1
|
Aqueous outflow channels and its lymphatic association: A review. Surv Ophthalmol 2021; 67:659-674. [PMID: 34656556 PMCID: PMC9008077 DOI: 10.1016/j.survophthal.2021.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022]
Abstract
The human eye has a unique immune architecture and behavior. While the conjunctiva is known to have a well-defined lymphatic drainage system, the cornea, sclera, and uveal tissues were historically considered "alymphatic" and thought to be immune privileged. The very fact that the aqueous outflow channels carry a clear fluid (aqueous humor) along the outflow pathway makes it hard to ignore its lymphatic-like characteristics. The development of novel lymphatic lineage markers and expression of these markers in aqueous outflow channels and improved imaging capabilities has sparked a renewed interest in the study of ocular lymphatics. Ophthalmic lymphatic research has had a directional shift over the last decade, offering an exciting new physiological platform that needs further in-depth understanding. The evidence of a presence of distinct lymphatic channels in the human ciliary body is gaining significant traction. The uveolymphatic pathway is an alternative new route for aqueous outflow and adds a new dimension to pathophysiology and management of glaucoma. Developing novel animal models, markers, and non-invasive imaging tools to delineate the core anatomical structure and physiological functions may help pave some crucial pathways to understand disease pathophysiology and help develop novel targeted therapeutic approaches for glaucoma.
Collapse
|
2
|
Aqueous outflow imaging techniques and what they tell us about intraocular pressure regulation. Eye (Lond) 2020; 35:216-235. [PMID: 32826996 DOI: 10.1038/s41433-020-01136-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/19/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the medical and surgical management of open-angle glaucoma have increased the number of treatment options available. Several new intraocular pressure (IOP)-lowering treatments target the conventional aqueous outflow (AO) system. However, success rates are variable and outcomes in individual patients are often difficult to predict. Variable treatment responses remain unexplained and highlight deficiencies in our current understanding of AO regulation and IOP homeostasis. Imaging is often relied upon to confirm diagnoses and monitor treatment responses in other ocular and systemic pathologies. As yet no suitable AO imaging tool has been developed to fulfil this role in glaucoma. A variety of imaging techniques have been used to study the AO tracts of humans and animals in ex vivo and in vivo eyes. In this review, results from novel imaging techniques that assess aqueous drainage through the episcleral venous system are considered and we argue these provide new insights into AO regulation. We suggest that the ability to objectively measure AO responses to interventions would be a significant clinical advance, and we have demonstrated that this can be achieved with direct visualisation of aqueous drainage. We predict that the evolution of AO imaging technology will continue to reveal critical components of AO and IOP regulation, and that personalised IOP-lowering treatment in glaucoma care may well become a reality in the near future.
Collapse
|
3
|
Burn JB, Huang AS, Weber AJ, Komáromy AM, Pirie CG. Aqueous Angiography in Normal Canine Eyes. Transl Vis Sci Technol 2020; 9:44. [PMID: 32934894 PMCID: PMC7463224 DOI: 10.1167/tvst.9.9.44] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/02/2020] [Indexed: 01/09/2023] Open
Abstract
Purpose To conduct aqueous angiography (AA) using a clinically applicable technique in normal dogs and to compare findings to intravenous scleral angiography (SA). Methods We examined 10 canine cadaver eyes and 12 eyes from live normal dogs. A gravity-fed trocar system delivered 2% sodium fluorescein and 0.25% indocyanine green (ICG) intracamerally (IC) in cadaver eyes. In vivo AA was subsequently performed in one eye of each of the 12 dogs via IC bolus of ICG under sedation. The same 12 dogs received SA via intravenous ICG (mean ± SD) 10.7 ± 3.3 days later. Identical scleral sectors were imaged using a Spectralis confocal scanning laser ophthalmoscope. Results The gravity-fed trocar system permitted visualization of the conventional aqueous humor outflow (CAHO) pathways in cadaver eyes, but not in vivo. Fluorescence was observed superonasally in four of the 10 cadaver eyes within 24.0 ± 3.6 seconds. A single IC bolus of ICG showed CAHO pathways in vivo, demonstrating sectoral outflow patterns in the superotemporal sclera in 10 of the 12 eyes within 35.0 ± 4.3 seconds; four of the 12 eyes exhibited pulsatile aqueous movement. SA exhibited fluorescence patterns comparable to AA with weak pulsatile aqueous humor outflow. Conclusions Angiography (AA or SA) in dogs permits visualization of the CAHO pathway and its vascular components in vivo. AA may be a more useful modality to assess aqueous humor outflow. Translational Relevance Intracameral AA has potential utility for evaluating CAHO in vivo in dogs, an important animal model species.
Collapse
Affiliation(s)
- Jessica B. Burn
- Michigan State University Veterinary Medical Center, East Lansing, MI, USA
| | - Alex S. Huang
- Doheny Eye Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Arthur J. Weber
- Michigan State University Veterinary Medical Center, East Lansing, MI, USA
| | - Andras M. Komáromy
- Michigan State University Veterinary Medical Center, East Lansing, MI, USA
| | - Chris G. Pirie
- Michigan State University Veterinary Medical Center, East Lansing, MI, USA
| |
Collapse
|
4
|
Wang T, Pfeiffer T, Daemen J, Mastik F, Wieser W, van der Steen AFW, Huber R, van Soest G. Simultaneous Morphological and Flow Imaging Enabled by Megahertz Intravascular Doppler Optical Coherence Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1535-1544. [PMID: 31725370 DOI: 10.1109/tmi.2019.2948258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We demonstrate three-dimensional intravascular flow imaging compatible with routine clinical image acquisition workflow by means of megahertz (MHz) intravascular Doppler Optical Coherence Tomography (OCT). The OCT system relies on a 1.1 mm diameter motorized imaging catheter and a 1.5 MHz Fourier Domain Mode Locked (FDML) laser. Using a post processing method to compensate the drift of the FDML laser output, we can resolve the Doppler phase shift between two adjoining OCT A-line datasets. By interpretation of the velocity field as measured around the zero phase shift, the flow direction at specific angles can be qualitatively estimated. Imaging experiments were carried out in phantoms, micro channels, and swine coronary artery in vitro at a speed of 600 frames/s. The MHz wavelength sweep rate of the OCT system allows us to directly investigate flow velocity of up to 37.5 cm/s while computationally expensive phase-unwrapping has to be applied to measure such high speed using conventional OCT system. The MHz sweep rate also enables a volumetric Doppler imaging even with a fast pullback at 40 mm/s. We present the first simultaneously recorded 3D morphological images and Doppler flow profiles. Flow pattern estimation and three-dimensional structural reconstruction of entire coronary artery are achieved using a single OCT pullback dataset.
Collapse
|
5
|
Ouyang J, Mathai TS, Lathrop K, Galeotti J. Accurate tissue interface segmentation via adversarial pre-segmentation of anterior segment OCT images. BIOMEDICAL OPTICS EXPRESS 2019; 10:5291-5324. [PMID: 31646047 PMCID: PMC6788614 DOI: 10.1364/boe.10.005291] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 05/24/2023]
Abstract
Optical Coherence Tomography (OCT) is an imaging modality that has been widely adopted for visualizing corneal, retinal and limbal tissue structure with micron resolution. It can be used to diagnose pathological conditions of the eye, and for developing pre-operative surgical plans. In contrast to the posterior retina, imaging the anterior tissue structures, such as the limbus and cornea, results in B-scans that exhibit increased speckle noise patterns and imaging artifacts. These artifacts, such as shadowing and specularity, pose a challenge during the analysis of the acquired volumes as they substantially obfuscate the location of tissue interfaces. To deal with the artifacts and speckle noise patterns and accurately segment the shallowest tissue interface, we propose a cascaded neural network framework, which comprises of a conditional Generative Adversarial Network (cGAN) and a Tissue Interface Segmentation Network (TISN). The cGAN pre-segments OCT B-scans by removing undesired specular artifacts and speckle noise patterns just above the shallowest tissue interface, and the TISN combines the original OCT image with the pre-segmentation to segment the shallowest interface. We show the applicability of the cascaded framework to corneal datasets, demonstrate that it precisely segments the shallowest corneal interface, and also show its generalization capacity to limbal datasets. We also propose a hybrid framework, wherein the cGAN pre-segmentation is passed to a traditional image analysis-based segmentation algorithm, and describe the improved segmentation performance. To the best of our knowledge, this is the first approach to remove severe specular artifacts and speckle noise patterns (prior to the shallowest interface) that affects the interpretation of anterior segment OCT datasets, thereby resulting in the accurate segmentation of the shallowest tissue interface. To the best of our knowledge, this is the first work to show the potential of incorporating a cGAN into larger deep learning frameworks for improved corneal and limbal OCT image segmentation. Our cGAN design directly improves the visualization of corneal and limbal OCT images from OCT scanners, and improves the performance of current OCT segmentation algorithms.
Collapse
Affiliation(s)
- Jiahong Ouyang
- The Robotics Institute, Carnegie Mellon University, PA 15213, USA
- Equal contribution
| | | | - Kira Lathrop
- Department of Bioengineering, University of Pittsburgh, PA 15213, USA
- Department of Ophthalmology, University of Pittsburgh, PA 15213, USA
| | - John Galeotti
- The Robotics Institute, Carnegie Mellon University, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Gottschalk HM, Wecker T, Khattab MH, Fischer CV, Callizo J, Rehfeldt F, Lubjuhn R, Russmann C, Hoerauf H, van Oterendorp C. Lipid Emulsion-Based OCT Angiography for Ex Vivo Imaging of the Aqueous Outflow Tract. Invest Ophthalmol Vis Sci 2019; 60:397-406. [PMID: 30682210 DOI: 10.1167/iovs.18-25223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Contrast agents applicable for optical coherence tomography (OCT) imaging are rare. The intrascleral aqueous drainage system would be a potential application for a contrast agent, because the aqueous veins are of small diameter and located deep inside the highly scattering sclera. We tested lipid emulsions (LEs) as candidate OCT contrast agents in vitro and ex vivo, including milk and the anesthetic substance Propofol. Methods Commercial OCT and OCT angiography (OCTA) devices were used. Maximum reflectivity and signal transmission of LE were determined in tube phantoms. Absorption spectra and light scattering was analyzed. The anterior chamber of enucleated porcine eyes was perfused with LEs, and OCTA imaging of the LEs drained via the aqueous outflow tract was performed. Results All LEs showed a significantly higher reflectivity than water (P < 0.001). Higher milk lipid content was positively correlated with maximum reflectivity and negatively with signal transmission. Propofol exhibited the best overall performance. Due to a high degree of signal fluctuation, OCTA could be applied for detection of LE. Compared with blood, the OCTA signal of Propofol was significantly stronger (P = 0.001). As a proof of concept, time-resolved aqueous angiography of porcine eyes was performed. The three-dimensional (3D) structure and dynamics of the aqueous outflow were significantly different from humans. Conclusions LEs induced a strong signal in OCT and OCTA. LE-based OCTA allowed the ability to obtain time-resolved 3D datasets of aqueous outflow. Possible interactions of LE with inner eye's structures need to be further investigated before in vivo application.
Collapse
Affiliation(s)
- Hanna M Gottschalk
- Department of Ophthalmology, University Medical Center, Göttingen, Germany
| | | | - Mohammed H Khattab
- Department of Ophthalmology, University Medical Center, Göttingen, Germany
| | | | - Josep Callizo
- Department of Ophthalmology, University Medical Center, Göttingen, Germany
| | - Florian Rehfeldt
- Third Institute of Physics, Biophysics, Georg-August-University, Göttingen, Germany
| | - Roswitha Lubjuhn
- Department of Anaesthesiology, University Medical Center, Göttingen, Germany
| | - Christoph Russmann
- Faculty of Natural Science and Technology, University of Applied Sciences and Arts, Göttingen, Germany.,Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, and Department of Radiology, Harvard Medical School, Boston, Massachusetts, United States
| | - Hans Hoerauf
- Department of Ophthalmology, University Medical Center, Göttingen, Germany
| | | |
Collapse
|
7
|
Masse F, Ouellette M, Lamoureux G, Boisselier E. Gold nanoparticles in ophthalmology. Med Res Rev 2018; 39:302-327. [DOI: 10.1002/med.21509] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/13/2018] [Accepted: 04/26/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Florence Masse
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine, Université Laval; Quebec Canada
| | - Mathieu Ouellette
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine, Université Laval; Quebec Canada
| | - Guillaume Lamoureux
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine, Université Laval; Quebec Canada
| | - Elodie Boisselier
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine, Université Laval; Quebec Canada
| |
Collapse
|
8
|
Huang AS, Francis BA, Weinreb RN. Structural and functional imaging of aqueous humour outflow: a review. Clin Exp Ophthalmol 2017; 46:158-168. [PMID: 28898516 DOI: 10.1111/ceo.13064] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 01/15/2023]
Abstract
Maintaining healthy aqueous humour outflow (AHO) is important for intraocular cellular health and stable vision. Impairment of AHO can lead to increased intraocular pressure, optic nerve damage and concomitant glaucoma. An improved understanding of AHO will lead to improved glaucoma surgeries that enhance native AHO as well as facilitate the development of AHO-targeted pharmaceuticals. Recent AHO imaging has evolved to live human assessment and has focused on the structural evaluation of AHO pathways and the functional documentation of fluid flow. Structural AHO evaluation is predominantly driven by optical coherence tomography, and functional evaluation of flow is performed using various methods, including aqueous angiography. Advances in structural and functional evaluation of AHO are reviewed with discussion of strengths, weaknesses and potential future directions.
Collapse
Affiliation(s)
- Alex S Huang
- Doheny Eye Institute, Los Angeles, California, USA.,Doheny Eye Centers, Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, California, USA
| | - Brian A Francis
- Doheny Eye Institute, Los Angeles, California, USA.,Doheny Eye Centers, Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, California, USA
| | - Robert N Weinreb
- Shiley Eye Institute and Hamilton Glaucoma Center, Department of Ophthalmology, University of California, San Diego, California, USA
| |
Collapse
|
9
|
Loewen RT, Brown EN, Scott G, Parikh H, Schuman JS, Loewen NA. Quantification of Focal Outflow Enhancement Using Differential Canalograms. Invest Ophthalmol Vis Sci 2017; 57:2831-8. [PMID: 27227352 PMCID: PMC5113980 DOI: 10.1167/iovs.16-19541] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To quantify regional changes of conventional outflow caused by ab interno trabeculectomy (AIT). Methods Gonioscopic, plasma-mediated AIT was established in enucleated pig eyes. We developed a program to automatically quantify outflow changes (R, package eye-canalogram, github.com) using a fluorescent tracer reperfusion technique. Trabecular meshwork (TM) ablation was demonstrated with fluorescent spheres in six eyes before formal outflow quantification with two-dye reperfusion canalograms in six additional eyes. Eyes were perfused with a central, intracameral needle at 15 mm Hg. Canalograms and histology were correlated for each eye. Results The pig eye provided a model with high similarity to AIT in human patients. Histology indicated ablation of TM and unroofing of most Schlemm's canal segments. Spheres highlighted additional circumferential and radial outflow beyond the immediate area of ablation. Differential canalograms showed that AIT caused an increase of outflow of 17 ± 5-fold inferonasally, 14 ± 3-fold superonasally, and also an increase in the opposite quadrants with a 2 ± 1-fold increase superotemporally, and 3 ± 3 inferotemporally. Perilimbal specific flow image analysis showed an accelerated nasal filling with an additional perilimbal flow direction into adjacent quadrants. Conclusions A quantitative, differential canalography technique was developed that allows us to quantify supraphysiological outflow enhancement by AIT.
Collapse
Affiliation(s)
- Ralitsa T Loewen
- Department of Ophthalmology University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Eric N Brown
- Department of Ophthalmology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Gordon Scott
- Department of Ophthalmology University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Hardik Parikh
- Department of Ophthalmology University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States 3School of Medicine, Rutgers State University of New Jersey, New Brunswick, New Jersey, United States
| | - Joel S Schuman
- Department of Ophthalmology University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States 4School of Medicine, New York University, New York, New York, United States
| | - Nils A Loewen
- Department of Ophthalmology University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
10
|
Tsai MT, Zhang JW, Liu YH, Yeh CK, Wei KC, Liu HL. Acoustic-actuated optical coherence angiography. OPTICS LETTERS 2016; 41:5813-5816. [PMID: 27973509 DOI: 10.1364/ol.41.005813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Optical coherence tomography (OCT) angiography requires high sensitivity and image penetration for detailed microvascular monitoring. Unfortunately, no effective contrast-medium-enhanced scheme is currently available for imaging improvement. We here propose the simultaneous use of gas-filled microbubbles (MBs) and acoustic actuation to enhance the imaging contrast of OCT angiography. OCT-synchronized acoustic actuation was applied in the presence of MBs, and different moving object tracking angiographic algorithms were tested in in vitro tubing and in vivo mouse experiments. This scheme significantly enhanced the OCT angiography performance, including its sensitivity and penetration, and should advance the utilization of OCT as an effective microvascular diagnostic tool.
Collapse
|
11
|
Parikh HA, Loewen RT, Roy P, Schuman JS, Lathrop KL, Loewen NA. Differential Canalograms Detect Outflow Changes from Trabecular Micro-Bypass Stents and Ab Interno Trabeculectomy. Sci Rep 2016; 6:34705. [PMID: 27811973 PMCID: PMC5095709 DOI: 10.1038/srep34705] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/14/2016] [Indexed: 01/22/2023] Open
Abstract
Recently introduced microincisional glaucoma surgeries that enhance conventional outflow offer a favorable risk profile over traditional surgeries, but can be unpredictable. Two paramount challenges are the lack of an adequate training model for angle surgeries and the absence of an intraoperative quantification of surgical success. To address both, we developed an ex vivo training system and a differential, quantitative canalography method that uses slope-adjusted fluorescence intensities of two different chromophores to avoid quenching. We assessed outflow enhancement by trabecular micro-bypass (TMB) implantation or by ab interno trabeculectomy (AIT). In this porcine model, TMB resulted in an insignificant (p > 0.05) outflow increase of 13 ± 5%, 14 ± 8%, 9 ± 3%, and 24 ± 9% in the inferonasal, superonasal, superotemporal, and inferotemporal quadrant, respectively. AIT caused a 100 ± 50% (p = 0.002), 75 ± 28% (p = 0.002), 19 ± 8%, and 40 ± 21% increase in those quadrants. The direct gonioscopy and tactile feedback provided a surgical experience that was very similar to that in human patients. Despite the more narrow and discontinuous circumferential drainage elements in the pig with potential for underperformance or partial stent obstruction, unequivocal patterns of focal outflow enhancement by TMB were seen in this training model. AIT achieved extensive access to outflow pathways beyond the surgical site itself.
Collapse
Affiliation(s)
- Hardik A. Parikh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
- New Jersey Medical School, Rutgers State University of New Jersey, Newark, NJ 07103, United States
| | - Ralitsa T. Loewen
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| | - Pritha Roy
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| | - Joel S. Schuman
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
- Department of Ophthalmology, New York University School of Medicine, NY 10016, United States
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261, United States
| | - Kira L. Lathrop
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261, United States
| | - Nils A. Loewen
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| |
Collapse
|
12
|
Wang S, Zhao X, Wang S, Qian J, He S. Biologically Inspired Polydopamine Capped Gold Nanorods for Drug Delivery and Light-Mediated Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:24368-84. [PMID: 27564325 DOI: 10.1021/acsami.6b05907] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Multifunctional drug delivery and combined multimodal therapy strategies are very promising in tumor theranostic applications. In this work, a simple and versatile nanoplatform based on biologically inspired polydopamine capped gold nanorods (GNR-PDA) is developed. Dopamine, a well-known neurotransmitter associated with many neuronal disorders, can undergo self-polymerization on the surface of GNRs to form a stable PDA shell. Its unique molecular adsorption property, as well as its high chemical stability and biocompatibility, facilitate GNR-PDA as an ideal candidate for drug delivery. Methylene blue (MB) and doxorubicin (DOX) are directly adsorbed on GNR-PDA via electrostatic and/or π-π stacking interactions, forming GNR-PDA-MB and GNR-PDA-DOX nanocomposites, respectively. The GNR-PDA-MB can generate reactive oxygen species (ROS, from MB) or hyperthermia (from GNR-PDA) with high efficiency under deep-red/NIR laser irradiation, while the GNR-PDA-DOX exhibits light-enhanced drug release under NIR laser irradiation. The combined dual-modal light-mediated therapy, by using GNR-PDA-MB [photodynamic/photothermal therapy (PDT/PTT)] and GNR-PDA-DOX (Chemo/PTT), is carried out and shows remarkable cancer cell killing efficiency in vitro and significant suppression of tumor growth in vivo, which are much more distinct than any single-modal therapy strategy. Our work illustrates that GNR-PDA could be a promising nanoplatform for multifunctional drug delivery and multimodal tumor theranostics in the future.
Collapse
Affiliation(s)
- Shaowei Wang
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, and ‡Bioelectromagnetics Laboratory, School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | - Xinyuan Zhao
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, and ‡Bioelectromagnetics Laboratory, School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | - Shaochuan Wang
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, and ‡Bioelectromagnetics Laboratory, School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, and ‡Bioelectromagnetics Laboratory, School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | - Sailing He
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, and ‡Bioelectromagnetics Laboratory, School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310058, China
| |
Collapse
|
13
|
Oldenburg AL, Blackmon RL, Sierchio JM. Magnetic and Plasmonic Contrast Agents in Optical Coherence Tomography. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2016; 22:6803913. [PMID: 27429543 PMCID: PMC4941814 DOI: 10.1109/jstqe.2016.2553084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Optical coherence tomography (OCT) has gained widespread application for many biomedical applications, yet the traditional array of contrast agents used in incoherent imaging modalities do not provide contrast in OCT. Owing to the high biocompatibility of iron oxides and noble metals, magnetic and plasmonic nanoparticles, respectively, have been developed as OCT contrast agents to enable a range of biological and pre-clinical studies. Here we provide a review of these developments within the past decade, including an overview of the physical contrast mechanisms and classes of OCT system hardware addons needed for magnetic and plasmonic nanoparticle contrast. A comparison of the wide variety of nanoparticle systems is also presented, where the figures of merit depend strongly upon the choice of biological application.
Collapse
Affiliation(s)
- Amy L. Oldenburg
- Department of Physics and Astronomy, the Department of Biomedical Engineering, and the Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 USA
| | - Richard L. Blackmon
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 USA
| | - Justin M. Sierchio
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 USA
| |
Collapse
|
14
|
Sen D, SoRelle ED, Liba O, Dalal R, Paulus YM, Kim TW, Moshfeghi DM, de la Zerda A. High-resolution contrast-enhanced optical coherence tomography in mice retinae. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:66002. [PMID: 27264492 PMCID: PMC4893203 DOI: 10.1117/1.jbo.21.6.066002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 05/02/2016] [Indexed: 05/14/2023]
Abstract
Optical coherence tomography (OCT) is a noninvasive interferometric imaging modality providing anatomical information at depths of millimeters and a resolution of micrometers. Conventional OCT images limit our knowledge to anatomical structures alone, without any contrast enhancement. Therefore, here we have, for the first time, optimized an OCT-based contrast-enhanced imaging system for imaging single cells and blood vessels in vivo inside the living mouse retina at subnanomolar sensitivity. We used bioconjugated gold nanorods (GNRs) as exogenous OCT contrast agents. Specifically, we used anti-mouse CD45 coated GNRs to label mouse leukocytes and mPEG-coated GNRs to determine sensitivity of GNR detection in vivo inside mice retinae. We corroborated OCT observations with hyperspectral dark-field microscopy of formalin-fixed histological sections. Our results show that mouse leukocytes that otherwise do not produce OCT contrast can be labeled with GNRs leading to significant OCT intensity equivalent to a 0.5 nM GNR solution. Furthermore, GNRs injected intravenously can be detected inside retinal blood vessels at a sensitivity of ∼0.5 nM, and GNR-labeled cells injected intravenously can be detected inside retinal capillaries by enhanced OCT contrast. We envision the unprecedented resolution and sensitivity of functionalized GNRs coupled with OCT to be adopted for longitudinal studies of retinal disorders.
Collapse
Affiliation(s)
- Debasish Sen
- Stanford University, Department of Structural Biology, 299 Campus Drive, Stanford, California 94305, United States
- Stanford University, Molecular Imaging Program at Stanford, 299 Campus Drive, Stanford, California 94305, United States
| | - Elliott D. SoRelle
- Stanford University, Department of Structural Biology, 299 Campus Drive, Stanford, California 94305, United States
- Stanford University, Biophysics Program, 299 Campus Drive, Stanford, California 94305, United States
- Stanford University, Department of Electrical Engineering, 299 Campus Drive, Stanford, California 94305, United States
| | - Orly Liba
- Stanford University, Department of Structural Biology, 299 Campus Drive, Stanford, California 94305, United States
- Stanford University, Molecular Imaging Program at Stanford, 299 Campus Drive, Stanford, California 94305, United States
- Stanford University, Department of Electrical Engineering, 299 Campus Drive, Stanford, California 94305, United States
- Stanford University, Bio-X Program, 299 Campus Drive, Stanford, California, 94305, United States
| | - Roopa Dalal
- Stanford University, Department of Ophthalmology, 300 Pasteur Drive, Palo Alto, California 94304, United States
| | - Yannis M. Paulus
- Stanford University, Department of Structural Biology, 299 Campus Drive, Stanford, California 94305, United States
| | - Tae-Wan Kim
- Stanford University, Department of Structural Biology, 299 Campus Drive, Stanford, California 94305, United States
| | - Darius M. Moshfeghi
- Stanford University, Bio-X Program, 299 Campus Drive, Stanford, California, 94305, United States
- Stanford University, Department of Ophthalmology, Stanford Byers Eye Institute, 2452 Watson Court, Palo Alto, California 94303, United States
| | - Adam de la Zerda
- Stanford University, Department of Structural Biology, 299 Campus Drive, Stanford, California 94305, United States
- Stanford University, Molecular Imaging Program at Stanford, 299 Campus Drive, Stanford, California 94305, United States
- Stanford University, Biophysics Program, 299 Campus Drive, Stanford, California 94305, United States
- Stanford University, Department of Electrical Engineering, 299 Campus Drive, Stanford, California 94305, United States
- Stanford University, Bio-X Program, 299 Campus Drive, Stanford, California, 94305, United States
- Address all correspondence to: Adam de la Zerda, E-mail:
| |
Collapse
|
15
|
Loewen RT, Brown EN, Roy P, Schuman JS, Sigal IA, Loewen NA. Regionally Discrete Aqueous Humor Outflow Quantification Using Fluorescein Canalograms. PLoS One 2016; 11:e0151754. [PMID: 26998833 PMCID: PMC4801333 DOI: 10.1371/journal.pone.0151754] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/03/2016] [Indexed: 01/15/2023] Open
Abstract
PURPOSE To visualize and quantify conventional outflow directly in its anatomic location. METHODS We obtained fluorescein canalograms in six porcine whole eyes and six porcine anterior segment cultures. Eyes were perfused with a constant pressure of 15 mmHg using media containing 0.017 mg/ml fluorescein. Flow patterns were visualized using a stereo dissecting microscope equipped for fluorescent imaging. Images were captured every 30 seconds for 20 minutes for time lapse analysis. Anterior chamber cultures were imaged again on day three of culture. Canalograms were first analyzed for filling time per quadrant. We then wrote a program to automatically compute focal flow fits for each macropixel and to detect convergent perilimbal flow patterns with macropixels grouped into 3 equal-radial width rings around the cornea. A generalized additive model was used to determine fluorescence changes of individual macropixels. RESULTS The resulting imaging algorithm deployed 1024 macropixels that were fit to determine maximum intensity and time to fill. These individual fits highlighted the focal flow function. In whole eyes, significantly faster flow was seen in the inferonasal (IN) and superonasal (SN) quadrants compared to the superotemporal (ST) and inferotemporal (IT) ones (p<0.05). In anterior chamber cultures, reduced flow on day 1 increased in all quadrants on day 3 except in IT (p<0.05). Perilimbal ring analysis uncovered convergent perilimbal flow. CONCLUSIONS An algorithm was developed that analyzes regional and circumferential outflow patterns. This algorithm found flow patterns that changed over time and differ in whole eyes and anterior segment cultures.
Collapse
Affiliation(s)
- Ralitsa T. Loewen
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, United States of America
- The Louis J. Fox Center for Vision Restoration, School of Medicine, University of Pittsburgh, Pittsburgh, United States of America
| | - Eric N. Brown
- Department of Ophthalmology, School of Medicine, Vanderbilt University, Nashville, United States of America
| | - Pritha Roy
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, United States of America
- The Louis J. Fox Center for Vision Restoration, School of Medicine, University of Pittsburgh, Pittsburgh, United States of America
| | - Joel S. Schuman
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, United States of America
- The Louis J. Fox Center for Vision Restoration, School of Medicine, University of Pittsburgh, Pittsburgh, United States of America
| | - Ian A. Sigal
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, United States of America
- The Louis J. Fox Center for Vision Restoration, School of Medicine, University of Pittsburgh, Pittsburgh, United States of America
| | - Nils A. Loewen
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, United States of America
- The Louis J. Fox Center for Vision Restoration, School of Medicine, University of Pittsburgh, Pittsburgh, United States of America
| |
Collapse
|
16
|
Fortune B. In vivo imaging methods to assess glaucomatous optic neuropathy. Exp Eye Res 2015; 141:139-53. [PMID: 26048475 DOI: 10.1016/j.exer.2015.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 05/13/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
The goal of this review is to summarize the most common imaging methods currently applied for in vivo assessment of ocular structure in animal models of experimental glaucoma with an emphasis on translational relevance to clinical studies of the human disease. The most common techniques in current use include optical coherence tomography and scanning laser ophthalmoscopy. In reviewing the application of these and other imaging modalities to study glaucomatous optic neuropathy, this article is organized into three major sections: 1) imaging the optic nerve head, 2) imaging the retinal nerve fiber layer and 3) imaging retinal ganglion cell soma and dendrites. The article concludes with a brief section on possible future directions.
Collapse
Affiliation(s)
- Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, 1225 NE Second Avenue, Portland, OR 97232, USA.
| |
Collapse
|
17
|
Jiang X, Liu R, Tang P, Li W, Zhong H, Zhou Z, Zhou J. Controllably tuning the near-infrared plasmonic modes of gold nanoplates for enhanced optical coherence imaging and photothermal therapy. RSC Adv 2015. [DOI: 10.1039/c5ra15204f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ozone can be used to precisely tailor the plasmon mode of gold triangular nanoprism for enhancing optical imaging and therapy.
Collapse
Affiliation(s)
- Xueqin Jiang
- Biomedical Engineering Department
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Renming Liu
- State Key Laboratory of Optoelectronic Materials and Technologies
- School of Physics and Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Peijun Tang
- Biomedical Engineering Department
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Wanbo Li
- Biomedical Engineering Department
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Huixiang Zhong
- Biomedical Engineering Department
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Zhangkai Zhou
- State Key Laboratory of Optoelectronic Materials and Technologies
- School of Physics and Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Jianhua Zhou
- Biomedical Engineering Department
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| |
Collapse
|
18
|
Ho LC, Conner IP, Do CW, Kim SG, Wu EX, Wollstein G, Schuman JS, Chan KC. In vivo assessment of aqueous humor dynamics upon chronic ocular hypertension and hypotensive drug treatment using gadolinium-enhanced MRI. Invest Ophthalmol Vis Sci 2014; 55:3747-57. [PMID: 24764067 DOI: 10.1167/iovs.14-14263] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Although glaucoma treatments alter aqueous humor (AH) dynamics to lower intraocular pressure, the regulatory mechanisms of AH circulation and their contributions to the pathogenesis of ocular hypertension and glaucoma remain unclear. We hypothesized that gadolinium-enhanced magnetic resonance imaging (Gd-MRI) can visualize and assess AH dynamics upon sustained intraocular pressure elevation and pharmacologic interventions. METHODS Gadolinium contrast agent was systemically administered to adult rats to mimic soluble AH components entering the anterior chamber (AC) via blood-aqueous barrier. Dynamic Gd-MRI was applied to examine the signal enhancement in AC and vitreous body upon microbead-induced ocular hypertension and unilateral topical applications of latanoprost, timolol maleate, and brimonidine tartrate to healthy eyes. RESULTS Gadolinium signal time courses in microbead-induced hypertensive eyes possessed faster initial gadolinium uptake and higher peak signals in AC than control eyes, reflective of reduced gadolinium clearance upon microbead occlusion. Opposite trends were observed in latanoprost- and timolol-treated eyes, indicative of their respective drug actions on increased uveoscleral outflow and reduced AH production. The slowest initial gadolinium uptake but strongest peak signals were found in AC of both brimonidine-treated and untreated fellow eyes. These findings drew attention to the systemic effects of topical hypotensive drug treatment. Gadolinium leaked into the vitreous of microbead-induced hypertensive eyes and brimonidine-treated and untreated fellow eyes, suggestive of a compromise of aqueous-vitreous or blood-ocular barrier integrity. CONCLUSIONS Gadolinium-enhanced MRI allows spatiotemporal and quantitative evaluation of altered AH dynamics and ocular tissue permeability for better understanding the physiological mechanisms of ocular hypertension and the efficacy of antiglaucoma drug treatments.
Collapse
Affiliation(s)
- Leon C Ho
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ian P Conner
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Chi-Wai Do
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Seong-Gi Kim
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States Center for Neuroscience Imaging Research, Institute for Basic Science, Department of Biological Science, Sungkyunkwan University, Suwon, Korea Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Ed X Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Gadi Wollstein
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Joel S Schuman
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Kevin C Chan
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, Pennsylvania, United States Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| |
Collapse
|