1
|
Wang Y, Nie B, Zheng S, Wu H, Chen N, Wang D. Emerging activated tungsten dust: Source, environmental behaviors, and health effects. ENVIRONMENT INTERNATIONAL 2024; 188:108774. [PMID: 38810497 DOI: 10.1016/j.envint.2024.108774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Fusion energy investigation has stepped to a new stage adopting deuterium and tritium as fuels from the previous stage concentrating hydrogen plasma physics. Special radiation safety issues would be introduced during this stage. In addition to industrial and military uses, tungsten is also regarded as the most promising plasma facing material for fusion reactors. During the operation of fusion reactors, tungsten-based plasma facing materials can be activated via neutron nuclear reaction. Meanwhile, activated tungsten dust can be produced when high-energy plasma interacts with the tungsten-based plasma facing materials, namely plasma wall interaction. Activated tungsten dust would be an emerging environmental pollutant with radiation toxicity containing various radionuclides in addition to the chemical toxicity of tungsten itself. Nonetheless, the historical underestimation of its environmental availability has led to limited research on tungsten compared to other environmental contaminants. This paper presents the first systematic review on the safety issue of emerging activated tungsten dust, encompassing source terms, environmental behaviors, and health effects. The key contents are as follows: 1) to detail the source terms of activated tungsten dust from aspects of tungsten basic properties, generation mechanism, physical morphology and chemical component, radioactivity, as well as potential release pathways, 2) to illustrate the environmental behaviors from aspects of atmospheric dispersion and deposition, transformation and migration in soil, as well as plant absorption and distribution, 3) to identify the toxicity and health effects from aspects of toxicity to plants, distribution in human body, as well as health effects by radiation and chemical toxicity, 4) based on the research progress, research and development issues needed are also pointed out to better knowledge of safety issue of activated tungsten dust, which would be beneficial to the area of fusion energy and ecological impact caused by the routine tungsten related industrial and military applications.
Collapse
Affiliation(s)
- Yuxuan Wang
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baojie Nie
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shanliang Zheng
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031, China
| | - Hanyu Wu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Ni Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Dezhong Wang
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Li Q, Liu L, Yan W, Chen X, Liu R, Zhao Z, Jiang F, Huang Y, Zhang S, Zou Y, Yang C. Influence on the release of arsenic and tungsten from sediment, and effect on other heavy metals and microorganisms by ceria nanoparticle capping. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123161. [PMID: 38104760 DOI: 10.1016/j.envpol.2023.123161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
In this study, ceria nanoparticle (CNP) was used as a capping agent to investigate the efficiency and mechanism of simultaneously controlling the release of sediment internal Arsenic (As) and tungsten (W). The results of incubation experiment demonstrated that CNP capping reduced soluble As and W by 81.80% and 97.97% in overlying water, respectively; soluble As and W by 65.64% and 60.13% in pore water, respectively; and labile As and W in sediment by 45.20% and 53.20%, respectively. The main mechanism of CNP controlling sediment internal As and W was through adsorption via ligand exchange and inner-sphere complexation, as determined through adsorption experiments, XPS and FIRT spectra analysis. Besides, CNP also acted as an oxidant, facilitating the oxidation of AsⅢ to AsV and thereby enhancing the adsorption of soluble As. Additionally, sediment As and W fractions experiments demonstrated that the immobilization of As and W with CNP treatment via transforming mobile to stable fractions was another mechanism inhibiting sediment As and W release. The obtained significant positive correlation between soluble As/W and Fe/Mn, labile As/W and Fe/Mn indicated that iron (Fe) and manganese (Mn) oxidation, influenced by CNP, serve as additional mechanisms. Moreover, Fe redox plays a crucial role in controlling internal As and W, while Mn redox plays a more significant role in controlling As compared to W. Meanwhile, CNP capping effectively prevented the release of As and W by reducing the activity of microorganisms that degrade Fe-bound As and W and reduced the release risk of V, Cr, Co, Ni, and Zn from sediments. Overall, this study proved that CNP was a suitable capping agent for simultaneously controlling the release of As and W from sediment.
Collapse
Affiliation(s)
- Qi Li
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China.
| | - Ling Liu
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China.
| | - Wenming Yan
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China; National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
| | - Xiang Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Ruiyan Liu
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Ziyi Zhao
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Feng Jiang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Yanfen Huang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Shunting Zhang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Yiqian Zou
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Chenjun Yang
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| |
Collapse
|
3
|
Bolan S, Wijesekara H, Ireshika A, Zhang T, Pu M, Petruzzelli G, Pedron F, Hou D, Wang L, Zhou S, Zhao H, Siddique KHM, Wang H, Rinklebe J, Kirkham MB, Bolan N. Tungsten contamination, behavior and remediation in complex environmental settings. ENVIRONMENT INTERNATIONAL 2023; 181:108276. [PMID: 39492254 DOI: 10.1016/j.envint.2023.108276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
Tungsten (W) is a rare element and present in the earth's crust mainly as iron, aluminium, and calcium minerals including wolframite and scheelite. This review aims to offer an overview on the current knowledge on W pollution in complex environmental settlings, including terrestrial and aquatic ecosystems, linking to its natural and anthropogenic sources, behavior in soil and water, environmental and human health hazards, and remediation strategies. Tungsten is used in many alloys mainly as wafers, which have wide industrial applications, such as incandescent light bulb filaments, X-ray tubes, arc welding electrodes, radiation shielding, and industrial catalysts. The rigidity and high density of W enable it to be suitable for defence applications replacing lead. In soil, W metal is oxidised to the tungstate anion and occurs in oxidation states from - 2 to + 6, with the most prevalent oxidation state of + 6. However, recently, people have been alerted to the risk posed by W alloys and its particulates, which can cause cancer and have other detrimental health effects in animals and humans. The population is subject to W pollution in the workplace by breathing, ingestion, and dermal contact. Remediation of W-polluted soil and aquatic environments can be accomplished via stabilization or solubilization. Stabilization of W in soil and groundwater using immobilizing agents inhibits the bioavailability of W, thereby preventing the contaminant from reaching the food chain, while solubilization of W in soil involving mobilizing materials accelerates the elimination of W via soil washing and root absorption. Future research opportunities covering risk-based remediation of W pollution in these complex settings are presented.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Australia
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Achali Ireshika
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Mingjun Pu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Gianniantonio Petruzzelli
- Institute of Research on Terrestrial Ecosystem, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy
| | - Francesca Pedron
- Institute of Research on Terrestrial Ecosystem, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Sarah Zhou
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Hoachen Zhao
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany.
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Australia.
| |
Collapse
|
4
|
Lu L, Rao W, Song Y, Lei M, Tie B, Du H. Natural dissolved organic matter (DOM) affects W(VI) adsorption onto Al (hydr)oxide: Mechanisms and influencing factors. ENVIRONMENTAL RESEARCH 2022; 205:112571. [PMID: 34919961 DOI: 10.1016/j.envres.2021.112571] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/23/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Tungsten (W) is a contaminant with health implications whose environmental behaviors are not understood well. Sorption to mineral surfaces is one of the primary processes controlling the mobility and fate of W in soils, sediments, and aquifers. However, few papers published hitherto have not yet figured out the influences of dissolved organic matter (DOM) on this process. Here, we examine W(VI) adsorption behaviors onto Al (hydr)oxide (AAH) in the presence or absence of DOM derived from plant rhizosphere, using batch experiments coupled with X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The morphology and functional group analyses results show that DOM can facilitate the aggregation of AAH and block surface Al-OH groups. Coexisting DOM inhibits W(VI) adsorption onto AAH at acidic to neutral pH (4-7), and the presence of either Na + or PO43- can exert a completely different impact on W(VI) adsorption. XPS and FTIR characterizations further demonstrate surface W complexes with the Al-OH groups of AAH and carboxyl groups of DOM. There is no reduction of W(VI) during the adsorption processes, and poly-tungstate species are formed on the surface of both AAH and AAH-DOM coprecipitates. This study provides the first evidence of the roles of natural DOM on W sequestration at the mineral-water surface, which has an important implication for the prediction of the migration and bioavailability of W in natural environments.
Collapse
Affiliation(s)
- Lei Lu
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Wenkai Rao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Yuyan Song
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Ming Lei
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Boqing Tie
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Huihui Du
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| |
Collapse
|
5
|
Huang Q, Hu X, Yuan X, Xiao T, Zhang M, Zhang D, Ren S, Luo W. Immobilization of W(VI) and/or Cr(VI) in soil treated with montmorillonite modified by a gemini surfactant and tetrachloroferrate (FeCl 4-). JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127768. [PMID: 34810006 DOI: 10.1016/j.jhazmat.2021.127768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
The coexistence of highly toxic chromium (Cr) and the emerging contaminant tungsten (W) in the soil adjacent to W mining areas is identified. Immobilization of W and/or Cr is vital for the safe utilization of contaminated soil. In this study, the cationic gemini surfactant (butane-1,4-bis(dodecyl dimethyl ammonium bromide)) and tetrachloroferrate (FeCl4-)-modified montmorillonite (FeOMt) was applied to investigate the retention performance of W and/or Cr in the soil. Regardless of the initially spiked amount of WO42- and/or CrO42-, the W and/or Cr leached in soil solution was rapidly immobilized within 5 min. The immobilization rates of W and/or Cr in the single and binary soil systems were stably maintained against the variations in pH and coexisting anion. FeOMt showed more favorable performance in the retention of W and/or Cr with respect to the precursors (i.e., the original Mt and surfactant-modified Mt) and efficiently inhibited the phytotoxicity and bioaccumulation of W and/or Cr in mung beans. Due to the ion exchange, complexation, reduction, and flocculation, the addition of FeOMt transformed W and/or Cr from exchangeable/carbonate species to reducible/oxidizable fractions, reducing the environmental risk. FeCl4- complex, as a byproduct of the steel pickling process in industry, plays the pivotal role in the efficient retention of W and Cr. Based on the facile synthesis procedure and the efficient performance, the use of FeOMt for the amendment of W- and/or Cr-contaminated soil is feasible and promising.
Collapse
Affiliation(s)
- Qidong Huang
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, PR China; School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Xiaojie Hu
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, PR China; School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Xiujuan Yuan
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, PR China; School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Ting Xiao
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, PR China; School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Meng Zhang
- Jiangxi Academy of Environmental Sciences, Nanchang 330039, PR China
| | - Dachao Zhang
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, PR China; School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China; Ganzhou Technology Innovation Center for Mine Ecology Remediation, Ganzhou 341000, PR China
| | - Sili Ren
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, PR China; School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Wuhui Luo
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou 341000, PR China; School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China; Jiangxi Academy of Environmental Sciences, Nanchang 330039, PR China.
| |
Collapse
|
6
|
Abstract
The increasing use of tungsten in the production of green energy in the aerospace and military industries, and in many other hi-tech applications, may increase the content of this element in soil. This overview examines some aspects of the behavior of tungsten in soil, such as the importance of characteristics of soils in relation to bioavailability processes, the chemical approaches to evaluate tungsten mobility in the soil environment and the importance of adsorption and desorption processes. Tungsten behavior depends on soil properties of which the most important is soil pH, which determines the solubility and polymerization of tungstate ions and the characteristics of the adsorbing soil surfaces. During the adsorption and desorption of tungsten, iron, and aluminum oxides, and hydroxides play a key role as they are the most important adsorbing surfaces for tungsten. The behavior of tungsten compounds in the soil determines the transfer of this element in plants and therefore in the food chain. Despite the growing importance of tungsten in everyday life, environmental regulations concerning soil do not take this element into consideration. The purpose of this review is also to provide some basic information that could be useful when considering tungsten in environmental legislation.
Collapse
|
7
|
Abstract
Tungsten is recognized as a critical metal due to its unique properties, economic importance, and limited sources of supply. It has wide applications where hardness, high density, high wear, and high-temperature resistance are required, such as in mining, construction, energy generation, electronics, aerospace, and defense sectors. The two primary tungsten minerals, and the only minerals of economic importance, are wolframite and scheelite. Secondary tungsten minerals are rare and generated by hydrothermal or supergene alteration rather than by atmospheric weathering. There are no reported concerns for tungsten toxicity. However, tungsten tailings and other residues may represent severe risks to human health and the environment. Tungsten metal scrap is the only secondary source for this metal but reprocessing of tungsten tailings may also become important in the future. Enhanced gravity separation, wet high-intensity magnetic separation, and flotation have been reported to be successful in reprocessing tungsten tailings, while bioleaching can assist with removing some toxic elements. In 2020, the world’s tungsten mine production was estimated at 84 kt of tungsten (106 kt WO3), with known tungsten reserves of 3400 kt. In addition, old tungsten tailings deposits may have great potential for exploration. The incomplete statistics indicate about 96 kt of tungsten content in those deposits, with an average grade of 0.1% WO3 (versus typical grades of 0.3–1% in primary deposits). This paper aims to provide an overview of tungsten minerals, tungsten primary and secondary resources, and tungsten mine waste, including its environmental risks and potential for reprocessing.
Collapse
|
8
|
Han YS, Park JH, Ahn JS. Aging effects on fractionation and speciation of redox-sensitive metals in artificially contaminated soil. CHEMOSPHERE 2021; 263:127931. [PMID: 33297015 DOI: 10.1016/j.chemosphere.2020.127931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/16/2020] [Accepted: 08/05/2020] [Indexed: 06/12/2023]
Abstract
Artificially contaminated soil is often used in laboratory experiments as a substitute for actual field contaminated soils. In the preparation and use of laboratory contaminated soils, questions remain as to how much and how long metals remain in labile form and in their oxidation state during the contamination process. Therefore, the objectives of this study were to determine if the speciation of added contaminants can be retained in the original form and to observe the change in lability of each element with aging time. In this study, natural soil was artificially polluted with five redox-sensitive toxic elements in their oxidized or reduced forms, i.e., As(III)/As(V), Sb(III)/Sb(V), Cr(III)/Cr(VI), Mo(VI), and W(V). Metal distribution was measured in progressive chemical fractionation using sequential extraction methods in contaminated soils after 3, 100, and 300 days of aging. The results indicated that the more strongly bound fraction of metals increased by day 100; whereas the fractions were not significantly different from those in the 300-day-aged soil. Among five metals, the ratio of weakly-bound fractions remained highest in As- and lowest in Cr-contaminated soils. The W(VI)-contaminated soil showed strong sorption without changes in speciation during aging. The oxidized or reduced metal species converged to occur as a single species under given soil conditions, regardless of the initial form of metal used to spike the soil. Both As and Sb existed as their oxidized form while Cr existed as its reduced form. The results of this study may provide a useful and practical guideline for artificial soil contamination.
Collapse
Affiliation(s)
- Young-Soo Han
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea; Department of Environmental Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Hee Park
- Department of Environmental & Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| | - Joo Sung Ahn
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea
| |
Collapse
|
9
|
Steenstra P, Strigul N, Harrison J. Tungsten in Washington State surface waters. CHEMOSPHERE 2020; 242:125151. [PMID: 31698214 DOI: 10.1016/j.chemosphere.2019.125151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/11/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
At high concentrations, tungsten can be toxic to humans, animals, and the environment, though little is known about natural, aqueous tungsten in surface waters. To improve understanding and develop a model predicting tungsten concentrations, we collected water and sediment from 77 water bodies in 20 watersheds in Washington State, USA. We found aqueous tungsten concentrations spanning two orders of magnitude (10.3 ng L-1 - 2.05 μg L-1) with average tungsten concentrations in both water and sediments more than two-fold higher in watersheds with tungsten-bearing underlying rock types (average: 0.217 μg L-1, 0.669 mg kg-1; range: 0.010-2.05 μg L-1, 0.0713-4.691 mg kg-1 for surface waters and sediments, respectively) than in watersheds without such underlying geology (average: 0.068 μg L-1, 0.352 mg kg-1; range: 0.010-0.211 μg L-1, 0.0349-2.399 mg kg-1 for surface waters and sediments, respectively). Aqueous concentrations of tungsten significantly correlated with beryllium (Be) and copper (Cu) (R2 = 0.31, 0.41, respectively) and a multiple linear regression model using Be and Cu explained 65% of the variance in measured aqueous tungsten concentrations. Applying this model to existing Be and Cu data from 19 sites across the Pacific Northwest resulted in predicted tungsten concentrations ranging from 0.116 to 0.458 μg L-1. These predicted concentrations along with our measured concentrations indicate none of these sites were close to the drinking water standard for tungsten set by the former Soviet Union-the only country so far to set limits for tungsten in drinking water (50 μg L-1).
Collapse
Affiliation(s)
- Philip Steenstra
- School of Environmental Science, 14204 NE Salmon Creek Avenue, Washington State University Vancouver, Vancouver, WA, 98686, USA.
| | - Nikolay Strigul
- School of Environmental Science, 14204 NE Salmon Creek Avenue, Washington State University Vancouver, Vancouver, WA, 98686, USA
| | - John Harrison
- School of Environmental Science, 14204 NE Salmon Creek Avenue, Washington State University Vancouver, Vancouver, WA, 98686, USA
| |
Collapse
|
10
|
Hällström LPB, Alakangas L, Martinsson O. Scheelite weathering and tungsten (W) mobility in historical oxidic-sulfidic skarn tailings at Yxsjöberg, Sweden. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6180-6192. [PMID: 31865574 PMCID: PMC7044260 DOI: 10.1007/s11356-019-07305-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
More knowledge of the geochemical behavior of tungsten (W) and associated contamination risks is needed. Therefore, weathering of scheelite (CaWO4) and secondary sequestration and transport of W to groundwater in historical skarn tailings and surface water downstream of the tailings were studied. The tailings contained 920 mg/kg W, primarily in scheelite. Mineralogical and geochemical analyses were combined to elucidate the geochemical behavior of W in the tailings, and water samples were taken monthly during 2018 to monitor its mobility. In the tailings, a large peak of W was found at 1.5 m depth. There, 30 wt%. of W was present in easily reducible phases, indicating former scheelite weathering. Currently, W is being released from scheelite to water-soluble phases at 2.5 m depth. The release of WO42- is hypothetically attributed to anion exchange with CO32- released from calcite neutralizing acid produced from pyrrhotite oxidation in the upper tailings and transported downwards to pH conditions > 7. Higher concentrations of dissolved W were found in the groundwater and particulate W in downstream surface water than in reference water, but they were lower than current contamination thresholds. Tungsten showed correlations with hydrous ferric oxides (HFO) in both the tailings and surface water.
Collapse
Affiliation(s)
| | - Lena Alakangas
- Applied Geochemistry, Luleå University of Technology, Luleå, Sweden
| | | |
Collapse
|
11
|
Park JH, Han HJ. Effect of tungsten-resistant bacteria on uptake of tungsten by lettuce and tungsten speciation in plants. JOURNAL OF HAZARDOUS MATERIALS 2019; 379:120825. [PMID: 31279307 DOI: 10.1016/j.jhazmat.2019.120825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/07/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
Tungsten is an emerging contaminant because of its potential toxicity to humans. However, tungsten-plant-microbe interactions remains unknown. The objective of the study was to evaluate the effect of tungsten-resistant bacteria on tungsten species in plants and microbial community structure in soil. Although bacterial inoculation did not affect lettuce (Lactuca sativa L.) growth or tungsten uptake via root, tungsten-resistant bacteria increased translocation of tungsten from root to shoot. Bacterial inoculation slightly oxidized tungsten in lettuce based on tungsten L3 x-ray absorption near-edge structure (XANES). Tungsten in lettuce roots and shoots grown in tungsten(VI)-spiked soil existed as a mixture of tungsten(IV) and tungsten(VI). Tungsten accumulated as polytungstate in the root and monotungstate in the shoot. Inoculation with tungsten-resistant bacteria and plant growth increased microbial diversity in tungsten-contaminated soil. In tungsten-spiked soils without plants, metal-resistant or reducing bacteria were found while bacteria growing in rhizosphere were detected in soils supporting plant growth. These results indicate a role of the bacteria and plants in phytoremediation of tungsten-contaminated soil.
Collapse
Affiliation(s)
- Jin Hee Park
- Department of Environmental & Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| | - Hyeop-Jo Han
- Department of Energy and Resources Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
12
|
Li R, Wang W, Wang S, Lin C, Wang X, Meng L, Yuan X. Comparison of two sequential extraction procedures for tungsten fractionation in the tungsten mining soils. RSC Adv 2019; 9:35456-35462. [PMID: 35528076 PMCID: PMC9074636 DOI: 10.1039/c9ra07158j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/28/2019] [Indexed: 11/21/2022] Open
Abstract
Two sequential extraction procedures including Tessier and Wenzel schemes have been evaluated for the study of tungsten fractionation in soil samples adjacent to the World's largest and longest-operating tungsten mines in China. The efficiency and suitability of two methods and the corresponding extraction steps for partitioning tungsten were compared. Results showed the Tessier scheme classical for cation metals was inappropriate for tungsten fractionation. Although the percentage of readily bioavailable tungsten fractions extracted by the Tessier method is comparable to the Wenzel method, the Tessier scheme still has some drawbacks for partitioning tungsten mainly arising from the lack of selectivity of some of the reagents used. The Wenzel scheme has higher extraction recovery and efficiency than the Tessier method, especially for extracting amorphous and crystalline oxyhydroxides which were mainly responsible for tungsten retention. As a final conclusion, the study indicated that the Wenzel scheme should be more suitable for tungsten fractionation, but we need to make further improvement on the Wenzel scheme by supplementing the extraction stage for the oxidisable fraction to find a reliable and easy to use method to characterize tungsten forms in all soil samples to provide valuable information for risk assessment.
Collapse
Affiliation(s)
- Ruiping Li
- School of Geography and Tourism, Qufu Normal University Rizhao Campus Rizhao China +86 10 3980705
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University Beijing China +86 10 58801858 +86 10 58801858
| | - Wenjie Wang
- School of Geography and Tourism, Qufu Normal University Rizhao Campus Rizhao China +86 10 3980705
| | - Shiliang Wang
- School of Geography and Tourism, Qufu Normal University Rizhao Campus Rizhao China +86 10 3980705
| | - Chunye Lin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University Beijing China +86 10 58801858 +86 10 58801858
| | - Xiangyi Wang
- School of Geography and Tourism, Qufu Normal University Rizhao Campus Rizhao China +86 10 3980705
| | - Lingchuan Meng
- School of Geography and Tourism, Qufu Normal University Rizhao Campus Rizhao China +86 10 3980705
| | - Xianlong Yuan
- Rizhao Environmental Monitoring Station Rizhao China
| |
Collapse
|
13
|
Influence of Increasing Tungsten Concentrations and Soil Characteristics on Plant Uptake: Greenhouse Experiments with Zea mays. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9193998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tungsten is largely used in high-tech and military industries. Soils are increasingly enriched in this element, and its transfer in the food chain is an issue of great interest. This study evaluated the influence of soil characteristics on tungsten uptake by Zea mays grown on three soils, spiked with increasing tungsten concentrations. The soils, classified as Histosol, Vertisol, and Fluvisol, are characteristic of the Mediterranean area. The uptake of the element by Zea mays was strictly dependent on the soil characteristics. As the pH of soils increases, tungsten concentrations in the roots and shoots of the plants increased. Also, humic substances showed a great influence on tungsten uptake, which decreased with increasing organic matter of soils. Tungsten uptake by Zea mays can be described by a Freundlich-like equation. This soil-to-plant transfer model may be useful in promoting environmental regulations on the hazards of this element in the environment.
Collapse
|
14
|
Adamakis IDS, Eleftheriou EP. Structural Evidence of Programmed Cell Death Induction by Tungsten in Root Tip Cells of Pisum sativum. PLANTS (BASEL, SWITZERLAND) 2019; 8:E62. [PMID: 30862127 PMCID: PMC6473820 DOI: 10.3390/plants8030062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 01/22/2023]
Abstract
Previous studies have shown that excess tungsten (W), a rare heavy metal, is toxic to plant cells and may induce a kind of programmed cell death (PCD). In the present study we used transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM) to investigate the subcellular malformations caused by W, supplied as 200 mg/L sodium tungstate (Na₂WO₄) for 12 or 24 h, in root tip cells of Pisum sativum (pea), The objective was to provide additional evidence in support of the notion of PCD induction and the presumed involvement of reactive oxygen species (ROS). It is shown ultrastructurally that W inhibited seedling growth, deranged root tip morphology, induced the collapse and deformation of vacuoles, degraded Golgi bodies, increased the incidence of multivesicular and multilamellar bodies, and caused the detachment of the plasma membrane from the cell walls. Plastids and mitochondria were also affected. By TEM, the endoplasmic reticulum appeared in aggregations of straight, curved or concentric cisternae, frequently enclosing cytoplasmic organelles, while by CLSM it appeared in bright ring-like aggregations and was severely disrupted in mitotic cells. However, no evidence of ROS increase was obtained. Overall, these findings support the view of a W-induced vacuolar destructive PCD without ROS enhancement.
Collapse
Affiliation(s)
| | - Eleftherios P Eleftheriou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece.
| |
Collapse
|
15
|
Oburger E, Vergara Cid C, Preiner J, Hu J, Hann S, Wanek W, Richter A. pH-Dependent Bioavailability, Speciation, and Phytotoxicity of Tungsten (W) in Soil Affect Growth and Molybdoenzyme Activity of Nodulated Soybeans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6146-6156. [PMID: 29701969 PMCID: PMC5990931 DOI: 10.1021/acs.est.7b06500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/08/2018] [Accepted: 04/27/2018] [Indexed: 05/15/2023]
Abstract
Increasing use of tungsten (W)-based products opened new pathways for W into environmental systems. Due to its chemical alikeness with molybdenum (Mo), W is expected to behave similarly to its "twin element", Mo; however, our knowledge of the behavior of W in the plant-soil environment remains inadequate. The aim of this study was to investigate plant growth as well as W and nutrient uptake depending on soil chemical properties such as soil pH and texture. Soybean ( Glycine max cv. Primus) was grown on two acidic soils differing in soil texture that were either kept at their natural soil pH (pH of 4.5-5) or limed (pH of ≥7) and amended with increasing concentrations of metallic W (control and 500 and 5000 mg kg-1). In addition, the activity of molybdoenzymes involved in N assimilation (nitrate reductase) and symbiotic N2 fixation (nitrogenase) was also investigated. Our results showed that the risk of W entering the food web was significantly greater in high-pH soils due to increased solubility of mainly monomeric W. The effect of soil texture on W solubility and phytoavailability was less pronounced compared to soil pH. Particularly at intermediate W additions (W 500 mg kg-1), symbiotic nitrogen fixation was able to compensate for reduced leaf nitrate reductase activity. When W soil solution concentrations became too toxic (W 5000 mg kg-1), nodulation was more strongly inhibited than nitrogenase activity in the few nodules formed, suggesting a more-efficient detoxification and compartmentalization mechanism in nodules than in soybean leaves. The increasing presence of polymeric W species observed in low-pH soils spiked with high W concentrations resulted in decreased W uptake. Simultaneously, polymeric W species had an overall negative effect on nutrient assimilation and plant growth, suggesting a greater phytotoxicity of W polymers. Our study demonstrates the importance of accounting for soil pH in risk assessment studies of W in the plant-soil environment, something that has been completely neglected in the past.
Collapse
Affiliation(s)
- Eva Oburger
- Department of Microbiology and Ecosystem Science, Division of Terrestrial
Ecosystem Research and Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
- BOKU,
Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Konrad-Lorenz Strasse 24, A-3430 Tulln, Austria
| | - Carolina Vergara Cid
- BOKU,
Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Konrad-Lorenz Strasse 24, A-3430 Tulln, Austria
- Faculty
of Physical and Natural Sciences, Multidisciplinary Institute of Plant
Biology, Pollution and Bioindicator Section, National University of Cordoba, Avenida Velez Sarsfield 1611, X5016CGA Cordoba, Argentina
| | - Julian Preiner
- Department of Microbiology and Ecosystem Science, Division of Terrestrial
Ecosystem Research and Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
- BOKU,
Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Konrad-Lorenz Strasse 24, A-3430 Tulln, Austria
| | - Junjian Hu
- BOKU,
Department of Chemistry, University of Natural
Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Stephan Hann
- BOKU,
Department of Chemistry, University of Natural
Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Wolfgang Wanek
- Department of Microbiology and Ecosystem Science, Division of Terrestrial
Ecosystem Research and Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Andreas Richter
- Department of Microbiology and Ecosystem Science, Division of Terrestrial
Ecosystem Research and Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| |
Collapse
|
16
|
James B, Zhang W, Sun P, Wu M, Li HH, Khaliq MA, Jayasuriya P, James S, Wang G. Tungsten (W) bioavailability in paddy rice soils and its accumulation in rice (Oryza sativa). INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2017; 27:487-497. [PMID: 28994318 DOI: 10.1080/09603123.2017.1386768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/16/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to investigate the accumulation characteristics of tungsten (W) by different indica rice cultivars from the soil and to assess the potential risks to human health via dietary intake of W in rice consumption. A total of 153 rice (ear) samples of 15 cultivars and the corresponding surface soil samples were collected from 7 cities in Fujian Province of southeastern China. The available soil W were extracted using H2C2O4·2H2O-(NH4)2C2O4·H2O at pH 3.3). Results showed that the total soil W ranged from 2.03 mg kg-1 to 15.34 mg kg-1 and available soil W ranged from 0.03 mg kg-1 to 1.61 mg kg-1. The W concentration in brown rice varied from 7 μg kg-1 to 283 μg kg-1 and was significantly correlated with the available soil W. The highest mean TFavail (transfer factor based on available soil W) was 0.91 for Te-you 627 (hybrid, indica rice), whereas the lowest was 0.08 for Yi-you 673 (hybrid, indica rice). The TFavail decreased with the increase in available soil W, clay content, and cation exchange capacity. The consumption of the brown rice produced from the investigated areas in some cultivars by the present study may cause risks to human health.
Collapse
Affiliation(s)
- Blessing James
- a College of Resources and Environmental Science, Key Laboratory of Soil Environmental Health and Regulation in Fujian Province , Fujian Agriculture and Forestry University , Fuzhou , China
| | - Weili Zhang
- a College of Resources and Environmental Science, Key Laboratory of Soil Environmental Health and Regulation in Fujian Province , Fujian Agriculture and Forestry University , Fuzhou , China
| | - Pei Sun
- a College of Resources and Environmental Science, Key Laboratory of Soil Environmental Health and Regulation in Fujian Province , Fujian Agriculture and Forestry University , Fuzhou , China
| | - Mingyan Wu
- a College of Resources and Environmental Science, Key Laboratory of Soil Environmental Health and Regulation in Fujian Province , Fujian Agriculture and Forestry University , Fuzhou , China
| | - Hong Hong Li
- a College of Resources and Environmental Science, Key Laboratory of Soil Environmental Health and Regulation in Fujian Province , Fujian Agriculture and Forestry University , Fuzhou , China
| | - Muhammad Athar Khaliq
- a College of Resources and Environmental Science, Key Laboratory of Soil Environmental Health and Regulation in Fujian Province , Fujian Agriculture and Forestry University , Fuzhou , China
| | - Pathmamali Jayasuriya
- a College of Resources and Environmental Science, Key Laboratory of Soil Environmental Health and Regulation in Fujian Province , Fujian Agriculture and Forestry University , Fuzhou , China
| | - Swithin James
- a College of Resources and Environmental Science, Key Laboratory of Soil Environmental Health and Regulation in Fujian Province , Fujian Agriculture and Forestry University , Fuzhou , China
| | - Guo Wang
- a College of Resources and Environmental Science, Key Laboratory of Soil Environmental Health and Regulation in Fujian Province , Fujian Agriculture and Forestry University , Fuzhou , China
| |
Collapse
|
17
|
Arslan H, Erdemir ÜS, Güleryüz G, Kiazolu H, Güçer Ş. Assessment of Trace Elements in Plantago holosteum Scop. (Plantaginaceae) from Abandoned Tungsten Mine Works Using Inductively Coupled Plasma–Mass Spectrometry. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1308374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hülya Arslan
- Faculty of Art and Sciences, Department of Biology, Uludag University, Bursa, Turkey
| | - Ümran Seven Erdemir
- Faculty of Art and Sciences, Department of Chemistry, Uludag University, Bursa, Turkey
| | - Gürcan Güleryüz
- Faculty of Art and Sciences, Department of Biology, Uludag University, Bursa, Turkey
| | - Hawa Kiazolu
- Faculty of Art and Sciences, Department of Biology, Uludag University, Bursa, Turkey
| | - Şeref Güçer
- Faculty of Art and Sciences, Department of Biology, Uludag University, Bursa, Turkey
| |
Collapse
|
18
|
Petruzzelli G, Pedron F. Tungstate adsorption onto Italian soils with different characteristics. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:379. [PMID: 28685371 DOI: 10.1007/s10661-017-6088-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
The study of tungsten in the environment is currently of considerable interest because of the growing concerns resulting from its possible toxicity and carcinogenicity. Adsorption reactions are some of the fundamental processes governing the fate and transport of tungsten compounds in soil. This paper reports data on the adsorption of tungstate ions in three different Italian soils, which are characteristic of the Mediterranean region. The results show that pH is the most important factor governing the adsorption of tungstate in these soils. The data interpreted according to the Langmuir equation show that the maximum value of adsorption is approximately 30 mmol kg-1 for the most acidic soil (pH = 4.50) and approximately 9 mmol kg-1 for the most basic soil (pH = 7.40). In addition, soil organic matter is shown to play a fundamental role in adsorption processes, which are favored in soils with a higher organic matter content. The data could contribute to a better understanding of the behavior of tungsten compounds in Italian soils for which current knowledge is very scarce, also in view of environmental regulations, which are currently lacking.
Collapse
Affiliation(s)
| | - Francesca Pedron
- Institute of Ecosystem Studies, National Council of Research, Pisa, Italy
| |
Collapse
|
19
|
Erdemir ÜS, Arslan H, Güleryüz G, Güçer Ş. Elemental Composition of Plant Species from an Abandoned Tungsten Mining Area: Are They Useful for Biogeochemical Exploration and/or Phytoremediation Purposes? BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 98:299-303. [PMID: 27514686 DOI: 10.1007/s00128-016-1899-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
We aimed to evaluate the elemental (W, Mo, Zn, Fe, Cu, Co, Bi, Mn, Cd, Cr, As) composition of some plant species spread around the abandoned tungsten mining area of Uludağ Mountain. The plant species tested were Anthemis cretica and Trisetum flavescens which are grown in this area and they are pioneer species on these contaminated sites. W levels in soils were found up to 1378.6 ± 672.3 mg/kg dry weight in contaminated areas. The leaf W contents of the selected plant species were found 41.1 ± 24.4 and 31.1 ± 15.5 mg/kg dry weight for A. cretica and T. flavescens, respectively. Our results indicate that the elemental composition of species changed by the increased tungsten and some element concentrations in soil without detrimental effect. So, these species can be useful tungsten removal and some elements from contaminated sites.
Collapse
Affiliation(s)
- Ümran Seven Erdemir
- Department of Chemistry, Faculty of Arts and Sciences, Uludag University, 16059, Bursa, Turkey.
| | - Hülya Arslan
- Department of Biology, Faculty of Arts and Sciences, Uludag University, 16059, Bursa, Turkey
| | - Gürcan Güleryüz
- Department of Biology, Faculty of Arts and Sciences, Uludag University, 16059, Bursa, Turkey
| | - Şeref Güçer
- Department of Chemistry, Faculty of Arts and Sciences, Uludag University, 16059, Bursa, Turkey
| |
Collapse
|
20
|
SEVEN ERDEMİR Ü. Development of a sample preparation strategy for the determination of tungsten in soil samples by inductively coupled plasma mass spectrometry using a response surface methodology. Turk J Chem 2017. [DOI: 10.3906/kim-1607-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
21
|
Guan DX, Williams PN, Xu HC, Li G, Luo J, Ma LQ. High-resolution measurement and mapping of tungstate in waters, soils and sediments using the low-disturbance DGT sampling technique. JOURNAL OF HAZARDOUS MATERIALS 2016; 316:69-76. [PMID: 27209520 DOI: 10.1016/j.jhazmat.2016.05.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/03/2016] [Accepted: 05/08/2016] [Indexed: 06/05/2023]
Abstract
Increasing tungsten (W) use for industrial and military applications has resulted in greater W discharge into natural waters, soils and sediments. Risk modeling of W transport and fate in the environment relies on measurement of the release/mobilization flux of W in the bulk media and the interfaces between matrix compartments. Diffusive gradients in thin-films (DGT) is a promising passive sampling technique to acquire such information. DGT devices equipped with the newly developed high-resolution binding gels (precipitated zirconia, PZ, or ferrihydrite, PF, gels) or classic/conventional ferrihydrite slurry gel were comprehensively assessed for measuring W in waters. (Ferrihydrite)DGT can measure W at various ionic strengths (0.001-0.5molL(-1) NaNO3) and pH (4-8), while (PZ)DGT can operate across slightly wider environmental conditions. The three DGT configurations gave comparable results for soil W measurement, showing that typically W resupply is relatively poorly sustained. 1D and 2D high-resolution W profiling across sediment-water and hotspot-bulk media interfaces from Lake Taihu were obtained using (PZ)DGT coupled with laser ablation ICP-MS measurement, and the apparent diffusion fluxes across the interfaces were calculated using a numerical model.
Collapse
Affiliation(s)
- Dong-Xing Guan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Paul N Williams
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Hua-Cheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Gang Li
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
22
|
Güleryüz G, Erdemir ÜS, Arslan H, Güçer Ş. Elemental composition of Marrubium astracanicum Jacq. growing in tungsten-contaminated sites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:18332-18342. [PMID: 27278070 DOI: 10.1007/s11356-016-7028-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/30/2016] [Indexed: 06/06/2023]
Abstract
This study evaluates the elemental (W, Mo, Zn, Fe, Cu, Cd, Mn, Pb, Cr, Co, B, and Bi) composition of Marrubium astracanicum Jacq. (Lamiaceae), around the abandoned tungsten mine on Uludağ Mountain, Turkey, to determine if it is an appropriate candidate for phytomonitoring and/or phytoremediation purposes. Three sample sites were selected around the mine for soil and plant sampling. Two sites approximately 500 m from the mine were assumed to be unpolluted sites. The other site was selected from a waste removal pool (WRP) and was assumed to be a polluted site. The soil and different organs (roots, leaves, and flowers) of plant samples were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) to determine the elemental content. The classic open wet digestion procedure was applied to the samples with 5 mL HNO3 and 3 mL H2O2 in a borosilicate glass vessel for the roots, leaves, and the flowers of the plants. Kjeldahl digestion was used for the soil samples. The W, Zn, Fe, Cu, Cd, Mn, Pb, B, and Bi contents were found to be higher in the soil samples from the waste removal pools compared with the samples from the unpolluted sites. We also found that the elemental composition of M. astracanicum has generally been increased by the activity of the tungsten mine, and there were significant correlations between the elemental contents of the soil samples and plant parts, except for Mo and Cr. The high level of many elements in the soil samples indicates the presence of contamination related to tungsten-mining activity on Uludağ Mountain. Assessing the elemental contents of M. astracanicum, we can suggest this species as a candidate for phytoremediation purposes of W-contaminated sites due to its high W-accumulation capacity.
Collapse
Affiliation(s)
- Gürcan Güleryüz
- Faculty of Arts and Sciences, Department of Biology, Uludag University, 16059, Bursa, Turkey.
| | - Ümran Seven Erdemir
- Faculty of Arts and Sciences, Department of Chemistry, Uludag University, 16059, Bursa, Turkey
| | - Hülya Arslan
- Faculty of Arts and Sciences, Department of Biology, Uludag University, 16059, Bursa, Turkey
| | - Şeref Güçer
- Faculty of Arts and Sciences, Department of Chemistry, Uludag University, 16059, Bursa, Turkey
| |
Collapse
|
23
|
Adamakis IDS, Panteris E, Eleftheriou EP. "CLASPing" tungsten's effects on microtubules with "PINs". PLANT SIGNALING & BEHAVIOR 2015; 10:e1064572. [PMID: 26313814 PMCID: PMC4883889 DOI: 10.1080/15592324.2015.1064572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/13/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Abstract
Tungsten, supplied as sodium tungstate, inhibits root elongation in Arabidopsis thaliana, which has been attributed to a diminishing of PIN2 and PIN3 auxin efflux carriers. In this work, we sought to analyze the effect of tungsten on cortical microtubules and CLASP (Cytoplasmic Linker Associated Protein), which are also involved in the anisotropic cell expansion of root cells. Seedlings grown in a tungsten-free substrate for 4 d and then transplanted into a tungsten-containing substrate exhibited randomly oriented microtubules in a time-dependent manner. While tungsten had no effect on roots treated for 3 h, microtubule alignment was obviously affected in the transition and elongation zones after a 6, 12, 24, 48 h tungsten treatment, at prolonged tungsten administrations and in seedlings grown directly in the presence of tungsten. This change in microtubule orientation may be associated with the reduction of CLASP protein expression induced by tungsten, as evidenced in experiments with plants expressing the CLASP-GFP protein. A possible mechanism, by which the coordinated functions of CLASP, PIN2 and microtubules are affected, as revealed by inhibited root growth, is discussed.
Collapse
Affiliation(s)
| | - Emmanuel Panteris
- Department of Botany; School of Biology, Aristotle University; Thessaloniki, Greece
| | | |
Collapse
|
24
|
Zhang H, Zhang Q, Yang B, Wang J. Compacted sewage sludge as a barrier for tailings: the heavy metal speciation and total organic carbon content in the compacted sludge specimen. PLoS One 2014; 9:e100932. [PMID: 24979755 PMCID: PMC4076238 DOI: 10.1371/journal.pone.0100932] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/02/2014] [Indexed: 11/18/2022] Open
Abstract
Acid mine drainage (AMD) was the main environmental problem facing the mining industry. For AMD had high heavy metals content and low pH, the compacted sewage sludge might be a barrier for tailings whose oxidation and weathering produced AMD, with its own carbon source, microorganism reduction ability and impermeability. To study the heavy metals environmental risk, under the simulate AMD, the deionized water (DW), and the pH 2.1 sulfuric acid water (SA) seepage conditions, respectively, the changes of the chemical speciation of heavy metals Cd, Cu, Fe, Ni, Zn and total organic carbon (TOC) content in the compacted sewage sludge were assessed in the different periods. The results indicated according to the distribution of heavy metals, the potential mobility was for Cd: 6.08 under AMD, 7.48 under SA, ∞ under DW; for Cu: 0.08 under AMD, 0.17 under SA, 0.59 under DW; for Fe: 0.15 under AMD, 0.22 under SA, 0.22 under DW; for Ni: 2.60 under AMD, 1.69 under SA, 1.67 under DW; and for Zn: 0.15 under AMD, 0.23 under SA and 0.21 under DW at the second checking time. TOC content firstly decreased from 67.62±0% to 66.29±0.35%, then increased to 67.74±0.65% under the AMD seepage while TOC decreased to 63.30±0.53%, then to 61.33±0.37% under the DW seepage, decreased to 63.86±0.41%, then to 63.28±0.49% under SA seepage. That indicated under the AMD seepage, the suitable microorganisms communities in the compacted sewage sludge were activated. And the heavy metals environmental risk of compacted sewage sludge was lower with AMD condition than with other two. So the compacted sewage sludge as a barrier for tailings was feasible as the aspect of environmental risk assessment.
Collapse
Affiliation(s)
- Huyuan Zhang
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Ministry of Education, Lanzhou, P. R. China
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, P. R. China
| | - Qing Zhang
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Ministry of Education, Lanzhou, P. R. China
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, P. R. China
- School of Chemistry and Environmental Science, Lanzhou City University, Lanzhou, P. R. China
- * E-mail:
| | - Bo Yang
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Ministry of Education, Lanzhou, P. R. China
| | - Jinfang Wang
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Ministry of Education, Lanzhou, P. R. China
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, P. R. China
| |
Collapse
|