1
|
Gao S, Zhang Q, Ding Y, Wang L, Li Z, Hu F, Yao RE, Yu T, Chang G, Wang X. Molecular and phenotypic characteristics of Bardet-Biedl syndrome in Chinese patients. Orphanet J Rare Dis 2024; 19:149. [PMID: 38584252 PMCID: PMC11000329 DOI: 10.1186/s13023-024-03150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/27/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Bardet-Biedl syndrome (BBS) is a type of non-motile ciliopathy. To date, 26 genes have been reported to be associated with BBS. However, BBS is genetically heterogeneous, with significant clinical overlap with other ciliopathies, which complicates diagnosis. Disability and mortality rates are high in BBS patients; therefore, it is urgent to improve our understanding of BBS. Thus, our study aimed to describe the genotypic and phenotypic spectra of BBS in China and to elucidate genotype-phenotype correlations. METHODS Twenty Chinese patients diagnosed with BBS were enrolled in this study. We compared the phenotypes of Chinese BBS patients in this study with those from other countries to analyze the phenotypic differences across patients worldwide. In addition, genotype-phenotype correlations were described for our cohort. We also summarized all previously reported cases of BBS in Chinese patients (71 patients) and identified common and specific genetic variants in the Chinese population. RESULTS Twenty-eight variants, of which 10 are novel, in 5 different BBS-associated genes were identified in 20 Chinese BBS patients. By comparing the phenotypes of BBSome-coding genes (BBS2,7,9) with those of chaperonin-coding genes (BBS10,12), we found that patients with mutations in BBS10 and 12 had an earlier age of onset (1.10 Vs. 2.20, p < 0.01) and diagnosis (4.64 Vs. 13.17, p < 0.01), whereas patients with mutations in BBS2, 7, and 9 had a higher body mass index (28.35 Vs. 24.21, p < 0.05) and more vision problems (p < 0.05). Furthermore, in 91 Chinese BBS patients, mutations were predominant in BBS2 (28.89%) and BBS7 (15.56%), and the most frequent variants were in BBS2: c.534 + 1G > T (10/182 alleles) and BBS7: c.1002delT (7/182 alleles), marking a difference from the genotypic spectra of BBS reported abroad. CONCLUSIONS We recruited 20 Chinese patients with BBS for genetic and phenotypic analyses, and identified common clinical manifestations, pathogenic genes, and variants. We also described the phenotypic differences across patients worldwide and among different BBS-associated genes. This study involved the largest cohort of Chinese patients with BBS, and provides new insights into the distinctive clinical features of specific pathogenic variants.
Collapse
Affiliation(s)
- Shiyang Gao
- Department of Endocrinology, Metabolism and Genetics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qianwen Zhang
- Department of Endocrinology, Metabolism and Genetics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yu Ding
- Department of Endocrinology, Metabolism and Genetics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Libo Wang
- Department of Endocrinology, Metabolism and Genetics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhiying Li
- Department of Endocrinology, Metabolism and Genetics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Feihan Hu
- Department of Endocrinology, Metabolism and Genetics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ru-En Yao
- Department of Genetic Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Tingting Yu
- Department of Genetic Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Guoying Chang
- Department of Endocrinology, Metabolism and Genetics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Xiumin Wang
- Department of Endocrinology, Metabolism and Genetics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
2
|
Horwitz A, Levi-Carmel N, Shnaider O, Birk R. BBS genes are involved in accelerated proliferation and early differentiation of BBS-related tissues. Differentiation 2024; 135:100745. [PMID: 38215537 DOI: 10.1016/j.diff.2024.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
Bardet-Biedl syndrome (BBS) is an inherited disorder primarily ciliopathy with pleiotropic multi-systemic phenotypic involvement, including adipose, nerve, retinal, kidney, Etc. Consequently, it is characterized by obesity, cognitive impairment and retinal, kidney and cutaneous abnormalities. Initial studies, including ours have shown that BBS genes play a role in the early developmental stages of adipocytes and β-cells. However, this role in other BBS-related tissues is unknown. We investigated BBS genes involvement in the proliferation and early differentiation of different BBS cell types. The involvement of BBS genes in cellular proliferation were studied in seven in-vitro and transgenic cell models; keratinocytes (hHaCaT) and Ras-transfected keratinocytes (Ras-hHaCaT), neuronal cell lines (hSH-SY5Y and rPC-12), silenced BBS4 neural cell lines (siBbs4 hSH-SY5Y and siBbs4 rPC-12), adipocytes (m3T3L1), and ex-vivo transformed B-cells obtain from BBS4 patients, using molecular and biochemical methodologies. RashHaCaT cells showed an accelerated proliferation rate in parallel to significant reduction in the transcript levels of BBS1, 2, and 4. BBS1, 2, and 4 transcripts linked with hHaCaT cell cycle arrest (G1 phase) using both chemical (CDK4 inhibitor) and serum deprivation methodologies. Adipocyte (m3T3-L1) Bbs1, 2 and 4 transcript levels corresponded to the cell cycle phase (CDK4 inhibitor and serum deprivation). SiBBS4 hSH-SY5Y cells exhibited early cell proliferation and differentiation (wound healing assay) rates. SiBbs4 rPC-12 models exhibited significant proliferation and differentiation rate corresponding to Nestin expression levels. BBS4 patients-transformed B-cells exhibited an accelerated proliferation rate (LPS-induced methodology). In conclusions, the BBS4 gene plays a significant, similar and global role in the cellular proliferation of various BBS related tissues. These results highlight the universal role of the BBS gene in the cell cycle, and further deepen the knowledge of the mechanisms underlying the development of BBS.
Collapse
Affiliation(s)
- Avital Horwitz
- Nutrition Department, Health Sciences Faculty, Ariel University, Israel
| | | | - Olga Shnaider
- Nutrition Department, Health Sciences Faculty, Ariel University, Israel
| | - Ruth Birk
- Nutrition Department, Health Sciences Faculty, Ariel University, Israel.
| |
Collapse
|
3
|
Li J, Wang C, Zhang S, Cai B, Pan B, Sun C, Qi X, Ma C, Fang W, Jin K, Bi X, Jin Z, Zhuang W. Genetic detection of two novel LRP5 pathogenic variants in patients with familial exudative vitreoretinopathy. BMC Ophthalmol 2023; 23:489. [PMID: 38030997 PMCID: PMC10685552 DOI: 10.1186/s12886-023-03243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 11/23/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR) is a genetic eye disorder that leads to abnormal development of retinal blood vessels, resulting in vision impairment. This study aims to identify pathogenic variants by targeted exome sequencing in 9 independent pedigrees with FEVR and characterize the novel pathogenic variants by molecular dynamics simulation. METHODS Clinical data were collected from 9 families with FEVR. The causative genes were screened by targeted next-generation sequencing (TGS) and verified by Sanger sequencing. In silico analyses (SIFT, Polyphen2, Revel, MutationTaster, and GERP + +) were carried out to evaluate the pathogenicity of the variants. Molecular dynamics was simulated to predict protein conformation and flexibility transformation alterations on pathogenesis. Furthermore, molecular docking techniques were employed to explore the interactions and binding properties between LRP5 and DKK1 proteins relevant to the disease. RESULTS A 44% overall detection rate was achieved with four variants including c.4289delC: p.Pro1431Argfs*8, c.2073G > T: p.Trp691Cys, c.1801G > A: p.Gly601Arg in LRP5 and c.633 T > A: p.Tyr211* in TSPAN12 in 4 unrelated probands. Based on in silico analysis and ACMG standard, two of them, c.4289delC: p.Pro1431Argfs*8 and c.2073G > T: p.Trp691Cys of LRP5 were identified as novel pathogenic variants. Based on computational predictions using molecular dynamics simulations and molecular docking, there are indications that these two variants might lead to alterations in the secondary structure and spatial conformation of the protein, potentially impacting its rigidity and flexibility. Furthermore, these pathogenic variants are speculated to potentially influence hydrogen bonding interactions and could result in an increased binding affinity with the DKK1 protein. CONCLUSIONS Two novel genetic variants of the LRP5 gene were identified, expanding the range of mutations associated with FEVR. Through molecular dynamics simulations and molecular docking, the potential impact of these variants on protein structure and their interactions with the DKK1 protein has been explored. These findings provide further support for the involvement of these variants in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Jiayu Li
- Third Clinical Medical College of Ningxia Medical University, Shengli Street, Yinchuan, 750004, Ningxia, China
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Chanjuan Wang
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Shaochi Zhang
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Bo Cai
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Bo Pan
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Caihong Sun
- Third Clinical Medical College of Ningxia Medical University, Shengli Street, Yinchuan, 750004, Ningxia, China
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Xiaolong Qi
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Chunmei Ma
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Wei Fang
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China
| | - Kangxin Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China
| | - Xiaojun Bi
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China.
| | - Zibing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Wenjuan Zhuang
- Third Clinical Medical College of Ningxia Medical University, Shengli Street, Yinchuan, 750004, Ningxia, China.
- Ningxia Eye Hospital, People's Hospital of Ningxia Hui Autonomous Region, Huanghe Road, Yinchuan, 750011, Ningxia, China.
| |
Collapse
|
4
|
Xin-Yi Z, Yang-Li D, Ling-Hui Z. Review of the phenotypes and genotypes of Bardet-Biedl syndrome from China. Front Genet 2023; 14:1247557. [PMID: 38034494 PMCID: PMC10684923 DOI: 10.3389/fgene.2023.1247557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Objective: To analyze the phenotypes, genotypes, and the relationship of phenotypes and genotypes for Chinese patients with Bardet-Biedl syndrome (BBS). Methods: The Chinese Wanfang and Weipu data, and PubMed were searched up to December 2022. Patients with detailed clinical feature data were involved in the analysis. Results: A total of 153 Chinese patients, including 87 males, 53 females, and 12 unknown, were enrolled. Their ages ranged from 1.2 to 44 years old with a mean of 16.70 ± 9.90 years old. Among these patients, 80 (52.29%) were reported by ophthalmologists, and only 24 (15.68%) reported by pediatricians. Most patients (132/137, 96.35%) had visual problems; 131/153 (85.62%) had polydactyly; 124/132 (93.93%) were overweight or obese; 63/114 (55.26%) had renal abnormalities; kidney dysfunction was found in 33 (21.57%); 83/104 (79.81%) had hypogonadism and/or genital hypoplasia; and 111/136 (81.62%) had mental retardation. In this series, genetic analysis was performed in 90 (58.82%) patients, including 22 BBS7 (24.71%), 20 BBS2 (22.73%), and 10 BBS10 (11.24%) patients. Moreover, 11 fetuses were diagnosed prenatally in the last 4 years except for one patient in 2004 year. It was noted that BBS7 had higher penetrance. BBS2 had higher hearing impairment and lower renal abnormality penetrance. BBS10 also had lower renal abnormality penetrance as well. Conclusion: Misdiagnosis or miss diagnosis of BBS may be common in China. In patients with polydactyly, visual impairment, obesity, renal abnormalities, hypogonadism, and mental retardation, or in fetuses with polydactyly and/or renal abnormalities, BBS should be considered in the differential diagnosis. Other deformities should be evaluated carefully and genetic analysis should be performed as early as possible.
Collapse
Affiliation(s)
- Zou Xin-Yi
- Department of Clinical Medicine, Medical School of Hangzhou City University, Hangzhou, China
| | - Dai Yang-Li
- Department of Endocrinology, The Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zeng Ling-Hui
- Department of Clinical Medicine, Medical School of Hangzhou City University, Hangzhou, China
| |
Collapse
|
5
|
Zhong J, Xie Y, Ye H, Chen C, Sun T, Xu K, Zhang X, Li Y. Phenotypic diversity observed in a Chinese patient cohort with biallelic variants in Bardet-Biedl syndrome genes. Eye (Lond) 2023; 37:3398-3405. [PMID: 37031301 PMCID: PMC10630479 DOI: 10.1038/s41433-023-02516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/19/2023] [Accepted: 03/27/2023] [Indexed: 04/10/2023] Open
Abstract
PURPOSE Bardet-Biedl syndrome (BBS) is a rare multisystem ciliopathy. The aim of this study was to describe the clinical and genetic features of a cohort of Chinese patients carrying biallelic BBS gene variants. METHODS We recruited 34 patients from 31 unrelated pedigrees who carried biallelic pathogenic variants in BBS genes. All patients underwent ophthalmic and systematic evaluations, as well as comprehensive molecular genetic analyses. Ultimately, 14 patients were followed up over time. RESULTS We identified 47 diseasing-causing variants in 10 BBS genes; 33 were novel. Diagnosis of BBS and non-syndromic retinitis pigmentosa (RP) were established in 28 patients from 27 pedigrees and 6 patients, respectively. The two most prevalent genes in patients with BBS were BBS2 and BBS4, accounting for 51.8% of the probands. The patients exhibited clinical heterogeneity, from patients with all six primary clinical components to patients suffering from non-syndromic RP. The common components were retinal dystrophy, polydactyly, and obesity, with frequencies of 78.6% to 100%, while renal anomaly frequencies were only 7.1%. Patients exhibited early and severe visual defects and retinal degeneration. Patients with biallelic missense variants in BBS2 suffered fewer clinical symptoms and mild visual impairment. Patients with BBS10 variants tended to have cone dystrophy. CONCLUSIONS Our study defined the mutated gene profiles and established the configuration of the variation frequencies for each BBS gene in Chinese patients. Overall, our patients showed early and severe visual defects and retinal degeneration. Genetic analysis is therefore crucial for diagnosis, genetic counseling, and future gene therapy in these patients.
Collapse
Affiliation(s)
- Junwei Zhong
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Yue Xie
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | | | - Chunjie Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Tengyang Sun
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Ke Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Xiaohui Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China
| | - Yang Li
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, China.
| |
Collapse
|
6
|
Tao T, Liu J, Wang B, Pang J, Li X, Huang L. Novel mutations in BBS genes and clinical characterization of Chinese families with Bardet-Biedl syndrome. Eur J Ophthalmol 2022; 33:11206721221136324. [PMID: 36325687 DOI: 10.1177/11206721221136324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
PURPOSE Bardet-Biedl syndrome (BBS) is a rare autosomal-recessive inherited disorder characterized by multisystem anomalies. The objective of this study was to detect and analyse pathogenic variants in four Chinese families with BBS. METHODS Comprehensive clinical examinations were performed to investigate and evaluate the phenotypes of the affected individuals from four families. Genomic DNA was extracted from peripheral blood. Next-generation sequencing (NGS) was performed for four families, and the presence of pathogenic variants was confirmed via Sanger sequencing. RESULTS There were two males and three females with a mean age of 16.00 years. All probands displayed the primary clinical features of BBS. Mutation screening demonstrated four novel mutations: c.613C>T; p.Q205* in the BBS5 gene, c.1391C>G; p.S464* in the BBS10 gene, and c.155delC; p.S52* and c.1584T>G; p.Y528* in the BBS12 gene. Two previously reported mutations were also identified, including c.534 + 1G>T in the BBS2 gene and c.539G>A; p.G180E in the BBS10 gene. The bioinformatic analysis revealed that all the detected mutations in BBS genes were disease causing. CONCLUSIONS This study identified four novel BBS gene mutations in these Chinese families and further expanded the genotypic spectrum of BBS, thus contributing to the literature and understanding of this multisystem disease.
Collapse
Affiliation(s)
- Tianchang Tao
- Department of Ophthalmology, 71185Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, China
- Department of Ophthalmology, Peking University People's Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Jia Liu
- Department of Ophthalmology, 71185Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, China
- Department of Ophthalmology, Peking University People's Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Bin Wang
- Eye Research Institute, 599608Xiamen Eye Center of Xiamen University, Xiamen, China
| | - Jijing Pang
- Eye Research Institute, 599608Xiamen Eye Center of Xiamen University, Xiamen, China
| | - Xiaoxin Li
- Department of Ophthalmology, 71185Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, China
- Department of Ophthalmology, Peking University People's Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
- Eye Research Institute, 599608Xiamen Eye Center of Xiamen University, Xiamen, China
| | - Lvzhen Huang
- Department of Ophthalmology, 71185Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing, China
- Department of Ophthalmology, Peking University People's Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| |
Collapse
|
7
|
Chang KJ, Wu HY, Yarmishyn AA, Li CY, Hsiao YJ, Chi YC, Lo TC, Dai HJ, Yang YC, Liu DH, Hwang DK, Chen SJ, Hsu CC, Kao CL. Genetics behind Cerebral Disease with Ocular Comorbidity: Finding Parallels between the Brain and Eye Molecular Pathology. Int J Mol Sci 2022; 23:9707. [PMID: 36077104 PMCID: PMC9456058 DOI: 10.3390/ijms23179707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral visual impairments (CVIs) is an umbrella term that categorizes miscellaneous visual defects with parallel genetic brain disorders. While the manifestations of CVIs are diverse and ambiguous, molecular diagnostics stand out as a powerful approach for understanding pathomechanisms in CVIs. Nevertheless, the characterization of CVI disease cohorts has been fragmented and lacks integration. By revisiting the genome-wide and phenome-wide association studies (GWAS and PheWAS), we clustered a handful of renowned CVIs into five ontology groups, namely ciliopathies (Joubert syndrome, Bardet-Biedl syndrome, Alstrom syndrome), demyelination diseases (multiple sclerosis, Alexander disease, Pelizaeus-Merzbacher disease), transcriptional deregulation diseases (Mowat-Wilson disease, Pitt-Hopkins disease, Rett syndrome, Cockayne syndrome, X-linked alpha-thalassaemia mental retardation), compromised peroxisome disorders (Zellweger spectrum disorder, Refsum disease), and channelopathies (neuromyelitis optica spectrum disorder), and reviewed several mutation hotspots currently found to be associated with the CVIs. Moreover, we discussed the common manifestations in the brain and the eye, and collated animal study findings to discuss plausible gene editing strategies for future CVI correction.
Collapse
Affiliation(s)
- Kao-Jung Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yu Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | | | - Cheng-Yi Li
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chun Chi
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Chen Lo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - He-Jhen Dai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chiang Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ding-Hao Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - De-Kuang Hwang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chih-Chien Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Lan Kao
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
8
|
Modarage K, Malik SA, Goggolidou P. Molecular Diagnostics of Ciliopathies and Insights Into Novel Developments in Diagnosing Rare Diseases. Br J Biomed Sci 2022; 79:10221. [PMID: 35996505 PMCID: PMC8915726 DOI: 10.3389/bjbs.2021.10221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022]
Abstract
The definition of a rare disease in the European Union describes genetic disorders that affect less than 1 in 2,000 people per individual disease; collectively these numbers amount to millions of individuals globally, who usually manifest a rare disease early on in life. At present, there are at least 8,000 known rare conditions, of which only some are clearly molecularly defined. Over the recent years, the use of genetic diagnosis is gaining ground into informing clinical practice, particularly in the field of rare diseases, where diagnosis is difficult. To demonstrate the complexity of genetic diagnosis for rare diseases, we focus on Ciliopathies as an example of a group of rare diseases where an accurate diagnosis has proven a challenge and novel practices driven by scientists are needed to help bridge the gap between clinical and molecular diagnosis. Current diagnostic difficulties lie with the vast multitude of genes associated with Ciliopathies and trouble in distinguishing between Ciliopathies presenting with similar phenotypes. Moreover, Ciliopathies such as Autosomal Recessive Polycystic Kidney Disease (ARPKD) and Meckel-Gruber syndrome (MKS) present with early phenotypes and may require the analysis of samples from foetuses with a suspected Ciliopathy. Advancements in Next Generation Sequencing (NGS) have now enabled assessing a larger number of target genes, to ensure an accurate diagnosis. The aim of this review is to provide an overview of current diagnostic techniques relevant to Ciliopathies and discuss the applications and limitations associated with these techniques.
Collapse
|
9
|
Tang HY, Xie F, Dai RC, Shi XL. Novel homozygous protein-truncating mutation of BBS9 identified in a Chinese consanguineous family with Bardet-Biedl syndrome. Mol Genet Genomic Med 2021; 9:e1731. [PMID: 34212515 PMCID: PMC8404240 DOI: 10.1002/mgg3.1731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/29/2022] Open
Abstract
Background Bardet–Biedl syndrome (BBS) is a rare and genetically heterogeneous disease with a broad spectrum of clinical features, including but not limited to rod‐cone dystrophy, postaxial polydactyly, central obesity, intellectual disability, hypogonadism, and renal dysfunction. Twenty‐one BBS (Bardet–Biedl syndrome) genes have been identified to date. There is minimal mutation information on BBS in Chinese populations and the exact pathogenic mechanism of the null mutation of BBS9 remains unknown. Methods A patient from a Chinese consanguineous family presented with polydactyly, truncal obesity, intellectual disability, genital anomaly, and retinitis pigmentosa was analyzed in this study. Blood DNA and RNA were extracted from the blood of the proband and the parents. The proband was screened for mutations by whole‐exome sequencing. The likely pathogenic mutation detected in the proband was further confirmed by the Sanger sequence in the family. Real‐time RT‐PCR was used to measure the expression of BBS9 in the proband and the control. Results Targeted exome sequencing identified a novel homozygous null mutation (NM_198428.3: c.445C>T) in the 6th exon of the BBS9 gene in the proband and Sanger sequencing was used to validate the heterozygosity in the parents. The mutation was validated to induce the nonsense‐mediated decay of BBS9 messenger RNAs by real‐time RT‐PCR. Conclusions The molecular findings helped to explain the clinical manifestations. The novel homozygous pathogenic variation expanded the mutational spectrum of the BBS9 gene in the Chinese population and will help to understand the pathogenic mechanism of BBS9 null mutation.
Collapse
Affiliation(s)
- Hai-Yan Tang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Fen Xie
- Department of Endocrinology and Metabolism, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Ru-Chun Dai
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Liu Shi
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Liu Y, Zhang JJ, Piao SY, Shen RJ, Ma Y, Xue ZQ, Zhang W, Liu J, Jin ZB, Zhuang WJ. Whole-Exome Sequencing in a Cohort of High Myopia Patients in Northwest China. Front Cell Dev Biol 2021; 9:645501. [PMID: 34222226 PMCID: PMC8250434 DOI: 10.3389/fcell.2021.645501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/27/2021] [Indexed: 11/22/2022] Open
Abstract
High myopia (HM) is one of the leading causes of visual impairment worldwide. In order to expand the myopia gene spectrum in the Chinese population, we investigated genetic mutations in a cohort of 27 families with HM from Northwest China by using whole-exome sequencing (WES). Genetic variations were filtered using bioinformatics tools and cosegregation analysis. A total of 201 candidate mutations were detected, and 139 were cosegregated with the disease in the families. Multistep analysis revealed four missense variants in four unrelated families, including c.904C>T (p.R302C) in CSMD1, c.860G>A (p.R287H) in PARP8, c.G848A (p.G283D) in ADAMTSL1, and c.686A>G (p.H229R) in FNDC3B. These mutations were rare or absent in the Exome Aggregation Consortium (ExAC), 1000 Genomes Project, and Genome Aggregation Database (gnomAD), indicating that they are new candidate disease-causing genes. Our findings not only expand the myopia gene spectrum but also provide reference information for further genetic study of heritable HM.
Collapse
Affiliation(s)
- Yang Liu
- School of Basic Medical Sciences, Third Clinical Medical College of Ningxia Medical University (People’s Hospital of Ningxia Hui Autonomous Region), Yinchuan, China
| | - Jin-Jin Zhang
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Shun-Yu Piao
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Ren-Juan Shen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Ya Ma
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Zhong-Qi Xue
- Department of Ophthalmology, Affiliated Hospital of Qingdao Binhai University, Qingdao, China
| | - Wen Zhang
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Juan Liu
- School of Basic Medical Sciences, Third Clinical Medical College of Ningxia Medical University (People’s Hospital of Ningxia Hui Autonomous Region), Yinchuan, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Wen-Juan Zhuang
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
11
|
Shen RJ, Wang JG, Li Y, Jin ZB. Consanguinity-based analysis of exome sequencing yields likely genetic causes in patients with inherited retinal dystrophy. Orphanet J Rare Dis 2021; 16:278. [PMID: 34130719 PMCID: PMC8204521 DOI: 10.1186/s13023-021-01902-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Background Consanguineous families have a relatively high prevalence of genetic disorders caused by bi-allelic mutations in recessive genes. This study aims to evaluate the effectiveness and efficiency of a consanguinity-based exome sequencing approach to capturing genetic mutations in inherited retinal dystrophy families with consanguineous marriages. Methods Ten unrelated consanguineous families with a proband affected by inherited retinal dystrophy were recruited in this study. All participants underwent comprehensive ophthalmic examinations. Whole exome sequencing was performed, followed by a homozygote-prior strategy to rapidly filter disease-causing mutations. Bioinformatic prediction of pathogenicity, Sanger sequencing and co-segregation analysis were carried out for further validation. Results In ten consanguineous families, a total of 10 homozygous mutations in 8 IRD genes were identified, including 2 novel mutations, c.1654_1655delAG (p. R552Afs*5) in gene FAM161A in a patient diagnosed with retinitis pigmentosa, and c.830T > C (p.L277P) in gene CEP78 in a patient diagnosed with cone and rod dystrophy. Conclusion The genetic etiology in consanguineous families with IRD were successfully identified using consanguinity-based analysis of exome sequencing data, suggesting that this approach could provide complementary insights into genetic diagnoses in consanguineous families with variant genetic disorders. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01902-5.
Collapse
Affiliation(s)
- Ren-Juan Shen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Jun-Gang Wang
- Department of Ophthalmology, Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yang Li
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China.
| |
Collapse
|
12
|
Meng X, Long Y, Ren J, Wang G, Yin X, Li S. Ocular Characteristics of Patients With Bardet-Biedl Syndrome Caused by Pathogenic BBS Gene Variation in a Chinese Cohort. Front Cell Dev Biol 2021; 9:635216. [PMID: 33777945 PMCID: PMC7991091 DOI: 10.3389/fcell.2021.635216] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/08/2021] [Indexed: 12/29/2022] Open
Abstract
Bardet–Biedl syndrome (BBS; OMIM 209900) is a rare genetic disease causing damage to multiple organs and affecting patients’ quality of life in late adolescence or early adulthood. In this study, the ocular characteristics including morphology and function, were analyzed in 12 BBS patients from 10 Chinese families by molecular diagnostics. A total of five known and twelve novel variants in four BBS genes (BBS2, 58.33%; BBS4, 8.33%; BBS7, 16.67%; and BBS9, 16.67%) were identified in 10 Chinese families with BBS. All patients had typical phenotypes of retinitis pigmentosa with unrecordable or severely damaged cone and rod responses on full-field flash electroretinography (ffERG). Most of the patients showed unremarkable reactions in pattern visual evoked potential (PVEP) and multifocal electroretinography (mfERG), while their flash visual evoked potentials (FVEP) indicated display residual visual function. Changes in the fundus morphology, including color fundus photography and autofluorescence (AF) imaging, were heterogeneous and not consistent with the patients’ functional tests. Overall, our study expands the variation spectrum of the BBS gene, showing that the ocular characteristics of BBS patients are clinically highly heterogeneous, and demonstrates the usefulness of a combination of the ffERG and FVEP assessments of visual function in the advanced stage of retinopathy in BBS.
Collapse
Affiliation(s)
- Xiaohong Meng
- Department of Ophthalmology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Yanling Long
- Department of Ophthalmology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Jiayun Ren
- Department of Ophthalmology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Gang Wang
- Department of Ophthalmology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Xin Yin
- Department of Ophthalmology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Shiying Li
- Department of Ophthalmology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| |
Collapse
|
13
|
Chen ZJ, Lin KH, Lee SH, Shen RJ, Feng ZK, Wang XF, Huang XF, Huang ZQ, Jin ZB. Mutation spectrum and genotype-phenotype correlation of inherited retinal dystrophy in Taiwan. Clin Exp Ophthalmol 2020; 48:486-499. [PMID: 31872526 DOI: 10.1111/ceo.13708] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/15/2019] [Accepted: 12/15/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Inherited retinal dystrophy (IRD) is a group of irreversible retinal degenerative disorders with significant genotypic and phenotypic heterogeneity, which cause difficulty in making a precise clinical diagnosis. Furthermore, the mutation spectrum of IRD in Taiwan remains unknown. Therefore, our study focused on investigating the spectrum of mutations among Taiwanese families with IRD using targeted exome sequencing (TES) technology. METHODS We recruited a total of 60 unrelated Taiwanese families with IRD; most of them were retinitis pigmentosa. We employed TES to investigate 284 candidate genes. Bioinformatics analysis, Sanger sequencing-based co-segregation testing, and computational assessment were performed to validate each mutation and its pathogenicity. The genotype-phenotype correlation was analysed in all patients with mutations defined in the guidelines provided by the American College of Medical Genetics. RESULTS We successfully identified genetic causes in 32 families (detection rate of 53.3%). Among them, 16 had a sporadic inheritance (16/36, 44.4%); eight had an autosomal recessive inheritance (8/14, 57.1%); four had an autosomal dominant inheritance (4/5, 80%); four had an X-linked inheritance (4/5, 80%). Among 38 pathological mutations in 19 known genes, 20 mutations are reported here for the first time. Novel mutation spectrum and genotype-phenotype correlations were revealed as well. CONCLUSION Here we achieved a detection rate of 53.3% and elucidated the mutation spectrum in Taiwanese families with IRD for the first time. The results indicated that CYP4V2 and USH2A might be the most common pathogenic genes in IRD patients in Taiwan.
Collapse
Affiliation(s)
- Zhen-Ji Chen
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou, China.,National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Keng-Hung Lin
- Department of Ophthalmology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shi-Huang Lee
- Department of Ophthalmology, Taichung Tzu Chi Hospital, Taichung, Taiwan
| | - Ren-Juan Shen
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou, China.,National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Zhuo-Kun Feng
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou, China.,National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Xiao-Fang Wang
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou, China.,National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Xiu-Feng Huang
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou, China.,National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Zhi-Qin Huang
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou, China.,National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| | - Zi-Bing Jin
- Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Wenzhou Medical University, Wenzhou, China.,National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Exploring the Genetic Landscape of Retinal Diseases in North-Western Pakistan Reveals a High Degree of Autozygosity and a Prevalent Founder Mutation in ABCA4. Genes (Basel) 2019; 11:genes11010012. [PMID: 31877759 PMCID: PMC7017091 DOI: 10.3390/genes11010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Variants in more than 271 different genes have been linked to hereditary retinal diseases, making comprehensive genomic approaches mandatory for accurate diagnosis. We explored the genetic landscape of retinal disorders in consanguineous families from North-Western Pakistan, harboring a population of approximately 35 million inhabitants that remains relatively isolated and highly inbred (~50% consanguinity). We leveraged on the high degree of consanguinity by applying genome-wide high-density single-nucleotide polymorphism (SNP) genotyping followed by targeted Sanger sequencing of candidate gene(s) lying inside autozygous intervals. In addition, we performed whole-exome sequencing (WES) on at least one proband per family. We identified 7 known and 4 novel variants in a total of 10 genes (ABCA4, BBS2, CNGA1, CNGA3, CNGB3, MKKS, NMNAT1, PDE6B, RPE65, and TULP1) previously known to cause inherited retinal diseases. In spite of all families being consanguineous, compound heterozygosity was detected in one family. All homozygous pathogenic variants resided in autozygous intervals ≥2.0 Mb in size. Putative founder variants were observed in the ABCA4 (NM_000350.2:c.214G>A; p.Gly72Arg; ten families) and NMNAT1 genes (NM_022787.3:c.25G>A; p.Val9Met; two families). We conclude that geographic isolation and sociocultural tradition of intrafamilial mating in North-Western Pakistan favor both the clinical manifestation of rare “generic” variants and the prevalence of founder mutations.
Collapse
|
15
|
Weihbrecht K, Goar WA, Pak T, Garrison JE, DeLuca AP, Stone EM, Scheetz TE, Sheffield VC. Keeping an Eye on Bardet-Biedl Syndrome: A Comprehensive Review of the Role of Bardet-Biedl Syndrome Genes in the Eye. MEDICAL RESEARCH ARCHIVES 2017; 5. [PMID: 29457131 DOI: 10.18103/mra.v5i9.1526] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Upwards of 90% of individuals with Bardet-Biedl syndrome (BBS) display rod-cone dystrophy with early macular involvement. BBS is an autosomal recessive, genetically heterogeneous, pleiotropic ciliopathy for which 21 causative genes have been discovered to date. In addition to retinal degeneration, the cardinal features of BBS include obesity, cognitive impairment, renal anomalies, polydactyly, and hypogonadism. Here, we review the genes, proteins, and protein complexes involved in BBS and the BBS model organisms available for the study of retinal degeneration. We include comprehensive lists for all known BBS genes, their known phenotypes, and the model organisms available. We also review the molecular mechanisms believed to lead to retinal degeneration. We provide an overview of the mode of inheritance and describe the relationships between BBS genes and Joubert syndrome, Leber Congenital Amaurosis, Senior-Løken syndrome, and non-syndromic retinitis pigmentosa. Finally, we propose ways that new advances in technology will allow us to better understand the role of different BBS genes in retinal formation and function.
Collapse
Affiliation(s)
- Katie Weihbrecht
- Department of Pediatrics, University of Iowa; Iowa City, IA 52242, USA.,Department of Ophthalmology and Visual Sciences, University of Iowa; Iowa City, IA 52242, USA.,Stephen A. Wynn Institute for Vision Research, University of Iowa; Iowa City, IA 52242, USA
| | - Wesley A Goar
- Department of Pediatrics, University of Iowa; Iowa City, IA 52242, USA.,Department of Ophthalmology and Visual Sciences, University of Iowa; Iowa City, IA 52242, USA.,Stephen A. Wynn Institute for Vision Research, University of Iowa; Iowa City, IA 52242, USA
| | - Thomas Pak
- Department of Pediatrics, University of Iowa; Iowa City, IA 52242, USA.,Stephen A. Wynn Institute for Vision Research, University of Iowa; Iowa City, IA 52242, USA
| | - Janelle E Garrison
- Department of Pediatrics, University of Iowa; Iowa City, IA 52242, USA.,Stephen A. Wynn Institute for Vision Research, University of Iowa; Iowa City, IA 52242, USA
| | - Adam P DeLuca
- Department of Ophthalmology and Visual Sciences, University of Iowa; Iowa City, IA 52242, USA.,Stephen A. Wynn Institute for Vision Research, University of Iowa; Iowa City, IA 52242, USA
| | - Edwin M Stone
- Department of Ophthalmology and Visual Sciences, University of Iowa; Iowa City, IA 52242, USA.,Stephen A. Wynn Institute for Vision Research, University of Iowa; Iowa City, IA 52242, USA
| | - Todd E Scheetz
- Department of Ophthalmology and Visual Sciences, University of Iowa; Iowa City, IA 52242, USA.,Stephen A. Wynn Institute for Vision Research, University of Iowa; Iowa City, IA 52242, USA
| | - Val C Sheffield
- Department of Pediatrics, University of Iowa; Iowa City, IA 52242, USA.,Department of Ophthalmology and Visual Sciences, University of Iowa; Iowa City, IA 52242, USA.,Stephen A. Wynn Institute for Vision Research, University of Iowa; Iowa City, IA 52242, USA
| |
Collapse
|
16
|
Khan S, Ullah I, Nasir A, Meijer CA, Laurense-Bik M, den Dunnen JT, Ruivenkamp CAL, Hoffer MJV, Santen GWE, Ahmad W. Hypomorphic MKS1 mutation in a Pakistani family with mild Joubert syndrome and atypical features: Expanding the phenotypic spectrum of MKS1-related ciliopathies. Am J Med Genet A 2016; 170:3289-3293. [PMID: 27570071 DOI: 10.1002/ajmg.a.37934] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/05/2016] [Indexed: 01/06/2023]
Abstract
Postaxial polydactyly (PAP) is one of the most common congenital malformations observed in the general population. However, it can also occur as part of a syndrome. Unbiased genetic screening techniques such as exome sequencing are highly appropriate methods to provide a molecular diagnosis in patients with polydactyly due to the large number of mutated genes associated with it. The present study describes a consanguineous family of Pakistani origin with PAP, speech impairment, hearing impairment of variable degree, and proportionate short stature with no prominent intellectual disability or ophthalmological abnormalities. One affected individual of the family was subjected to exome sequencing which resulted in the identification of four homozygous variants including an in-frame deletion (c.1115_1117delCCT; p.(Ser372del) in MKS1, which was later shown to be the only variant segregating with the phenotype. In silico predictions supported the potential pathogenicity of the identified mutation. Additional clinical tests and MRI features of a patient in the family showed a molar tooth sign, which is a hallmark of Joubert syndrome. In conclusion, we have described a pathogenic variant in the MKS1 resulting in a mild Joubert syndrome phenotype, which broadens the spectrum of mutations in the MKS1. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
-
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Imran Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Nasir
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - C Arnoud Meijer
- Department of Radiology, MC Haaglanden, The Hague, The Netherlands
| | - Marlies Laurense-Bik
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Johan T den Dunnen
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Claudia A L Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Mariëtte J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
17
|
Bader I, Decker E, Mayr JA, Lunzer V, Koch J, Boltshauser E, Sperl W, Pietsch P, Ertl-Wagner B, Bolz H, Bergmann C, Rittinger O. MKS1 mutations cause Joubert syndrome with agenesis of the corpus callosum. Eur J Med Genet 2016; 59:386-91. [PMID: 27377014 DOI: 10.1016/j.ejmg.2016.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/25/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022]
Abstract
Joubert syndrome (JS) is a clinically and genetically heterogeneous ciliopathy characterized by episodic hyperpnea and apnea, hypotonia, ataxia, cognitive impairment and ocular motor apraxia. The "molar tooth sign" is pathognomonic of this condition. Mutations in the MKS1 gene are a major cause of Meckel-Gruber syndrome (MKS), the most common form of syndromic neural tube defects, frequently resulting in perinatal lethality. We present the phenotype and genotype of a child with severe JS and agenesis of the corpus callosum (ACC). In our patient, a next generation sequencing (NGS) approach revealed the following two variants of the MKS1 gene: first, a novel missense variant [ c.240G > T (p.Trp80Cys)], which affects a residue that is evolutionarily highly conserved in mammals and ciliates; second, a 29 bp deletion in intron 15 [c.1408-35_1408-7del29], a founder mutation, which in a homozygous state constitutes the major cause of MKS in Finland. We review the MKS1-variants in all of the eleven JS patients reported to date and compare these patients to our case. To our knowledge, this is the first patient with Joubert syndrome and agenesis of the corpus callosum where a potentially causal genotype is provided.
Collapse
Affiliation(s)
- Ingrid Bader
- Clinical Genetics Unit, Children's Hospital, Paracelsus Medical University, Salzburg, Austria; kbo-Kinderzentrum, Technische Universität München, Germany.
| | - E Decker
- Bioscientia, Center for Human Genetics, Ingelheim, Germany
| | - J A Mayr
- Children's Hospital, Paracelsus Medical University, Salzburg, Austria
| | - V Lunzer
- Children's Hospital, Paracelsus Medical University, Salzburg, Austria
| | - J Koch
- Children's Hospital, Paracelsus Medical University, Salzburg, Austria
| | | | - W Sperl
- Children's Hospital, Paracelsus Medical University, Salzburg, Austria
| | - P Pietsch
- kbo-Kinderzentrum, Technische Universität München, Germany
| | - B Ertl-Wagner
- Institute for Clinical Radiology, Ludwig-Maximilians-University Munich, Germany
| | - H Bolz
- Bioscientia, Center for Human Genetics, Ingelheim, Germany
| | - C Bergmann
- Bioscientia, Center for Human Genetics, Ingelheim, Germany; Children's University Hospital, Zürich, Switzerland
| | - O Rittinger
- Clinical Genetics Unit, Children's Hospital, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
18
|
Abstract
Primary cilia are organelles that are present on many different cell types, either transiently or permanently. They play a crucial role in receiving signals from the environment and passing these signals to other parts of the cell. In that way, they are involved in diverse processes such as adipocyte differentiation and olfactory sensation. Mutations in genes coding for ciliary proteins often have pleiotropic effects and lead to clinical conditions, ciliopathies, with multiple symptoms. In this study, we reviewed observations from ciliopathies with obesity as one of the symptoms. It shows that variation in cilia-related genes is itself not a major cause of obesity in the population but may be a part of the multifactorial aetiology of this complex condition. Both common polymorphisms and rare deleterious variants may contribute to the obesity risk. Genotype-phenotype relationships have been noticed. Among the ciliary genes, obesity differs with regard to severity and age of onset, which may relate to the influence of each gene on the balance between pro- and anti-adipogenic processes. Analysis of the function and location of the proteins encoded by these ciliary genes suggests that obesity is more linked to activities at the basal area of the cilium, including initiation of the intraflagellar transport, but less to the intraflagellar transport itself. Regarding the role of cilia, three possible mechanistic processes underlying obesity are described: adipogenesis, neuronal food intake regulation and food odour perception.
Collapse
|
19
|
Abstract
Bardet-Biedl syndrome (BBS) is a rare autosomal recessive genetic disorder. It is characterized by heterogeneous clinical manifestations including primary features of the disease (rod-cone dystrophy, polydactyly, obesity, genital abnormalities, renal defects, and learning difficulties) and secondary BBS characteristics (developmental delay, speech deficit, brachydactyly or syndactyly, dental defects, ataxia or poor coordination, olfactory deficit, diabetes mellitus, congenital heart disease, etc.); most of these symptoms may not be present at birth but appear and progressively worsen during the first and second decades of life. At least 20 BBS genes have already been identified, and all of them are involved in primary cilia functioning. Genetic diagnosis of BBS is complicated due to lack of gene-specific disease symptoms; however, it is gradually becoming more accessible with the invention of multigene sequencing technologies. Clinical management of BBS is largely limited to a symptomatic treatment. Mouse experiments demonstrate that the most debilitating complication of BBS, blindness, can be rescued by topical gene therapy. There is a published case report describing the delay of BBS symptoms by nutritional compensation of the disease-related biochemical deficiencies. Progress in DNA testing technologies is likely to rapidly resolve all limitations in BBS diagnosis; however, much slower improvement is expected with regard to BBS treatment.
Collapse
Affiliation(s)
- Evgeny N Suspitsin
- N.N. Petrov Institute of Oncology, St. Petersburg, Russia; St. Petersburg Pediatric Medical University, St. Petersburg, Russia
| | - Evgeny N Imyanitov
- N.N. Petrov Institute of Oncology, St. Petersburg, Russia; St. Petersburg Pediatric Medical University, St. Petersburg, Russia; I.I. Mechnikov North-Western Medical University, St. Petersburg, Russia; St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
20
|
Khan S, Muhammad N, Khan M, Kamal A, Rehman Z, Khan S. Genetics of human Bardet-Biedl syndrome, an updates. Clin Genet 2016; 90:3-15. [DOI: 10.1111/cge.12737] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/21/2015] [Accepted: 01/03/2016] [Indexed: 12/22/2022]
Affiliation(s)
- S.A. Khan
- Department of Biotechnology and Genetic Engineering; Kohat University of Science and Technology; Khyber Pakhtunkhwa Pakistan
| | - N. Muhammad
- Department of Biotechnology and Genetic Engineering; Kohat University of Science and Technology; Khyber Pakhtunkhwa Pakistan
| | - M.A. Khan
- Gomal Centre of Biochemistry and Biotechnology; Gomal University; Khyber Pakhtunkhwa Pakistan
- Genomic Core Facility; Interim Translational Research Institute; Doha Qatar
| | - A. Kamal
- Department of Biotechnology and Genetic Engineering; Kohat University of Science and Technology; Khyber Pakhtunkhwa Pakistan
| | - Z.U. Rehman
- Department of Biotechnology and Genetic Engineering; Kohat University of Science and Technology; Khyber Pakhtunkhwa Pakistan
| | - S. Khan
- Department of Biotechnology and Genetic Engineering; Kohat University of Science and Technology; Khyber Pakhtunkhwa Pakistan
- Genomic Core Facility; Interim Translational Research Institute; Doha Qatar
| |
Collapse
|
21
|
Huvenne H, Dubern B, Clément K, Poitou C. Rare Genetic Forms of Obesity: Clinical Approach and Current Treatments in 2016. Obes Facts 2016; 9:158-73. [PMID: 27241181 PMCID: PMC5644891 DOI: 10.1159/000445061] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/03/2016] [Indexed: 12/28/2022] Open
Abstract
Obesity results from a synergistic relationship between genes and the environment. The phenotypic expression of genetic factors involved in obesity is variable, allowing to distinguish several clinical pictures of obesity. Monogenic obesity is described as rare and severe early-onset obesity with abnormal feeding behavior and endocrine disorders. This is mainly due to autosomal recessive mutations in genes of the leptin-melanocortin pathway which plays a key role in the hypothalamic control of food intake. Melanocortin 4 receptor(MC4R)-linked obesity is characterized by the variable severity of obesity and no notable additional phenotypes. Mutations in the MC4R gene are involved in 2-3% of obese children and adults; the majority of these are heterozygous. Syndromic obesity is associated with mental retardation, dysmorphic features, and organ-specific developmental abnormalities. Additional genes participating in the development of hypothalamus and central nervous system have been regularly identified. But to date, not all involved genes have been identified so far. New diagnostic tools, such as whole-exome sequencing, will probably help to identify other genes. Managing these patients is challenging. Indeed, specific treatments are available only for specific types of monogenic obesity, such as leptin deficiency. Data on bariatric surgery are limited and controversial. New molecules acting on the leptin-melanocortin pathway are currently being developed.
Collapse
Affiliation(s)
- Hélène Huvenne
- GHICL, Saint-Vincent de Paul Hospital, Department of Pediatrics, Lille, France
| | | | | | | |
Collapse
|
22
|
Ibisler A, Hehr U, Barth A, Koch M, Epplen JT, Hoffjan S. Novel KIF7 Mutation in a Tunisian Boy with Acrocallosal Syndrome: Case Report and Review of the Literature. Mol Syndromol 2015; 6:173-80. [PMID: 26648833 DOI: 10.1159/000439414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2015] [Indexed: 12/14/2022] Open
Abstract
Acrocallosal syndrome (ACLS) is a rare autosomal recessive disorder characterized by agenesis of the corpus callosum, facial dysmorphism, postaxial polydactyly of the hands as well as preaxial polydactyly of the feet, and developmental delay. Mutations in the KIF7 gene, encoding a molecule within the Sonic hedgehog (SHH) pathway, have been identified as causative for ACLS but also for the fatal hydrolethalus syndrome and some cases of Joubert syndrome. We report here on a Tunisian boy who shows the clinical characteristics of ACLS and was found to have a novel homozygous KIF7 nonsense mutation. Further, we summarize the current knowledge about the clinical spectrum associated with KIF7 mutations as well as genetic and/or phenotypic overlap with ciliopathies and other mutations in the SHH pathway.
Collapse
Affiliation(s)
- Aysegül Ibisler
- Department of Human Genetics, Ruhr University, Bochum, Germany
| | - Ute Hehr
- Center for and Department of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Andre Barth
- Children's Hospital Datteln, University Witten/Herdecke, Datteln, Germany
| | - Margarete Koch
- Children's Hospital Datteln, University Witten/Herdecke, Datteln, Germany
| | - Jörg T Epplen
- Department of Human Genetics, Ruhr University, Bochum, Germany
| | - Sabine Hoffjan
- Department of Human Genetics, Ruhr University, Bochum, Germany
| |
Collapse
|
23
|
Whole-exome sequencing identifies USH2A mutations in a pseudo-dominant Usher syndrome family. Int J Mol Med 2015; 36:1035-41. [PMID: 26310143 PMCID: PMC4564089 DOI: 10.3892/ijmm.2015.2322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 08/17/2015] [Indexed: 11/05/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive (AR) multi-sensory degenerative disorder leading to deaf-blindness. USH is clinically subdivided into three subclasses, and 10 genes have been identified thus far. Clinical and genetic heterogeneities in USH make a precise diagnosis difficult. A dominant-like USH family in successive generations was identified, and the present study aimed to determine the genetic predisposition of this family. Whole-exome sequencing was performed in two affected patients and an unaffected relative. Systematic data were analyzed by bioinformatic analysis to remove the candidate mutations via step-wise filtering. Direct Sanger sequencing and co-segregation analysis were performed in the pedigree. One novel and two known mutations in the USH2A gene were identified, and were further confirmed by direct sequencing and co-segregation analysis. The affected mother carried compound mutations in the USH2A gene, while the unaffected father carried a heterozygous mutation. The present study demonstrates that whole-exome sequencing is a robust approach for the molecular diagnosis of disorders with high levels of genetic heterogeneity.
Collapse
|
24
|
Whole Exome Sequencing Identifies a Novel and a Recurrent Mutation in BBS2 Gene in a Family with Bardet-Biedl Syndrome. BIOMED RESEARCH INTERNATIONAL 2015; 2015:524754. [PMID: 26078953 PMCID: PMC4442282 DOI: 10.1155/2015/524754] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/17/2015] [Indexed: 02/01/2023]
Abstract
Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder known to be caused by mutations in at least 19 BBS genes. We report the genetic analysis of a patient with indisputable features of BBS including cardinal features such as postaxial polydactyly, retinitis pigmentosa, obesity, and kidney failure. Taking advantage of next-generation sequencing technology, we applied whole exome sequencing (WES) with Sanger direct sequencing to the proband and her unaffected mother. A pair of heterozygous nonsense mutations in BBS2 gene was identified in the proband, one being novel and the other recurrent. The novel mutation, p.Y644X, resides in exon 16 and was also found in the heterozygous state in the mother. This mutation is not currently found in the dsSNP and 1000 Genome SNP databases and is predicted to be disease causing by in silico analysis. This study highlights the potential for a rapid and precise detection of disease causing gene using WES in genetically heterogeneous disorders such as BBS.
Collapse
|
25
|
Huang XF, Huang F, Wu KC, Wu J, Chen J, Pang CP, Lu F, Qu J, Jin ZB. Genotype–phenotype correlation and mutation spectrum in a large cohort of patients with inherited retinal dystrophy revealed by next-generation sequencing. Genet Med 2014; 17:271-8. [DOI: 10.1038/gim.2014.138] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/19/2014] [Indexed: 11/09/2022] Open
|