everolimus. Up-regulation of the integrins α6, αV, and β1 and down-regulation of β4 that was present with everolimus alone could be prevented by combining SFN and everolimus. Down-regulation of αV, β1, and β4 reduced chemotactic activity, whereas knock-down of CD44 correlated with enhanced chemotaxis. SFN could, therefore, inhibit resistance-related tumor dissemination during everolimus-based bladder cancer treatment.
Collapse
|
13
|
Lin J, Xu Y, Zhao X, Qiu Z. Anticancer activity of sulforaphane against human hepatoblastoma cells involves apoptosis, autophagy and inhibition of β-catenin signaling pathway. Arch Med Sci 2020; 21:658-666. [PMID: 40395906 PMCID: PMC12087319 DOI: 10.5114/aoms.2020.96077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/22/2020] [Indexed: 05/22/2025] Open
Abstract
Introduction Sulforaphane is an active isothiocyanate and has been reported to exhibit many pharmacological and biological activities including anticancer activity. The current study was undertaken to examine its anticancer activity against human hepatoblastoma. Material and methods MTT and clonogenic assays were used to assess the antiproliferative effects of sulforaphane. Annexin V/PI staining and immunofluorescence microscopy were used to monitor the induction of apoptosis. GFP-LC3 transfection and fluorescence microscopy were used to investigate the induction of autophagy. Cell migration and invasion were assessed through wound healing and transwell chamber assay. Protein expression was determined by western blot analysis. Results The results indicated that sulforaphane induced antiproliferative effects on the hepatoblastoma cell lines and exhibited an IC50 of 10 μM against the Hepu1 and HepU2 cells as compared to the IC50 of 90 μM against the normal THLE-2 cells. The antiproliferative effects were observed to be mediated via apoptosis which was accompanied by upregulation of Bax and suppression of Bcl-2 together with activation of caspase-3 and PARP cleavage. Sulforaphane also induced autophagy and the β-catenin signaling pathway. In addition, cell migration and cell invasion of the hepatoblastoma cells were also suppressed upon sulforaphane treatment. Conclusions The results indicated that sulforaphane is a potential anticancer agent and may be considered as a lead molecule in the development of hepatoblastoma chemotherapy.
Collapse
Affiliation(s)
- Junshan Lin
- Department of Pediatric Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yali Xu
- Department of Pediatric Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xing Zhao
- First Clinical Medical College, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Zhixin Qiu
- First Clinical Medical College, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
14
|
Rai R, Gong Essel K, Mangiaracina Benbrook D, Garland J, Daniel Zhao Y, Chandra V. Preclinical Efficacy and Involvement of AKT, mTOR, and ERK Kinases in the Mechanism of Sulforaphane against Endometrial Cancer. Cancers (Basel) 2020; 12:E1273. [PMID: 32443471 PMCID: PMC7281543 DOI: 10.3390/cancers12051273] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Sulforaphane exerts anti-cancer activity against multiple cancer types. Our objective was to evaluate utility of sulforaphane for endometrial cancer therapy. Sulforaphane reduced viability of endometrial cancer cell lines in association with the G2/M cell cycle arrest and cell division cycle protein 2 (Cdc2) phosphorylation, and intrinsic apoptosis. Inhibition of anchorage-independent growth, invasion, and migration of the cell lines was associated with sulforaphane-induced alterations in epithelial-to-mesenchymal transition (EMT) markers of increased E-cadherin and decreased N-cadherin and vimentin expression. Proteomic analysis identified alterations in AKT, mTOR, and ERK kinases in the networks of sulforaphane effects in the Ishikawa endometrial cancer cell line. Western blots confirmed sulforaphane inhibition of AKT, mTOR, and induction of ERK with alterations in downstream signaling. AKT and mTOR inhibitors reduced endometrial cancer cell line viability and prevented further reduction by sulforaphane. Accumulation of nuclear phosphorylated ERK was associated with reduced sensitivity to the ERK inhibitor and its interference with sulforaphane activity. Sulforaphane induced apoptosis-associated growth inhibition of Ishikawa xenograft tumors to a greater extent than paclitaxel, with no evidence of toxicity. These results verify sulforaphane's potential as a non-toxic treatment candidate for endometrial cancer and identify AKT, mTOR, and ERK kinases in the mechanism of action with interference in the mechanism by nuclear phosphorylated ERK.
Collapse
Affiliation(s)
- Rajani Rai
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (D.M.B.); (J.G.)
| | - Kathleen Gong Essel
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Doris Mangiaracina Benbrook
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (D.M.B.); (J.G.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Justin Garland
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (D.M.B.); (J.G.)
| | - Yan Daniel Zhao
- Biostatistics & Epidemiology, College of Public Health University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Vishal Chandra
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (D.M.B.); (J.G.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| |
Collapse
|
15
|
Ramaswamy P, Dalavaikodihalli Nanjaiah N, Prasad C, Goswami K. Transcriptional modulation of calcium-permeable AMPA receptor subunits in glioblastoma by MEK-ERK1/2 inhibitors and their role in invasion. Cell Biol Int 2019; 44:830-837. [PMID: 31814223 DOI: 10.1002/cbin.11279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/05/2019] [Indexed: 11/09/2022]
Abstract
Glioblastoma is the most common primary brain tumor. Glioblastoma cells secrete a significant amount of glutamate, which serve as a potential growth factor in glioma pathobiology through their specific receptor subtypes including α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR). Glioblastoma express AMPAR subunits; however, its regulation and activation with downstream intracellular signaling are not well-understood. Phosphorylated-extracellular signaling-regulated kinase (ERK)1/2 is known to regulate the ionotropic glutamate receptors in cortical neurons. The mitogen-activated protein kinase cascade is frequently activated in several tumors, including glioma. Nonetheless, the association of ERK signaling with AMPAR subunits in glioblastoma is undetermined. Here, we demonstrated potential role of AMPAR in invasion, and the modulation of AMPAR subunits at transcript level by ERK signaling in glioblastoma cells. Inhibition of ERK signaling specifically downregulated the expression of calcium-permeable AMPAR subunits, GluA1 and GluA4, and upregulated calcium-impermeable AMPAR subunit GluA2 implying differential regulation of the expression of calcium-permeable AMPAR subunits of glioblastoma. Concomitantly, it significantly decreased the invasion of U87MG cells. Taken together, these findings suggest that the AMPAR enhances invasion of glioblastoma, and ERK signaling modulates the differential expression of calcium-permeable AMPAR phenotype that might play a crucial role in the invasive propensity of glioblastoma cells.
Collapse
Affiliation(s)
- Palaniswamy Ramaswamy
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, 560029, India
| | | | - Chandrajit Prasad
- Department of Neuroimaging and Intervention Radiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, 560029, India
| | - Kalyan Goswami
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Raipur, 492099, India
| |
Collapse
|
16
|
Role of MEK-ERK signaling mediated adhesion of glioma cells to extra-cellular matrix: Possible implication on migration and proliferation. Ann Neurosci 2019; 26:52-56. [PMID: 31975773 PMCID: PMC6894623 DOI: 10.5214/ans.0972.7531.260203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/27/2019] [Accepted: 04/03/2019] [Indexed: 01/06/2023] Open
Abstract
Background Glioblastoma represents the most common primary brain tumor with a worst
prognosis despite developments in neurosurgery and chemoradiotherapy.
Detachment of the cells from the primary tumor tissue is a prerequisite for
their dispersion and spreading. Initial and incessant dispersal of tumor
cells from the primary tumor tissue renders GBM refractory to comprehensive
surgical removal and increases the chance of recurrence and poorer
prognosis. Purposes The current study was designed to investigate the effect of inhibition of
MEK-ERK1/2 signaling by PD98059 and U0126 on the growth and migration of
glioma cells as well as their adhesion to extracellular matrix. Methods MEK-ERK1/2 signaling in U87-MG cells was inhibited by PD98059 and U0126.
Migration, proliferation and adhesion were analyzed by scratch-wound assay,
MTT assay, cell adhesion assay respectively. Results PD98059 and U0126 significantly not only reduced the proliferation of glioma
cells and attenuated their migration but also increased their adhesion to
gelatin of extracellular matrix. Conclusion This study provides the evidence that inhibition of MEK-ERK1/2 signaling
enhances the adhesion of glioma cells to gelatin/collagen component of ECM,
and decreases the proliferation and migration of the glioma cells. We
propose the possible rationale of association between ERK signaling and
cell-cell adhesion molecules in glioma microenvironment which regulates the
glioma initiation, growth and progression.
Collapse
|
17
|
Sulforaphane metabolites inhibit migration and invasion via microtubule-mediated Claudins dysfunction or inhibition of autolysosome formation in human non-small cell lung cancer cells. Cell Death Dis 2019; 10:259. [PMID: 30874545 PMCID: PMC6420664 DOI: 10.1038/s41419-019-1489-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022]
Abstract
Both sulforaphane-cysteine (SFN-Cys) and sulforaphane-N-acetyl-l-cysteine (SFN-NAC) inhibited cancer migration and invasion, but the underlying mechanisms were not clear. Here we uncovered via tissue microarray assay that high expression of invasion-associated Claudin-5 was correlated to malignant grades in human non-small cell lung cancer (NSCLC) cells. Further, SFN-Cys (10 µM) induced the accumulated phosphorylation of ERK1/2, leading to downregulation of Claudin-5 and upregulation of Claudin-7, and the decrease of Claudin-1 in SK-1 cells and increase of Claudin-1 in A549 cells; knockdown of Claudin-5 significantly reduced invasion, whereas knockdown of Claudin-7 increased invasion; knockdown of Claudin-1 reduced invasion in SK-1 cells, whereas it increased invasion in A549 cells, indicating that SFN-Cys regulated Claudins and inhibited invasion depending on Claudin isotypes and cell types. Furthermore, immunofluorescence staining showed that SFN-Cys triggered microtubule disruption and knockdown of α-tubulin downregulated Claudin-1, 5, and 7, and inhibited migration and invasion, indicating that microtubule disruption contributed to invasive inhibition. Co-immunoprecipitation and confocal microscopy observation showed that SFN-Cys lowered the interaction between α-tubulin and Claudin-1 or 5, or 7. Meanwhile, Western blotting and immunofluorescence staining showed that SFN-NAC (15 µM) downregulated α-tubulin resulting in microtubule disruption; knockdown of α-tubulin increased SFN-NAC-induced LC3 II accumulation in SK-1 cells. Combined with the inhibitor of autolysosome formation, Bafilomycin A1 (100 nM), SFN-NAC inhibited invasion via accumulating LC3 II and blocking formation of autolysosome. Further, SFN-NAC upregulated microtubule-stabilizing protein Tau; knockdown of Tau reduced LC3 II/LC3 I inhibiting migration and invasion. These results indicated that SFN-Cys inhibited invasion via microtubule-mediated Claudins dysfunction, but SFN-NAC inhibited invasion via microtubule-mediated inhibition of autolysosome formation in human NSCLC cells.
Collapse
|
18
|
Repurposing of idebenone as a potential anti-cancer agent. Biochem J 2019; 476:245-259. [DOI: 10.1042/bcj20180384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 01/01/2019] [Accepted: 01/01/2019] [Indexed: 12/22/2022]
Abstract
AbstractGlioblastoma (GB) represents the most common and aggressive form of malignant primary brain tumour associated with high rates of morbidity and mortality. In the present study, we considered the potential use of idebenone (IDE), a Coenzyme Q10 analogue, as a novel chemotherapeutic agent for GB. On two GB cell lines, U373MG and U87MG, IDE decreased the viable cell number and enhanced the cytotoxic effects of two known anti-proliferative agents: temozolomide and oxaliplatin. IDE also affected the clonogenic and migratory capacity of both GB cell lines, at 25 and 50 µM, a concentration equivalent to that transiently reached in plasma after oral intake that is deemed safe for humans. p21 protein expression was decreased in both cell lines, indicating that IDE likely exerts its effects through cell cycle dysregulation, and this was confirmed in U373MG cells only by flow cytometric cell cycle analysis which showed S-phase arrest. Caspase-3 protein expression was also significantly decreased in U373MG cells indicating IDE-induced apoptosis that was confirmed by flow cytometric Annexin V/propidium iodide staining. No major decrease in caspase-3 expression was observed in U87MG cells nor apoptosis as observed by flow cytometry analysis. Overall, the present study demonstrates that IDE has potential as an anti-proliferative agent for GB by interfering with several features of glioma pathogenesis such as proliferation and migration, and hence might be a drug that could be repurposed for aiding cancer treatments. Furthermore, the synergistic combinations of IDE with other agents aimed at different pathways involved in this type of cancer are promising.
Collapse
|
19
|
Sulforaphane from Cruciferous Vegetables: Recent Advances to Improve Glioblastoma Treatment. Nutrients 2018; 10:nu10111755. [PMID: 30441761 PMCID: PMC6267435 DOI: 10.3390/nu10111755] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023] Open
Abstract
Sulforaphane (SFN), an isothiocyanate (ITC) derived from cruciferous vegetables, particularly broccoli and broccoli sprouts, has been widely investigated due to its promising health-promoting properties in disease, and low toxicity in normal tissue. Although not yet fully understood, many mechanisms of anticancer activity at each step of cancer development have been attributed to this ITC. Given the promising data available regarding SFN, this review aimed to provide an overview on the potential activities of SFN related to the cellular mechanisms involved in glioblastoma (GBM) progression. GBM is the most frequent malignant brain tumor among adults and is currently an incurable disease due mostly to its highly invasive phenotype, and the poor efficacy of the available therapies. Despite all efforts, the median overall survival of GBM patients remains approximately 1.5 years under therapy. Therefore, there is an urgent need to provide support for translating the progress in understanding the molecular background of GBM into more complex, but promising therapeutic strategies, in which SFN may find a leading role.
Collapse
|
20
|
Kan SF, Wang J, Sun GX. Sulforaphane regulates apoptosis- and proliferation‑related signaling pathways and synergizes with cisplatin to suppress human ovarian cancer. Int J Mol Med 2018; 42:2447-2458. [PMID: 30226534 PMCID: PMC6192763 DOI: 10.3892/ijmm.2018.3860] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/13/2018] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer is currently the most life‑threatening type of gynecological malignancy with limited treatment options. Therefore, improved targeted therapies are required to combat ovarian cancer across the world. Sulforaphane is found in raw cruciferous vegetables. The chemotherapeutic and anti‑carcinogenic properties of sulforaphane have been demonstrated, however, the underlying mechanisms remain to be fully elucidated, particularly in ovarian cancer. In the present study, the possibility of repurposing sulforaphane as an anti‑ovarian cancer agent was examined. Cell viability and colony formation assay were used to test the anticancer efficiency of sulforaphane. Then wound healing assay, migration assay, cell cycle and apoptosis assays were used to detect how the drug worked on the cells. The mechanism of sulforaphane was investigated by western blot analysis. It was found that sulforaphane effectively suppressed the progression of human ovarian cancer cell proliferation, migration and cell cycle, and promoted apoptosis. Sulforaphane inhibited multiple cancer‑associated signaling pathways, including B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X protein, cytochrome c, Caspase‑3, phosphorylated AKT, phosphorylated nuclear factor‑κB, P53, P27, Cyclin‑D1 and cMyc, and reduced the expression levels of human epidermal growth factor receptor 2 in human ovarian cancer cells. Sulforaphane synergized with cisplatin to suppress the cancer cell proliferation and enhance ovarian cancer cell apoptosis. Xenograft experiments in vivo confirmed that sulforaphane effectively suppressed tumor growth by inhibiting ovarian cancer cell proliferation through targeting tumor‑related signals. The results indicated that sulforaphane may be repurposed as an effective anti‑ovarian cancer agent, with further preclinical or clinical investigations required.
Collapse
Affiliation(s)
| | - Jian Wang
- Department of Gynecology, Zaozhuang City Hospital, Zaozhuang, Shandong 277102, P.R. China
| | | |
Collapse
|
21
|
Yen GC, Tsai CM, Lu CC, Weng CJ. Recent progress in natural dietary non-phenolic bioactives on cancers metastasis. J Food Drug Anal 2018; 26:940-964. [PMID: 29976413 PMCID: PMC9303016 DOI: 10.1016/j.jfda.2018.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 12/20/2022] Open
Abstract
From several decades ago to now, cancer continues to be the leading cause of death worldwide, and metastasis is the major cause of cancer-related deaths. For health benefits, there is a great desire to use non-chemical therapy such as nutraceutical supplementation to prevent pathology development. Over 10,000 different natural bioactives or phytochemicals have been known that possessing potential preventive or supplementary effects for various diseases including cancer. Previously, the in vitro and in vivo anti-invasive and anti-metastatic activities of phenolic acids, monophenol, polyphenol and their derivatives and flavonoids and their derivatives have been reviewed. However, a vast number of natural dietary compounds other than phenolics have been demonstrated to potentially possess the ability to inhibit the invasion and metastasis of various cancers. In this review, we summarize the studies in recent decade on in vitro and in vivo effects and molecular mechanisms of natural bioactives, excluding the phenolics in food, in cancer invasion and metastasis. By combining this review of non-phenolics with the previous phenolics reviews, the puzzle for the contribution of natural dietary bioactives on cancer invasive or/and metastatic progress will be almost complete and more clear.
Collapse
Affiliation(s)
- Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan; Graduate Institute of Food Safety, National Chung Hsing University, Taichung, Taiwan
| | - Chiung-Man Tsai
- Tainan Hospital, Ministry of Health and Welfare, Tainan City, Taiwan
| | - Chi-Cheng Lu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Chia-Jui Weng
- Department of Living Services Industry, Tainan University of Technology, Tainan City, Taiwan.
| |
Collapse
|
22
|
Chen CT, Hsieh MJ, Hsieh YH, Hsin MC, Chuang YT, Yang SF, Yang JS, Lin CW. Sulforaphane suppresses oral cancer cell migration by regulating cathepsin S expression. Oncotarget 2018; 9:17564-17575. [PMID: 29707130 PMCID: PMC5915138 DOI: 10.18632/oncotarget.24786] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/28/2018] [Indexed: 12/30/2022] Open
Abstract
Sulforaphane has been demonstrated to exert numerous biological effects, such as neuroprotective, anti-inflammatory, and anticancer effects. However, the detailed effects of sulforaphane on human oral cancer cell migration and the underlying mechanisms remain unclear. In this study, we observed that sulforaphane attenuated SCC-9 and SCC-14 cell motility and invasiveness by reducing cathepsin S expression. Moreover, sulforaphane increased microtubule-associated protein 1 light chain 3 (LC3) conversion, and the knockdown of LC3 by siRNA increased cell migration ability. Regarding the mechanism, sulforaphane inhibited the cell motility of oral cancer cells through the extracellular signal-regulated kinase (ERK) pathway, which in turn reversed cell motility. In conclusion, sulforaphane suppress cathepsin S expression by inducing autophage through ERK signaling pathway. Thus, cathepsin S and LC3 may be new targets for oral cancer treatment.
Collapse
Affiliation(s)
- Chang-Tai Chen
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Min-Chieh Hsin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Ting Chuang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jia-Sin Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
23
|
Zhou Y, Yang G, Tian H, Hu Y, Wu S, Geng Y, Lin K, Wu W. Sulforaphane metabolites cause apoptosis via microtubule disruption in cancer. Endocr Relat Cancer 2018; 25:255-268. [PMID: 29431641 DOI: 10.1530/erc-17-0483] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022]
Abstract
Sulforaphane (SFN) inhibited growth in many cancers, but its half-life is 2 h in circulation. However, its metabolites, sulforaphane-cysteine (SFN-Cys) and sulforaphane-N-acetyl-cysteine (SFN-NAC) had longer half-lives and decreased the cell viability in both dose- and time-dependent manners in human prostate cancer. Flow cytometry assay revealed that these two SFN metabolites induced apoptosis with the features such as vacuolization, disappeared nuclear envelope, nuclear agglutination and fragmentation via transmission electron microscopy observation. Western blot showed that the sustained phosphorylation of ERK1/2 mediated by SFN metabolites caused activation and upregulation of cleaved Caspase 3 and downregulation of α-tubulin. High expression of α-tubulin was demonstrated to be positively correlated with cancer pathological grading. Both co-immunoprecipitation and immunofluorescence staining implicated the interaction between SFN metabolite-induced phosphorylated ERK1/2 and α-tubulin, and Caspase 3 cleavage assay showed that α-tubulin might be the substrate for cleaved Caspase 3. More, the SFN metabolite-mediated reduction of α-tubulin increased the depolymerization and instability of microtubules by microtubule polymerization assay. Reversely, microtubule-associated protein Stathmin-1 phosphorylation was increased via phosphorylated ERK1/2 and total Stathmin-1 was reduced, which might promote over-stability of microtubules. Immunofluorescence staining also showed that SFN metabolites induced the 'nest-like' structures of microtubule distribution resulting from the disrupted and aggregated microtubules, and abnormal nuclear division, suggesting that the disturbance of spindle formation and mitosis turned up. Thus, SFN-Cys and SFN-NAC triggered the dynamic imbalance of microtubules, microtubule disruption leading to cell apoptosis. These findings provided a novel insight into the chemotherapy of human prostate cancer.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences, Beijing Key Laboratory of Tumor Invasion and Metastasis Research, Institute of Cancer Research, Capital Medical University, Beijing, China
| | - Gaoxiang Yang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences, Beijing Key Laboratory of Tumor Invasion and Metastasis Research, Institute of Cancer Research, Capital Medical University, Beijing, China
| | - Hua Tian
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences, Beijing Key Laboratory of Tumor Invasion and Metastasis Research, Institute of Cancer Research, Capital Medical University, Beijing, China
| | - Yabin Hu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences, Beijing Key Laboratory of Tumor Invasion and Metastasis Research, Institute of Cancer Research, Capital Medical University, Beijing, China
| | - Sai Wu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences, Beijing Key Laboratory of Tumor Invasion and Metastasis Research, Institute of Cancer Research, Capital Medical University, Beijing, China
| | - Yang Geng
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences, Beijing Key Laboratory of Tumor Invasion and Metastasis Research, Institute of Cancer Research, Capital Medical University, Beijing, China
| | - Kai Lin
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences, Beijing Key Laboratory of Tumor Invasion and Metastasis Research, Institute of Cancer Research, Capital Medical University, Beijing, China
| | - Wei Wu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences, Beijing Key Laboratory of Tumor Invasion and Metastasis Research, Institute of Cancer Research, Capital Medical University, Beijing, China
- Institute of Brain TumorBeijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Zhao Y, Tang H, Zeng X, Ye D, Liu J. Resveratrol inhibits proliferation, migration and invasion via Akt and ERK1/2 signaling pathways in renal cell carcinoma cells. Biomed Pharmacother 2017; 98:36-44. [PMID: 29241073 DOI: 10.1016/j.biopha.2017.12.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/24/2017] [Accepted: 12/07/2017] [Indexed: 02/04/2023] Open
Abstract
Recent studies have shown that resveratrol (RES) inhibits cancer cell growth, migration and invasion. Here, we evaluated RES in two human renal cell carcinoma (RCC) cell lines, ACHN and A498. We investigated the effects of RES on proliferation, cell morphology, colony formation, migration, and invasion. We used a proliferation assay to demonstrate that RES inhibited cell growth with IC50 values 132.9±1.064μM in ACHN, and 112.8±1.191μM in A498, respectively. Using inverted contrast microscopy, we showed that RES reduced cell-to-cell contact and inhibited formation of filopodia. A wound healing assay showed that RES inhibited migration of RCC cells. A Transwell assay showed that RES inhibited RCC migration and invasion. Western blot analysis showed that RES suppresses expression of N-cadherin, Vimentin, Snail, MMP-2, MMP-9, p-Akt and p-ERK1/2, but increased expression of E-cadherin and TIMP-1. In the presence of PD98059, the inhibitor of ERK1/2 pathway, we repeated all of the above experiments, showed that RES acted via the ERK1/2 pathway. Taken together, our results suggested that RES suppressed RCC cell proliferation, migration, and invasion in a concentration- and time-dependent manner. These effects likely resulted from inactivation of the Akt and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Yuwan Zhao
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Huancheng Tang
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xin Zeng
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Dongcai Ye
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jianjun Liu
- Laboratory of Urology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
25
|
Zhu Y, Zhang J, Meng F, Deng C, Cheng R, Feijen J, Zhong Z. cRGD/TAT Dual-Ligand Reversibly Cross-Linked Micelles Loaded with Docetaxel Penetrate Deeply into Tumor Tissue and Show High Antitumor Efficacy in Vivo. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35651-35663. [PMID: 28952305 DOI: 10.1021/acsami.7b12439] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The application of cell-penetrating peptides like TAT for in vivo targeted delivery is limited because the penetration behavior is not cell-specific. Herein, we designed cRGD and TAT comodified cross-linkable micelles (cRGD/TAT CMs), in which the TAT peptide was shielded by relatively long poly(ethylene glycol) (PEG) chains. Docetaxel (DTX)-loaded cRGD/TAT CMs were very stable with minimal drug leakage under physiological conditions, whereas rapid DTX release took place in a reductive environment. Flow cytometry showed that the cRGD/TAT CMs with molar ratios of 20% cRGD and 10% TAT (cRGD20/TAT10 CMs) were selectively and efficiently taken up by ανβ3-overexpressing U87MG glioma cells, with 8.3-fold and 18.3-fold higher uptake than cRGD20 CMs and PEG CMs, respectively. DTX-loaded cRGD20/TAT10 CMs exhibited a high cytotoxicity in U87MG cells, leading to rapid apoptosis of the tumor cells. Uptake mechanism studies revealed that cRGD20/TAT10 CMs mainly employed the caveolae-mediated endocytotic pathway and efficiently escaped from the lysosomes. Notably, cRGD20/TAT10 CMs had a long circulating time of 6.25 h in vivo, due to cross-linking of the micelles and shielding of the TAT peptide. Moreover, DTX-loaded cRGD20/TAT10 CMs exhibited a significantly higher accumulation and deeper penetration in subcutaneous U87MG glioma tissue compared to cRGD20 CMs and PEG CMs, leading to superior antitumor efficacy in vivo. Therefore, this dual-ligand strategy provides an effective way to realize tumor-specific penetration and inhibition.
Collapse
Affiliation(s)
- Yaqin Zhu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jian Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Ru Cheng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Jan Feijen
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| |
Collapse
|
26
|
Pan S, An L, Meng X, Li L, Ren F, Guan Y. MgCl 2 and ZnCl 2 promote human umbilical vein endothelial cell migration and invasion and stimulate epithelial-mesenchymal transition via the Wnt/β-catenin pathway. Exp Ther Med 2017; 14:4663-4670. [PMID: 29201165 PMCID: PMC5704337 DOI: 10.3892/etm.2017.5144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 02/24/2017] [Indexed: 02/06/2023] Open
Abstract
Previous studies have demonstrated that magnesium and zinc ions promote the migration and epithelial-mesenchymal transition (EMT) of cancer/endothelial cells. However, the impact of MgCl2 and ZnCl2 on the migration, invasion and EMT of human umbilical vein endothelial cells (HUVECs) and the involved mechanisms remain unclear. In the present study, HUVECs were incubated with various doses of MgCl2 and ZnCl2. The optimum concentrations of MgCl2 and ZnCl2 were selected by MTT assay. The migration and invasion capabilities of HUVECs were analyzed by Transwell assays. Subsequently, the expression of matrix metalloproteinase (MMP)-2 and MMP-9 mRNA and protein were determined by reverse transcription-quantitative polymerase chain reaction, western blotting and ELISA. MMP-2 and MMP-9 activities were measured by gelatin zymography. Immunofluorescence staining was performed to investigate cytoskeletal dynamics using Acti-stain™ 488 Fluorescent Phalloidin. Subsequently, the expression of EMT-related markers at the mRNA and protein levels and the activation of Wnt/β-catenin signaling were analyzed. The results identified increases in MMP-2 and MMP-9 expression and activity, indicating that MgCl2 and ZnCl2 promoted HUVEC migration and invasion. In addition, MgCl2 and ZnCl2 treatment induced cytoskeleton remodeling and stimulated EMT via activation of the Wnt/β-catenin signaling pathway, characterized by a decrease in E-cadherin and increases in N-cadherin, vimentin and Snail. These results suggest that MgCl2 and ZnCl2 may enhance the migration and invasion capabilities of HUVECs and promote EMT through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Shuang Pan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Liwen An
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Liming Li
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110819, P.R. China
| | - Fu Ren
- Department of Anatomy, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yifu Guan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
27
|
Geng Y, Zhou Y, Wu S, Hu Y, Lin K, Wang Y, Zheng Z, Wu W. Sulforaphane Induced Apoptosis via Promotion of Mitochondrial Fusion and ERK1/2-Mediated 26S Proteasome Degradation of Novel Pro-survival Bim and Upregulation of Bax in Human Non-Small Cell Lung Cancer Cells. J Cancer 2017; 8:2456-2470. [PMID: 28900483 PMCID: PMC5595075 DOI: 10.7150/jca.19383] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/29/2017] [Indexed: 12/30/2022] Open
Abstract
Previous studies in our laboratory showed that sulforaphane (SFN) induced apoptosis by sustained activation of extracellular regulated protein kinases 1/2 (ERK1/2). However, the underlying mechanisms associated with SFN-induced apoptosis and downstream cascades which are modulated by ERK1/2 were not elucidated. Herein we demonstrated for the first time that alteration of mitochondrial dynamics contributed to SFN-induced apoptosis in human non-small cell lung cancer (NSCLC) cells. Reports showed that protein Bim not only induced apoptosis but also promoted proliferation under certain circumstances. We found that Bim was related to cell growth in NSCLC cells. Pro-survival Bim downregulation was shown to induce apoptosis in response to SFN. Further, Using the ERK1/2 inhibitor, PD98059, we found that SFN upregulated Bax and downregulated Bim through the ERK1/2-dependent signaling pathway. Furthermore, SFN activated ERK1/2 to increase 26S proteasome activity to degrade Bim, while the proteasome inhibitor MG132 reversed this effect. Therefore, SFN phosphorylated ERK1/2 and activated the proteasome system leading to the degradation of Bim, which contributed to apoptosis in NSCLC cells. These findings provided a novel insight into SFN-related therapeutics in cancer treatment.
Collapse
Affiliation(s)
- Yang Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sai Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yabin Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Kai Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yalin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhongnan Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Institute of Brain Tumor, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Cho HJ, Park JH, Nam JH, Chang YC, Park B, Hoe HS. Ascochlorin Suppresses MMP-2-Mediated Migration and Invasion by Targeting FAK and JAK-STAT Signaling Cascades. J Cell Biochem 2017; 119:300-313. [PMID: 28569433 DOI: 10.1002/jcb.26179] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/31/2017] [Indexed: 12/19/2022]
Abstract
Human glioblastomas express higher levels of matrix metalloprotease-2 (MMP-2) than low-grade brain tumors and normal brain tissues. Ascochlorin (ASC) has anti-metastatic, anti-angiogenic, and synergistic effect in various types of cancer cells. However, it remains unknown whether ASC can affect cell migration and invasion in malignant human glioma cells. In this study, we found that ASC indeed inhibits cell migration and invasion in U373MG and A172. ASC significantly suppresses the MMP-2 gelatinolytic activity and expression in U373MG and A172. To determine the molecular mechanism by which ASC suppressed cell migration and invasion, we investigated whether ASC could modulate metastasis via focal adhesion kinase (FAK) and janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling, a potential drug target. ASC strongly inhibits the phosphorylation of FAK, and treatment with a FAK inhibitor significantly suppresses cancer cell migration in the presence of ASC. In addition, ASC significantly decreased phosphorylation of JAK2/STAT3, cancer cell migration and nuclear translocation of STAT3. Taken together, these results suggest that ASC inhibits cell migration and invasion by blocking FAK and JAK/STAT signaling, resulting in reduced MMP-2 activity. J. Cell. Biochem. 119: 300-313, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hyun-Ji Cho
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Cheomdan-ro, Dong-gu, Daegu 41068, Republic of Korea
| | - Ji-Hyun Park
- College of Pharmacy, Keimyung University, Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Jin Han Nam
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Cheomdan-ro, Dong-gu, Daegu 41068, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Duryugongwon-ro, Nam-gu, Daegu 42472, Republic of Korea
| | - Byoungduck Park
- College of Pharmacy, Keimyung University, Dalgubeoldaero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Cheomdan-ro, Dong-gu, Daegu 41068, Republic of Korea
| |
Collapse
|
29
|
Sulforaphane-cysteine-induced apoptosis via phosphorylated ERK1/2-mediated maspin pathway in human non-small cell lung cancer cells. Cell Death Discov 2017; 3:17025. [PMID: 28690874 PMCID: PMC5494314 DOI: 10.1038/cddiscovery.2017.25] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 12/14/2022] Open
Abstract
Sulforaphane (SFN) was demonstrated to induce apoptosis in a variety of cancers via multiple mechanisms. However, owing to a short half-life in circulation, SFN was not used for clinical treatment yet. Interestingly, SFN analog, sulforaphane-cysteine (SFN-Cys) has a longer half-life in metabolism, and we previously demonstrated that SFN-Cys inhibited invasion in human prostate cancer cells. Here, we would investigate whether SFN-Cys induces apoptosis and find the underlying mechanisms in human non-small cell lung cancer (NSCLC) cells. Western blots were used to test the molecular linkages among extracellular signal-regulated kinases 1/2 (ERK1/2) and downstream signal molecules. Flow cytometry and fluorescence microscopy were used to detect cell death. Cell proliferation assay showed that SFN-Cys inhibited cell viability following a dose-dependent manner. Abnormal cell morphology was viewed after the cells were exposed to SFN-Cys. Flow cytometry showed that SFN-Cys induced cell apoptosis via a dose-dependent manner. Further, SFN-Cys triggered the activation of ERK1/2, which resulted in the upregulation of maspin, Bax, cleaved caspase-3 and downregulation of pro-caspase-3, Bcl-2, α-tubulin. Meanwhile, we demonstrated that recombinant caspase-3 cleaved α-tubulin in the lysate of cells, which were treated by SFN-Cys. These data indicated that SFN-Cys activated the ERK1/2-mediated mitochondria signaling pathway with maspin upregulation and α-tubulin downregulation leading to apoptosis. These findings will help to develop a novel therapeutic to target NSCLC cells.
Collapse
|
30
|
Kumar R, de Mooij T, Peterson TE, Kaptzan T, Johnson AJ, Daniels DJ, Parney IF. Modulating glioma-mediated myeloid-derived suppressor cell development with sulforaphane. PLoS One 2017; 12:e0179012. [PMID: 28666020 PMCID: PMC5493295 DOI: 10.1371/journal.pone.0179012] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 05/23/2017] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma is the most common primary tumor of the brain and has few long-term survivors. The local and systemic immunosuppressive environment created by glioblastoma allows it to evade immunosurveillance. Myeloid-derived suppressor cells (MDSCs) are a critical component of this immunosuppression. Understanding mechanisms of MDSC formation and function are key to developing effective immunotherapies. In this study, we developed a novel model to reliably generate human MDSCs from healthy-donor CD14+ monocytes by culture in human glioma-conditioned media. Monocytic MDSC frequency was assessed by flow cytometry and confocal microscopy. The resulting MDSCs robustly inhibited T cell proliferation. A cytokine array identified multiple components of the GCM potentially contributing to MDSC generation, including Monocyte Chemoattractive Protein-1, interleukin-6, interleukin-8, and Macrophage Migration Inhibitory Factor (MIF). Of these, Macrophage Migration Inhibitory Factor is a particularly attractive therapeutic target as sulforaphane, a naturally occurring MIF inhibitor derived from broccoli sprouts, has excellent oral bioavailability. Sulforaphane inhibits the transformation of normal monocytes to MDSCs by glioma-conditioned media in vitro at pharmacologically relevant concentrations that are non-toxic to normal leukocytes. This is associated with a corresponding increase in mature dendritic cells. Interestingly, sulforaphane treatment had similar pro-inflammatory effects on normal monocytes in fresh media but specifically increased immature dendritic cells. Thus, we have used a simple in vitro model system to identify a novel contributor to glioblastoma immunosuppression for which a natural inhibitor exists that increases mature dendritic cell development at the expense of myeloid-derived suppressor cells when normal monocytes are exposed to glioma conditioned media.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Tristan de Mooij
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Timothy E. Peterson
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Tatiana Kaptzan
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Aaron J. Johnson
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - David J. Daniels
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ian F. Parney
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
31
|
You N, Tan Y, Zhou L, Huang X, Wang W, Wang L, Wu K, Mi N, Li J, Zheng L. Tg737 acts as a key driver of invasion and migration in liver cancer stem cells and correlates with poor prognosis in patients with hepatocellular carcinoma. Exp Cell Res 2017; 358:217-226. [PMID: 28663060 DOI: 10.1016/j.yexcr.2017.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 06/08/2017] [Accepted: 06/23/2017] [Indexed: 12/16/2022]
Abstract
We previously demonstrated that the Tg737 gene plays a critical role in the carcinogenesis of hepatocellular carcinoma (HCC). However, few systematic investigations have focused on the biological function of Tg737 in the invasion and migration of liver cancer stem cells (LCSCs) and on its clinical significance. In this study, Tg737 overexpression was achieved via gene transfection in MHCC97-H side population (SP) cells, which are considered a model for LCSCs in scientific studies. Tg737 overexpression significantly inhibited the invasion and migration of SP cells in an extracellular signal-regulated kinase1/2 (ERK1/2)/matrix metalloproteinase-2 (MMP-2)-dependent manner. Furthermore, Tg737 expression was frequently decreased in HCC tissues relative to that in adjacent noncancerous liver tissues. This decreased expression was significantly associated with tumor differentiation, the American Joint Committee on Cancer (AJCC) stage, metastasis, tumor size, vascular invasion, alpha-fetoprotein (AFP) levels, and tumor number. Moreover, multivariate Cox regression analyses demonstrated that Tg737 expression was an independent factor for predicting the overall survival of HCC patients. Notably, Kaplan-Meier analysis further showed that overall survival was significantly worse among patients with low Tg737 expression. Collectively, our findings demonstrated that Tg737 is a poor prognostic marker in patients with HCC, which may be due to its ability to promote LCSCs invasion and migration. These results provide a basis for investigating of Tg737 as a novel prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Nan You
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Ye Tan
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Liang Zhou
- Department of General Surgery, The 155 Central Hospital of PLA, Kaifeng, He'nan 475000, China
| | - Xiaobing Huang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Weiwei Wang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Liang Wang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Ke Wu
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Na Mi
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jing Li
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Lu Zheng
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
32
|
Wu S, Zhou Y, Yang G, Tian H, Geng Y, Hu Y, Lin K, Wu W. Sulforaphane-cysteine induces apoptosis by sustained activation of ERK1/2 and caspase 3 in human glioblastoma U373MG and U87MG cells. Oncol Rep 2017; 37:2829-2838. [PMID: 28393231 DOI: 10.3892/or.2017.5562] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/22/2017] [Indexed: 11/05/2022] Open
Abstract
We previously demonstrated that sulforaphane (SFN) inhibited invasion via sustained activation of ERK1/2 in human glioblastoma cells. However, sulforaphane-cysteine (SFN-Cys), an analog of SFN, enriched in plasma with longer half-life, had more potentiality to induce apoptosis. Here we investigated the molecular mechanisms of SFN-Cys-induced apoptosis in human glioblastoma U373MG and U87MG cells. Cell viability assay showed that SFN-Cys inhibited cell viability in a dose-dependent manner. Cell morphology observation also showed SFN-Cys increased the phenotype of cell death in a dose-dependent manner. Furthermore, flow cytometry assay showed that SFN-Cys induced apoptosis significantly in a dose-dependent manner in both cell lines. Furthermore, western blot analysis demonstrated that SFN-Cys induced activation of ERK1/2 in a sustained manner and the activation contributed to upregulation of Bax/Bcl-2 ratio and cleaved caspase 3, and these results can be reversed by the ERK1/2 blocker PD98059. Our results showed that SFN-Cys induced cell apoptosis via sustained activation of ERK1/2 and the ERK1/2 mediated signaling pathways such as activation of caspase 3 and apoptosis-related proteins, thus indicating that SFN-Cys might be a more promising therapeutic agent versus SFN to resist glioblastoma cells, especially in Taxol-resistant cancer cells.
Collapse
Affiliation(s)
- Sai Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Gaoxiang Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Hua Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Yang Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Yabin Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Kai Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Wei Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
33
|
Tian H, Zhou Y, Yang G, Geng Y, Wu S, Hu Y, Lin K, Wu W. Sulforaphane-cysteine suppresses invasion via downregulation of galectin-1 in human prostate cancer DU145 and PC3 cells. Oncol Rep 2016; 36:1361-8. [PMID: 27430422 DOI: 10.3892/or.2016.4942] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/17/2016] [Indexed: 11/05/2022] Open
Abstract
Our previous study showed that sulforaphane (SFN) inhibits invasion in human prostate cancer DU145 cells; however, the underlying mechanisms were not profoundly investigated. In the present study, we found that sulforaphane-cysteine (SFN-Cys), as a metabolite of SFN, inhibits invasion and possesses a novel mechanism in prostate cancer DU145 and PC3 cells. The scratch and Transwell assays showed that SFN-Cys (15 µM) inhibited both migration and invasion, with cell morphological changes, such as cell shrinkage and pseudopodia shortening. The cell proliferation (MTS) assay indicated that cell viability was markedly suppressed with increasing concentrations of SFN‑Cys. Furthermore, the Transwell assay showed that inhibition of SFN‑Cys‑triggered invasion was tightly linked to the sustained extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. Western blot analysis revealed that SFN-Cys downregulated galectin-1 protein, an invasion‑related protein, and that the galectin‑1 reduction could be blocked by ERK1/2 inhibitor PD98059 (25 µM). Moreover, immunofluorescence staining showed that the expression level of galectin-1 protein was significantly reduced in the cells treated with SFN‑Cys. Hence, SFN‑Cys‑inhibited invasion resulted from the sustained ERK1/2 phosphorylation and ERK1/2‑triggered galectin-1 downregulation, suggesting that galectin-1 is a new SFN-Cys target inhibiting invasion apart from ERK1/2, in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Hua Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Gaoxiang Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Yang Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Sai Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Yabin Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Kai Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Wei Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
34
|
You N, Li J, Gong Z, Huang X, Wang W, Wang L, Wu K, Zheng L. COMMD7 functions as molecular target in pancreatic ductal adenocarcinoma. Mol Carcinog 2016; 56:607-624. [PMID: 27350032 DOI: 10.1002/mc.22520] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/28/2016] [Accepted: 06/26/2016] [Indexed: 02/04/2023]
Abstract
Our previous studies provided evidence that COMMD7 was associated with tumor progression in human solid cancer. Herein, we aimed to investigate its expression pattern, clinical significance, and biological function in pancreatic ductal adenocarcinoma (PDAC). We found that high COMMD7 expression was specifically detected in PDAC tissues and PDAC cell lines. In addition, COMMD7 overexpression positively correlated with histological differentiation and tumor node metastasis (TNM) stage. Patients with high COMMD7 expression had significantly poorer overall survival, and high COMMD7 expression was an independent predictor of poor prognosis. To further explore the regulatory mechanism of COMMD7, we used stable short hairpin RNA (shRNA)-mediated knockdown and divided the work into in vitro and in vivo experiments. In vitro, the anti-proliferation effects of COMMD7 inhibition were observed under long-time stress conditions, which correlated with cyclin D1 and Bcl-2 downregulation and Bax upregulation. We found that under short-time stress conditions, decreased COMMD7 expression also inhibited PDAC cell invasion in vitro which decreased the secretion of matrix metalloproteinase 2 (MMP-2). Moreover, extracellular signal-regulated kinase1/2 (ERK1/2) was identified as a direct target of COMMD7. The inhibition of ERK1/2 activity under short- or long-time stress conditions using specific inhibitors in COMMD7 inhibition cells all exhibited a strong tumorigenic role. In vivo, COMMD7 was sufficient to impair tumor growth. Our results suggest that COMMD7 plays an important role in the late progression of PDAC and is a potential novel target. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nan You
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Jing Li
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Zhenbin Gong
- Center of Hepatobiliary Surgery of Lanzhou Army Region, Lanzhou, P. R. China
| | - Xiaobing Huang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Weiwei Wang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Liang Wang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Ke Wu
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Lu Zheng
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| |
Collapse
|
35
|
Kaufman-Szymczyk A, Majewski G, Lubecka-Pietruszewska K, Fabianowska-Majewska K. The Role of Sulforaphane in Epigenetic Mechanisms, Including Interdependence between Histone Modification and DNA Methylation. Int J Mol Sci 2015; 16:29732-43. [PMID: 26703571 PMCID: PMC4691138 DOI: 10.3390/ijms161226195] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 12/21/2022] Open
Abstract
Carcinogenesis as well as cancer progression result from genetic and epigenetic changes of the genome that leads to dysregulation of transcriptional activity of genes. Epigenetic mechanisms in cancer cells comprise (i) post-translation histone modification (i.e., deacetylation and methylation); (ii) DNA global hypomethylation; (iii) promoter hypermethylation of tumour suppressor genes and genes important for cell cycle regulation, cell differentiation and apoptosis; and (iv) posttranscriptional regulation of gene expression by noncoding microRNA. These epigenetic aberrations can be readily reversible and responsive to both synthetic agents and natural components of diet. A source of one of such diet components are cruciferous vegetables, which contain high levels of a number of glucosinolates and deliver, after enzymatic hydrolysis, sulforaphane and other bioactive isothiocyanates, that are involved in effective up-regulation of transcriptional activity of certain genes and also in restoration of active chromatin structure. Thus a consumption of cruciferous vegetables, treated as a source of isothiocyanates, seems to be potentially useful as an effective cancer preventive factor or as a source of nutrients improving efficacy of standard chemotherapies. In this review an attempt is made to elucidate the role of sulforaphane in regulation of gene promoter activity through a direct down-regulation of histone deacetylase activity and alteration of gene promoter methylation in indirect ways, but the sulforaphane influence on non-coding micro-RNA will not be a subject of this review.
Collapse
Affiliation(s)
- Agnieszka Kaufman-Szymczyk
- Department of Biomedical Chemistry, Faculty of Health Sciences, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland.
| | - Grzegorz Majewski
- Faculty of Public Health, University of Social Sciences in Lodz, 9 Sienkiewicza St., 90-113 Lodz, Poland.
| | - Katarzyna Lubecka-Pietruszewska
- Department of Biomedical Chemistry, Faculty of Health Sciences, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland.
| | - Krystyna Fabianowska-Majewska
- Department of Biomedical Chemistry, Faculty of Health Sciences, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland.
| |
Collapse
|
36
|
Peng X, Zhou Y, Tian H, Yang G, Li C, Geng Y, Wu S, Wu W. Sulforaphane inhibits invasion by phosphorylating ERK1/2 to regulate E-cadherin and CD44v6 in human prostate cancer DU145 cells. Oncol Rep 2015; 34:1565-72. [PMID: 26134113 DOI: 10.3892/or.2015.4098] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/11/2015] [Indexed: 11/06/2022] Open
Abstract
Advanced prostate cancer has highly invasive potential, which may lead to metastasis associated with poor prognosis. Sulforaphane (SFN), abundant in cruciferous vegetables, exhibited effective resistance to carcinogenesis in a variety of tumors. The aim of the present study was to investigate whether SFN inhibited invasion in human prostate cancer cells via sustained activation of ERK1/2 and downstream signaling by an invasion assay, gelatin zymography and western blot analysis. The results showed that SFN inhibited invasion and we characterized the underlying mechanisms in human DU145 prostate cancer cells. SFN (15 µM) changed cell morphology leading to short‑cell pseudopodia which may suppress tumor migration and invasion. The Transwell assay showed that SFN phosphorylated ERK1/2 in a dose- and time-dependent manner and significantly inhibited cell invasion, while the effect was reduced by the ERK1/2 blocker PD98059 (25 µM). Furthermore, these effects contributed to the upregulation of E-cadherin and the downregulation of CD44v6 and were eradicated by PD98059. Western blot analysis and gelatin zymography showed that SFN decreased the expression and activity of MMP-2. Thus, SFN inhibited invasion by activating ERK1/2 to upregulate E-cadherin and downregulate CD44v6, thereby reducing MMP-2 expression and activity. E-cadherin is an invasion inhibitor, while CD44v6 and MMP-2 are invasion promoters. Therefore, SFN is a prospective therapeutic agent that may be used to prevent invasion in prostate cancer.
Collapse
Affiliation(s)
- Xiaohui Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Hua Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Gaoxiang Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Chunliu Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, P.R. China
| | - Yang Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Sai Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Wei Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
37
|
Cohen ZR, Ramishetti S, Peshes-Yaloz N, Goldsmith M, Wohl A, Zibly Z, Peer D. Localized RNAi therapeutics of chemoresistant grade IV glioma using hyaluronan-grafted lipid-based nanoparticles. ACS NANO 2015; 9:1581-91. [PMID: 25558928 DOI: 10.1021/nn506248s] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most infiltrating, aggressive, and poorly treated brain tumors. Progress in genomics and proteomics has paved the way for identifying potential therapeutic targets for treating GBM, yet the vast majority of these leading drug candidates for the treatment of GBM are ineffective, mainly due to restricted passages across the blood-brain barrier. Nanoparticles have been emerged as a promising platform to treat different types of tumors due to their ability to transport drugs to target sites while minimizing adverse effects. Herein, we devised a localized strategy to deliver RNA interference (RNAi) directly to the GBM site using hyaluronan (HA)-grafted lipid-based nanoparticles (LNPs). These LNPs having an ionized lipid were previously shown to be highly effective in delivering small interfering RNAs (siRNAs) into various cell types. LNP's surface was functionalized with hyaluronan (HA), a naturally occurring glycosaminoglycan that specifically binds the CD44 receptor expressed on GBM cells. We found that HA-LNPs can successfully bind to GBM cell lines and primary neurosphers of GBM patients. HA-LNPs loaded with Polo-Like Kinase 1 (PLK1) siRNAs (siPLK1) dramatically reduced the expression of PLK1 mRNA and cumulated in cell death even under shear flow that simulate the flow of the cerebrospinal fluid compared with control groups. Next, a human GBM U87MG orthotopic xenograft model was established by intracranial injection of U87MG cells into nude mice. Convection of Cy3-siRNA entrapped in HA-LNPs was performed, and specific Cy3 uptake was observed in U87MG cells. Moreover, convection of siPLK1 entrapped in HA-LNPs reduced mRNA levels by more than 80% and significantly prolonged survival of treated mice in the orthotopic model. Taken together, our results suggest that RNAi therapeutics could effectively be delivered in a localized manner with HA-coated LNPs and ultimately may become a therapeutic modality for GBM.
Collapse
Affiliation(s)
- Zvi R Cohen
- Department of Neurosurgery, Sheba Medical Center , Ramat Gan, Israel
| | | | | | | | | | | | | |
Collapse
|
38
|
Chen CM, Hsieh YH, Hwang JM, Jan HJ, Hsieh SC, Lin SH, Lai CY. Fisetin suppresses ADAM9 expression and inhibits invasion of glioma cancer cells through increased phosphorylation of ERK1/2. Tumour Biol 2014; 36:3407-15. [DOI: 10.1007/s13277-014-2975-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/10/2014] [Indexed: 11/29/2022] Open
|
39
|
Cheng X, Gu J, Zhang M, Yuan J, Zhao B, Jiang J, Jia X. Astragaloside IV inhibits migration and invasion in human lung cancer A549 cells via regulating PKC-α-ERK1/2-NF-κB pathway. Int Immunopharmacol 2014; 23:304-13. [PMID: 25218161 DOI: 10.1016/j.intimp.2014.08.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/22/2014] [Accepted: 08/28/2014] [Indexed: 01/27/2023]
Abstract
The migration and invasion characteristics that are related to inflammatory response play important roles in the development of lung cancer. Astagaloside IV (AS-IV), an effective saponin component isolated from Astragali Radix, has been reported to inhibit metastasis of tumor cells. However, little is known about the underlying mechanism of AS-IV on inhibiting the migration and invasion characteristics of lung cancer cells. In the present study, cell proliferation was assessed by MTT colorimetric assay. Wound-healing assay and transwell chambers assay were used to detect the effects of AS-IV on the migration capacity and invasiveness of A549 cells. Metastasis-related bio-markers expressions were detected by Western blot analysis. Levels of inflammatory factors including transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in cell supernatant were tested by enzyme linked immunosorbent assay (ELISA). The expressions of PKC-α, ERK1/2 and NF-κB were analyzed by Western blot analysis. The results showed that the migration and invasion ability of A549 has been suppressed in presence of AS-IV. The levels of MMP-2, MMP-9 and integrin β1 were decreased significantly, whereas E-cadherin was increased by the treatment of different concentrations AS-IV. Furthermore, AS-IV also significantly decreased TGF-β1, TNF-α and IL-6 levels. Interestingly, PKC pathway inhibitor AEB071 (Sotrastaurin) (0.1 μM) or ERK inhibitor U0126 (1 μM) or NF-κB inhibitor PDTC (1 μM) could affect suppression of AS-IV on cell invasion, at least partially. Our results suggested that the migration and invasion of AS-IV in A549 cells might be related to the PKC-α-ERK1/2-NF-κB pathway. The result indicated that AS-IV could be used as a candidate for the inhibition of metastasis of human lung cancer.
Collapse
Affiliation(s)
- Xudong Cheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu 210046, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu 210028, China
| | - Junfei Gu
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu 210046, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu 210028, China
| | - Minghua Zhang
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu 210028, China; College of Pharmacy, Jiangsu University, Jiangsu 212013, China
| | - Jiarui Yuan
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu 210046, China; College of Pharmacy, Jiangsu University, Jiangsu 212013, China
| | - Bingjie Zhao
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu 210046, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu 210028, China
| | - Jun Jiang
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu 210046, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu 210028, China
| | - Xiaobin Jia
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu 210046, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu 210028, China; College of Pharmacy, Jiangsu University, Jiangsu 212013, China.
| |
Collapse
|