1
|
Pandya DV, Parikh RV, Gena RM, Kothari NR, Parekh PS, Chorawala MR, Jani MA, Yadav MR, Shah PA. The scaffold protein disabled 2 (DAB2) and its role in tumor development and progression. Mol Biol Rep 2024; 51:701. [PMID: 38822973 DOI: 10.1007/s11033-024-09653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Disabled 2 (DAB2) is a multifunctional protein that has emerged as a critical component in the regulation of tumor growth. Its dysregulation is implicated in various types of cancer, underscoring its importance in understanding the molecular mechanisms underlying tumor development and progression. This review aims to unravel the intricate molecular mechanisms by which DAB2 exerts its tumor-suppressive functions within cancer signaling pathways. METHODS AND RESULTS We conducted a comprehensive review of the literature focusing on the structure, expression, physiological functions, and tumor-suppressive roles of DAB2. We provide an overview of the structure, expression, and physiological functions of DAB2. Evidence supporting DAB2's role as a tumor suppressor is explored, highlighting its ability to inhibit cell proliferation, induce apoptosis, and modulate key signaling pathways involved in tumor suppression. The interaction between DAB2 and key oncogenes is examined, elucidating the interplay between DAB2 and oncogenic signaling pathways. We discuss the molecular mechanisms underlying DAB2-mediated tumor suppression, including its involvement in DNA damage response and repair, regulation of cell cycle progression and senescence, and modulation of epithelial-mesenchymal transition (EMT). The review explores the regulatory networks involving DAB2, covering post-translational modifications, interactions with other tumor suppressors, and integration within complex signaling networks. We also highlight the prognostic significance of DAB2 and its role in pre-clinical studies of tumor suppression. CONCLUSION This review provides a comprehensive understanding of the molecular mechanisms by which DAB2 exerts its tumor-suppressive functions. It emphasizes the significance of DAB2 in cancer signaling pathways and its potential as a target for future therapeutic interventions.
Collapse
Affiliation(s)
- Disha V Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Rajsi V Parikh
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Ruhanahmed M Gena
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Nirjari R Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Priyajeet S Parekh
- Pharmacy Practice Division, AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India.
| | - Maharsh A Jani
- Pharmacy Practice Division, Anand Niketan, Shilaj, Ahmedabad, Gujarat, 380059, India
| | - Mayur R Yadav
- Department of Pharmacy Practice and Administration, Western University of Health Science, 309 E Second St, Pomona, CA, 91766, USA
| | - Palak A Shah
- Department of Pharmacology and Pharmacy Practice, K. B. Institute of Pharmaceutical Education and Research, Gandhinagar, Gujarat, 382023, India
| |
Collapse
|
2
|
Shah NN, Dave BP, Shah KC, Shah DD, Maheshwari KG, Chorawala MR. Disable 2, A Versatile Tissue Matrix Multifunctional Scaffold Protein with Multifaceted Signaling: Unveiling Role in Breast Cancer for Therapeutic Revolution. Cell Biochem Biophys 2024; 82:501-520. [PMID: 38594547 DOI: 10.1007/s12013-024-01261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/11/2024]
Abstract
The Disabled-2 (DAB2) protein, found in 80-90% of various tumors, including breast cancer, has been identified as a potential tumor suppressor protein. On the contrary, some hypothesis suggests that DAB2 is associated with the modulation of the Ras/MAPK pathway by endocytosing the Grb/Sos1 signaling complex, which produces oncogenes and chemoresistance to anticancer drugs, leading to increased tumor growth and metastasis. DAB2 has multiple functions in several disorders and is typically under-regulated in several cancers, making it a potential target for treatment of cancer therapy. The primary function of DAB2 is the modulation of transforming growth factor- β (TGF-β) mediated endocytosis, which is involved in several mechanisms of cancer development, including tumor suppression through promoting apoptosis and suppressing cell proliferation. In this review, we will discuss in detail the mechanisms through which DAB2 leads to breast cancer and various advancements in employing DAB2 in the treatment of breast cancer. Additionally, we outlined its role in other diseases. We propose that upregulating DAB2 could be a novel approach to the therapeutics of breast cancer.
Collapse
Affiliation(s)
- Nidhi N Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Kashvi C Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Kunal G Maheshwari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
3
|
Identification and Validation of a Prognostic Signature Based on Methylation Profiles and Methylation-Driven Gene DAB2 as a Prognostic Biomarker in Differentiated Thyroid Carcinoma. DISEASE MARKERS 2022; 2022:1686316. [DOI: 10.1155/2022/1686316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
Recurrence is the major death cause of differentiated thyroid carcinoma (DTC), and a better understanding of recurrence risk at early stage may lead to make the optimal medical decision to improve patients’ prognosis. The 2015 American Thyroid Association (ATA) risk stratification system primary based on clinic-pathologic features is the most commonly used to describe the initial risk of persistent/recurrent disease. Besides, multiple prognostics models based on multigenes expression profiles have been developed to predict the recurrence risk of DTC patients. Recent evidences indicated that aberrant DNA methylation is involved in the initiation and progression of DTC and can be useful biomarkers for clinical diagnosis and prognosis prediction of DTC. Therefore, there is a need for integrating gene methylation feature to assess the recurrence risk of DTC. Gene methylation profile from The Cancer Genome Atlas (TCGA) was used to construct a recurrence risk model of DTC by successively performed univariate Cox regression, LASSO regression, and multivariate Cox regression. Two Gene Expression Omnibus (GEO) methylation cohorts of DTC were utilized to validate the predictive value of the methylation profiles model as external cohort by receiver operating characteristic (ROC) curve and survival analysis. Besides, CCK-8, colony-formation assay, transwell, and scratch-wound assay were used to investigate the biological significance of critical gene in the model. In our study, we constructed and validated a prognostic signature based on methylation profiles of SPTA1, APCS, and DAB2 and constructed a nomogram based on the methylation-related model, age, and AJCC_T stage that could provide evidence for the long-term treatment and management of DTC patients. Besides, in vitro experiments showed that DAB2 inhibited proliferation, colony-formation, and migration of BCPAP cells and the gene set enrichment analysis and immune infiltration analysis showed that DAB2 may promote antitumor immunity in DTC. In conclusion, promoter hypermethylation and loss expression of DAB2 in DTC may be a biomarker of unfavorable prognosis and poor response to immune therapy.
Collapse
|
4
|
Mei X, Zhao H, Huang Y, Tang Y, Shi X, Pu W, Jiang S, Ma Y, Zhang Y, Bai L, Tu W, Zhao Y, Jin L, Wu W, Wang J, Liu Q. Involvement of Disabled-2 on skin fibrosis in systemic sclerosis. J Dermatol Sci 2020; 99:44-52. [PMID: 32571632 DOI: 10.1016/j.jdermsci.2020.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Systemic sclerosis (SSc) is a connective tissue disease characterized by inflammation and fibrosis. Our previous research found Disabled-2 (DAB2) expression was significantly downregulated by salvianolic acid B, a small molecular medicine which attenuated experimental skin fibrosis of SSc. These suggest that DAB2 plays an important role in SSc skin fibrosis, but the role of DAB2 in SSc remains unclear. OBJECTIVES To investigate the role of DAB2 in SSc. METHODS DAB2 expression level was detected in the skin and peripheral blood mononuclear cells of SSc patients. Bleomycin (BLM)-induced SSc mice and primary SSc skin fibroblasts were used to investigate the effect of DAB2 downregulation on fibrosis. RNA-seq transcriptome analysis was performed to underlie the mechanism of DAB2 in fibroblasts. RESULTS DAB2 expression was enhanced in SSc lesion skin and was positively correlated with fibrotic genes, such as α-SMA and PAI-1. The in vivo study revealed that DAB2 downregulation alleviated skin fibrosis, alleviating skin thickness and reducing collagen deposition, and DAB2 knockdown ameliorated the inflammatory cell infiltration. The in vitro study showed that DAB2 knockdown reduced extracellular matrix genes and proteins expression. Moreover, Transcriptome analysis revealed TGF-β and focal adhesion signaling pathways were the main downregulated pathways involved in DAB2 siRNA treated fibroblasts. CONCLUSIONS Taken together, our results revealed that DAB2 was increased in SSc skin, and DAB2 downregulation inhibited BLM-induced mouse skin fibrosis and SSc skin fibroblasts activation. DAB2 played an important role in the pathogenesis of SSc and DAB2 modulation may represent a potential therapeutic method for SSc.
Collapse
Affiliation(s)
- Xueqian Mei
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Han Zhao
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yan Huang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yulong Tang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiangguang Shi
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weilin Pu
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China; Human Phenome Institute, Fudan University, Shanghai, China
| | - Shuai Jiang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanyun Ma
- Human Phenome Institute, Fudan University, Shanghai, China; Six-Sector Industries Institute, Fudan University, Shanghai, China
| | - Yuting Zhang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Lu Bai
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenzhen Tu
- Division of Rheumatology, Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Yinhuan Zhao
- Division of Rheumatology, Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Li Jin
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China; Department of Dermatology, Jing'an District Central Hospital, Shanghai, China.
| | - Jiucun Wang
- Human Phenome Institute, Fudan University, Shanghai, China; Research unit of dividing the population genetics and developing new technologies for treatment and prevention of skin types and mathematical diseases, Shanghai, China.
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Hocevar BA. Loss of Disabled-2 Expression in Pancreatic Cancer Progression. Sci Rep 2019; 9:7532. [PMID: 31101868 PMCID: PMC6525241 DOI: 10.1038/s41598-019-43992-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 12/12/2018] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer type characterized by rapid metastasis and resistance to chemotherapy, properties that are shared by cancer stem cells (CSCs). In pancreatic cancer, tumor cells which possess the properties of CSCs also phenotypically resemble cells that have undergone epithelial-to-mesenchymal transition or EMT. Disabled-2 (Dab2) is a multifunctional scaffold protein frequently downregulated in cancer that has been linked to the process of EMT. However, the role of Dab2 in pancreatic cancer development and progression remains unclear. Downregulation of Dab2 expression in pancreatic cancer cell lines was found to trigger induction of genes characteristic of EMT and the CSC phenotype, while overexpression of Dab2 in the Panc1 cell line blocked the process of TGFβ-stimulated EMT. In addition, selective inhibition of the TGFβRI/RII receptors was found to reverse genes altered by Dab2 downregulation. Dab2 mRNA expression was found to be decreased in PDAC tumor samples, as compared to levels observed in normal pancreatic tissue. Methylation of the Dab2 gene promoter was demonstrated in Stage I PDAC tumors and in the MiaPaCa2 cell line, suggesting that promoter methylation may silence Dab2 expression early in pancreatic cancer progression. These results suggest that Dab2 may function as a tumor suppressor in pancreatic cancer by modulation of the TGFβ-stimulated EMT and CSC phenotype.
Collapse
Affiliation(s)
- Barbara A Hocevar
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
6
|
Sun C, Yao X, Jiang Q, Sun X. miR-106b targets DAB2 to promote hepatocellular carcinoma cell proliferation and metastasis. Oncol Lett 2018; 16:3063-3069. [PMID: 30127897 PMCID: PMC6096264 DOI: 10.3892/ol.2018.8970] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/11/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) have been proven to have important effects on the proliferation and metastasis of multiple cancers, including hepatocellular carcinoma (HCC). In the present study, our aim was to explore the biological function of miR-106b in HCC cell proliferation and metastasis. qPCR analysis showed that miR-106b was expressed at higher levels, while disabled homolog 2 (DAB2) was expressed at lower levels in HCC tissues and cells. Moreover, the aberrant miR-106b expression in HCC affected the cell proliferative and migratory ability by MTT and Transwell assay. DAB2 was identified as a specific target of miR-106b in HCC by luciferase reporter assay and regression analysis showed a negative correlation between DAB2 and miR-106b expression. In addition, DAB2 may attenuate the miR-106b promotion effect on HCC cell proliferation and migration. In short, miR-106b may promote HCC cell proliferation and migration by targeting DAB2.
Collapse
Affiliation(s)
- Chunhui Sun
- Department of Hepatobiliary Surgery, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Xun Yao
- Department of Hepatobiliary Surgery, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Qingyu Jiang
- Department of Hepatobiliary Surgery, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Xiuyong Sun
- Department of Hepatobiliary Surgery, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| |
Collapse
|
7
|
Tian X, Zhang Z. miR-191/DAB2 axis regulates the tumorigenicity of estrogen receptor-positive breast cancer. IUBMB Life 2017; 70:71-80. [DOI: 10.1002/iub.1705] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/02/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Xinxin Tian
- Tianjin International Joint Academy of Biomedicine (TJAB); Tianjin People's Republic of China
- Department of Biochemistry and Biophysics; Texas A&M University and Texas AgriLife Research; College Station TX USA
| | - Zhiqian Zhang
- Tianjin International Joint Academy of Biomedicine (TJAB); Tianjin People's Republic of China
- State Key Laboratory of Medicinal Chemical Biology; Nankai University; Tianjin People's Republic of China
| |
Collapse
|
8
|
Sun N, Taguchi A, Hanash S. Switching Roles of TGF-β in Cancer Development: Implications for Therapeutic Target and Biomarker Studies. J Clin Med 2016; 5:jcm5120109. [PMID: 27916872 PMCID: PMC5184782 DOI: 10.3390/jcm5120109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/17/2016] [Accepted: 11/22/2016] [Indexed: 12/15/2022] Open
Abstract
TGF-β induces complicated and even opposite responses in numerous biological processes, e.g., tumor suppression in pre-malignant cells and metastasis promotion in cancer cells. However, the cellular contextual determinants of these different TGF-β roles remain elusive, and the driver genes triggering the determinants’ changes have not been identified. Recently, however, several findings have provided new insights on the contextual determinants of Smads in TGF-β’s biological processes. These novel switches and their effectors may serve as prognostic biomarkers and therapeutic targets of TGF-β-mediated cancer progression.
Collapse
Affiliation(s)
- Nan Sun
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Ayumu Taguchi
- Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Samir Hanash
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Abstract
Integrins are a family of transmembrane cell surface molecules that constitute the principal adhesion receptors for the extracellular matrix (ECM) and are indispensable for the existence of multicellular organisms. In vertebrates, 24 different integrin heterodimers exist with differing substrate specificity and tissue expression. Integrin–extracellular-ligand interaction provides a physical anchor for the cell and triggers a vast array of intracellular signalling events that determine cell fate. Dynamic remodelling of adhesions, through rapid endocytic and exocytic trafficking of integrin receptors, is an important mechanism employed by cells to regulate integrin–ECM interactions, and thus cellular signalling, during processes such as cell migration, invasion and cytokinesis. The initial concept of integrin traffic as a means to translocate adhesion receptors within the cell has now been expanded with the growing appreciation that traffic is intimately linked to the cell signalling apparatus. Furthermore, endosomal pathways are emerging as crucial regulators of integrin stability and expression in cells. Thus, integrin traffic is relevant in a number of pathological conditions, especially in cancer. Nearly a decade ago we wrote a Commentary in Journal of Cell Science entitled ‘Integrin traffic’. With the advances in the field, we felt it would be appropriate to provide the growing number of researchers interested in integrin traffic with an update.
Collapse
Affiliation(s)
| | - Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
| | - Jonna Alanko
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
| | - Pranshu Sahgal
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
| |
Collapse
|
10
|
Ahmed MS, Byeon SE, Jeong Y, Miah MA, Salahuddin M, Lee Y, Park SS, Bae YS. Dab2, a negative regulator of DC immunogenicity, is an attractive molecular target for DC-based immunotherapy. Oncoimmunology 2015; 4:e984550. [PMID: 25949867 DOI: 10.4161/2162402x.2014.984550] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 11/02/2014] [Indexed: 12/28/2022] Open
Abstract
Dab2 is an adapter protein involved in receptor-mediated signaling, endocytosis, cell adhesion, hematopoietic cell differentiation, and angiogenesis. It plays a pivotal role in controlling cellular homeostasis. In the immune system, the Dab2 is a Foxp3 target gene and is required for regulatory T (Treg) cell function. Dab2 expression and its biological function in dendritic cells (DCs) have not been described. In this study, we found that Dab2 was significantly induced during the development of mouse bone marrow (BM)-derived DCs (BMDCs) and human monocyte-derived DCs (MoDCs). Even in a steady state, Dab2 was expressed in mouse splenic DCs (spDCs). STAT5 activation, Foxp3 expression, and hnRNPE1 activation mediated by PI3K/Akt signaling were required for Dab2 expression during GM-CSF-derived BMDC development regardless of TGF-β signaling. Dab2-silencing was accompanied by enhanced IL-12 and IL-6 expression, and an improved capacity of DC for antigen uptake, migration and T cell stimulation, which generated strong CTL in vaccinated mice. Vaccination with Dab2-silenced DCs inhibited tumor growth more effectively than did vaccination with wild type DCs. Dab2-overexpression abrogated the efficacy of the DC vaccine in DC-based tumor immunotherapy. These data strongly suggest that Dab2 might be an intrinsic negative regulator of the immunogenicity of DCs, thus might be an attractive molecular target to improve DC vaccine efficacy.
Collapse
Key Words
- BAT, blocking the TGF-β-activated translation element
- BM, bone marrow
- CFSE, 5, 6-carboxyfluorescein succinimidyl ester
- CTL, cytotoxic T lymphocyte
- DCs, dendritic cells
- Dab2
- Dab2, disabled-2 adaptor protein
- Dab2KD, Dab2-knockdown
- Foxp3, forkhead box P3
- GM-CSF, granulocyte-macrophage colony stimulating factor
- OT-1 and OT-2 mice, OVA257–264 and OVA323–339-peptide-specific T cell receptor transgenic mice
- OVA, ovalbumin
- PI3K, phosphoinositide-3 kinase
- STAT5, transducer and activator of transcription 5
- TGF-β, transforming growth factor-β
- Treg, regulatory T
- WT, wild type
- dendritic cells
- hMoDC, human monocyte-derived dendritic cell
- hnRNP E1, heterogeneous nuclear ribonucleoprotein E1
- imDC, immature DC
- immunogenicity
- mDC, mature DC
- molecular target
Collapse
Affiliation(s)
- Md Selim Ahmed
- Department of Biological Science; Sungkyunkwan University ; Suwon, Gyounggi-do, Republic of Korea
| | - Se Eun Byeon
- Department of Biological Science; Sungkyunkwan University ; Suwon, Gyounggi-do, Republic of Korea
| | - Yideul Jeong
- Department of Biological Science; Sungkyunkwan University ; Suwon, Gyounggi-do, Republic of Korea
| | - Mohammad Alam Miah
- Department of Biological Science; Sungkyunkwan University ; Suwon, Gyounggi-do, Republic of Korea
| | - Md Salahuddin
- Department of Biological Science; Sungkyunkwan University ; Suwon, Gyounggi-do, Republic of Korea
| | - Yoon Lee
- Department of Biological Science; Sungkyunkwan University ; Suwon, Gyounggi-do, Republic of Korea ; CreaGene Research Institute ; Seongnam-shi, Gyeonggi-do, Republic of Korea
| | - Sung-Soo Park
- School of Life Sciences and Biotechnology; Korea University ; Seoul, Republic of Korea
| | - Yong-Soo Bae
- Department of Biological Science; Sungkyunkwan University ; Suwon, Gyounggi-do, Republic of Korea ; CreaGene Research Institute ; Seongnam-shi, Gyeonggi-do, Republic of Korea
| |
Collapse
|