1
|
Hunter CE, Mesfin FM, Manohar K, Liu J, Shelley WC, Brokaw JP, Pecoraro AR, Hosfield BD, Markel TA. Hydrogen Sulfide Improves Outcomes in a Murine Model of Necrotizing Enterocolitis via the Cys440 Residue on Endothelial Nitric Oxide Synthase. J Pediatr Surg 2023; 58:2391-2398. [PMID: 37684170 PMCID: PMC10841167 DOI: 10.1016/j.jpedsurg.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/31/2023] [Accepted: 08/13/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Hydrogen sulfide (H2S) has been shown to improve outcomes in a murine model of necrotizing enterocolitis (NEC). There is evidence in humans that H2S relies on endothelial nitric oxide synthase (eNOS) to exert its protective effects, potentially through the persulfidation of eNOS at the Cysteine 443 residue. We obtained a novel mouse strain with a mutation at this residue (eNOSC440G) and hypothesized that this locus would be critical for GYY4137 (an H2S donor) to exert its protective effects. METHODS Necrotizing enterocolitis was induced in 5-day old wild type (WT) and eNOSC440G mice using intermittent exposure to hypoxia and hypothermia in addition to gavage formula feeds. On postnatal day 9, mice were humanely euthanized. Data collected included daily weights, clinical sickness scores, histologic lung injury, intestinal injury (macroscopically and histologically), and intestinal perfusion. During the NEC model, pups received daily intraperitoneal injections of either GYY4137 (50 mg/kg) or PBS (vehicle). Data were tested for normality and compared using t-test or Mann-Whitney, and a p-value <0.05 was considered significant. RESULTS In WT mice, the administration of GYY4137 significantly improved clinical sickness scores, attenuated intestinal and lung injury, and improved mesenteric perfusion compared to vehicle (p < 0.05). In eNOSC440G mice, the treatment and vehicle groups had similar clinical sickness scores, intestinal and lung injury scores, and intestinal perfusion. CONCLUSIONS GYY4137 administration improves clinical outcomes, attenuates intestinal and lung injury, and improves perfusion in a murine model of necrotizing enterocolitis. The beneficial effects of GYY4137 are dependent on the Cys440 residue of eNOS.
Collapse
Affiliation(s)
- Chelsea E Hunter
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fikir M Mesfin
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Krishna Manohar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jianyun Liu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - John P Brokaw
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anthony R Pecoraro
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brian D Hosfield
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Troy A Markel
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Turhan K, Alan E, Yetik-Anacak G, Sevin G. H2S releasing sodium sulfide protects against pulmonary hypertension by improving vascular responses in monocrotaline-induced pulmonary hypertension. Eur J Pharmacol 2022; 931:175182. [DOI: 10.1016/j.ejphar.2022.175182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022]
|
3
|
Pozzi G, Masselli E, Gobbi G, Mirandola P, Taborda-Barata L, Ampollini L, Carbognani P, Micheloni C, Corazza F, Galli D, Carubbi C, Vitale M. Hydrogen Sulfide Inhibits TMPRSS2 in Human Airway Epithelial Cells: Implications for SARS-CoV-2 Infection. Biomedicines 2021; 9:1273. [PMID: 34572459 PMCID: PMC8469712 DOI: 10.3390/biomedicines9091273] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 12/23/2022] Open
Abstract
The COVID-19 pandemic has now affected around 190 million people worldwide, accounting for more than 4 million confirmed deaths. Besides ongoing global vaccination, finding protective and therapeutic strategies is an urgent clinical need. SARS-CoV-2 mostly infects the host organism via the respiratory system, requiring angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) to enter target cells. Therefore, these surface proteins are considered potential druggable targets. Hydrogen sulfide (H2S) is a gasotransmitter produced by several cell types and is also part of natural compounds, such as sulfurous waters that are often inhaled as low-intensity therapy and prevention in different respiratory conditions. H2S is a potent biological mediator, with anti-oxidant, anti-inflammatory, and, as more recently shown, also anti-viral activities. Considering that respiratory epithelial cells can be directly exposed to H2S by inhalation, here we tested the in vitro effects of H2S-donors on TMPRSS2 and ACE2 expression in human upper and lower airway epithelial cells. We showed that H2S significantly reduces the expression of TMPRSS2 without modifying ACE2 expression both in respiratory cell lines and primary human upper and lower airway epithelial cells. Results suggest that inhalational exposure of respiratory epithelial cells to natural H2S sources may hinder SARS-CoV-2 entry into airway epithelial cells and, consequently, potentially prevent the virus from spreading into the lower respiratory tract and the lung.
Collapse
Affiliation(s)
- Giulia Pozzi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Elena Masselli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Giuliana Gobbi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Prisco Mirandola
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Luis Taborda-Barata
- CICS-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal;
| | - Luca Ampollini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Paolo Carbognani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Cristina Micheloni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Francesco Corazza
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Daniela Galli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Cecilia Carubbi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
- Italian Foundation for Research in Balneotherapy (FoRST), 00198 Rome, Italy
| |
Collapse
|
4
|
Pacitti D, Scotton CJ, Kumar V, Khan H, Wark PAB, Torregrossa R, Hansbro PM, Whiteman M. Gasping for Sulfide: A Critical Appraisal of Hydrogen Sulfide in Lung Disease and Accelerated Aging. Antioxid Redox Signal 2021; 35:551-579. [PMID: 33736455 DOI: 10.1089/ars.2021.0039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule involved in a plethora of physiological and pathological processes. It is primarily synthesized by cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase as a metabolite of the transsulfuration pathway. H2S has been shown to exert beneficial roles in lung disease acting as an anti-inflammatory and antiviral and to ameliorate cell metabolism and protect from oxidative stress. H2S interacts with transcription factors, ion channels, and a multitude of proteins via post-translational modifications through S-persulfidation ("sulfhydration"). Perturbation of endogenous H2S synthesis and/or levels have been implicated in the development of accelerated lung aging and diseases, including asthma, chronic obstructive pulmonary disease, and fibrosis. Furthermore, evidence indicates that persulfidation is decreased with aging. Here, we review the use of H2S as a biomarker of lung pathologies and discuss the potential of using H2S-generating molecules and synthesis inhibitors to treat respiratory diseases. Furthermore, we provide a critical appraisal of methods of detection used to quantify H2S concentration in biological samples and discuss the challenges of characterizing physiological and pathological levels. Considerations and caveats of using H2S delivery molecules, the choice of generating molecules, and concentrations are also reviewed. Antioxid. Redox Signal. 35, 551-579.
Collapse
Affiliation(s)
- Dario Pacitti
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Chris J Scotton
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Vinod Kumar
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Haroon Khan
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Roberta Torregrossa
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, Australia
| | - Matthew Whiteman
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
5
|
Roubenne L, Marthan R, Le Grand B, Guibert C. Hydrogen Sulfide Metabolism and Pulmonary Hypertension. Cells 2021; 10:cells10061477. [PMID: 34204699 PMCID: PMC8231487 DOI: 10.3390/cells10061477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pulmonary hypertension (PH) is a severe and multifactorial disease characterized by a progressive elevation of pulmonary arterial resistance and pressure due to remodeling, inflammation, oxidative stress, and vasoreactive alterations of pulmonary arteries (PAs). Currently, the etiology of these pathological features is not clearly understood and, therefore, no curative treatment is available. Since the 1990s, hydrogen sulfide (H2S) has been described as the third gasotransmitter with plethoric regulatory functions in cardiovascular tissues, especially in pulmonary circulation. Alteration in H2S biogenesis has been associated with the hallmarks of PH. H2S is also involved in pulmonary vascular cell homeostasis via the regulation of hypoxia response and mitochondrial bioenergetics, which are critical phenomena affected during the development of PH. In addition, H2S modulates ATP-sensitive K+ channel (KATP) activity, and is associated with PA relaxation. In vitro or in vivo H2S supplementation exerts antioxidative and anti-inflammatory properties, and reduces PA remodeling. Altogether, current findings suggest that H2S promotes protective effects against PH, and could be a relevant target for a new therapeutic strategy, using attractive H2S-releasing molecules. Thus, the present review discusses the involvement and dysregulation of H2S metabolism in pulmonary circulation pathophysiology.
Collapse
Affiliation(s)
- Lukas Roubenne
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut-Lévêque, F-33604 Pessac, France; (L.R.); (R.M.)
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ Bordeaux, U1045, 146 Rue Léo Saignat, F-33000 Bordeaux, France
- OP2 Drugs, Avenue du Haut Lévêque, F-33604 Pessac, France;
| | - Roger Marthan
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut-Lévêque, F-33604 Pessac, France; (L.R.); (R.M.)
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ Bordeaux, U1045, 146 Rue Léo Saignat, F-33000 Bordeaux, France
- CHU de Bordeaux, Avenue du Haut Lévêque, F-33604 Pessac, France
| | - Bruno Le Grand
- OP2 Drugs, Avenue du Haut Lévêque, F-33604 Pessac, France;
| | - Christelle Guibert
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut-Lévêque, F-33604 Pessac, France; (L.R.); (R.M.)
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ Bordeaux, U1045, 146 Rue Léo Saignat, F-33000 Bordeaux, France
- Correspondence:
| |
Collapse
|
6
|
Abstract
PURPOSE Hydrogen sulfide (H2S) has many beneficial biological properties, including the ability to promote vasodilation. It has been shown to be released from stem cells and increased by hypoxia. Therefore, H2S may be an important paracrine factor in stem cell-mediated intestinal protection. We hypothesized that H2S created through conventional pathways would be a critical component of stem cell-mediated intestinal protection after ischemic injury. METHODS Human bone marrow-derived mesenchymal stem cells (BMSCs) were transfected with negative control siRNA (Scramble), or with siRNA to CBS, MPST, or CTH. Knockdown was confirmed with PCR and H2S gas assessed with AzMC fluorophore. Eight-week-old male mice then underwent intestinal ischemia for 60 min, after which time, perfusion was restored. BMSCs from each of the above groups were then placed into the mouse abdominal cavity before final closure. After 24 h, mice were reanesthetized and mesenteric perfusion was assessed by Laser Doppler Imaging (LDI). Animals were then sacrificed and intestines excised, placed in formalin, paraffin embedded, and stained with H & E. Intestines were then scored with a common mucosal injury grading scale. RESULTS PCR confirmed knockdown of conventional H2S-producing enzymes (CBS, MPST, CTH). H2S gas was decreased in MPST and CTH-transfected cells in normoxic conditions, but was not decreased compared with Scramble in any of the transfected groups in hypoxic conditions. BMSCs promoted increased mesenteric perfusion at 24 h postischemia compared with vehicle. Transfected stem cells provided equivalent protection. Histologic injury was improved with BMSCs compared with vehicle. CBS, MPST, and CTH knockdown cell lines did not have any worse histological injury compared with Scramble. CONCLUSIONS Knocking down conventional H2S-producing enzymes only impacted gas production in normoxic conditions. When cells were transfected in hypoxic conditions, as would be expected in the ischemic intestines, H2S gas was not depressed. These data, along with unchanged perfusion and histological injury parameters with conventional enzyme knockdown, would indicate that alternative H2S production pathways may be initiated during hypoxic and/or ischemic events.
Collapse
|
7
|
Jiang R, Han L, Gao Q, Chao J. ZC3H4 mediates silica-induced EndoMT via ER stress and autophagy. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 84:103605. [PMID: 33545378 DOI: 10.1016/j.etap.2021.103605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Inflammatory reactions induced by alveolar macrophages and excessive fibroblast activation lead to pulmonary fibrosis in silicosis. The endothelial-mesenchymal transition (EndoMT) is a key source of myofibroblasts. ZC3H4 is a member of the CCCH zinc finger protein family that participates in macrophage activation and epithelial mesenchymal transition (EMT). However, whether ZC3H4 is involved in EndoMT in silicosis has not yet been elucidated. Therefore, we conducted further studies into the role of ZC3H4 in silica-induced EndoMT in pulmonary vessels. METHODS Western blotting and immunofluorescence staining were used to detect the regulatory influences of SiO2 on pulmonary fibrosis and EndoMT. ZC3H4 was specifically downregulated using CRISPR/Cas9 to explore whether ZC3H4 regulated EndoMT during silicosis. C57BL/6 J mice were administered with SiO2 via the trachea to establish a silicosis animal model. RESULTS 1) SiO2 exposure increased ZC3H4 expression in pulmonary vessels. 2) ZC3H4 was involved in EndoMT induced by silica. 3) ZC3H4 mediated EndoMT via endoplasmic reticulum stress (ER stress) and autophagy. CONCLUSIONS ZC3H4 greatly affects the progression of SiO2-induced EndoMT via ER stress and autophagy, which provides the possibility that ZC3H4 may become a novel target in pulmonary fibrosis treatment.
Collapse
Affiliation(s)
- Rong Jiang
- Department of Clinical Nursing, School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Lei Han
- Department of Occupation Disease Prevention and Cure, Center for Disease Control and Prevention, Nanjing, Jiangsu, 210009, China
| | - Qianqian Gao
- Department of Occupation Disease Prevention and Cure, Center for Disease Control and Prevention, Nanjing, Jiangsu, 210009, China
| | - Jie Chao
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
8
|
The Role of Hydrogen Sulfide in Respiratory Diseases. Biomolecules 2021; 11:biom11050682. [PMID: 34062820 PMCID: PMC8147381 DOI: 10.3390/biom11050682] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/08/2023] Open
Abstract
Respiratory diseases are leading causes of death and disability around the globe, with a diverse range of health problems. Treatment of respiratory diseases and infections has been verified to be thought-provoking because of the increasing incidence and mortality rate. Hydrogen sulfide (H2S) is one of the recognized gaseous transmitters involved in an extensive range of cellular functions, and physiological and pathological processes in a variety of diseases, including respiratory diseases. Recently, the therapeutic potential of H2S for respiratory diseases has been widely investigated. H2S plays a vital therapeutic role in obstructive respiratory disease, pulmonary fibrosis, emphysema, pancreatic inflammatory/respiratory lung injury, pulmonary inflammation, bronchial asthma and bronchiectasis. Although the therapeutic role of H2S has been extensively studied in various respiratory diseases, a concrete literature review will have an extraordinary impact on future therapeutics. This review provides a comprehensive overview of the effective role of H2S in respiratory diseases. Besides, we also summarized H2S production in the lung and its metabolism processes in respiratory diseases.
Collapse
|
9
|
Ganguly A, Ofman G, Vitiello PF. Hydrogen Sulfide-Clues from Evolution and Implication for Neonatal Respiratory Diseases. CHILDREN (BASEL, SWITZERLAND) 2021; 8:213. [PMID: 33799529 PMCID: PMC7999351 DOI: 10.3390/children8030213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022]
Abstract
Reactive oxygen species (ROS) have been the focus of redox research in the realm of oxidative neonatal respiratory diseases such as bronchopulmonary dysplasia (BPD). Over the years, nitric oxide (NO) and carbon monoxide (CO) have been identified as important gaseous signaling molecules involved in modulating the redox homeostasis in the developing lung. While animal data targeting aspects of these redox pathways have been promising in treating and/or preventing experimental models of neonatal lung disease, none are particularly effective in human neonatal clinical trials. In recent years, hydrogen sulfide (H2S) has emerged as a novel gasotransmitter involved in a magnitude of cellular signaling pathways and functions. The importance of H2S signaling may lie in the fact that early life-forms evolved in a nearly anoxic, sulfur-rich environment and were dependent on H2S for energy. Recent studies have demonstrated an important role of H2S and its synthesizing enzymes in lung development, which normally takes place in a relatively hypoxic intrauterine environment. In this review, we look at clues from evolution and explore the important role that the H2S signaling pathway may play in oxidative neonatal respiratory diseases and discuss future opportunities to explore this phenomenon in the context of neonatal chronic lung disease.
Collapse
Affiliation(s)
- Abhrajit Ganguly
- Center for Pregnancy and Newborn Research, Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.O.); (P.F.V.)
| | | | | |
Collapse
|
10
|
Schiliro M, Bartman CM, Pabelick C. Understanding hydrogen sulfide signaling in neonatal airway disease. Expert Rev Respir Med 2021; 15:351-372. [PMID: 33086886 PMCID: PMC10599633 DOI: 10.1080/17476348.2021.1840981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Airway dysfunction leading to chronic lung disease is a common consequence of premature birth and mechanisms responsible for early and progressive airway remodeling are not completely understood. Current therapeutic options are only partially effective in reducing the burden of neonatal airway disease and premature decline of lung function. Gasotransmitter hydrogen sulfide (H2S) has been recently recognized for its therapeutic potential in lung diseases. AREAS COVERED Contradictory to its well-known toxicity at high concentrations, H2S has been characterized to have anti-inflammatory, antioxidant, and antiapoptotic properties at physiological concentrations. In the respiratory system, endogenous H2S production participates in late lung development and exogenous H2S administration has a protective role in a variety of diseases such as acute lung injury and chronic pulmonary hypertension and fibrosis. Literature searches performed using NCBI PubMed without publication date limitations were used to construct this review, which highlights the dichotomous role of H2S in the lung, and explores its promising beneficial effects in lung diseases. EXPERT OPINION The emerging role of H2S in pathways involved in chronic lung disease of prematurity along with its recent use in animal models of BPD highlight H2S as a potential novel candidate in protecting lung function following preterm birth.
Collapse
Affiliation(s)
- Marta Schiliro
- Departments of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | | | - Christina Pabelick
- Departments of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
11
|
Lignelli E, Palumbo F, Bayindir SG, Nagahara N, Vadász I, Herold S, Seeger W, Morty RE. The H 2S-generating enzyme 3-mercaptopyruvate sulfurtransferase regulates pulmonary vascular smooth muscle cell migration and proliferation but does not impact normal or aberrant lung development. Nitric Oxide 2021; 107:31-45. [PMID: 33338600 DOI: 10.1016/j.niox.2020.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/07/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
Along with nitric oxide (NO), the gasotransmitters carbon monoxide (CO) and hydrogen sulfide (H2S) are emerging as potentially important players in newborn physiology, as mediators of newborn disease, and as new therapeutic modalities. Several recent studies have addressed H2S in particular in animal models of bronchopulmonary dysplasia (BPD), a common complication of preterm birth where oxygen toxicity stunts lung development. In those studies, exogenous H2S attenuated the impact of oxygen toxicity on lung development, and two H2S-generating enzymes were documented to affect pulmonary vascular development. H2S is directly generated endogenously by three enzymes, one of which, 3-mercaptopyruvate sulfurtransferase (MPST), has not been studied in the lung. In a hyperoxia-based animal model of BPD, oxygen exposure deregulated MPST expression during post-natal lung development, where MPST was localized to the smooth muscle layer of the pulmonary vessels in developing lungs. siRNA-mediated abrogation of MPST expression in human pulmonary artery smooth muscle cells in vitro limited baseline cell migration and cell proliferation, without affecting apoptosis or cell viability. In vivo, MPST was dispensable for normal lung development in Mpst-/-mice, and MPST did not contribute to stunted lung development driven by hyperoxia exposure, assessed by design-based stereology. These data demonstrate novel roles for MPST in pulmonary vascular smooth muscle cell physiology. The potential caveats of using Mpst-/- mice to study normal and aberrant lung development are also discussed, highlighting the possible confounding, compensatory effects of other H2S-generating enzymes that are present alongside MPST in the smooth muscle compartment of developing pulmonary vessels.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Selahattin Görkem Bayindir
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Noriyuki Nagahara
- Isotope Research Laboratory, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - István Vadász
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany; CardioPulmonary Institute, Justus Liebig University Giessen, Klinikstrasse 33, Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany; CardioPulmonary Institute, Justus Liebig University Giessen, Klinikstrasse 33, Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany; Institute for Lung Health (ILH), Justus Liebig University Giessen, Aulweg 130, Giessen, Germany; CardioPulmonary Institute, Justus Liebig University Giessen, Klinikstrasse 33, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany; CardioPulmonary Institute, Justus Liebig University Giessen, Klinikstrasse 33, Giessen, Germany.
| |
Collapse
|
12
|
Singh SP, Devadoss D, Manevski M, Sheybani A, Ivanciuc T, Exil V, Agarwal H, Raizada V, Garofalo RP, Chand HS, Sopori ML. Gestational Exposure to Cigarette Smoke Suppresses the Gasotransmitter H 2S Biogenesis and the Effects Are Transmitted Transgenerationally. Front Immunol 2020; 11:1628. [PMID: 32849552 PMCID: PMC7399059 DOI: 10.3389/fimmu.2020.01628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Gestational cigarette smoke (CS) impairs lung angiogenesis and alveolarization, promoting transgenerational development of asthma and bronchopulmonary dysplasia (BPD). Hydrogen sulfide (H2S), a proangiogenic, pro-alveolarization, and anti-asthmatic gasotransmitter is synthesized by cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS), and 3-mercaptopyruvate sulfur transferase (3MST). Objective: Determine if gestational CS exposure affected the expression of H2S synthesizing enzymes in the mouse lung and human placenta. Methods: Mice were exposed throughout gestational period to secondhand CS (SS) at approximating the dose of CS received by a pregnant woman sitting in a smoking bar for 3 h/days during pregnancy. Lungs from 7-days old control and SS-exposed pups and human placenta from mothers who were either non-smokers or smokers during pregnancy were analyzed for expression of the enzymes. Measurements: Mouse lungs and human placentas were examined for the expression of CSE, CBS, and 3MST by immunohistochemical staining, qRT-PCR and/or Western blot (WB) analyses. Results: Compared to controls, mouse lung exposed gestationally to SS had significantly lower levels of CSE, CBS, and 3MST. Moreover, the SS-induced suppression of CSE and CBS in F1 lungs was transmitted to the F2 generation without significant change in the magnitude of the suppression. These changes were associated with impaired epithelial-mesenchymal transition (EMT)-a process required for normal lung angiogenesis and alveolarization. Additionally, the placentas from mothers who smoked during pregnancy, expressed significantly lower levels of CSE, CBS, and 3MST, and the effects were partially moderated by quitting smoking during the first trimester. Conclusions: Lung H2S synthesizing enzymes are downregulated by gestational CS and the effects are transmitted to F2 progeny. Smoking during pregnancy decreases H2S synthesizing enzymes is human placentas, which may correlate with the increased risk of asthma/BPD in children.
Collapse
Affiliation(s)
- Shashi P. Singh
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Dinesh Devadoss
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Marko Manevski
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Aryaz Sheybani
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Teodora Ivanciuc
- Department of Microbiology and Immunology, Galveston, TX, United States
| | - Vernat Exil
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Hemant Agarwal
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Veena Raizada
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | | | - Hitendra S. Chand
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Mohan L. Sopori
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| |
Collapse
|
13
|
Abstract
The outbreak of COVID-19 pneumonia caused by a new coronavirus (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) is posing a global health emergency and has led to more than 380,000 deaths worldwide. The cell entry of SARS-CoV-2 depends on two host proteins angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). There is currently no vaccine available and also no effective drug for the treatment of COVID-19. Hydrogen sulfide (H2S) as a novel gasotransmitter has been shown to protect against lung damage via its anti-inflammation, antioxidative stress, antiviral, prosurvival, and antiaging effects. In light of the research advances on H2S signaling in biology and medicine, this review proposed H2S as a potential defense against COVID-19. It is suggested that H2S may block SARS-CoV-2 entry into host cells by interfering with ACE2 and TMPRSS2, inhibit SARS-CoV-2 replication by attenuating virus assembly/release, and protect SARS-CoV-2-induced lung damage by suppressing immune response and inflammation development. Preclinical studies and clinical trials with slow-releasing H2S donor(s) or the activators of endogenous H2S-generating enzymes should be considered as a preventative treatment or therapy for COVID-19.
Collapse
Affiliation(s)
- Guangdong Yang
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Ontario, Canada.,Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
14
|
O'Reilly M, Möbius MA, Vadivel A, Ionescu L, Fung M, Eaton F, Greer JJ, Thébaud B. Late Rescue Therapy with Cord-Derived Mesenchymal Stromal Cells for Established Lung Injury in Experimental Bronchopulmonary Dysplasia. Stem Cells Dev 2020; 29:364-371. [PMID: 31918630 DOI: 10.1089/scd.2019.0116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD), the main complication of extreme prematurity, has lifelong consequences for lung health. Mesenchymal stromal cells (MSCs) prevent lung injury in experimental BPD in newborn rodents when given in the immediate neonatal period. Whether MSC therapy can restore normal lung growth after established lung injury in adulthood is clinically relevant, but currently unknown. Experimental BPD was achieved by exposing newborn rats to 95% O2 from postnatal days 4-14. Human umbilical cord-derived MSCs were intratracheally administered to rats (1 × 106cells/kg body weight) as a single dose at 3 or 6 months of age followed by assessment at 5 or 8 months of age, respectively. Lung alveolar structure and vessel density were histologically analyzed. O2-exposed rats exhibited persistent lung injury characterized by arrested alveolar growth with airspace enlargement and a lower vessel density at both 5 and 8 months of age compared with controls. Single-dose MSC treatment at 3 months partially attenuated O2-induced alveolar injury and restored vessel density at 5 months. Treatment with a single dose at 6 months did not attenuate alveolar injury or vessel density at 8 months. However, treatment with multiple MSC doses at 6, 6.5, 7, and 7.5 months significantly attenuated alveolar injury and improved vessel density at 8 months of age. Treatment of the adult BPD lung with MSCs has the potential to improve lung injury if administered in multiple doses or at an early stage of adulthood.
Collapse
Affiliation(s)
- Megan O'Reilly
- Department of Pediatrics, University of Alberta, Edmonton, Canada.,Women and Children's Health Research Institute, and University of Alberta, Edmonton, Canada.,Department of Physiology, University of Alberta, Edmonton, Canada
| | - Marius A Möbius
- Department of Pediatrics, University of Alberta, Edmonton, Canada.,Women and Children's Health Research Institute, and University of Alberta, Edmonton, Canada
| | - Arul Vadivel
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Sinclair Center for Regenerative Medicine, Ottawa, Canada
| | - Lavinia Ionescu
- Department of Pediatrics, University of Alberta, Edmonton, Canada.,Women and Children's Health Research Institute, and University of Alberta, Edmonton, Canada
| | - Moses Fung
- Department of Pediatrics, University of Alberta, Edmonton, Canada.,Women and Children's Health Research Institute, and University of Alberta, Edmonton, Canada
| | - Farah Eaton
- Department of Pediatrics, University of Alberta, Edmonton, Canada.,Women and Children's Health Research Institute, and University of Alberta, Edmonton, Canada
| | - John J Greer
- Women and Children's Health Research Institute, and University of Alberta, Edmonton, Canada.,Department of Physiology, University of Alberta, Edmonton, Canada
| | - Bernard Thébaud
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Sinclair Center for Regenerative Medicine, Ottawa, Canada.,Children's Hospital of Eastern Ontario, Ottawa, Canada
| |
Collapse
|
15
|
Lin H, Wang X. The effects of gasotransmitters on bronchopulmonary dysplasia. Eur J Pharmacol 2020; 873:172983. [PMID: 32017936 DOI: 10.1016/j.ejphar.2020.172983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
Bronchopulmonary dysplasia (BPD), which remains a major clinical problem for preterm infants, is caused mainly by hyperoxia, mechanical ventilation and inflammation. Many approaches have been developed with the aim of decreasing the incidence of or alleviating BPD, but effective methods are still lacking. Gasotransmitters, a type of small gas molecule that can be generated endogenously, exert a protective effect against BPD-associated lung injury; nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are three such gasotransmitters. The protective effects of NO have been extensively studied in animal models of BPD, but the results of these studies are inconsistent with those of clinical trials. NO inhalation seems to have no effect on BPD, although side effects have been reported. NO inhalation is not recommended for BPD treatment in preterm infants, except those with severe pulmonary hypertension. Both CO and H2S decreased lung injury in BPD rodent models in preclinical studies. Another small gas molecule, hydrogen, exerts a protective effect against BPD. The nuclear factor erythroid-derived 2 (Nrf2)/heme oxygenase-1 (HO-1) axis seems to play a central role in the protective effect of these gasotransmitters on BPD. Gasotransmitters play important roles in mammals, but further clinical trials are needed to explore their effects on BPD.
Collapse
Affiliation(s)
- Hai Lin
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Xinbao Wang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
16
|
Syntheses and structural characterization of new trans-bis-[n-butyl-(p-methoxyphenyl) dithiophosphinato] nickel(II), the pyridine derivative thereof, and bis-{bis-[n-butyl-(p-methoxyphenyl) dithiophosphinato]cobalt(II)} complexes. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Te Winkel J, John QE, Hosfield BD, Drucker NA, Das A, Olson KR, Markel TA. Mesenchymal stem cells promote mesenteric vasodilation through hydrogen sulfide and endothelial nitric oxide. Am J Physiol Gastrointest Liver Physiol 2019; 317:G441-G446. [PMID: 31343254 PMCID: PMC6842994 DOI: 10.1152/ajpgi.00132.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mesenteric ischemia is a devastating process that can result in intestinal necrosis. Mesenchymal stem cells (MSCs) are becoming a promising treatment modality. We hypothesized that 1) MSCs would promote vasodilation of mesenteric arterioles, 2) hydrogen sulfide (H2S) would be a critical paracrine factor of stem cell-mediated vasodilation, 3) mesenteric vasodilation would be impaired in the absence of endothelial nitric oxide synthase (eNOS) within the host tissue, and 4) MSCs would improve the resistin-to-adiponectin ratio in mesenteric vessels. H2S was measured with a specific fluorophore (7-azido-3-methylcoumarin) in intact MSCs and in cells with the H2S-producing enzyme cystathionine β synthase (CBS) knocked down with siRNA. Mechanical responses of isolated second- and third-order mesenteric arteries (MAs) from wild-type and eNOS knockout (eNOSKO) mice were monitored with pressure myography, after which the vessels were snap frozen and later analyzed for resistin and adiponectin via multiplex beaded assay. Addition of MSCs to the myograph bath significantly increased vasodilation of norepinephrine-precontracted MAs. Knockdown of CBS in MSCs decreased H2S production by MSCs and also decreased MSC-initiated MA dilation. MSC-initiated vasodilation was further reduced in eNOSKO vessels. The MA resistin-to-adiponectin ratio was higher in eNOSKO vessels compared with wild-type. These results show that MSC treatment promotes dilation of MAs by an H2S-dependent mechanism. Furthermore, functional eNOS within the host mesenteric bed appears to be essential for maximum stem cell therapeutic benefit, which may be attributable, in part, to modifications in the resistin-to-adiponectin ratio.NEW & NOTEWORTHY Stem cells have been shown to improve survival, mesenteric perfusion, and histological injury scores following intestinal ischemia. These benefits may be due to the paracrine release of hydrogen sulfide. In an ex vivo pressure myography model, we observed that mesenteric arterial dilation improved with stem cell treatment. Hydrogen sulfide release from stem cells and endothelial nitric oxide synthase within the vessels were critical components of optimizing stem cell-mediated mesenteric artery dilation.
Collapse
Affiliation(s)
- Jan Te Winkel
- 1Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana,2Indiana University School of Medicine, Indianapolis, Indiana
| | - Quincy E. John
- 1Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana,2Indiana University School of Medicine, Indianapolis, Indiana
| | - Brian D. Hosfield
- 1Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana,2Indiana University School of Medicine, Indianapolis, Indiana
| | - Natalie A. Drucker
- 1Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana,2Indiana University School of Medicine, Indianapolis, Indiana
| | - Amitava Das
- 1Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana,2Indiana University School of Medicine, Indianapolis, Indiana,3Indiana Center for Regenerative Medicine and Engineering, Indianapolis, Indiana
| | - Ken R. Olson
- 4Indiana University School of Medicine, South Bend, Indiana
| | - Troy A. Markel
- 1Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana,2Indiana University School of Medicine, Indianapolis, Indiana,5Riley Hospital for Children at Indiana University Health, Indianapolis, Indiana
| |
Collapse
|
18
|
Girard‐Bock C, de Araújo CC, Bertagnolli M, Mai‐Vo T, Vadivel A, Alphonse RS, Zhong S, Cloutier A, Sutherland MR, Thébaud B, Nuyt AM. Endothelial colony-forming cell therapy for heart morphological changes after neonatal high oxygen exposure in rats, a model of complications of prematurity. Physiol Rep 2018; 6:e13922. [PMID: 30485704 PMCID: PMC6260919 DOI: 10.14814/phy2.13922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 10/21/2018] [Indexed: 12/28/2022] Open
Abstract
Very preterm birth is associated with increased cardiovascular diseases and changes in myocardial structure. The current study aimed to investigate the impact of endothelial colony-forming cell (ECFC) treatment on heart morphological changes in the experimental model of neonatal high oxygen (O2 )-induced cardiomyopathy, mimicking prematurity-related conditions. Sprague-Dawley rat pups exposed to 95% O2 or room air (RA) from day 4 (P4) to day 14 (P14) were randomized to receive (jugular vein) exogenous human cord blood ECFC or vehicle at P14 (n = 5 RA-vehicle, n = 8 RA-ECFC, n = 8 O2 -vehicle and n = 7 O2 -ECFC) and the hearts collected at P28. Body and heart weights and heart to body weight ratio did not differ between groups. ECFC treatment prevented the increase in cardiomyocyte surface area in both the left (LV) and right (RV) ventricles of the O2 group (O2 -ECFC vs. O2 -vehicle LV: 121 ± 13 vs. 179 ± 21 μm2 , RV: 118 ± 12 vs. 169 ± 21 μm2 ). In O2 rats, ECFC treatment was also associated with a significant reduction in interstitial fibrosis in both ventricles (O2 -ECFC vs. O2 -vehicle LV: 1.07 ± 0.47 vs. 1.68 ± 0.41% of surface area, RV: 1.01 ± 0.74 vs. 1.77 ± 0.67%) and in perivascular fibrosis in the LV (2.29 ± 0.47 vs. 3.85 ± 1.23%) but in not the RV (1.95 ± 0.95 vs. 2.74 ± 1.14), and with increased expression of angiogenesis marker CD31. ECFC treatment had no effect on cardiomyocyte surface area or on tissue fibrosis of RA rats. Human cord blood ECFC treatment prevented cardiomyocyte hypertrophy and myocardial and perivascular fibrosis observed after neonatal high O2 exposure. ECFC could constitute a new regenerative therapy against cardiac sequelae caused by deleterious conditions of prematurity.
Collapse
Affiliation(s)
- Camille Girard‐Bock
- Department of PediatricsSainte‐Justine University Hospital Research CenterFaculty of MedicineUniversité de MontréalMontrealQuebecCanada
| | - Carla C. de Araújo
- Department of PediatricsSainte‐Justine University Hospital Research CenterFaculty of MedicineUniversité de MontréalMontrealQuebecCanada
| | - Mariane Bertagnolli
- Department of PediatricsSainte‐Justine University Hospital Research CenterFaculty of MedicineUniversité de MontréalMontrealQuebecCanada
- Present address:
Centre Intégré Universitaire de Santé et de Services Sociaux du Nord‐de‐l’Île‐de‐MontréalHôpital du Sacré‐Cœur de Montréal Research CenterUniversité de MontréalMontréalQuebecCanada
| | - Thuy‐An Mai‐Vo
- Department of PediatricsSainte‐Justine University Hospital Research CenterFaculty of MedicineUniversité de MontréalMontrealQuebecCanada
| | - Arul Vadivel
- Ottawa Hospital Research InstituteUniversity of OttawaOttawaOntarioCanada
| | | | - Shumei Zhong
- Ottawa Hospital Research InstituteUniversity of OttawaOttawaOntarioCanada
| | - Anik Cloutier
- Department of PediatricsSainte‐Justine University Hospital Research CenterFaculty of MedicineUniversité de MontréalMontrealQuebecCanada
| | - Megan R. Sutherland
- Department of PediatricsSainte‐Justine University Hospital Research CenterFaculty of MedicineUniversité de MontréalMontrealQuebecCanada
- Present address:
Monash Biomedicine Discovery InstituteDepartment of Anatomy and Developmental BiologyMonash UniversityClaytonVictoriaAustralia
| | - Bernard Thébaud
- Ottawa Hospital Research InstituteUniversity of OttawaOttawaOntarioCanada
- Department of PediatricsUniversity of AlbertaEdmontonAlbertaCanada
| | - Anne Monique Nuyt
- Department of PediatricsSainte‐Justine University Hospital Research CenterFaculty of MedicineUniversité de MontréalMontrealQuebecCanada
| |
Collapse
|
19
|
Pabelick CM, Thompson MA, Britt RD. Effects of Hyperoxia on the Developing Airway and Pulmonary Vasculature. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:179-194. [PMID: 29047087 DOI: 10.1007/978-3-319-63245-2_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although it is necessary and part of standard practice, supplemental oxygen (40-90% O2) or hyperoxia is a significant contributing factor to development of bronchopulmonary dysplasia, persistent pulmonary hypertension, recurrent wheezing, and asthma in preterm infants. This chapter discusses hyperoxia and the role of redox signaling in the context of neonatal lung growth and disease. Here, we discuss how hyperoxia promotes dysfunction in the airway and the known redox-mediated mechanisms that are important for postnatal vascular and alveolar development. Whether in the airway or alveoli, redox pathways are important and greatly influence the neonatal lung.
Collapse
Affiliation(s)
- Christina M Pabelick
- Department of Anesthesiology, College of Medicine, Mayo Clinic, 4-184 W Jos SMH, 200 First St SW, Rochester, MN, 55905, USA. .,Departments Physiology and Biomedical Engineering, College of Medicine, Mayo Clinic, 4-184 W Jos SMH, 200 First St SW, Rochester, MN, 55905, USA.
| | - Michael A Thompson
- Department of Anesthesiology, College of Medicine, Mayo Clinic, 4-184 W Jos SMH, 200 First St SW, Rochester, MN, 55905, USA
| | - Rodney D Britt
- Departments Physiology and Biomedical Engineering, College of Medicine, Mayo Clinic, 4-184 W Jos SMH, 200 First St SW, Rochester, MN, 55905, USA
| |
Collapse
|
20
|
Menon RT, Shrestha AK, Reynolds CL, Barrios R, Shivanna B. Long-term pulmonary and cardiovascular morbidities of neonatal hyperoxia exposure in mice. Int J Biochem Cell Biol 2018; 94:119-124. [PMID: 29223466 PMCID: PMC5745292 DOI: 10.1016/j.biocel.2017.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/14/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022]
Abstract
Pulmonary hypertension (PH) frequently occurs in infants with bronchopulmonary dysplasia (BPD), causing increased mortality and right ventricular (RV) dysfunction that persists into adulthood. A first step in developing better therapeutic options is identifying and characterizing an appropriate animal model. Previously, we characterized the short-term morbidities of a model in which C57BL/6J wild-type (WT) mice were exposed to 70% O2 (hyperoxia) during the neonatal period. Here, we aimed to determine the long-term morbidities using lung morphometry, echocardiography (Echo), and cardiac magnetic resonance imaging (cMRI). The major highlight of this study is the use of the state-of-the art imaging technique, cMRI, in mice to characterize the long-term cardiac effects of neonatal hyperoxia exposure. To this end, WT mice were exposed to 21% O2 (normoxia) or hyperoxia for two weeks of life, followed by recovery in normoxia for six weeks. Alveolarization, pulmonary vascularization, pulmonary hypertension, and RV function were quantified at eight weeks. We found that hyperoxia exposure resulted in persistent alveolar and pulmonary vascular simplification. Furthermore, the Echo and cMRI studies demonstrated that hyperoxia-exposed mice had signs of PH and RV dysfunction as indicated by increased RV pressure, mass, and end-systolic and -diastolic volumes, and decreased RV stroke volume and ejection fractions. Taken together, our results demonstrate that neonatal hyperoxia exposure in mice cause cardiopulmonary morbidities that persists into adulthood and provides evidence for the use of this model to develop novel therapies for BPD infants with PH.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Atmosphere Exposure Chambers
- Bronchopulmonary Dysplasia/physiopathology
- Disease Models, Animal
- Echocardiography
- Feasibility Studies
- Female
- Heart/diagnostic imaging
- Heart/physiopathology
- Hyperoxia/physiopathology
- Hypertension, Pulmonary/diagnostic imaging
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/pathology
- Lung/blood supply
- Lung/diagnostic imaging
- Lung/pathology
- Magnetic Resonance Imaging
- Male
- Mice, Inbred C57BL
- Myocardium/pathology
- Organ Size
- Pulmonary Circulation
- Stroke Volume
- Time Factors
- Ultrasonography, Doppler, Pulsed
- Ventricular Dysfunction, Right/diagnostic imaging
- Ventricular Dysfunction, Right/etiology
- Ventricular Dysfunction, Right/pathology
Collapse
Affiliation(s)
- Renuka T Menon
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Amrit Kumar Shrestha
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Corey L Reynolds
- Mouse Phenotyping Core, Baylor College of Medicine, Houston, TX, USA
| | - Roberto Barrios
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Binoy Shivanna
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
21
|
Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H 2S Levels: H 2S Donors and H 2S Biosynthesis Inhibitors. Pharmacol Rev 2017; 69:497-564. [PMID: 28978633 PMCID: PMC5629631 DOI: 10.1124/pr.117.014050] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, hydrogen sulfide (H2S) has emerged as an important endogenous gasotransmitter in mammalian cells and tissues. Similar to the previously characterized gasotransmitters nitric oxide and carbon monoxide, H2S is produced by various enzymatic reactions and regulates a host of physiologic and pathophysiological processes in various cells and tissues. H2S levels are decreased in a number of conditions (e.g., diabetes mellitus, ischemia, and aging) and are increased in other states (e.g., inflammation, critical illness, and cancer). Over the last decades, multiple approaches have been identified for the therapeutic exploitation of H2S, either based on H2S donation or inhibition of H2S biosynthesis. H2S donation can be achieved through the inhalation of H2S gas and/or the parenteral or enteral administration of so-called fast-releasing H2S donors (salts of H2S such as NaHS and Na2S) or slow-releasing H2S donors (GYY4137 being the prototypical compound used in hundreds of studies in vitro and in vivo). Recent work also identifies various donors with regulated H2S release profiles, including oxidant-triggered donors, pH-dependent donors, esterase-activated donors, and organelle-targeted (e.g., mitochondrial) compounds. There are also approaches where existing, clinically approved drugs of various classes (e.g., nonsteroidal anti-inflammatories) are coupled with H2S-donating groups (the most advanced compound in clinical trials is ATB-346, an H2S-donating derivative of the non-steroidal anti-inflammatory compound naproxen). For pharmacological inhibition of H2S synthesis, there are now several small molecule compounds targeting each of the three H2S-producing enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase. Although many of these compounds have their limitations (potency, selectivity), these molecules, especially in combination with genetic approaches, can be instrumental for the delineation of the biologic processes involving endogenous H2S production. Moreover, some of these compounds (e.g., cell-permeable prodrugs of the CBS inhibitor aminooxyacetate, or benserazide, a potentially repurposable CBS inhibitor) may serve as starting points for future clinical translation. The present article overviews the currently known H2S donors and H2S biosynthesis inhibitors, delineates their mode of action, and offers examples for their biologic effects and potential therapeutic utility.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Papapetropoulos
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| |
Collapse
|
22
|
Neglected role of hydrogen sulfide in sulfur mustard poisoning: Keap1 S-sulfhydration and subsequent Nrf2 pathway activation. Sci Rep 2017; 7:9433. [PMID: 28842592 PMCID: PMC5572733 DOI: 10.1038/s41598-017-09648-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 07/28/2017] [Indexed: 01/22/2023] Open
Abstract
Sulfur mustard (SM) is a chemical warfare agent and a terrorism choice that targets various organs and tissues, especially lung tissues. Its toxic effects are tightly associated with oxidative stress. The signaling molecule hydrogen sulfide (H2S) protects the lungs against oxidative stress and activates the NF-E2 p45-related factor 2 (Nrf2) pathway. Here, we sought to establish whether endogenous H2S plays a role in SM induced lesion in mouse lungs and lung cells and whether endogenous H2S plays the role through Nrf2 pathway to protect against SM-induced oxidative damage. Furthermore, we also explored whether activation of Nrf2 by H2S involves sulfhydration of Kelch-like ECH-associated protein-1 (Keap1). Using a mouse model of SM-induced lung injury, we demonstrated that SM-induced attenuation of the sulfide concentration was prevented by NaHS. Concomitantly, NaHS attenuates SM-induced oxidative stress. We also found that H2S enhanced Nrf2 nuclear translocation, and stimulated expression of Nrf2-targeted downstream protein and mRNA levels. Incubation of the lung cells with NaHS decreased SM-induced ROS production. Furthermore, we also found that H2S S-sulfhydrated Keap1, which induced Nrf2 dissociation from Keap1, and enhanced Nrf2 nuclear translocation. Our data indicate that H2S is a critical, however, being long neglected signal molecule in SM-induced lung injury.
Collapse
|
23
|
Kang J, Neill DL, Xian M. Phosphonothioate-Based Hydrogen Sulfide Releasing Reagents: Chemistry and Biological Applications. Front Pharmacol 2017; 8:457. [PMID: 28740467 PMCID: PMC5502280 DOI: 10.3389/fphar.2017.00457] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/26/2017] [Indexed: 01/10/2023] Open
Abstract
Hydrogen sulfide (H2S) is a newly recognized gasotransmitter. Studies have demonstrated that the production of endogenous H2S and the exogenous administration of H2S can regulate many physiological and/or pathological processes. Therefore, H2S releasing agents (also known as H2S donors) are important research tools in advancing our understanding of the biology and clinical potential of H2S. Among currently available donors, GYY4137 is probably the most well-known and has been used in many studies in the past 10 years. Recently, a number of GYY4137 derivatives (e.g., phosphonothioate-based compounds) have been developed as H2S donors. In this review, we summarize the development and application of these donors, which include Lawesson's reagent, substituted phosphorodithioates, cyclic phosphorane analogs, and pH-controlled phosphonamidothioates (JK donors). These donors have advantages such as good water-solubility, slow and controllable H2S release capability, and a variety of reported biological activities. However, it should be noted that the detailed H2S release profiles and byproducts under real biological systems are still unclear for many of these donors. Only after we figure out these unknowns we will see better applications of these donors in H2S research and therapy.
Collapse
Affiliation(s)
| | | | - Ming Xian
- Department of Chemistry, Washington State University, PullmanWA, United States
| |
Collapse
|
24
|
Collins JJP, Tibboel D, de Kleer IM, Reiss IKM, Rottier RJ. The Future of Bronchopulmonary Dysplasia: Emerging Pathophysiological Concepts and Potential New Avenues of Treatment. Front Med (Lausanne) 2017; 4:61. [PMID: 28589122 PMCID: PMC5439211 DOI: 10.3389/fmed.2017.00061] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Yearly more than 15 million babies are born premature (<37 weeks gestational age), accounting for more than 1 in 10 births worldwide. Lung injury caused by maternal chorioamnionitis or preeclampsia, postnatal ventilation, hyperoxia, or inflammation can lead to the development of bronchopulmonary dysplasia (BPD), one of the most common adverse outcomes in these preterm neonates. BPD patients have an arrest in alveolar and microvascular development and more frequently develop asthma and early-onset emphysema as they age. Understanding how the alveoli develop, and repair, and regenerate after injury is critical for the development of therapies, as unfortunately there is still no cure for BPD. In this review, we aim to provide an overview of emerging new concepts in the understanding of perinatal lung development and injury from a molecular and cellular point of view and how this is paving the way for new therapeutic options to prevent or treat BPD, as well as a reflection on current treatment procedures.
Collapse
Affiliation(s)
- Jennifer J P Collins
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Ismé M de Kleer
- Division of Pediatric Pulmonology, Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Irwin K M Reiss
- Division of Neonatology, Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
25
|
Fu H, Zhang T, Huang R, Yang Z, Liu C, Li M, Fang F, Xu F. Calcitonin gene-related peptide protects type II alveolar epithelial cells from hyperoxia-induced DNA damage and cell death. Exp Ther Med 2017; 13:1279-1284. [PMID: 28413467 PMCID: PMC5377287 DOI: 10.3892/etm.2017.4132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 11/25/2016] [Indexed: 11/06/2022] Open
Abstract
Hyperoxia therapy for acute lung injury (ALI) may unexpectedly lead to reactive oxygen species (ROS) production and cause additional ALI. Calcitonin gene-related peptide (CGRP) is a 37 amino acid neuropeptide that regulates inflammasome activation. However, the role of CGRP in DNA damage during hyperoxia is unclear. Therefore, the aim of the present study was to investigate the effects of CGRP on DNA damage and the cell death of alveolar epithelial type II cells (AEC II) exposed to 60% oxygen. AEC II were isolated from 19–20 gestational day fetal rat lungs and were exposed to air or to 60% oxygen during treatment with CGRP or the specific CGRP receptor antagonist CGRP8–37. The cells were evaluated using immunofluorescence to examine surfactant protein-C and ROS levels were measured by probing with 2′,7′-dichlorofluorescin diacetate. The apoptosis rate and cell cycle of AEC II were analyzed by flow cytometry, and apoptosis was determined by western blotting analysis of activated caspase 3. The DNA damage was confirmed with immunofluorescence of H2AX via high-content analysis. The ROS levels, apoptotic cell number and the expression of γH2AX were markedly increased in the hyperoxia group compared with those in the air group. Concordantly, ROS levels, apoptotic cell number and the expression of γH2AX were significantly lower with a significant arrest of S and G2/M phases in the CGRP/O2 group than in the hyperoxia or CGRP8–37/O2 groups. CGRP was concluded to protect lung epithelium cells against hyperoxic insult, and upregulation of CGRP may be a possible novel therapeutic target to treat hyperoxic lung injury.
Collapse
Affiliation(s)
- Hongmin Fu
- Department of Pediatric Internal Medicine, Children's Hospital, Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Tiesong Zhang
- Department of Pediatric Internal Medicine, Children's Hospital, Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Rongwei Huang
- Department of Pediatric Internal Medicine, Children's Hospital, Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Zhen Yang
- Department of Pediatric Internal Medicine, Children's Hospital, Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Chunming Liu
- Department of Pediatric Internal Medicine, Children's Hospital, Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Ming Li
- Department of Pediatric Internal Medicine, Children's Hospital, Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Fang Fang
- Pediatric Intensive Care Unit, Children's Hospital, Chongqing Medical University, Chongqing 400014, P.R. China
| | - Feng Xu
- Pediatric Intensive Care Unit, Children's Hospital, Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
26
|
Tang B, Ma L, Yao X, Tan G, Han P, Yu T, Liu B, Sun X. Hydrogen sulfide ameliorates acute lung injury induced by infrarenal aortic cross-clamping by inhibiting inflammation and angiopoietin 2 release. J Vasc Surg 2017; 65:501-508.e1. [PMID: 26781077 DOI: 10.1016/j.jvs.2015.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/03/2015] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Infrarenal aortic cross-clamping (IAC) is a common procedure during infrarenal vascular operations. It often causes ischemia-reperfusion injury to lower limbs, resulting in systemic inflammation response and damage to remote organs (particularly lungs). Hydrogen sulfide (H2S) is a gaseous mediator that has been shown to have a protective effect against lung injury. METHODS Wistar rats underwent IAC for 2 hours, followed by 4 hours of reperfusion. GYY4137 (a slow-releasing H2S donor) and dl-propargylglycine (PAG, an inhibitor of cystathionine γ-lyase) were preadministered to rats 1 hour before IAC, and their effects on severity of lung injury and related mechanisms were investigated. RESULTS IAC induced a significant increase in plasma levels of H2S, H2S-synthesizing activity, and cystathionine γ-lyase expression in lung tissues compared with sham operation. Administration of GYY4137 significantly increased the levels of H2S but had little effect on H2S-synthesizing activity, whereas PAG reduced H2S levels and H2S-synthesizing activity. Preadministration of GYY4137 significantly attenuated acute lung injury induced by IAC, evidenced by reduced histologic scores and wet lung contents; improved blood gas parameters; reduced cell counts and protein amounts in bronchoalveolar lavage fluids; and reduced myeloperoxidase activity in lung tissues and plasma levels of tumor necrosis factor α, interleukin 6, and interleukin 1β. However, PAG further aggravated the severity of lung injury and displayed opposite effects to GYY4137. In exploration of the mechanisms, we found that IAC increased the release of angiopoietin 2 (Ang2) and its expression in lung tissues. GYY4137 attenuated the increase of Ang2 release and expression and increased the phosphorylation of Akt and the activation of its downstream factors, glycogen synthase kinase 3β and ribosomal protein S6 kinase; PAG showed opposite effects. CONCLUSIONS The study indicates that H2S may play a protective role in IAC-induced acute lung injury in rats by inhibiting inflammation and Ang2 release.
Collapse
Affiliation(s)
- Bo Tang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lan Ma
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyi Yao
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gang Tan
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Han
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianchi Yu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Liu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xueying Sun
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
27
|
Yagdi E, Cerella C, Dicato M, Diederich M. Garlic-derived natural polysulfanes as hydrogen sulfide donors: Friend or foe? Food Chem Toxicol 2016; 95:219-33. [DOI: 10.1016/j.fct.2016.07.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023]
|
28
|
Alvira CM. Aberrant Pulmonary Vascular Growth and Remodeling in Bronchopulmonary Dysplasia. Front Med (Lausanne) 2016; 3:21. [PMID: 27243014 PMCID: PMC4873491 DOI: 10.3389/fmed.2016.00021] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/28/2016] [Indexed: 01/12/2023] Open
Abstract
In contrast to many other organs, a significant portion of lung development occurs after birth during alveolarization, thus rendering the lung highly susceptible to injuries that may disrupt this developmental process. Premature birth heightens this susceptibility, with many premature infants developing the chronic lung disease, bronchopulmonary dysplasia (BPD), a disease characterized by arrested alveolarization. Over the past decade, tremendous progress has been made in the elucidation of mechanisms that promote postnatal lung development, including extensive data suggesting that impaired pulmonary angiogenesis contributes to the pathogenesis of BPD. Moreover, in addition to impaired vascular growth, patients with BPD also frequently demonstrate alterations in pulmonary vascular remodeling and tone, increasing the risk for persistent hypoxemia and the development of pulmonary hypertension. In this review, an overview of normal lung development will be presented, and the pathologic features of arrested development observed in BPD will be described, with a specific emphasis on the pulmonary vascular abnormalities. Key pathways that promote normal pulmonary vascular development will be reviewed, and the experimental and clinical evidence demonstrating alterations of these essential pathways in BPD summarized.
Collapse
Affiliation(s)
- Cristina M Alvira
- Department of Pediatrics, Division of Critical Care Medicine, Stanford University School of Medicine , Stanford, CA , USA
| |
Collapse
|
29
|
Xie L, Feng H, Li S, Meng G, Liu S, Tang X, Ma Y, Han Y, Xiao Y, Gu Y, Shao Y, Park CM, Xian M, Huang Y, Ferro A, Wang R, Moore PK, Wang H, Ji Y. SIRT3 Mediates the Antioxidant Effect of Hydrogen Sulfide in Endothelial Cells. Antioxid Redox Signal 2016; 24:329-43. [PMID: 26422756 PMCID: PMC4761821 DOI: 10.1089/ars.2015.6331] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM Oxidative stress is a key contributor to endothelial dysfunction and associated cardiovascular pathogenesis. Hydrogen sulfide (H2S) is an antioxidant gasotransmitter that protects endothelial cells against oxidative stress. Sirtuin3 (SIRT3), which belongs to the silent information regulator 2 (SIR2) family, is an important deacetylase under oxidative stress. H2S is able to regulate the activity of several sirtuins. The present study aims to investigate the role of SIRT3 in the antioxidant effect of H2S in endothelial cells. RESULTS Cultured EA.hy926 endothelial cells were exposed to hydrogen peroxide (H2O2) as a model of oxidative stress-induced cell injury. GYY4137, a slow-releasing H2S donor, improved cell viability, reduced oxidative stress and apoptosis, and improved mitochondrial function following H2O2 treatment. H2S reversed the stimulation of MAPK phosphorylation, downregulation of SIRT3 mRNA and reduction of the superoxide dismutase 2 and isocitrate dehydrogenase 2 expression which were induced by H2O2. H2S also increased activator protein 1 (AP-1) binding activity with SIRT3 promoter and this effect was absent in the presence of the specific AP-1 inhibitor, SR11302 or curcumin. Paraquat administration to mice induced a defected endothelium-dependent aortic vasodilatation and increased oxidative stress in both mouse aorta and small mesenteric artery, which were alleviated by GYY4137 treatment. This vasoprotective effect of H2S was absent in SIRT3 knockout mice. INNOVATION The present results highlight a novel role for SIRT3 in the protective effect of H2S against oxidant damage in the endothelium both in vitro and in vivo. CONCLUSION H2S enhances AP-1 binding activity with the SIRT3 promoter, thereby upregulating SIRT3 expression and ultimately reducing oxidant-provoked vascular endothelial dysfunction. Antioxid. Redox Signal. 24, 329-343.
Collapse
Affiliation(s)
- Liping Xie
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University , Nanjing, China
| | - Haihua Feng
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University , Nanjing, China
| | - Sha Li
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University , Nanjing, China
| | - Guoliang Meng
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University , Nanjing, China .,2 Department of Pharmacology, School of Pharmacy, Nantong University , Nantong, China
| | - Shangmin Liu
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University , Nanjing, China
| | - Xin Tang
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University , Nanjing, China
| | - Yan Ma
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University , Nanjing, China
| | - Yi Han
- 3 Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University , Nanjing, China
| | - Yujiao Xiao
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University , Nanjing, China
| | - Yue Gu
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University , Nanjing, China
| | - Yongfeng Shao
- 4 Department of Cardiothoracic Surgery, the First Affiliated Hospital of Nanjing Medical University , Nanjing, China
| | - Chung-Min Park
- 5 Department of Chemistry, Washington State University , Pullman, Washington
| | - Ming Xian
- 5 Department of Chemistry, Washington State University , Pullman, Washington
| | - Yu Huang
- 6 Institute of Vascular Biology, Chinese University of Hong Kong , Hong Kong, China
| | - Albert Ferro
- 7 Cardiovascular Division, Department of Clinical Pharmacology, School of Medicine, King's College London , London, United Kingdom
| | - Rui Wang
- 8 Department of Biology, Cardivascular and Molecular Research Unit, Lakehead University , Thunder Bay, Ontario, Canada
| | - Philip K Moore
- 9 Department of Pharmacology, National University of Singapore , Singapore
| | - Hong Wang
- 10 Department of Pharmacology, Center for Metabolic Disease Research, Temple University School of Medicine , Philadelphia, Pennsylvania
| | - Yong Ji
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University , Nanjing, China
| |
Collapse
|
30
|
Solomon I, O'Reilly M, Ionescu L, Alphonse RS, Rajabali S, Zhong S, Vadivel A, Shelley WC, Yoder MC, Thébaud B. Functional Differences Between Placental Micro- and Macrovascular Endothelial Colony-Forming Cells. Stem Cells Transl Med 2016; 5:291-300. [PMID: 26819255 DOI: 10.5966/sctm.2014-0162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/02/2015] [Indexed: 01/17/2023] Open
Abstract
Alterations in the development of the placental vasculature can lead to pregnancy complications, such as preeclampsia. Currently, the cause of preeclampsia is unknown, and there are no specific prevention or treatment strategies. Further insight into the placental vasculature may aid in identifying causal factors. Endothelial colony-forming cells (ECFCs) are a subset of endothelial progenitor cells capable of self-renewal and de novo vessel formation in vitro. We hypothesized that ECFCs exist in the micro- and macrovasculature of the normal, term human placenta. Human placentas were collected from term pregnancies delivered by cesarean section (n = 16). Placental micro- and macrovasculature was collected from the maternal and fetal side of the placenta, respectively, and ECFCs were isolated and characterized. ECFCs were CD31(+), CD105(+), CD144(+), CD146(+), CD14(-), and CD45(-), took up 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate-labeled acetylated low-density lipoprotein, and bound Ulex europaeus agglutinin 1. In vitro, macrovascular ECFCs had a greater potential to generate high-proliferative colonies and formed more complex capillary-like networks on Matrigel compared with microvascular ECFCs. In contrast, in vivo assessment demonstrated that microvascular ECFCs had a greater potential to form vessels. Macrovascular ECFCs were of fetal origin, whereas microvascular ECFCs were of maternal origin. ECFCs exist in the micro- and macrovasculature of the normal, term human placenta. Although macrovascular ECFCs demonstrated greater vessel and colony-forming potency in vitro, this did not translate in vivo, where microvascular ECFCs exhibited a greater vessel-forming ability. These important findings contribute to the current understanding of normal placental vascular development and may aid in identifying factors involved in preeclampsia and other pregnancy complications.
Collapse
Affiliation(s)
- Ioana Solomon
- Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Megan O'Reilly
- Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Lavinia Ionescu
- Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Rajesh S Alphonse
- Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Saima Rajabali
- Department of Pediatrics, Women and Children's Health Research Institute, Cardiovascular Research Center and Pulmonary Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Shumei Zhong
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ontario, Canada
| | - Arul Vadivel
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ontario, Canada
| | - W Chris Shelley
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Herman B. Wells Center for Pediatrics Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mervin C Yoder
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Herman B. Wells Center for Pediatrics Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bernard Thébaud
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Sprott Center for Stem Cell Research, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ontario, Canada
| |
Collapse
|
31
|
Meng G, Ma Y, Xie L, Ferro A, Ji Y. Emerging role of hydrogen sulfide in hypertension and related cardiovascular diseases. Br J Pharmacol 2015; 172:5501-11. [PMID: 25204754 PMCID: PMC4667855 DOI: 10.1111/bph.12900] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/18/2014] [Accepted: 08/28/2014] [Indexed: 12/31/2022] Open
Abstract
Hydrogen sulfide (H2 S) has traditionally been viewed as a highly toxic gas; however, recent studies have implicated H2 S as a third member of the gasotransmitter family, exhibiting properties similar to NO and carbon monoxide. Accumulating evidence has suggested that H2 S influences a wide range of physiological and pathological processes, among which blood vessel relaxation, cardioprotection and atherosclerosis have been particularly studied. In the cardiovascular system, H2 S production is predominantly catalyzed by cystathionine γ-lyase (CSE). Decreased endogenous H2 S levels have been found in hypertensive patients and animals, and CSE(-/-) mice develop hypertension with age, suggesting that a deficiency in H2 S contributes importantly to BP regulation. H2 S supplementation attenuates hypertension in different hypertensive animal models. The mechanism by which H2 S was originally proposed to attenuate hypertension was by virtue of its action on vascular tone, which may be related to effects on different ion channels. Both H2 S and NO cause vasodilatation and there is cross-talk between these two molecules to regulate BP. Suppression of oxidative stress may also contribute to antihypertensive effects of H2 S. This review also summarizes the state of research on H2 S and hypertension in China. A better understanding of the role of H2 S in hypertension and related cardiovascular diseases will allow novel strategies to be devised for their treatment.
Collapse
Affiliation(s)
- Guoliang Meng
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, State Key Laboratory of Reproductive Medicine, Atherosclerosis Research CentreNanjing Medical UniversityNanjingChina
| | - Yan Ma
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, State Key Laboratory of Reproductive Medicine, Atherosclerosis Research CentreNanjing Medical UniversityNanjingChina
| | - Liping Xie
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, State Key Laboratory of Reproductive Medicine, Atherosclerosis Research CentreNanjing Medical UniversityNanjingChina
| | - Albert Ferro
- Department of Clinical PharmacologyCardiovascular DivisionSchool of MedicineKing's College LondonLondonUK
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, State Key Laboratory of Reproductive Medicine, Atherosclerosis Research CentreNanjing Medical UniversityNanjingChina
| |
Collapse
|
32
|
Silva DMG, Nardiello C, Pozarska A, Morty RE. Recent advances in the mechanisms of lung alveolarization and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1239-72. [PMID: 26361876 DOI: 10.1152/ajplung.00268.2015] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/09/2015] [Indexed: 02/08/2023] Open
Abstract
Alveolarization is the process by which the alveoli, the principal gas exchange units of the lung, are formed. Along with the maturation of the pulmonary vasculature, alveolarization is the objective of late lung development. The terminal airspaces that were formed during early lung development are divided by the process of secondary septation, progressively generating an increasing number of alveoli that are of smaller size, which substantially increases the surface area over which gas exchange can take place. Disturbances to alveolarization occur in bronchopulmonary dysplasia (BPD), which can be complicated by perturbations to the pulmonary vasculature that are associated with the development of pulmonary hypertension. Disturbances to lung development may also occur in persistent pulmonary hypertension of the newborn in term newborn infants, as well as in patients with congenital diaphragmatic hernia. These disturbances can lead to the formation of lungs with fewer and larger alveoli and a dysmorphic pulmonary vasculature. Consequently, affected lungs exhibit a reduced capacity for gas exchange, with important implications for morbidity and mortality in the immediate postnatal period and respiratory health consequences that may persist into adulthood. It is the objective of this Perspectives article to update the reader about recent developments in our understanding of the molecular mechanisms of alveolarization and the pathogenesis of BPD.
Collapse
Affiliation(s)
- Diogo M G Silva
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Claudio Nardiello
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Agnieszka Pozarska
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rory E Morty
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
33
|
Madurga A, Golec A, Pozarska A, Ishii I, Mižíková I, Nardiello C, Vadász I, Herold S, Mayer K, Reichenberger F, Fehrenbach H, Seeger W, Morty RE. The H2S-generating enzymes cystathionine β-synthase and cystathionine γ-lyase play a role in vascular development during normal lung alveolarization. Am J Physiol Lung Cell Mol Physiol 2015; 309:L710-24. [PMID: 26232299 DOI: 10.1152/ajplung.00134.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/24/2015] [Indexed: 12/19/2022] Open
Abstract
The gasotransmitter hydrogen sulfide (H2S) is emerging as a mediator of lung physiology and disease. Recent studies revealed that H2S administration limited perturbations to lung structure in experimental animal models of bronchopulmonary dysplasia (BPD), partially restoring alveolarization, limiting pulmonary hypertension, limiting inflammation, and promoting epithelial repair. No studies have addressed roles for endogenous H2S in lung development. H2S is endogenously generated by cystathionine β-synthase (Cbs) and cystathionine γ-lyase (Cth). We demonstrate here that the expression of Cbs and Cth in mouse lungs is dynamically regulated during lung alveolarization and that alveolarization is blunted in Cbs(-/-) and Cth(-/-) mouse pups, where a 50% reduction in the total number of alveoli was observed, without any impact on septal thickness. Laser-capture microdissection and immunofluorescence staining indicated that Cbs and Cth were expressed in the airway epithelium and lung vessels. Loss of Cbs and Cth led to a 100-500% increase in the muscularization of small- and medium-sized lung vessels, which was accompanied by increased vessel wall thickness, and an apparent decrease in lung vascular supply. Ablation of Cbs expression using small interfering RNA or pharmacological inhibition of Cth using propargylglycine in lung endothelial cells limited angiogenic capacity, causing a 30-40% decrease in tube length and a 50% decrease in number of tubes formed. In contrast, exogenous administration of H2S with GYY4137 promoted endothelial tube formation. These data confirm a key role for the H2S-generating enzymes Cbs and Cth in pulmonary vascular development and homeostasis and in lung alveolarization.
Collapse
Affiliation(s)
- Alicia Madurga
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Anita Golec
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Agnieszka Pozarska
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Isao Ishii
- Keio University Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Ivana Mižíková
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Claudio Nardiello
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - István Vadász
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Konstantin Mayer
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Frank Reichenberger
- Department of Pulmonology, Asklepios Lung Centre, Munich-Gauting, Germany; and
| | - Heinz Fehrenbach
- Division of Experimental Pneumology, Priority Area Asthma and Allergy, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Werner Seeger
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rory E Morty
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany;
| |
Collapse
|
34
|
Möbius MA, Thébaud B. Stem Cells and Their Mediators - Next Generation Therapy for Bronchopulmonary Dysplasia. Front Med (Lausanne) 2015; 2:50. [PMID: 26284246 PMCID: PMC4520239 DOI: 10.3389/fmed.2015.00050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/15/2015] [Indexed: 01/13/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains a major complication of premature birth. Despite great achievements in perinatal medicine over the past decades, there is no treatment for BPD. Recent insights into the biology of stem/progenitor cells have ignited the hope of regenerating damaged organs. Animal experiments revealed promising lung protection/regeneration with stem/progenitor cells in experimental models of BPD and led to first clinical studies in infants. However, these therapies are still experimental and knowledge on the exact mechanisms of action of these cells is limited. Furthermore, heterogeneity of the therapeutic cell populations and missing potency assays currently limit our ability to predict a cell product’s efficacy. Here, we review the therapeutic potential of mesenchymal stromal, endothelial progenitor, and amniotic epithelial cells for BPD. Current knowledge on the mechanisms behind the beneficial effects of stem cells is briefly summarized. Finally, we discuss the obstacles constraining their transition from bench-to-bedside and present potential approaches to overcome them.
Collapse
Affiliation(s)
- Marius A Möbius
- Department of Neonatology and Pediatric Critical Care Medicine, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden , Dresden , Germany ; DFG Research Center and Cluster of Excellence for Regenerative Therapies (CRTD), Technische Universität Dresden , Dresden , Germany ; Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa , Ottawa, ON , Canada
| | - Bernard Thébaud
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa , Ottawa, ON , Canada ; Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
35
|
Hydrogen sulfide in pharmacology and medicine – An update. Pharmacol Rep 2015; 67:647-58. [DOI: 10.1016/j.pharep.2015.01.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/05/2015] [Indexed: 12/17/2022]
|
36
|
Agné AM, Baldin JP, Benjamin AR, Orogo-Wenn MC, Wichmann L, Olson KR, Walters DV, Althaus M. Hydrogen sulfide decreases β-adrenergic agonist-stimulated lung liquid clearance by inhibiting ENaC-mediated transepithelial sodium absorption. Am J Physiol Regul Integr Comp Physiol 2015; 308:R636-49. [PMID: 25632025 DOI: 10.1152/ajpregu.00489.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/19/2015] [Indexed: 01/11/2023]
Abstract
In pulmonary epithelia, β-adrenergic agonists regulate the membrane abundance of the epithelial sodium channel (ENaC) and, thereby, control the rate of transepithelial electrolyte absorption. This is a crucial regulatory mechanism for lung liquid clearance at birth and thereafter. This study investigated the influence of the gaseous signaling molecule hydrogen sulfide (H2S) on β-adrenergic agonist-regulated pulmonary sodium and liquid absorption. Application of the H2S-liberating molecule Na2S (50 μM) to the alveolar compartment of rat lungs in situ decreased baseline liquid absorption and abrogated the stimulation of liquid absorption by the β-adrenergic agonist terbutaline. There was no additional effect of Na2S over that of the ENaC inhibitor amiloride. In electrophysiological Ussing chamber experiments with native lung epithelia (Xenopus laevis), Na2S inhibited the stimulation of amiloride-sensitive current by terbutaline. β-adrenergic agonists generally increase ENaC abundance by cAMP formation and activation of PKA. Activation of this pathway by forskolin and 3-isobutyl-1-methylxanthine increased amiloride-sensitive currents in H441 pulmonary epithelial cells. This effect was inhibited by Na2S in a dose-dependent manner (5-50 μM). Na2S had no effect on cellular ATP concentration, cAMP formation, and activation of PKA. By contrast, Na2S prevented the cAMP-induced increase in ENaC activity in the apical membrane of H441 cells. H441 cells expressed the H2S-generating enzymes cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, and they produced H2S amounts within the employed concentration range. These data demonstrate that H2S prevents the stimulation of ENaC by cAMP/PKA and, thereby, inhibits the proabsorptive effect of β-adrenergic agonists on lung liquid clearance.
Collapse
Affiliation(s)
- Alisa M Agné
- Institute of Animal Physiology, Department of Molecular Cell Physiology, Justus-Liebig University, Giessen, Germany
| | - Jan-Peter Baldin
- Institute of Animal Physiology, Department of Molecular Cell Physiology, Justus-Liebig University, Giessen, Germany
| | - Audra R Benjamin
- Division of Clinical Sciences, St. George's University of London, London, United Kingdom
| | - Maria C Orogo-Wenn
- Division of Clinical Sciences, St. George's University of London, London, United Kingdom
| | - Lukas Wichmann
- Institute of Animal Physiology, Department of Molecular Cell Physiology, Justus-Liebig University, Giessen, Germany
| | - Kenneth R Olson
- Department of Physiology, Indiana University School of Medicine-South Bend, South Bend, Indiana; and
| | - Dafydd V Walters
- Division of Clinical Sciences, St. George's University of London, London, United Kingdom
| | - Mike Althaus
- Institute of Animal Physiology, Department of Molecular Cell Physiology, Justus-Liebig University, Giessen, Germany;
| |
Collapse
|
37
|
Whiteman M, Perry A, Zhou Z, Bucci M, Papapetropoulos A, Cirino G, Wood ME. Phosphinodithioate and Phosphoramidodithioate Hydrogen Sulfide Donors. Handb Exp Pharmacol 2015; 230:337-363. [PMID: 26162843 DOI: 10.1007/978-3-319-18144-8_17] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hydrogen sulfide is rapidly emerging as a key physiological mediator and potential therapeutic tool in numerous areas such as acute and chronic inflammation, neurodegenerative and cardiovascular disease, diabetes, obesity and cancer. However, the vast majority of the published studies have employed crude sulfide salts such as sodium hydrosulfide (NaSH) and sodium sulfide (Na2S) as H2S "donors" to generate H2S. Although these salts are cheap, readily available and easy to use, H2S generated from them occurs as an instantaneous and pH-dependent dissociation, whereas endogenous H2S synthesis from the enzymes cystathionine γ-lyase, cystathionine-β-synthase and 3-mercaptopyruvate sulfurtransferase is a slow and sustained process. Furthermore, sulfide salts are frequently used at concentrations (e.g. 100 μM to 10 mM) far in excess of the levels of H2S reported in vivo (nM to low μM). For the therapeutic potential of H2S is to be properly harnessed, pharmacological agents which generate H2S in a physiological manner and deliver physiologically relevant concentrations are needed. The phosphorodithioate GYY4137 has been proposed as "slow-release" H2S donors and has shown promising efficacy in cellular and animal model diseases such as hypertension, sepsis, atherosclerosis, neonatal lung injury and cancer. However, H2S generation from GYY4137 is inefficient necessitating its use at high concentrations/doses. However, structural modification of the phosphorodithioate core has led to compounds (e.g. AP67 and AP105) with accelerated rates of H2S generation and enhanced biological activity. In this review, the therapeutic potential and limitations of GYY4137 and related phosphorodithioate derivatives are discussed.
Collapse
|
38
|
Yuan S, Patel RP, Kevil CG. Working with nitric oxide and hydrogen sulfide in biological systems. Am J Physiol Lung Cell Mol Physiol 2014; 308:L403-15. [PMID: 25550314 DOI: 10.1152/ajplung.00327.2014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are gasotransmitter molecules important in numerous physiological and pathological processes. Although these molecules were first known as environmental toxicants, it is now evident that that they are intricately involved in diverse cellular functions with impact on numerous physiological and pathogenic processes. NO and H2S share some common characteristics but also have unique chemical properties that suggest potential complementary interactions between the two in affecting cellular biochemistry and metabolism. Central among these is the interactions between NO, H2S, and thiols that constitute new ways to regulate protein function, signaling, and cellular responses. In this review, we discuss fundamental biochemical principals, molecular functions, measurement methods, and the pathophysiological relevance of NO and H2S.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana; and
| | - Rakesh P Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana; and
| |
Collapse
|
39
|
Erb A, Althaus M. Actions of hydrogen sulfide on sodium transport processes across native distal lung epithelia (Xenopus laevis). PLoS One 2014; 9:e100971. [PMID: 24960042 PMCID: PMC4069190 DOI: 10.1371/journal.pone.0100971] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/30/2014] [Indexed: 01/04/2023] Open
Abstract
Hydrogen sulfide (H2S) is well known as a highly toxic environmental chemical threat. Prolonged exposure to H2S can lead to the formation of pulmonary edema. However, the mechanisms of how H2S facilitates edema formation are poorly understood. Since edema formation can be enhanced by an impaired clearance of electrolytes and, consequently, fluid across the alveolar epithelium, it was questioned whether H2S may interfere with transepithelial electrolyte absorption. Electrolyte absorption was electrophysiologically measured across native distal lung preparations (Xenopus laevis) in Ussing chambers. The exposure of lung epithelia to H2S decreased net transepithelial electrolyte absorption. This was due to an impairment of amiloride-sensitive sodium transport. H2S inhibited the activity of the Na+/K+-ATPase as well as lidocaine-sensitive potassium channels located in the basolateral membrane of the epithelium. Inhibition of these transport molecules diminishes the electrochemical gradient which is necessary for transepithelial sodium absorption. Since sodium absorption osmotically facilitates alveolar fluid clearance, interference of H2S with the epithelial transport machinery provides a mechanism which enhances edema formation in H2S-exposed lungs.
Collapse
Affiliation(s)
- Alexandra Erb
- Institute of Animal Physiology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Mike Althaus
- Institute of Animal Physiology, Justus-Liebig University of Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|