1
|
Leffers D, Penxova Z, Kempin T, Därr M, Fleckner J, Hollfelder D, Ryan AF, Bruchhage KL, Kurabi A, Leichtle A. Immunomodulatory Response of the Middle Ear Epithelial Cells in Otitis Media. Otol Neurotol 2024; 45:e248-e255. [PMID: 38238924 PMCID: PMC10922874 DOI: 10.1097/mao.0000000000004096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
HYPOTHESIS The middle ear (ME) epithelium transforms because of changed immunomodulation during infection. INTRODUCTION The epithelial cells of the tympanic cavity represent the first line of defense in the context of otitis media. They can convert from a typical mucosal site into a respiratory epithelium and vice versa. Our goal is to depict the specific immune response of epithelial cells after infection at the molecular level. METHODS The investigations were carried out on healthy and inflamed ME tissue, removed during surgical interventions in mouse and human models, and in a human in-vitro cell model in human ME epithelial cell line. We determined the epithelial localization of the protein expression of Toll- and NOD-like immune receptors and their associated signaling molecules using immunohistochemistry. In addition, we examined growth behavior and gene expression due to direct stimulation and inhibition. RESULTS We found clinically and immunobiologically confirmed transformation of the inflamed ME epithelium depending on their origin, as well as differences in the distribution of Toll-like receptors and nucleotide-binding oligomerization domain-like receptors in the epithelial cell lining. Dysregulated gene and protein expression of the inflammatory and apoptotic genes could be modulated by stimulation and inhibition in the epithelial cells. CONCLUSIONS The local ME mucosal tissue is believed to modulate downstream immune activity after pathogen invasion via intrinsic cellular mechanism. Using translation approaches to target these molecular pathways may offer more reliable clinical resolution of otitis media in the future.
Collapse
Affiliation(s)
- David Leffers
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Zuzana Penxova
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Thorge Kempin
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Markus Därr
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Jonas Fleckner
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Daniela Hollfelder
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Allen F Ryan
- University of California, San Diego, Department of Surgery/ Otolaryngology, San Diego, USA
| | - Karl-Ludwig Bruchhage
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Arwa Kurabi
- University of California, San Diego, Department of Surgery/ Otolaryngology, San Diego, USA
| | - Anke Leichtle
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
2
|
Fu J, Zong X, Jin M, Min J, Wang F, Wang Y. Mechanisms and regulation of defensins in host defense. Signal Transduct Target Ther 2023; 8:300. [PMID: 37574471 PMCID: PMC10423725 DOI: 10.1038/s41392-023-01553-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
As a family of cationic host defense peptides, defensins are mainly synthesized by Paneth cells, neutrophils, and epithelial cells, contributing to host defense. Their biological functions in innate immunity, as well as their structure and activity relationships, along with their mechanisms of action and therapeutic potential, have been of great interest in recent years. To highlight the key research into the role of defensins in human and animal health, we first describe their research history, structural features, evolution, and antimicrobial mechanisms. Next, we cover the role of defensins in immune homeostasis, chemotaxis, mucosal barrier function, gut microbiota regulation, intestinal development and regulation of cell death. Further, we discuss their clinical relevance and therapeutic potential in various diseases, including infectious disease, inflammatory bowel disease, diabetes and obesity, chronic inflammatory lung disease, periodontitis and cancer. Finally, we summarize the current knowledge regarding the nutrient-dependent regulation of defensins, including fatty acids, amino acids, microelements, plant extracts, and probiotics, while considering the clinical application of such regulation. Together, the review summarizes the various biological functions, mechanism of actions and potential clinical significance of defensins, along with the challenges in developing defensins-based therapy, thus providing crucial insights into their biology and potential clinical utility.
Collapse
Affiliation(s)
- Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
3
|
Leichtle A, Kurabi A, Leffers D, Därr M, Draf CS, Ryan AF, Bruchhage KL. Immunomodulation as a Protective Strategy in Chronic Otitis Media. Front Cell Infect Microbiol 2022; 12:826192. [PMID: 35433505 PMCID: PMC9005906 DOI: 10.3389/fcimb.2022.826192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/03/2022] [Indexed: 12/18/2022] Open
Abstract
Introduction Major features of the pathogenesis in otitis media, the most common disease in childhood, include hyperplasia of the middle ear mucosa and infiltration by leukocytes, both of which typically resolve upon bacterial clearance via apoptosis. Activation of innate immune receptors during the inflammatory process leads to the activation of intracellular transcription factors (such as NF-κB, AP-1), which regulate both the inflammatory response and tissue growth. We investigated these leading signaling pathways in otitis media using mouse models, human samples, and human middle ear epithelial cell (HMEEC) lines for therapeutic immunomodulation. Methods A stable otitis media model in wild-type mice and immunodeficient KO-mice, as well as human tissue samples from chronic otitis media, skin from the external auditory canal and middle ear mucosa removed from patients undergoing ear surgery, were studied. Gene and protein expression of innate immune signaling molecules were evaluated using microarray, qPCR and IHC. In situ apoptosis detection determined the apoptotic rate. The influence of bacterial infection on immunomodulating molecules (TNFα, MDP, Tri-DAP, SB203580, Cycloheximide) in HMEEC was evaluated. HMEEC cells were examined after bacterial stimulation/inhibition for gene expression and cellular growth. Results Persistent mucosal hyperplasia of the middle ear mucosa in chronic otitis media resulted from gene and protein expression of inflammatory and apoptotic genes, including NODs, TNFα, Casp3 and cleaved Casp3. In clinical chronic middle ear samples, these molecules were modulated after a specific stimulation. They also induced a hyposensitive response after bacterial/NOD-/TLR-pathway double stimulation of HMEEC cells in vitro. Hence, they might be suitable targets for immunological therapeutic approaches. Conclusion Uncontrolled middle ear mucosal hyperplasia is triggered by TLRs/NLRs immunoreceptor activation of downstream inflammatory and apoptotic molecules.
Collapse
Affiliation(s)
- Anke Leichtle
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Lübeck, Lübeck, Germany
- *Correspondence: Anke Leichtle,
| | - Arwa Kurabi
- Department of Otolaryngology, University of California, San Diego, San Diego, CA, United States
| | - David Leffers
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Lübeck, Lübeck, Germany
| | - Markus Därr
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Lübeck, Lübeck, Germany
| | - Clara Sophia Draf
- Department of Otolaryngology, University of California, San Diego, San Diego, CA, United States
| | - Allen Frederic Ryan
- Department of Otolaryngology, University of California, San Diego, San Diego, CA, United States
- Research Section, Veterans Affairs (VA) San Diego Healthcare System, La Jolla, CA, United States
| | - Karl-Ludwig Bruchhage
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Lübeck, Lübeck, Germany
| |
Collapse
|
4
|
You MW, Kim D, Lee EH, Park DC, Lee JM, Kang DW, Kim SH, Yeo SG. The Roles of NOD-like Receptors in Innate Immunity in Otitis Media. Int J Mol Sci 2022; 23:ijms23042350. [PMID: 35216465 PMCID: PMC8879371 DOI: 10.3390/ijms23042350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Acute otitis media (AOM) can persist or lead to various complications in individuals in which the innate immune system is impaired. In this context, impaired expression of nucleotide-binding oligomerization domain (NOD)-like receptor (NLR), an intracellular pathogen-recognition receptor (PRR), is involved in the etiology of OM in humans and animals, affecting its development, severity, chronicity, recurrence, and associated complications. To assess this relationship, we reviewed literature reports relating NLR expression patterns with the pathophysiology and clinical features of OM in the larger context of impaired innate immunity. We summarized the results of published studies on the expression of NLRs in animals and humans in acute otitis media (AOM), otitis media with effusion (OME), chronic otitis media (COM) with cholesteatoma, and COM without cholesteatoma. NLRs were expressed mainly in association with bacterial infection in AOM, OME, COM with cholesteatoma, and COM without cholesteatoma. In addition, expression of NLRs was affected by the presence or absence of bacteria, fluid characteristics, disease recurrence, tissue type, and repeated surgery. Various factors of the innate immune system are involved in the pathogenesis of OM in the middle ear. NLRs are expressed in AOM, OME, COM with cholesteatoma, and COM without cholesteatoma. Impaired NLR expression induced the development, chronicity and recurrence of OM and exacerbated associated complications, indicating that NLRs have important roles in the pathogenesis of OM.
Collapse
Affiliation(s)
- Myung-Won You
- Department of Radiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Dokyoung Kim
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Eun-Hye Lee
- Department of Pediatrics, College of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Dong-Choon Park
- St. Vincent’s Hospital, The Catholic University of Korea, Suwon 16247, Korea;
| | - Jae-Min Lee
- Department of Otorhinolaryngology—Head and Neck Surgery, School of Medicine, Kyung Hee University, Seoul 02447, Korea; (J.-M.L.); (D.-W.K.); (S.-H.K.)
| | - Dae-Woong Kang
- Department of Otorhinolaryngology—Head and Neck Surgery, School of Medicine, Kyung Hee University, Seoul 02447, Korea; (J.-M.L.); (D.-W.K.); (S.-H.K.)
| | - Sang-Hoon Kim
- Department of Otorhinolaryngology—Head and Neck Surgery, School of Medicine, Kyung Hee University, Seoul 02447, Korea; (J.-M.L.); (D.-W.K.); (S.-H.K.)
| | - Seung-Geun Yeo
- Department of Otorhinolaryngology—Head and Neck Surgery, School of Medicine, Kyung Hee University, Seoul 02447, Korea; (J.-M.L.); (D.-W.K.); (S.-H.K.)
- Correspondence: ; Tel.: +82-2-958-8474; Fax: +82-2-958-8470
| |
Collapse
|
5
|
Massa HM, Spann KM, Cripps AW. Innate Immunity in the Middle Ear Mucosa. Front Cell Infect Microbiol 2021; 11:764772. [PMID: 34778109 PMCID: PMC8586084 DOI: 10.3389/fcimb.2021.764772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 01/14/2023] Open
Abstract
Otitis media (OM) encompasses a spectrum of clinical presentations ranging from the readily identifiable Acute OM (AOM), which is characterised by otalgia and fever, to chronic otitis media with effusion (COME) where impaired hearing due to middle ear effusion may be the only clinical symptom. Chronic suppurative OM (CSOM) presents as a more severe form of OM, involving perforation of the tympanic membrane. The pathogenesis of OM in these varied clinical presentations is unclear but activation of the innate inflammatory responses to viral and/or bacterial infection of the upper respiratory tract performs an integral role. This localised inflammatory response can persist even after pathogens are cleared from the middle ear, eustachian tubes and, in the case of respiratory viruses, even the nasal compartment. Children prone to OM may experience an over exuberant inflammatory response that underlies the development of chronic forms of OM and their sequelae, including hearing impairment. Treatments for chronic effusive forms of OM are limited, with current therapeutic guidelines recommending a "watch and wait" strategy rather than active treatment with antibiotics, corticosteroids or other anti-inflammatory drugs. Overall, there is a clear need for more targeted and effective treatments that either prevent or reduce the hyper-inflammatory response associated with chronic forms of OM. Improved treatment options rely upon an in-depth understanding of OM pathogenesis, particularly the role of the host innate immune response during acute OM. In this paper, we review the current literature regarding the innate immune response within the middle ear to bacterial and viral otopathogens alone, and as co-infections. This is an important consideration, as the role of respiratory viruses as primary pathogens in OM is not yet fully understood. Furthermore, increased reporting from PCR-based diagnostics, indicates that viral/bacterial co-infections in the middle ear are more common than bacterial infections alone. Increasingly, the mechanisms by which viral/bacterial co-infections may drive or maintain complex innate immune responses and inflammation during OM as a chronic response require investigation. Improved understanding of the pathogenesis of chronic OM, including host innate immune response within the middle ear is vital for development of improved diagnostic and treatment options for our children.
Collapse
Affiliation(s)
- Helen M Massa
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Kirsten M Spann
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Allan W Cripps
- Menzies Health Institute Queensland, School of Medicine, Griffith University, Gold Coast, QLD, Australia.,School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
6
|
Phase Variation in HMW1A Controls a Phenotypic Switch in Haemophilus influenzae Associated with Pathoadaptation during Persistent Infection. mBio 2021; 12:e0078921. [PMID: 34154422 PMCID: PMC8262952 DOI: 10.1128/mbio.00789-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Genetic variants arising from within-patient evolution shed light on bacterial adaptation during chronic infection. Contingency loci generate high levels of genetic variation in bacterial genomes, enabling adaptation to the stringent selective pressures exerted by the host. A significant gap in our understanding of phase-variable contingency loci is the extent of their contribution to natural infections. The human-adapted pathogen nontypeable Haemophilus influenzae (NTHi) causes persistent infections, which contribute to underlying disease progression. The phase-variable high-molecular-weight (HMW) adhesins located on the NTHi surface mediate adherence to respiratory epithelial cells and, depending on the allelic variant, can also confer high epithelial invasiveness or hyperinvasion. In this study, we characterize the dynamics of HMW-mediated hyperinvasion in living cells and identify a specific HMW binding domain shared by hyperinvasive NTHi isolates of distinct pathological origins. Moreover, we observed that HMW expression decreased over time by using a longitudinal set of persistent NTHi strains collected from chronic obstructive pulmonary disease (COPD) patients, resulting from increased numbers of simple-sequence repeats (SSRs) downstream of the functional P2hmw1A promoter, which is the one primarily driving HMW expression. Notably, the increased SSR numbers at the hmw1 promoter region also control a phenotypic switch toward lower bacterial intracellular invasion and higher biofilm formation, likely conferring adaptive advantages during chronic airway infection by NTHi. Overall, we reveal novel molecular mechanisms of NTHi pathoadaptation based on within-patient lifestyle switching controlled by phase variation.
Collapse
|
7
|
Pérez-Cruz M, Koné B, Porte R, Carnoy C, Tabareau J, Gosset P, Trottein F, Sirard JC, Pichavant M, Gosset P. The Toll-Like Receptor 5 agonist flagellin prevents Non-typeable Haemophilus influenzae-induced infection in cigarette smoke-exposed mice. PLoS One 2021; 16:e0236216. [PMID: 33784296 PMCID: PMC8009382 DOI: 10.1371/journal.pone.0236216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/25/2021] [Indexed: 01/13/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide. The major bacterial cause of COPD exacerbations is non-typeable Haemophilus influenzae (NTHi). 25 to over 80% of cases are associated with NTHi. This susceptibility to infection involves a defective production of interleukin (IL)-22 which plays an important role in mucosal defense. Prophylactic administration of flagellin, a Toll-like receptor 5 (TLR5) agonist, protects healthy mice against respiratory pathogenic bacteria. We hypothesized that TLR5-mediated stimulation of lung immunity might prevent COPD exacerbations. Mice chronically exposed to cigarette smoke (CS), which presented COPD symptoms, were infected with NTHi and intraperitoneally treated with recombinant flagellin following a prophylactic or therapeutic protocol. Compared with control, cigarette smoke-exposed mice treated with flagellin showed a lower bacterial load in the airways, the lungs and the blood. This protection was associated with an early neutrophilia, a lower production of pro-inflammatory cytokines and an increased IL-22 production. Flagellin treatment decreased the recruitment of inflammatory cells and the lung damages related to exacerbation. Morover, the protective effect of flagellin against NTHi was altered by treatment with anti-IL-22 blocking antibodies in cigarette smoke-exposed mice and in Il22-/- mice. The effect of flagellin treatment did not implicated the anti-bacterial peptides calgranulins and defensin-β2. This study shows that stimulation of innate immunity by a TLR5 ligand is a potent antibacterial treatment in CS-exposed mice, suggesting innovative therapeutic strategies against acute exacerbation in COPD.
Collapse
Affiliation(s)
- Magdiel Pérez-Cruz
- Univ. Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Bachirou Koné
- Univ. Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Rémi Porte
- Univ. Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Christophe Carnoy
- Univ. Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Julien Tabareau
- Univ. Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Pierre Gosset
- Service d’Anatomo-pathologie, Hôpital Saint Vincent de Paul, Lille, France
| | - François Trottein
- Univ. Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Claude Sirard
- Univ. Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Muriel Pichavant
- Univ. Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Philippe Gosset
- Univ. Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL—Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
8
|
Poh WP, Kicic A, Lester SE, Nguyen PT, Bakaletz LO, Reynolds PN, Hodge S, Roscioli E. COPD-Related Modification to the Airway Epithelium Permits Intracellular Residence of Nontypeable Haemophilus influenzae and May Be Potentiated by Macrolide Arrest of Autophagy. Int J Chron Obstruct Pulmon Dis 2020; 15:1253-1260. [PMID: 32581530 PMCID: PMC7279738 DOI: 10.2147/copd.s245819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/30/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction COPD is an inflammatory airway pathology associated with recurrent infection by nontypeable Haemophilus influenzae (NTHi) that is not effectively managed by macrolide antibiotic therapy. We hypothesised that NTHi is able to reside intracellularly within COPD-derived airway epithelial cells (AEC), and that the factors contained in cigarette smoke when coupled with exposure to erythromycin or azithromycin arrest autophagy, the principle mechanism responsible for clearing intracellular bacteria (called "xenophagy"). Methods Cultures of bronchial airway epithelial cells derived from control and COPD participants were differentiated at an air-liquid interface and exposed to macrolide antibiotics, 10% cigarette smoke-extract (CSE) and NTHi. Markers of autophagic flux and intracellular NTHi were assessed using Western blot analysis and transmission electron microscopy. Results AEC treated with macrolide antibiotics or 10% CSE exhibited a block in autophagic flux as evidenced by a concomitant increase in LC3-II and Sequestosome abundance (vs control; both P < 0.01). While control AEC showed no clear evidence of intracellular NTHi, COPD-derived cultures exhibited abundant NTHi within the cytoplasm. Further, intracellular NTHi that were encapsulated within vesicles propagated from the apical epithelial layer to the basal cell layer. Discussion Taken together, our findings indicate that COPD, cigarette smoke and macrolide antibiotics potentiate the susceptibility to persistent intracellular NTHi. A major mechanism for this is arresting normal autophagic flux in airway epithelial cells. Hence, structural modifications that mitigate this off-target effect of macrolides have significant potential to clear intracellular NTHi and thereby reduce the influence of this pathogen in the airways afflicted by COPD.
Collapse
Affiliation(s)
- Wee-Peng Poh
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands 6009, Western Australia, Australia
| | - Anthony Kicic
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands 6009, Western Australia, Australia.,Occupation and Environment, School of Public Health, Curtin University, Perth 6845, Western Australia, Australia.,School of Biomedical Sciences, The University of Western Australia, Nedlands 6009, Western Australia, Australia.,Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands 6009, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands 6009, Western Australia, Australia
| | - Susan E Lester
- Department of Rheumatology, The Queen Elizabeth Hospital, Woodville, SA, Australia
| | - Phan T Nguyen
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia.,Department of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital and the Ohio State University College of Medicine, Columbus, OH, USA
| | - Paul N Reynolds
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia.,Department of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Sandra Hodge
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia.,Department of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Eugene Roscioli
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia.,Department of Medicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
9
|
Santos-Cortez RLP, Bhutta MF, Earl JP, Hafrén L, Jennings M, Mell JC, Pichichero ME, Ryan AF, Tateossian H, Ehrlich GD. Panel 3: Genomics, precision medicine and targeted therapies. Int J Pediatr Otorhinolaryngol 2020; 130 Suppl 1:109835. [PMID: 32007292 PMCID: PMC7155947 DOI: 10.1016/j.ijporl.2019.109835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To review the most recent advances in human and bacterial genomics as applied to pathogenesis and clinical management of otitis media. DATA SOURCES PubMed articles published since the last meeting in June 2015 up to June 2019. REVIEW METHODS A panel of experts in human and bacterial genomics of otitis media was formed. Each panel member reviewed the literature in their respective fields and wrote draft reviews. The reviews were shared with all panel members, and a merged draft was created. The panel met at the 20th International Symposium on Recent Advances in Otitis Media in June 2019, discussed the review and refined the content. A final draft was made, circulated, and approved by the panel members. CONCLUSION Trans-disciplinary approaches applying pan-omic technologies to identify human susceptibility to otitis media and to understand microbial population dynamics, patho-adaptation and virulence mechanisms are crucial to the development of novel, personalized therapeutics and prevention strategies for otitis media. IMPLICATIONS FOR PRACTICE In the future otitis media prevention strategies may be augmented by mucosal immunization, combination vaccines targeting multiple pathogens, and modulation of the middle ear microbiome. Both treatment and vaccination may be tailored to an individual's otitis media phenotype as defined by molecular profiles obtained by using rapidly developing techniques in microbial and host genomics.
Collapse
Affiliation(s)
- Regie Lyn P. Santos-Cortez
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19 Ave., Aurora, CO 80045, USA
| | - Mahmood F. Bhutta
- Department of ENT, Royal Sussex County Hospital, Eastern Road, Brighton BN2 5BE, UK
| | - Joshua P. Earl
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease; Department of Microbiology and Immunology; Drexel University College of Medicine, 245 N. 15 St., Philadelphia, PA 19102, USA
| | - Lena Hafrén
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Tukholmankatu 8A, 00290 Helsinki, Finland
| | - Michael Jennings
- Institute for Glycomics, Gold Coast campus, Griffith University, QLD 4222, Australia
| | - Joshua C. Mell
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease; Department of Microbiology and Immunology; Drexel University College of Medicine, 245 N. 15 St., Philadelphia, PA 19102, USA
| | - Michael E. Pichichero
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, 1425 Portland Ave., Rochester, NY 14621, USA
| | - Allen F. Ryan
- Department of Surgery/Otolaryngology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Hilda Tateossian
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, Oxford, Didcot OX11 0RD, UK
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease; Department of Microbiology and Immunology; Drexel University College of Medicine, 245 N. 15 St., Philadelphia, PA 19102, USA
| |
Collapse
|
10
|
Lee J, Leichtle A, Zuckerman E, Pak K, Spriggs M, Wasserman SI, Kurabi A. NOD1/NOD2-mediated recognition of non-typeable Haemophilus influenzae activates innate immunity during otitis media. Innate Immun 2019; 25:503-512. [PMID: 31474163 PMCID: PMC6900663 DOI: 10.1177/1753425919872266] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pathogen recognition following infection in mammals depends mainly on TLRs and
NLRs. Herein, we evaluate the role of NOD1 and NOD2 signaling in the
inflammatory responses of the middle ear (ME) mucosa and leukocytes recruitment
to infection site during otitis media (OM). OM is a common pediatric disease
with prevalent repercussions on hearing health. While many risk factors have
been implicated to OM proneness, immunity and the triggering of inflammation are
central to OM pathology. We observed that many genes encoding members of the NOD
leucine-rich repeat and their downstream adaptor/effector molecules were
strongly regulated during the course of OM. When compared to wild type C57BL/6
mice, NOD1- and NOD2-deficient mice were susceptible to prolonged OM infection
by non-typeable Haemophilus influenza. NOD1-deficient mice
appeared to have reduced macrophage enlistment with a delayed inflammatory
response by neutrophils and prolonged mucosal hyperplasia, whereas NOD2
knockouts exhibited an overall reduction in the number of leukocytes recruited
to the ME, leading to delayed bacterial clearance. Altogether, these data show
that the NODs play a role in the pathogenesis and recovery of OM and reinforce
the importance of innate immune signaling in the protective host response.
Collapse
Affiliation(s)
- Jasmine Lee
- Department of Surgery, University of California San Diego, USA
| | - Anke Leichtle
- Department of Surgery, University of California San Diego, USA.,Department of Otolaryngology, University of Lübeck, Germany
| | - Emily Zuckerman
- Department of Surgery, University of California San Diego, USA
| | - Kwang Pak
- Department of Surgery, University of California San Diego, USA.,San Diego Veterans Administration Healthcare System, La Jolla, CA, USA
| | - Meghan Spriggs
- Department of Surgery, University of California San Diego, USA
| | | | - Arwa Kurabi
- Department of Surgery, University of California San Diego, USA.,San Diego Veterans Administration Healthcare System, La Jolla, CA, USA
| |
Collapse
|
11
|
Mukherjee T, Hovingh ES, Foerster EG, Abdel-Nour M, Philpott DJ, Girardin SE. NOD1 and NOD2 in inflammation, immunity and disease. Arch Biochem Biophys 2019; 670:69-81. [DOI: 10.1016/j.abb.2018.12.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022]
|
12
|
Deoxynivalenol Impairs Porcine Intestinal Host Defense Peptide Expression in Weaned Piglets and IPEC-J2 Cells. Toxins (Basel) 2018; 10:toxins10120541. [PMID: 30558299 PMCID: PMC6315515 DOI: 10.3390/toxins10120541] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 11/17/2022] Open
Abstract
Host defense peptides (HDPs) are efficient defense components of the innate immune system, playing critical roles in intestinal homeostasis and protection against pathogens. This study aims to investigate the interference effects of DON on the intestinal porcine HDPs expression in piglets and intestinal porcine epithelial cell line (IPEC-J2) cells, and elucidate the underlying mechanisms through which it functions. In an animal experiment, intestinal HDPs were determined in weaned piglets fed control and 1.28 mg/kg or 2.89 mg/kg DON-contaminated diets. Dietary exposure to DON significantly decreased piglet average daily gain, increased intestinal permeability and depressed the expression of porcine β-defensin1 (pBD1), pBD2, pBD3, epididymis protein 2 splicing variant C (pEP2C), PMAP23, and proline/arginine-rich peptide of 39 amino acids (PR39) in the intestine (p < 0.05). In IPEC-J2 cells, DON decreased cell viability and inhibited the expression of pBD1, pBD3, pEP2C, PG1-5, and PR39 (p < 0.05). NOD2, key regulator that is responsible for HDPs production, was markedly downregulated, whereas caspase-12 was activated in the presence of DON. In conclusion, DON induced caspase-12 activation and inhibited the NOD2-mediated HDPs production, which led to an impaired intestinal barrier integrity of weaned piglets. Our study provides a promising target for future therapeutic strategies to prevent the adverse effects of DON.
Collapse
|
13
|
Lu C, Zhang X, Ma C, Xu W, Gan L, Cui J, Yin Y, Wang H. Nontypeable Haemophilus influenzae DNA stimulates type I interferon expression via STING signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:665-673. [PMID: 29421524 DOI: 10.1016/j.bbamcr.2018.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/12/2017] [Accepted: 01/30/2018] [Indexed: 12/21/2022]
Abstract
Nontypeable Haemophilus influenzae (NTHI) is one of the leading causes of acute exacerbations of COPD (AECOPD). Although the immunoregulation function of NTHI outer member protein and endotoxin were confirmed, the role of NTHI DNA in activating immune responses remains to be elucidated. In this study, we found expression of IFN-β and IFN stimulated gene CXCL10 in host cells was forcefully elevated after treating with NTHI and NTHI DNA. Interestingly, we tested increased level of STING in NTHI infected mice lung. Meanwhile, STING expression in lung of mimic COPD murine model was higher than healthy mice after NTHI infection. Importantly, knockout of STING or overexpression of STING, TBK1 and IRF3 respectively impaired or enhanced IFN-β and CXCL10 expression during treating with NTHI and NTHI DNA. NTHI and NTHI DNA-induced I-IFN response appeared to be mediated by cGAS. Collectively, we suggested that NTHI DNA as a PAMP triggered I-IFN response, which was STING/TBK1/IRF3 dependent. SUMMARY NTHI is the leading cause of acute exacerbations of COPD (AECOPD). Since AECOPD is an immune event, it is meaningful to elucidate the mechanism under NTHI induced immune response. It has been revealed that lipooligosaccharides and protein of NTHI could induce host immune response, but the function of NTHI nuclide acid during infection is unclear. In this research, we demonstrate NTHI DNA is a trigger for I-IFN expression, and the STING/TBK1/IRF3 pathway plays an integral role in sensing NTHI DNA to induce I-IFN expression. Moreover, by long-term intrabronchial infection of LPS, we constructed a mimic COPD murine model, in which the STING expression in lung tissues were higher than healthy mice after NTHI infection, which led us to surmise that NTHI cause AECOPD by inducing I-IFN production via STING signal pathway.
Collapse
Affiliation(s)
- Chang Lu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, 400016 Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, 400016 Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, 400016 Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, 400016 Chongqing, China
| | - Chenyu Ma
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, 400016 Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, 400016 Chongqing, China; Department of Laboratory Diagnosis, The Central Hospital of Xianyang, 712000, Shaanxi, China
| | - Wenchun Xu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, 400016 Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, 400016 Chongqing, China
| | - Lingling Gan
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, 400016 Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, 400016 Chongqing, China
| | - Jin Cui
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, 400016 Chongqing, China; The Center for Clinical Molecular Medical Detection, The first Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, 400016 Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, 400016 Chongqing, China
| | - Hong Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, 400016 Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, 400016 Chongqing, China.
| |
Collapse
|
14
|
Preciado D, Granath A, Lin J, Val S, Kurabi A, Johnston N, Vijayasekaran S, Valdez T, Depireux D, Hermansson A. Panel 8: Report on Recent Advances in Molecular and Cellular Biochemistry. Otolaryngol Head Neck Surg 2017; 156:S106-S113. [PMID: 28372528 DOI: 10.1177/0194599816658290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives To update the medical literature on recent cellular and molecular advances in otitis media disease models with a principal focus on developments in the past 5 years. We also aim to explain recent translational advances in cellular and molecular biology that have influenced our understanding and management of otitis media. Data Sources PubMed-indexed peer-reviewed articles. Review Methods A comprehensive review of the literature was conducted with the term otitis media and the following search terms: molecular biology, cell biology, innate immunity, oxidative stress, mucins, molecular diagnostics. Included articles were published in the English language from January 1, 2010, to July 31, 2015. Implications for Practice The molecular understanding of otitis media disease progression has rapidly advanced over the last 5 years. The roles of inflammation, mucins, and cell signaling mechanisms have been elucidated and defined. Advances in the field provide a plethora of opportunities for innovative molecular targeting in the development of novel therapeutic strategies for otitis media.
Collapse
Affiliation(s)
- Diego Preciado
- 1 Shiekh Zayed Institute for Pediatric Surgical Innovation, Pediatric Otolaryngology, Children's National Health System, Washington, DC, USA
| | - Anna Granath
- 2 Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Jizhen Lin
- 3 Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stéphanie Val
- 1 Shiekh Zayed Institute for Pediatric Surgical Innovation, Pediatric Otolaryngology, Children's National Health System, Washington, DC, USA
| | - Arwa Kurabi
- 4 Division of Otolaryngology, Department of Surgery, University of California, San Diego, California, USA
| | - Nikki Johnston
- 5 Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Shyan Vijayasekaran
- 6 Department of Surgery, Paediatrics and Child Health, University of Western Australia, Perth, Australia
| | - Tulio Valdez
- 7 Division of Pediatric Otolaryngology, Connecticut Children's Hospital, Hartford, Connecticut, USA
| | - Didier Depireux
- 8 Institute for Systems Research, University of Maryland, College Park, Maryland, USA
| | - Ann Hermansson
- 9 Departments of Otolaryngology, Oral and Maxillofacial Surgery, and Pediatrics, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Kyd JM, Hotomi M, Kono M, Kurabi A, Pichichero M, Ryan A, Swords WE, Thornton R. Panel 5: Immunology. Otolaryngol Head Neck Surg 2017; 156:S63-S75. [DOI: 10.1177/0194599816663886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective To perform a state-of-the-art review of the literature from January 2012 through May 2015 on studies that advanced our knowledge of the innate and adaptive immunology related to otitis media. This review also proposes future directions for research in this area. Data Sources PubMed database of the National Library of Medicine. Review Methods Three subpanels comprising experts in the field focused on sections relevant to cytokines, innate immunity, and adaptive immunity. The review focused on animal, cell line, and human studies and was critical in relation to the recommendations from the previous publication and for determination of the proposed goals and priorities. The panel met at the 18th International Symposium on Recent Advances in Otitis Media in June 2015 to consolidate its prior search results and discuss, plan, and refine the review. The panel approved the final draft. Conclusion From 2012 to 2014, tremendous progresses in immunology of otitis media were established—especially in the areas of innate immunity associated with the pathogenesis of otitis media. Implications for Practice The advances of the past 4 years formed the basis for a series of short- and long-term research goals in an effort to guide the field. Accomplishing these goals will provide opportunities for the development of novel interventions, including new ways to better treat and prevent otitis media, especially for recurrent otitis media.
Collapse
Affiliation(s)
| | | | | | - Arwa Kurabi
- University of California, San Diego, California, USA
| | | | - Allen Ryan
- University of California, San Diego, California, USA
| | - W. Edward Swords
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | |
Collapse
|
16
|
Barenkamp SJ, Chonmaitree T, Hakansson AP, Heikkinen T, King S, Nokso-Koivisto J, Novotny LA, Patel JA, Pettigrew M, Swords WE. Panel 4: Report of the Microbiology Panel. Otolaryngol Head Neck Surg 2017; 156:S51-S62. [PMID: 28372529 PMCID: PMC5490388 DOI: 10.1177/0194599816639028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/24/2016] [Indexed: 12/12/2022]
Abstract
Objective To perform a comprehensive review of the literature from July 2011 until June 2015 on the virology and bacteriology of otitis media in children. Data Sources PubMed database of the National Library of Medicine. Review Methods Two subpanels comprising experts in the virology and bacteriology of otitis media were created. Each panel reviewed the relevant literature in the fields of virology and bacteriology and generated draft reviews. These initial reviews were distributed to all panel members prior to meeting together at the Post-symposium Research Conference of the 18th International Symposium on Recent Advances in Otitis Media, National Harbor, Maryland, in June 2015. A final draft was created, circulated, and approved by all panel members. Conclusions Excellent progress has been made in the past 4 years in advancing our understanding of the microbiology of otitis media. Numerous advances were made in basic laboratory studies, in animal models of otitis media, in better understanding the epidemiology of disease, and in clinical practice. Implications for Practice (1) Many viruses cause acute otitis media without bacterial coinfection, and such cases do not require antibiotic treatment. (2) When respiratory syncytial virus, metapneumovirus, and influenza virus peak in the community, practitioners can expect to see an increase in clinical otitis media cases. (3) Biomarkers that predict which children with upper respiratory tract infections will develop otitis media may be available in the future. (4) Compounds that target newly identified bacterial virulence determinants may be available as future treatment options for children with otitis media.
Collapse
Affiliation(s)
- Stephen J. Barenkamp
- Department of Pediatrics, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Tasnee Chonmaitree
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Terho Heikkinen
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Samantha King
- The Research Institute at Nationwide Children’s Hospital and Ohio State University, Columbus, Ohio, USA
| | - Johanna Nokso-Koivisto
- Department of Otorhinolaryngology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Laura A. Novotny
- The Research Institute at Nationwide Children’s Hospital and Ohio State University, Columbus, Ohio, USA
| | - Janak A. Patel
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Melinda Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - W. Edward Swords
- Department of Microbiology and Immunology, Wake Forest University, Winston-Salem, North Carolina, USA
| |
Collapse
|
17
|
Abstract
Acute otitis media, inflammation of the middle ear bulla, is the most common bacterial infection in children. For one of the principal otopathogens, non-typeable Haemophilus influenzae (NTHi), animal models allow us to investigate host-microbial interactions relevant to the onset and progression of infection and to study treatment of middle ear disease. We have established a robust model of NTHi middle ear infection in the Junbo mouse. Intranasal inoculation with NTHi produces high rates of bulla infection and high bacterial titers in bulla fluids; bacteria can also spread down the respiratory tract to the mouse lung. An innate immune response is detected in the bulla of Junbo mice following NTHi infection, and bacteria are maintained in some ears at least up to day 56 post-inoculation. The Junbo/NTHi infection model facilitates studies on bacterial pathogenesis and antimicrobial intervention regimens and vaccines for better treatment and prevention of NTHi middle ear infection. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Michael T Cheeseman
- Developmental Biology Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh, Easter Bush, United Kingdom
| | - Derek W Hood
- Molecular Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| |
Collapse
|
18
|
Transformed Recombinant Enrichment Profiling Rapidly Identifies HMW1 as an Intracellular Invasion Locus in Haemophilus influenza. PLoS Pathog 2016; 12:e1005576. [PMID: 27124727 PMCID: PMC4849778 DOI: 10.1371/journal.ppat.1005576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/23/2016] [Indexed: 12/12/2022] Open
Abstract
Many bacterial species actively take up and recombine homologous DNA into their genomes, called natural competence, a trait that offers a means to identify the genetic basis of naturally occurring phenotypic variation. Here, we describe “transformed recombinant enrichment profiling” (TREP), in which natural transformation is used to generate complex pools of recombinants, phenotypic selection is used to enrich for specific recombinants, and deep sequencing is used to survey for the genetic variation responsible. We applied TREP to investigate the genetic architecture of intracellular invasion by the human pathogen Haemophilus influenzae, a trait implicated in persistence during chronic infection. TREP identified the HMW1 adhesin as a crucial factor. Natural transformation of the hmw1 operon from a clinical isolate (86-028NP) into a laboratory isolate that lacks it (Rd KW20) resulted in ~1,000-fold increased invasion into airway epithelial cells. When a distinct recipient (Hi375, already possessing hmw1 and its paralog hmw2) was transformed by the same donor, allelic replacement of hmw2AHi375 by hmw1A86-028NP resulted in a ~100-fold increased intracellular invasion rate. The specific role of hmw1A86-028NP was confirmed by mutant and western blot analyses. Bacterial self-aggregation and adherence to airway cells were also increased in recombinants, suggesting that the high invasiveness induced by hmw1A86-028NP might be a consequence of these phenotypes. However, immunofluorescence results found that intracellular hmw1A86-028NP bacteria likely invaded as groups, instead of as individual bacterial cells, indicating an emergent invasion-specific consequence of hmw1A-mediated self-aggregation. Many bacteria are naturally competent, actively taking up DNA from their surroundings and incorporating it into their genomes by homologous recombination. This cellular process has had a large impact on the evolution of these species, for example by enabling pathogens to acquire virulence factors and antibiotic resistances from their relatives. But natural competence can also be exploited by researchers to identify the underlying genetic variation responsible for naturally varying phenotypic traits, similar to how eukaryotic geneticists use meiotic recombination during sexual reproduction to create genetically admixed populations. Here we exploited natural competence, phenotypic selection, and deep sequencing to rapidly identify the hmw1 locus as a major contributor to intracellular invasion of airway epithelial cells by the human pathogen Haemophilus influenzae, a trait that likely allows bacterial cells to evade the immune system and therapeutic interventions during chronic infections. Genetic variation in this locus can strongly modulate bacterial intracellular invasion rates, and possession of a certain allele favors adhesion and self-aggregation, which appear to prompt bacteria to invade airway cells as groups, rather than as individuals. Overall, our findings indicate that targeting HMW1 could block the ability of H. influenzae to invade airway cells, which would make antibiotic therapy to treat chronic lung infections more effective. Furthermore, our new approach to identifying the genetic basis of natural phenotypic variation is applicable to a wide-range of phenotypically selectable traits within the widely distributed naturally competent bacterial species, including pathogenesis traits in many human pathogens.
Collapse
|
19
|
Abstract
Otitis media (OM) is a common disease in young children, accounting for more office visits and surgeries than any other pediatric condition. It is associated with an estimated cost of five billion dollars annually in the USA. Moreover, chronic and recurrent middle ear (ME) disease leads to hearing loss during critical periods of language acquisition and learning leading to delays in reaching developmental milestones and risking permanent damage to the ME and inner ear in severe cases. Therefore, research to understand the disease pathogenesis and identify new therapeutics is important. Although OM is a multifactorial disease, targeting the molecular mechanisms that drive inflammation and OM resolution is critical. In this review, we discuss the current evidence suggesting that innate immune receptors and effectors play key roles in OM by mediating both the ME inflammatory responses and recovery.
Collapse
|
20
|
Ovnat Tamir S, Roth Y, Goldfarb A, Grotto I, Marom T. Severity of pneumococcal versus non-pneumococcal acute otitis media in children. Clin Otolaryngol 2016; 40:370-7. [PMID: 25644105 DOI: 10.1111/coa.12384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Pneumococcal acute otitis media (AOM) has been previously considered as a more severe disease than that caused by other otopathogens, based on clinical and/or otologic scores. We sought to test this hypothesis in the pneumococcal conjugated vaccine (PCV) era. METHODS Children <6 years who presented with 'severe' AOM episodes with middle ear fluid (MEF) cultures during 2008-2013 were retrospectively identified. 'Severe' AOM episodes were considered if tympanocentesis was required or if spontaneous otorrhea was present. Data were extracted for demographics, clinical and laboratory tests. Children were categorised according to their PCV status as 'unimmunised' or 'PCV7/PCV13 immunised' and according to their MEF culture results into the 'pneumococcal' or the 'non-pneumococcal' group. Leukocytosis was defined as white blood cells (WBC) count >15 000/μL, and elevated C-reactive protein (CRP) level was considered as >50 mg/L. RESULTS Of 295 eligible AOM episodes, 106 (36%) were culture positive. Children in the pneumococcal group (65, 61%) had a significantly higher WBC counts and higher CRP levels, were more often <2 years old and were more prone to complicate with acute mastoiditis (AM), compared to children in the non-pneumococcal group, P = 0.03, P = 0.02, P = 0.04 and P = 0.03, respectively. In the pneumococcal group, unimmunised children had higher WBC counts when compared with PCV13-immunised children (P = 0.04), but there were no appreciable differences in CRP levels between unimmunised and PCV7/PCV13-immunised children. CONCLUSION Pneumococcal AOM is associated with higher leukocytosis and CRP levels than non-pneumococcal AOM. Circulating Streptococcus pneumoniae strains causing 'severe' AOM in PCV13-immunised children yielded lower inflammatory responses when compared with unimmunised children.
Collapse
Affiliation(s)
- S Ovnat Tamir
- Department of Otolaryngology-Head and Neck Surgery, Edith Wolfson Medical Center, Tel Aviv University Sackler Faculty of Medicine, Holon, Israel
| | - Y Roth
- Department of Otolaryngology-Head and Neck Surgery, Edith Wolfson Medical Center, Tel Aviv University Sackler Faculty of Medicine, Holon, Israel
| | - A Goldfarb
- Department of Otolaryngology-Head and Neck Surgery, Edith Wolfson Medical Center, Tel Aviv University Sackler Faculty of Medicine, Holon, Israel
| | - I Grotto
- Public Health Services, Israel Ministry of Health, Jerusalem, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - T Marom
- Department of Otolaryngology-Head and Neck Surgery, Edith Wolfson Medical Center, Tel Aviv University Sackler Faculty of Medicine, Holon, Israel
| |
Collapse
|