1
|
Wang B, Tan S, Wu M, Feng Y, Yan W, Yun Q, Ji X, Lin R, Zhao Z. Effects of two Bacillus velezensis strains isolated from different sources on the growth of Capsicum annum. Front Microbiol 2024; 15:1504660. [PMID: 39717271 PMCID: PMC11663850 DOI: 10.3389/fmicb.2024.1504660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Abstract
Microbial inoculants offer an environmentally friendly approach to enhance plant growth and control disease. In this study, two Bacillus velezensis strains, HKSSLJEBR3 (R3) and Ya-1 were isolated from pepper plant roots and tropical rainforest soil, respectively. Both strains exhibited strong antifungal activity against Fusarium oxysporum f. sp. capsici, with inhibition rates of 48.54 ± 0.66% for R3 and 49.35 ± 1.44% for Ya-1. In greenhouse trials, R3 significantly boosted pepper growth, with a 22.12% increase in plant height, 46.44% more leaves, and 56.29% greater fresh weight. These enhancements were likely due to the strong affinity between R3 and pepper plants. Both strains also improved soil quality, with R3 increasing available potassium (AK) by 5.13% and soil organic matter (SOM) by 4.03%, while Ya-1 showed more significant increases. Metagenomic analysis revealed that both strains altered the rhizosphere microbiome, with R3 promoting Pseudomonas and suppressing Fusarium. These results suggest that the R3 strain has strong potential for enhancing pepper growth, improving soil health, and reshaping the rhizosphere microbiome.
Collapse
Affiliation(s)
- Bao Wang
- Key Laboratory of Plant Disease and Pest Control of Hainan Province, Institute of Plant Protection Academy of Agricultural Sciences (Research Center of Quality Safety and Standards for Agricultural Products of Hainan Academy of Agricultural Sciences), Haikou, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou and Sanya, China
- School of Life and Health Science, Hainan University, Haikou, China
| | - Shimeng Tan
- Key Laboratory of Plant Disease and Pest Control of Hainan Province, Institute of Plant Protection Academy of Agricultural Sciences (Research Center of Quality Safety and Standards for Agricultural Products of Hainan Academy of Agricultural Sciences), Haikou, China
| | - Mingde Wu
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yujie Feng
- Key Laboratory of Plant Disease and Pest Control of Hainan Province, Institute of Plant Protection Academy of Agricultural Sciences (Research Center of Quality Safety and Standards for Agricultural Products of Hainan Academy of Agricultural Sciences), Haikou, China
| | - Wanrong Yan
- Key Laboratory of Plant Disease and Pest Control of Hainan Province, Institute of Plant Protection Academy of Agricultural Sciences (Research Center of Quality Safety and Standards for Agricultural Products of Hainan Academy of Agricultural Sciences), Haikou, China
| | - Qian Yun
- Key Laboratory of Plant Disease and Pest Control of Hainan Province, Institute of Plant Protection Academy of Agricultural Sciences (Research Center of Quality Safety and Standards for Agricultural Products of Hainan Academy of Agricultural Sciences), Haikou, China
| | - Xuncong Ji
- Key Laboratory of Plant Disease and Pest Control of Hainan Province, Institute of Plant Protection Academy of Agricultural Sciences (Research Center of Quality Safety and Standards for Agricultural Products of Hainan Academy of Agricultural Sciences), Haikou, China
| | - Runmao Lin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou and Sanya, China
| | - Zhixiang Zhao
- Key Laboratory of Plant Disease and Pest Control of Hainan Province, Institute of Plant Protection Academy of Agricultural Sciences (Research Center of Quality Safety and Standards for Agricultural Products of Hainan Academy of Agricultural Sciences), Haikou, China
| |
Collapse
|
2
|
Djotan AKG, Matsushita N, Fukuda K. Within-Site Variations in Soil Physicochemical Properties Explained the Spatiality and Cohabitation of Arbuscular Mycorrhizal Fungi in the Roots of Cryptomeria Japonica. MICROBIAL ECOLOGY 2024; 87:136. [PMID: 39496952 PMCID: PMC11534833 DOI: 10.1007/s00248-024-02449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/13/2024] [Indexed: 11/06/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) live in a community in the roots of host plants. Still, the patterns and factors that drive their spatiality and cohabitation remain uncovered, particularly that of trees in planted forests, which we aimed to clarify in Cryptomeria japonica, a major plantation tree in Japan. We analyzed 65 paired root and soil samples of Cryptomeria japonica trees collected from 11 microsite (MS) plots at two environmentally different forest sites in central Japan and measured soil pH, total phosphorus (TP), C, N, and the carbon-to-nitrogen ratio. Root AMF communities were recovered using Illumina's next-generation amplicon sequencing targeting the small subunit of ribosomal DNA. We detected more than 500 AMF OTUs at each site but only three belonging to Dominikia, Rhizophagus, and Sclerocystis were dominant in the roots of C. japonica, detected each at an average relative abundance higher than 20%. Two showed negatively correlated spatial distributions and different associations with soil pH. Similarly, the physicochemical properties at MSs significantly determined the AMF assemblages in the roots of C. japonica. Dominikia, Rhizophagus, and Sclerocystis coexist in the roots of C. japonica where soil physicochemical properties, particularly pH, determine their spatial dynamic, turnovers, and cohabitation patterns. These findings highlight the importance of simultaneous colonization of plants by multiple AMF.
Collapse
Affiliation(s)
- Akotchiffor Kevin Geoffroy Djotan
- Laboratory of Forest Botany, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Japan
- Laboratory of Forest Mycology, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Norihisa Matsushita
- Laboratory of Forest Botany, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Japan.
| | - Kenji Fukuda
- Laboratory of Forest Botany, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Japan
| |
Collapse
|
3
|
Wang W, Wang X, Zhi R, Zhang L, Lei S, Farooq A, Yan W, Song Z, Zhang C. Microbial mechanisms for CO 2 and CH 4 emissions in Robinia pseudoacacia forests along a North-South transect in the Loess Plateau. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122802. [PMID: 39368386 DOI: 10.1016/j.jenvman.2024.122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/29/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Forest soil microbes play a crucial role in regulating atmospheric-soil carbon fluxes. Environmental heterogeneity across forest types and regions may lead to differences in soil CO2 and CH4 emissions. However, the microbial mechanisms underlying these emission variations are currently unclear. In this study, we measured CO2 and CH4 emissions of Robinia pseudoacacia forests along a north-south transect in the Loess Plateau. Using metagenomic sequencing, we investigated the structural and functional profiles of soil carbon cycling microbial communities. Results indicated that the forest CO2 emissions of Robinia pseudoacacia was significantly higher in the north region than in the south region, while the CH4 emission was oppositely. This is mainly attributed to changes in gene abundance driven by soil pH and moisture in participating carbon degradation and methane oxidation processes across different forest regions. The gene differences in carbon fixation processes between regions primarily stem from the Calvin cycle, where the abundance of rbcL, rbcS, and prkB genes dominates microbial carbon fixation in forest soils. Random forest models revealed key genes involved in predicting forest soil CO2 emissions, including SGA1 and amyA for starch decomposition, TYR for lignin decomposition, chitinase for chitin decomposition, and pectinesterase for pectin decomposition. Microbial functional characterization revealed that interregional differences in CH4 emissions during methane metabolism may originate from methane oxidation processes, and the associated gene abundances (glyA, ppc, and pmoB) were key genes for predicting CH4 emissions from forest soils. Our results provide new insights into the microbial mechanisms of CO2 and CH4 emissions from forest soils, which will be crucial for accurate prediction of the forest soil carbon cycle in the future.
Collapse
Affiliation(s)
- Wancai Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China
| | - Xiaojun Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China
| | - Ruochen Zhi
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China
| | - Lu Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China
| | - Shilong Lei
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China
| | - Asma Farooq
- National Engineering Laboratory for Applied Technology in Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Wende Yan
- National Engineering Laboratory for Applied Technology in Forestry and Ecology in South China, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Shaanxi, 712100, China
| | - Chao Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China.
| |
Collapse
|
4
|
Rähn E, Lutter R, Riit T, Tullus T, Tullus A, Tedersoo L, Drenkhan R, Tullus H. Soil mycobiomes in native European aspen forests and hybrid aspen plantations have a similar fungal richness but different compositions, mainly driven by edaphic and floristic factors. Front Microbiol 2024; 15:1372938. [PMID: 38774505 PMCID: PMC11106484 DOI: 10.3389/fmicb.2024.1372938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 05/24/2024] Open
Abstract
Background The cultivation of short-rotation tree species on non-forest land is increasing due to the growing demand for woody biomass for the future bioeconomy and to mitigate climate change impacts. However, forest plantations are often seen as a trade-off between climate benefits and low biodiversity. The diversity and composition of soil fungal biota in plantations of hybrid aspen, one of the most planted tree species for short-rotation forestry in Northern Europe, are poorly studied. Methods The goal of this study was to obtain baseline knowledge about the soil fungal biota and the edaphic, floristic and management factors that drive fungal richness and communities in 18-year-old hybrid aspen plantations on former agricultural soils and compare the fungal biota with those of European aspen stands on native forest land in a 130-year chronosequence. Sites were categorized as hybrid aspen (17-18-year-old plantations) and native aspen stands of three age classes (8-29, 30-55, and 65-131-year-old stands). High-throughput sequencing was applied to soil samples to investigate fungal diversity and assemblages. Results Native aspen forests showed a higher ectomycorrhizal (EcM) fungal OTU richness than plantations, regardless of forest age. Short-distance type EcM genera dominated in both plantations and forests. The richness of saprotrophic fungi was similar between native forest and plantation sites and was highest in the middle-aged class (30-55-year-old stands) in the native aspen stands. The fungal communities of native forests and plantations were significantly different. Community composition varied more, and the natural forest sites were more diverse than the relatively homogeneous plantations. Soil pH was the best explanatory variable to describe soil fungal communities in hybrid aspen stands. Soil fungal community composition did not show any clear patterns between the age classes of native aspen stands. Conclusion We conclude that edaphic factors are more important in describing fungal communities in both native aspen forest sites and hybrid aspen plantation sites than forest thinning, age, or former land use for plantations. Although first-generation hybrid aspen plantations and native forests are similar in overall fungal diversity, their taxonomic and functional composition is strikingly different. Therefore, hybrid aspen plantations can be used to reduce felling pressure on native forests; however, our knowledge is still insufficient to conclude that plantations could replace native aspen forests from the soil biodiversity perspective.
Collapse
Affiliation(s)
- Elisabeth Rähn
- Chair of Silviculture and Forest Ecology, Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Reimo Lutter
- Chair of Silviculture and Forest Ecology, Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Taavi Riit
- Chair of Silviculture and Forest Ecology, Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Tea Tullus
- Chair of Silviculture and Forest Ecology, Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Arvo Tullus
- Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
| | - Rein Drenkhan
- Chair of Silviculture and Forest Ecology, Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Hardi Tullus
- Chair of Silviculture and Forest Ecology, Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
5
|
Jacoby ML, Hogg GD, Assaad MR, Williamson KE. Seasonal trends in lysogeny in an Appalachian oak-hickory forest soil. Appl Environ Microbiol 2024; 90:e0140823. [PMID: 38084945 PMCID: PMC10807418 DOI: 10.1128/aem.01408-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/22/2023] [Indexed: 12/23/2023] Open
Abstract
Since 1989, investigations into viral ecology have revealed how bacteriophages can influence microbial dynamics within ecosystems at global scales. Most of the information we know about temperate phages, which can integrate themselves into the host genome and remain dormant via a process called lysogeny, has come from research in aquatic ecosystems. Soil environments remain under-studied, and more research is necessary to fully understand the range of impacts phage infections have on the soil bacteria they infect. The aims of this study were to compare the efficacy of different prophage-inducing agents and to elucidate potential temporal trends in lysogeny within a soil bacterial community. In addition to mitomycin C and acyl-homoserine lactones, our results indicated that halosulfuron methyl herbicides may also be potent inducing agents. In optimizing chemical induction assays, we determined that taking steps to reduce background virus particles and starve cells was critical in obtaining consistent results. A clear seasonal trend in inducible lysogeny was observed in an Appalachian oak-hickory forest soil. The average monthly air temperature was negatively correlated with inducible fraction and burst size, supporting the idea that lysogeny provides a mechanism for phage persistence when temperatures are low and host metabolism is slower. Furthermore, the inducible fraction was negatively correlated with both soil bacterial and soil viral abundance, supporting the idea that lysogeny provides a mechanism for temperate phage persistence when host density is lower. The present study is the first of its kind to reveal clear seasonal trends in inducible lysogeny in any soil.IMPORTANCELysogeny is a relationship in which certain viruses that infect bacteria (phages) may exist within their bacterial host cell as a segment of nucleic acid. In this state, the phage genome is protected from environmental damage and retains the potential to generate progeny particles in the future. It is thought that lysogeny provides a mechanism for long-term persistence for phages when host density is low or hosts are starved-two conditions likely to be found in soils. In the present study, we provide the first known evidence for a seasonal trend in lysogeny in a forest soil. Based on clear relationships observed between lysogeny, temperature, and soil microbial abundance, we find support for previous hypotheses regarding the factors governing lysogeny.
Collapse
Affiliation(s)
- Melaina L. Jacoby
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Graham D. Hogg
- American Type Culture Collection, Manassas, Virginia, USA
| | | | - Kurt E. Williamson
- Biology Department, College of William & Mary, Williamsburg, Virginia, USA
| |
Collapse
|
6
|
Ilyas U, du Toit LJ, Hajibabaei M, McDonald MR. Influence of plant species, mycorrhizal inoculant, and soil phosphorus level on arbuscular mycorrhizal communities in onion and carrot roots. FRONTIERS IN PLANT SCIENCE 2024; 14:1324626. [PMID: 38288412 PMCID: PMC10823018 DOI: 10.3389/fpls.2023.1324626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are ancient and ecologically important symbionts that colonize plant roots. These symbionts assist in the uptake of water and nutrients, particularly phosphorus, from the soil. This important role has led to the development of AMF inoculants for use as biofertilizers in agriculture. Commercial mycorrhizal inoculants are increasingly popular to produce onion and carrot, but their specific effects on native mycorrhizal communities under field conditions are not known. Furthermore, adequate availability of nutrients in soils, specifically phosphorus, can reduce the diversity and abundance of AMF communities in the roots. The type of crop grown can also influence the composition of AMF communities colonizing the plant roots. This study aimed to investigate how AMF inoculants, soil phosphorus levels, and plant species influence the diversity of AMF communities that colonize the roots of onion and carrot plants. Field trials were conducted on high organic matter (muck) soil in the Holland Marsh, Ontario, Canada. The treatments included AMF-coated seeds (three to five propagules of Rhizophagus irregularis per seed) and non-treated onion and carrot seeds grown in soil with low (~46 ppm) and high (~78 ppm) phosphorus levels. The mycorrhizal communities colonizing the onion and carrot roots were identified by Illumina sequencing. Five genera, Diversispora, Claroideoglomus, Funneliformis, Rhizophagus, and Glomus, were identified in roots of both plant species. AMF communities colonizing carrot roots were more diverse and richer than those colonizing onion roots. Diversispora and Funneliformis had a 1.3-fold and 2.9-fold greater abundance, respectively, in onion roots compared to carrots. Claroideoglomus was 1.4-fold more abundant in carrot roots than in onions. Inoculation with R. irregularis increased the abundance and richness of Rhizophagus in AMF communities of onion roots but not in carrot roots. The soil phosphorus level had no effect on the richness and diversity of AMF in the roots of either crop. In summary, AMF inoculant and soil phosphorus levels influenced the composition of AMF communities colonizing the roots of onion and carrot plants, but the effects varied between plant species.
Collapse
Affiliation(s)
- Umbrin Ilyas
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Lindsey J. du Toit
- Northwestern Washington Research and Extension Center, Department of Plant Pathology, Washington State University, Mount Vernon, WA, United States
| | - Mehrdad Hajibabaei
- Centre for Biodiversity Genomics, Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Mary Ruth McDonald
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
7
|
Masebo N, Birhane E, Takele S, Belay Z, Lucena JJ, Pérez-Sanz A, Anjulo A. Diversity of Arbuscular Mycorrhizal fungi under different agroforestry practices in the drylands of Southern Ethiopia. BMC PLANT BIOLOGY 2023; 23:634. [PMID: 38066451 PMCID: PMC10709898 DOI: 10.1186/s12870-023-04645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
The conversion of an agroforestry based agricultural system to a monocropping farming system influences the distribution and composition of arbuscular mycorrhizal fungi (AMF). The aim of this paper was to analyze AMF species diversity, spore density, and root colonization across different agroforestry practices (AFP) in southern Ethiopia. Soil and root samples were collected from homegarden, cropland, woodlot, and trees on soil and water conservation-based AFP. AMF spores were extracted from the soil and species diversity was evaluated using morphological analysis and root colonization from root samples. The AMF spore density, root colonization and composition were significantly different among the AFP (P < 0.05). In this study, 43 AMF morphotypes belonging to eleven genera were found, dominated by Acaulospora (32.56%), followed by Claroideoglomus (18.60%). Home gardens had the highest spore density (7641.5 spore100 g- 1 dry soil) and the lowest was recorded in croplands (683.6 spore100 g- 1 dry soil). Woodlot had the highest root colonization (54.75%), followed by homegarden (48.25%). The highest isolation frequency (63.63%) was recorded for Acaulospora scrobiculata. The distribution of AMF species and diversity were significantly related to soil total nitrogen and organic carbon. The homegarden and woodlot AFP were suitable for soil AMF reserve and conservation.
Collapse
Affiliation(s)
- Nebiyou Masebo
- Department of Natural Resource Management, Wolaita Sodo University, Wolaita Sodo, P.O. Box 128, Ethiopia
- Department of Biology, Arba Minch University, Arba Minch, P.O. Box 138, Arbaminch, Ethiopia
| | - Emiru Birhane
- Department of Land Resource Management and Environmental Protection, Mekelle University, P.O. Box 231, Tigray, Ethiopia.
- Institute of Climate and Society, Mekelle University, P. O. Box 231, Mekelle, Ethiopia.
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Serekebirhan Takele
- Department of Biology, Arba Minch University, Arba Minch, P.O. Box 138, Arbaminch, Ethiopia
| | - Zerihun Belay
- Department of Applied Biology, Adama Science and Technology University, P.O. Box 231, Adama, Ethiopia
| | - Juan J Lucena
- Department of Agricultural Chemistry and Food Science, Autonomous University of Madrid, Madrid, 28049, Spain
| | - Araceli Pérez-Sanz
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Agena Anjulo
- Environment and Forest Research Institute, Addis Ababa, P.O. Box 231, Ethiopia
| |
Collapse
|
8
|
Füzy A, Parádi I, Kelemen B, Kovács R, Cseresnyés I, Szili-Kovács T, Árendás T, Fodor N, Takács T. Soil biological activity after a sixty-year fertilization practice in a wheat-maize crop rotation. PLoS One 2023; 18:e0292125. [PMID: 37768988 PMCID: PMC10538786 DOI: 10.1371/journal.pone.0292125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
This study aimed to survey the long-term effects of fertilization practices on the functional diversity of the soil microbiota. A 60-year fertilization experiment with mineral fertilizers, farmyard manure and combined treatments was sampled in two consecutive years in maize (Zea mays L.) and wheat (Triticum aestivum L.). Soil chemical properties, plant growth and physiological parameters were measured. The MicroRespTM method was applied to assess the community level physiological profiles (CLPPs) of the rhizosphere soil, and the arbuscular mycorrhizal fungal (AMF) colonization of the roots was determined. Samples were taken in the early vegetative stages, at flowering, and at harvest in both years. The measured parameters were analysed using multifactorial ANOVA to determine treatment effects, crop-dependent differences, and seasonality. PCA analysis was performed on the data matrix to reveal more complex correspondences, and Pearson's product-moment correlation was used to confirm relationships between some of the measured soil and plant parameters. Fertilization treatments caused long-term changes in some biological parameters such as: MicroRespTM parameters, citrate utilization, total substrate-induced respiration value, and the ratio of utilization of amino acids and sugars. The rate of AMF colonization responded mainly to the plant nutrition status and the plant requirements, suggesting a plant-mediated effect in the case of mycorrhiza. Mineral nitrogen fertilization and soil acidification were found to be the main factors affecting the catabolic activity of soil microbiota, while AMF colonization responded to the balance of plant nutrition.
Collapse
Affiliation(s)
- Anna Füzy
- Department of Soil Biology, Institute for Soil Sciences, Centre for Agricultural Research, Budapest, Hungary
| | - István Parádi
- Department of Soil Biology, Institute for Soil Sciences, Centre for Agricultural Research, Budapest, Hungary
- Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Budapest, Hungary
| | - Bettina Kelemen
- Department of Soil Biology, Institute for Soil Sciences, Centre for Agricultural Research, Budapest, Hungary
| | - Ramóna Kovács
- Department of Soil Biology, Institute for Soil Sciences, Centre for Agricultural Research, Budapest, Hungary
| | - Imre Cseresnyés
- Department of Soil Physics and Water Management, Institute for Soil Sciences, Centre for Agricultural Research, Budapest, Hungary
| | - Tibor Szili-Kovács
- Department of Soil Biology, Institute for Soil Sciences, Centre for Agricultural Research, Budapest, Hungary
| | - Tamás Árendás
- Crop Production Department, Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Nándor Fodor
- Crop Production Department, Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Tünde Takács
- Department of Soil Biology, Institute for Soil Sciences, Centre for Agricultural Research, Budapest, Hungary
| |
Collapse
|
9
|
Toledo S, Peri PL, Correa OS, Montecchia MS, Gargaglione VB, Ladd B. Structure and function of soil microbial communities in fertile islands in austral drylands. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Santiago Toledo
- Universidad Nacional de la Patagonia Austral (UNPA)‐CIT‐CONICET Postal address 9400 Río Gallegos Argentina
| | - Pablo Luis Peri
- Universidad Nacional de la Patagonia Austral (UNPA)‐CIT‐CONICET Postal address 9400 Río Gallegos Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) Postal address 9400 Río Gallegos Argentina
| | - Olga Susana Correa
- Facultad de Agronomía, Departamento de Biología Aplicada y Alimentos Universidad de Buenos Aires (UBA) Postal address 1417 Buenos Aires Argentina
| | - Marcela Susana Montecchia
- Facultad de Agronomía, Departamento de Biología Aplicada y Alimentos Universidad de Buenos Aires (UBA) Postal address 1417 Buenos Aires Argentina
| | - Veronica Beatriz Gargaglione
- Universidad Nacional de la Patagonia Austral (UNPA)‐CIT‐CONICET Postal address 9400 Río Gallegos Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) Postal address 9400 Río Gallegos Argentina
| | - Brenton Ladd
- Universidad científica del Sur, Lima, Peru ‐ Escuela de Agroforestería
| |
Collapse
|
10
|
Liu S, Moora M, Vasar M, Zobel M, Öpik M, Koorem K. Arbuscular mycorrhizal fungi promote small-scale vegetation recovery in the forest understorey. Oecologia 2021; 197:685-697. [PMID: 34716490 DOI: 10.1007/s00442-021-05065-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 10/17/2021] [Indexed: 11/26/2022]
Abstract
Root-associating arbuscular mycorrhizal (AM) fungi foster vegetation recovery in degraded habitats. AM fungi increase nutrient availability for host plants; therefore, their importance is expected to be higher when nutrient availability is low. However, little is known about how small-scale variation in nutrient availability influences plant and AM fungal communities in a stable ecosystem. We conducted a 2-year field study in the understorey of a boreonemoral forest where we examined plant and AM fungal communities at microsites (15 cm diameter) with intact vegetation cover and at disturbed microsites where vegetation was cleared away and soil was sterilized to remove soil biota. We manipulated soil nutrient content (increased with fertilizer, unchanged, or decreased with sucrose addition) and fungal activity (natural or suppressed by fungicide addition) at these microsites. After two vegetation seasons, manipulations with nutrient content resulted in significant, although moderate, differences in the content of soil nutrients (e.g. in soil phosphorus). Suppression of fungal activity resulted in lower richness, abundance and phylogenetic diversity of AM fungal community, independently of microsite type and soil fertility level. Plant species richness and diversity decreased when fungal activity was suppressed at disturbed but not in intact microsites. The correlation between plant and AM fungal communities was not influenced by microsite type or soil fertility. We conclude that small-scale variation in soil fertility and habitat integrity does not influence the interactions between plants and AM fungi. The richness, but not composition, of AM fungal communities recovered fast after small-scale disturbance and supported the recovery of species-rich vegetation.
Collapse
Affiliation(s)
- Siqiao Liu
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
| | - Mari Moora
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Martti Vasar
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Martin Zobel
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Maarja Öpik
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Kadri Koorem
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
11
|
Tagele SB, Kim RH, Shin JH. Interactions between Brassica Biofumigants and Soil Microbiota: Causes and Impacts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11538-11553. [PMID: 34551253 DOI: 10.1021/acs.jafc.1c03776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biofumigation is used to control soil-borne plant diseases, and it has paramount importance to reduce the cost of chemical fumigants. Information about the field control efficacies and impacts of Brassica-based biofumigation (BBF) on soil bacterial and fungal microbiota is scattered in the literature. Therefore, this review summarizes and discusses the nature and the underlying causes of soil bacterial and fungal community dynamics in response to BBF. In addition, the major factors influencing the interaction between a biofumigant and soil microbiota are discussed. The pros and cons of BBF to soil microbiota and the subsequent impacts on sustainable farming practices are also highlighted.
Collapse
Affiliation(s)
- Setu Bazie Tagele
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ryeong-Hui Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
12
|
Ntloko BR, Siebert SJ, Mokotjomela TM. Rehabilitation of kimberlite tailings in the afro‐alpine zone of Lesotho: seed germination and plant performance of native grassland species across different topsoil mixtures. Restor Ecol 2021. [DOI: 10.1111/rec.13528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Stefan J. Siebert
- Unit for Environmental Sciences and Management North‐West University Potchefstroom South Africa
| | - Thabiso M. Mokotjomela
- Centre for Invasion Biology South Africa National Biodiversity Institute, Free State National Botanical Garden Bloemfontein South Africa
| |
Collapse
|
13
|
Deel H, Emmons AL, Kiely J, Damann FE, Carter DO, Lynne A, Knight R, Xu ZZ, Bucheli S, Metcalf JL. A Pilot Study of Microbial Succession in Human Rib Skeletal Remains during Terrestrial Decomposition. mSphere 2021; 6:e0045521. [PMID: 34259562 PMCID: PMC8386422 DOI: 10.1128/msphere.00455-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 11/20/2022] Open
Abstract
The bones of decomposing vertebrates are colonized by a succession of diverse microbial communities. If this succession is similar across individuals, microbes may provide clues about the postmortem interval (PMI) during forensic investigations in which human skeletal remains are discovered. Here, we characterize the human bone microbial decomposer community to determine whether microbial succession is a marker for PMI. Six human donor subjects were placed outdoors to decompose on the soil surface at the Southeast Texas Applied Forensic Science facility. To also assess the effect of seasons, three decedents were placed each in the spring and summer. Once ribs were exposed through natural decomposition, a rib was collected from each body for eight time points at 3 weeks apart. We discovered a core bone decomposer microbiome dominated by taxa in the phylum Proteobacteria and evidence that these bone-invading microbes are likely sourced from the surrounding decomposition environment, including skin of the cadaver and soils. Additionally, we found significant overall differences in bone microbial community composition between seasons. Finally, we used the microbial community data to develop random forest models that predict PMI with an accuracy of approximately ±34 days over a 1- to 9-month time frame of decomposition. Typically, anthropologists provide PMI estimates based on qualitative information, giving PMI errors ranging from several months to years. Previous work has focused on only the characterization of the bone microbiome decomposer community, and this is the first known data-driven, quantitative PMI estimate of terrestrially decomposed human skeletal remains using microbial abundance information. IMPORTANCE Microbes are known to facilitate vertebrate decomposition, and they can do so in a repeatable, predictable manner. The succession of microbes in the skin and associated soil can be used to predict time since death during the first few weeks of decomposition. However, when remains are discovered after months or years, often the only evidence are skeletal remains. To determine if microbial succession in bone would be useful for estimating time since death after several months, human subjects were placed to decompose in the spring and summer seasons. Ribs were collected after 1 to 9 months of decomposition, and the bone microbial communities were characterized. Analysis revealed a core bone decomposer microbial community with some differences in microbial assembly occurring between seasons. These data provided time since death estimates of approximately ±34 days over 9 months. This may provide forensic investigators with a tool for estimating time since death of skeletal remains, for which there are few current methods.
Collapse
Affiliation(s)
- Heather Deel
- Program in Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Alexandra L. Emmons
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jennifer Kiely
- Department of Biological Sciences, Sam Houston State University, Huntsville, Texas, USA
| | | | - David O. Carter
- Laboratory of Forensic Taphonomy, Forensic Sciences Unit, Chaminade University of Honolulu, Honolulu, Hawaii, USA
- School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, Hawaii, USA
| | - Aaron Lynne
- Department of Biological Sciences, Sam Houston State University, Huntsville, Texas, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Zhenjiang Zech Xu
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Sibyl Bucheli
- Department of Biological Sciences, Sam Houston State University, Huntsville, Texas, USA
| | - Jessica L. Metcalf
- Program in Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
14
|
Wang N, Fu Q, Zhou Z, Shao Y, Wang J, Li W, Ye Y, Chen Y, Yuan Z. Humus microhabitat affects distributions of soil fungi and bacteria in a temperate mountain forest. Ecol Evol 2021. [DOI: 10.1002/ece3.7759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Nan Wang
- College of Life Sciences Henan Agricultural University Zhengzhou China
| | - Qiang Fu
- College of Forestry Henan Agricultural University Zhengzhou China
| | - Ziyu Zhou
- College of Life Sciences Henan Agricultural University Zhengzhou China
| | - Yizhen Shao
- College of Life Sciences Henan Agricultural University Zhengzhou China
| | - Jing Wang
- Henan Academy of Forestry Sciences Zhengzhou China
- Field Scientific Observation and Research Station of Forest Ecosystem in the North‐South Transition Zone of Funiu Mountain Zhengzhou China
| | - Wang Li
- Section for Ecoinformatics and Biodiversity Department of Biology Aarhus University Aarhus C Denmark
- State Key Laboratory of Remote Sensing Science Aerospace Information Research Institute Chinese Academy of Sciences Beijing China
| | - Yongzhong Ye
- College of Life Sciences Henan Agricultural University Zhengzhou China
| | - Yun Chen
- College of Life Sciences Henan Agricultural University Zhengzhou China
| | - Zhiliang Yuan
- College of Life Sciences Henan Agricultural University Zhengzhou China
| |
Collapse
|
15
|
Lynn TM, Zhran M, Wang LF, Ge T, Yu SS, Kyaw EP, Latt ZK, Htwe TM. Effect of land use on soil properties, microbial abundance and diversity of four different crop lands in central Myanmar. 3 Biotech 2021; 11:154. [PMID: 33747704 PMCID: PMC7930169 DOI: 10.1007/s13205-021-02705-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/23/2021] [Indexed: 11/29/2022] Open
Abstract
Changing land use systems impact on local edaphic factors and microbial abundance and diversity, however, the information on it in central Myanmar's soils is still lacking. Therefore, soils with four different land uses were analyzed; WAP (soil from perennial tree orchard), PNON (soil from crop rotation of peanut and onion), SESA (soil from mono-crop of sesame) and CHON (soil from mono-crop of onion for 3 years consecutively). Soil organic carbon (SOC), total nitrogen (TN), dissolved organic carbon (DOC), ammonium nitrogen (NH4 +-N) and pH showed the highest in PNON soil, which suggested crop rotation with high fertilizer input and irrigation had positive effect on the edaphic factors of soil. CHON soil showed the lowest in most soil properties and microbial abundance as a result of intensive use of fertilizer and irrigation, no crop rotation and no input of manures. Microbial community composition showed differences among tested soils and relative abundance of Chloroflexi was the highest in CHON soil whereas that of Basidiomycota was the highest in WAP soil. The abundances of bacteria and fungi were significantly affected by Olsen P, whereas the abundances of archaea were influenced by SOC. Our results suggested crop rotation and manure fertilization (PNON soil) enhanced soil properties and microbial abundance although long-time onion mono-crop (CHON soil) reduced soil fertility. This study can provide information to improve soil quality and sustainability of agro-ecosystems using appropriate agricultural management. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02705-y.
Collapse
Affiliation(s)
- Tin Mar Lynn
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China
- Microbiology Division, Biotechnology Research Department, Ministry of Education, Kyaukse, Mandalay Region 100301 Myanmar
| | - Mostafa Zhran
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China
- Atomic Energy Authority, Nuclear Research Center, Soil & Water Research Department, Abou-Zaabl, 13759 Egypt
| | - Liu Fang Wang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China
| | - Tida Ge
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China
| | - San San Yu
- Microbiology Division, Biotechnology Research Department, Ministry of Education, Kyaukse, Mandalay Region 100301 Myanmar
| | - Ei Phyu Kyaw
- Microbiology Division, Biotechnology Research Department, Ministry of Education, Kyaukse, Mandalay Region 100301 Myanmar
| | - Zaw Ko Latt
- Microbiology Division, Biotechnology Research Department, Ministry of Education, Kyaukse, Mandalay Region 100301 Myanmar
| | - Tin Mar Htwe
- Ministry of Education, Kyaing Tong Education College, Kyaing Tong, Shan State Myanmar
| |
Collapse
|
16
|
Sharma L, Oliveira I, Gonçalves F, Raimundo F, Singh RK, Torres L, Marques G. Effect of Soil Chemical Properties on the Occurrence and Distribution of Entomopathogenic Fungi in Portuguese Grapevine Fields. Pathogens 2021; 10:137. [PMID: 33573165 PMCID: PMC7911582 DOI: 10.3390/pathogens10020137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
Entomopathogenic fungi (EPF) contribute to different ecosystem services. However, factors affecting their natural occurrences in soil remain poorly understood. In a previous study, 81 soil samples were subjected to insect baiting using Galleria mellonella and Tenebrio molitor to isolate EPF from Portuguese vine farms. Here, soils yielding any of the four common EPF, i.e., Beauveria bassiana, Purpureocillium lilacinum, Metarhizium robertsii, and Clonostachys rosea f. rosea, were correlated with their chemical properties. Beauveria bassiana was negatively affected by higher available P (p = 0.02), exchangeable K-ions (p = 0.016) and positively affected by higher soil pH_H2O (p = 0.021). High exchangeable K-ions inhibited P. lilacinum (p = 0.011) and promoted C. rosea f. rosea (p = 0.03). Moreover, high available K also suppressed P. lilacinum (p = 0.027). Metarhizium robertsii was inhibited by higher organic matter content (p = 0.009), higher C:N (p = 0.017), total N (p = 0.007), and exchangeable Mg-ions (p = 0.026), and promoted by higher exchangeable Na-ions (p = 0.003). Nonetheless, mean comparisons and principal component analysis suggested that higher soil pH and exchangeable Ca-ions have contrasting effects on EPF occurrences, as they promote B. bassiana and inhibit M. robertsii. Herbicides did not seem to affect EPF presence. Overall, this study is among the first reports on the effects of soil chemistry on EPF other than Metarhizium, and will facilitate biological pest management approaches.
Collapse
Affiliation(s)
- Lav Sharma
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (CITAB-UTAD), 5000-801 Vila Real, Portugal; (I.O.); (F.G.); (F.R.); (L.T.); (G.M.)
| | - Irene Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (CITAB-UTAD), 5000-801 Vila Real, Portugal; (I.O.); (F.G.); (F.R.); (L.T.); (G.M.)
- Centre for Computational and Stochastic Mathematics, University of Lisbon (CEMAT-IST-UL), 1049-001 Lisbon, Portugal
| | - Fátima Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (CITAB-UTAD), 5000-801 Vila Real, Portugal; (I.O.); (F.G.); (F.R.); (L.T.); (G.M.)
| | - Fernando Raimundo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (CITAB-UTAD), 5000-801 Vila Real, Portugal; (I.O.); (F.G.); (F.R.); (L.T.); (G.M.)
| | - Rupesh Kumar Singh
- Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Laura Torres
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (CITAB-UTAD), 5000-801 Vila Real, Portugal; (I.O.); (F.G.); (F.R.); (L.T.); (G.M.)
| | - Guilhermina Marques
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (CITAB-UTAD), 5000-801 Vila Real, Portugal; (I.O.); (F.G.); (F.R.); (L.T.); (G.M.)
| |
Collapse
|
17
|
Oyuela Aguilar M, Gobbi A, Browne PD, Ellegaard-Jensen L, Hansen LH, Semorile L, Pistorio M. Influence of vintage, geographic location and cultivar on the structure of microbial communities associated with the grapevine rhizosphere in vineyards of San Juan Province, Argentina. PLoS One 2020; 15:e0243848. [PMID: 33315910 PMCID: PMC7735631 DOI: 10.1371/journal.pone.0243848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/29/2020] [Indexed: 12/02/2022] Open
Abstract
Soil microbiomes, as a primary reservoir for plant colonizing fungi and bacteria, play a major role in determining plant productivity and preventing invasion by pathogenic microorganisms. The use of 16S rRNA and ITS high-throughput amplicon sequencing for analysis of complex microbial communities have increased dramatically in recent years, establishing links between wine specificity and, environmental and viticultural factors, which are framed into the elusive terroir concept. Given the diverse and complex role these factors play on microbial soil structuring of agricultural crops, the main aim of this study is to evaluate how external factors, such as vintage, vineyard location, cultivar and soil characteristics, may affect the diversity of the microbial communities present. Additionally, we aim to compare the influence these factors have on the structuring of bacterial and fungal populations associated with Malbec grapevine rhizosphere with that of the more widespread Cabernet Sauvignon grapevine cultivar. Samples were taken from Malbec and Cabernet Sauvignon cultivars from two different vineyards in the San Juan Province of Argentina. Total DNA extracts from the rhizosphere soil samples were sequenced using Illumina’s Miseq technology, targeting the V3-V4 hypervariable 16S rRNA region in prokaryotes and the ITS1 region in yeasts. The major bacterial taxa identified were Proteobacteria, Bacteroidetes and Firmicutes, while the major fungal taxa were Ascomycetes, Basidiomycetes, Mortierellomycetes and a low percentage of Glomeromycetes. Significant differences in microbial community composition were found between vintages and vineyard locations, whose soils showed variances in pH, organic matter, and content of carbon, nitrogen, and absorbable phosphorus.
Collapse
Affiliation(s)
- Mónica Oyuela Aguilar
- Instituto de Biotecnología y Biología Molecular (IBBM), CCT-La Plata, CONICET, Dto de Cs. Biológicas, Fac. Cs. Exactas, UNLP, La Plata, Argentina
| | - Alex Gobbi
- Section of Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Patrick D. Browne
- Section of Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Lars Hestbjerg Hansen
- Section of Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Liliana Semorile
- Laboratorio de Microbiología Molecular, Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada, Universidad de Nacional de Quilmes (UNQ), Bernal, Buenos Aires, Argentina
| | - Mariano Pistorio
- Instituto de Biotecnología y Biología Molecular (IBBM), CCT-La Plata, CONICET, Dto de Cs. Biológicas, Fac. Cs. Exactas, UNLP, La Plata, Argentina
- * E-mail:
| |
Collapse
|
18
|
Marjanović Ž, Nawaz A, Stevanović K, Saljnikov E, Maček I, Oehl F, Wubet T. Root-Associated Mycobiome Differentiate between Habitats Supporting Production of Different Truffle Species in Serbian Riparian Forests. Microorganisms 2020; 8:E1331. [PMID: 32878332 PMCID: PMC7563819 DOI: 10.3390/microorganisms8091331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 11/17/2022] Open
Abstract
Balkan lowlands bordering with the Pannonia region are inhabited by diverse riparian forests that support production of different truffle species, predominantly the most prized white truffle of Piedmont (Tuber magnatum Pico), but also other commercial species (T.macrosporum Vitt., T. aestivum Vitt.). Surprisingly, little is known about the native root-associated mycobiome (RAM) of these lowland truffle-producing forests. Therefore, in this study we aim at exploring and comparing the RAMs of three different truffle-producing forests from Kolubara river plane in Serbia. Molecular methods based on next generation sequencing (NGS) were used to evaluate the diversity of root-associated fungal communities and to elucidate the influence of environmental factors on their differentiation. To our knowledge, this is the first study from such habitats with a particular focus on comparative analysis of the RAM in different truffle-producing habitats using a high-throughput sequencing approach. Our results indicated that the alpha diversity of investigated fungal communities was not significantly different between different truffle-producing forests and within a specific forest type, while the seasonal differences in the alpha diversity were only observed in the white truffle-producing forests. Taxonomic profiling at phylum level indicated the dominance of fungal OTUs belonging to phylum Ascomycota and Basidiomycota, with very minor presence of other phyla. Distinct community structures of root-associated mycobiomes were observed for white, mixed, and black truffle-producing forests. The core mycobiome analysis indicated a fair share of fungal genera present exclusively in white and black truffle-producing forest, while the core genera of mixed truffle-producing forests were shared with both white and black truffle-producing forests. The majority of detected fungal OTUs in all three forest types were symbiotrophs, with ectomycorrhizal fungi being a dominant functional guild. Apart from assumed vegetation factor, differentiation of fungal communities was driven by factors connected to the distance from the river and exposure to fluvial activities, soil age, structure, and pH. Overall, Pannonian riparian forests appear to host diverse root-associated fungal communities that are strongly shaped by variation in soil conditions.
Collapse
Affiliation(s)
- Žaklina Marjanović
- Institute for Multidisciplinary Research, Belgrade University, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Ali Nawaz
- Helmholtz Centre for Environmental Research—UFZ, Department of Community Ecology, 06120 Halle (Saale), Germany;
| | - Katarina Stevanović
- Faculty of Biology, University of Belgrade, Studentski Trg 3, 11000 Belgrade, Serbia;
| | - Elmira Saljnikov
- Soil Science Institute, Teodora Drajzera 7, 11000 Belgrade, Serbia;
| | - Irena Maček
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
- Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT), University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Fritz Oehl
- Agroscope, Competence Division for Plants and Plant Products, Ecotoxicology, Müller-Thurgau-Str. 29, 8820 Wädenswil, Switzerland;
| | - Tesfaye Wubet
- Helmholtz Centre for Environmental Research—UFZ, Department of Community Ecology, 06120 Halle (Saale), Germany;
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|
19
|
Ismail N'I, Abdullah SRS, Idris M, Kurniawan SB, Effendi Halmi MI, Al Sbani NH, Jehawi OH, Hasan HA. Applying rhizobacteria consortium for the enhancement of Scirpus grossus growth and phytoaccumulation of Fe and Al in pilot constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 267:110643. [PMID: 32421674 DOI: 10.1016/j.jenvman.2020.110643] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Pilot-scale constructed wetlands planted with Scirpus grossus, were used to investigate the effects of applying a three-rhizobacterial consortium (Bacillus cereus strain NII, Bacillus subtilis strain NII and Brevibacterium sp. strain NII) on the growth of S. grossus and also on the accumulation of iron (Fe) and aluminium (Al) in S. grossus. The experiment includes constructed wetlands with the addition of 2% of the consortium rhizobacteria and without the consortium rhizobacteria addition (acting as control). During each sampling day (0, 5, 10, 15, 20, 25, 30, 42, 72 and 102), plant height, concentration of Fe and Al and sand microbial community were investigated. The results for the constructed wetland with the addition of consortium rhizobacteria showed the growth of S. grossus increased significantly at 26% and 29% for plant height and dry weight, respectively. While the accumulation of Fe and Al in S. grossus were enhanced about 48% and 19% respectively. To conclude, the addition of the rhizobacteria consortium has enhanced both the growth of S. grossus and the metal accumulation. These results suggesting that rhizobacteria has good potential to restore Fe and Al contaminated water in general and particularly for mining wastewater.
Collapse
Affiliation(s)
- Nur 'Izzati Ismail
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Mushrifah Idris
- Tasik Chini Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Mohd Izuan Effendi Halmi
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Nadya Hussin Al Sbani
- Department of Chemical Engineering, Faculty of Oil and Gas Engineering, Al Zawiya University, Libya.
| | - Omar Hamed Jehawi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
20
|
Czaplicki LM, Redfern LK, Cooper EM, Ferguson PL, Vilgalys R, Gunsch CK. Investigating the mycobiome of the Holcomb Creosote Superfund Site. CHEMOSPHERE 2020; 252:126208. [PMID: 32229362 PMCID: PMC7242165 DOI: 10.1016/j.chemosphere.2020.126208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/20/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Even though many fungi are known to degrade a range of organic chemicals and may be advantageous for targeting hydrophobic chemicals with low bioavailability due to their ability to secrete extracellular enzymes, fungi are not commonly leveraged in the context of bioremediation. Here we sought to examine the fungal microbiome (mycobiome) at a model creosote polluted site to determine if fungi were prevalent under high PAH contamination conditions as well as to identify potential mycostimulation targets. Several significant positive associations were detected between OTUs and mid-to high-molecular weight PAHs. Several OTUs were closely related to taxa that have previously been identified in culture-based studies as PAH degraders. In particular, members belonging to the Ascomycota phylum were the most diverse at higher PAH concentrations suggesting this phylum may be promising biostimulation targets. There were nearly three times more positive correlations as compared to negative correlations, suggesting that creosote-tolerance is more common than creosote-sensitivity in the fungal community. Future work including shotgun metagenomic analysis would help confirm the presence of specific degradation genes. Overall this study suggests that mycobiome and bacterial microbiome analyses should be performed in parallel to devise the most optimal in situ biostimulation treatment strategies.
Collapse
Affiliation(s)
- Lauren M Czaplicki
- Pratt School of Engineering, Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27713, USA
| | - Lauren K Redfern
- Pratt School of Engineering, Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27713, USA
| | - Ellen M Cooper
- Nicholas School of the Environment, Duke University, Durham, NC, 27713, USA
| | - P Lee Ferguson
- Nicholas School of the Environment, Duke University, Durham, NC, 27713, USA
| | - Rytas Vilgalys
- Department of Biology, Duke University, Durham, NC, 27713, USA
| | - Claudia K Gunsch
- Pratt School of Engineering, Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27713, USA.
| |
Collapse
|
21
|
Goldmann K, Boeddinghaus RS, Klemmer S, Regan KM, Heintz‐Buschart A, Fischer M, Prati D, Piepho H, Berner D, Marhan S, Kandeler E, Buscot F, Wubet T. Unraveling spatiotemporal variability of arbuscular mycorrhizal fungi in a temperate grassland plot. Environ Microbiol 2020; 22:873-888. [PMID: 31087598 PMCID: PMC7065148 DOI: 10.1111/1462-2920.14653] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
Soils provide a heterogeneous environment varying in space and time; consequently, the biodiversity of soil microorganisms also differs spatially and temporally. For soil microbes tightly associated with plant roots, such as arbuscular mycorrhizal fungi (AMF), the diversity of plant partners and seasonal variability in trophic exchanges between the symbionts introduce additional heterogeneity. To clarify the impact of such heterogeneity, we investigated spatiotemporal variation in AMF diversity on a plot scale (10 × 10 m) in a grassland managed at low intensity in southwest Germany. AMF diversity was determined using 18S rDNA pyrosequencing analysis of 360 soil samples taken at six time points within a year. We observed high AMF alpha- and beta-diversity across the plot and at all investigated time points. Relationships were detected between spatiotemporal variation in AMF OTU richness and plant species richness, root biomass, minimal changes in soil texture and pH. The plot was characterized by high AMF turnover rates with a positive spatiotemporal relationship for AMF beta-diversity. However, environmental variables explained only ≈20% of the variation in AMF communities. This indicates that the observed spatiotemporal richness and community variability of AMF was largely independent of the abiotic environment, but related to plant properties and the cooccurring microbiome.
Collapse
Affiliation(s)
- Kezia Goldmann
- Department of Soil EcologyUFZ – Helmholtz Centre for Environmental ResearchTheodor‐Lieser‐Straße 4, 06120Halle (Saale)Germany
| | - Runa S. Boeddinghaus
- Department of Soil Biology, Institute of Soil Science and Land EvaluationUniversity of HohenheimEmil‐Wolff‐Straße 27, 70599StuttgartGermany
| | - Sandra Klemmer
- Department of Soil EcologyUFZ – Helmholtz Centre for Environmental ResearchTheodor‐Lieser‐Straße 4, 06120Halle (Saale)Germany
| | - Kathleen M. Regan
- Department of Soil Biology, Institute of Soil Science and Land EvaluationUniversity of HohenheimEmil‐Wolff‐Straße 27, 70599StuttgartGermany
- Ecosystems CenterMarine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Anna Heintz‐Buschart
- Department of Soil EcologyUFZ – Helmholtz Centre for Environmental ResearchTheodor‐Lieser‐Straße 4, 06120Halle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigDeutscher Platz 5e, 04103LeipzigGermany
| | - Markus Fischer
- Institute of Plant Sciences and Botanical GardenUniversity of BernAltenbergrain 21, 3013BernSwitzerland
| | - Daniel Prati
- Institute of Plant Sciences and Botanical GardenUniversity of BernAltenbergrain 21, 3013BernSwitzerland
| | - Hans‐Peter Piepho
- Institute of Crop Science, Biostatistics UnitUniversity of HohenheimFruwirthstraße 23, 70599StuttgartGermany
| | - Doreen Berner
- Department of Soil Biology, Institute of Soil Science and Land EvaluationUniversity of HohenheimEmil‐Wolff‐Straße 27, 70599StuttgartGermany
| | - Sven Marhan
- Department of Soil Biology, Institute of Soil Science and Land EvaluationUniversity of HohenheimEmil‐Wolff‐Straße 27, 70599StuttgartGermany
| | - Ellen Kandeler
- Department of Soil Biology, Institute of Soil Science and Land EvaluationUniversity of HohenheimEmil‐Wolff‐Straße 27, 70599StuttgartGermany
| | - François Buscot
- Department of Soil EcologyUFZ – Helmholtz Centre for Environmental ResearchTheodor‐Lieser‐Straße 4, 06120Halle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigDeutscher Platz 5e, 04103LeipzigGermany
| | - Tesfaye Wubet
- Department of Soil EcologyUFZ – Helmholtz Centre for Environmental ResearchTheodor‐Lieser‐Straße 4, 06120Halle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigDeutscher Platz 5e, 04103LeipzigGermany
| |
Collapse
|
22
|
Ke LQ, Li PD, Xu JP, Wang QS, Wang LL, Wen HP. Microbial communities and soil chemical features associated with commercial production of the medicinal mushroom Ganoderma lingzhi in soil. Sci Rep 2019; 9:15839. [PMID: 31676878 PMCID: PMC6825212 DOI: 10.1038/s41598-019-52368-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Crop production, including mushroom farming, may cause significant changes to the underlying substrates which in turn, can influence crop quality and quantity during subsequent years. Here in this study, we analyzed the production of the medicinal mushroom Ganoderma lingzhi and the associated soil microbial communities and soil chemical features over 24 months from April 2015 to April 2017. This Basidiomycete mushroom, known as Lingzhi in China, is commonly found on dead trees and wood logs in temperate and subtropical forests. Its economic and medicinal importance have propelled the development of a diversity of cultivation methods. The dominant method uses wood logs as the main substrate, which after colonization by Lingzhi mycelia, are buried in the soil to induce fruiting. The soil microbial communities over the 24 months were analyzed using the Illumina HiSeq platform targeting a portion of the bacterial 16S rRNA gene and the fungal internal transcribed spacer 1 (ITS1). Overall, a significant reduction of Lingzhi yield was observed over our experimentation period. Interestingly, temporal changes in soil microbial compositions were detected during the 24 months, with the fungal community showing more changes than that of bacteria in terms of both species richness and the relative abundance of several dominant species after each fruiting. The soil chemical features also showed significant changes, with decreasing soil nitrogen and phosphorus concentrations and increasing soil pH and iron content after each fruiting. We discuss the implications of our results in sustainable Lingzhi production in soil.
Collapse
Affiliation(s)
- Le-Qin Ke
- College of Ecology, Lishui University, Lishui City, Zhejiang Province, 323000, P.R. China.
| | - Pu-Dong Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Ping Xu
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton Ontario, L8S 4K1, Canada
| | - Qiu-Shuang Wang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510006, P.R. China
| | - Liang-Liang Wang
- College of Ecology, Lishui University, Lishui City, Zhejiang Province, 323000, P.R. China
| | - Hui-Ping Wen
- College of Ecology, Lishui University, Lishui City, Zhejiang Province, 323000, P.R. China
| |
Collapse
|
23
|
Ismaiel MMS, Ahmed AESI, Sobhy S. Enhancement of Wheat Cultivars (Triticum aestivum L.) by Cellulase-Treated Plant Wastes. WASTE AND BIOMASS VALORIZATION 2019; 10:1539-1546. [DOI: 10.1007/s12649-017-0159-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 12/04/2017] [Indexed: 09/02/2023]
|
24
|
Ngugi MR, Dennis PG, Neldner VJ, Doley D, Fechner N, McElnea A. Open-cut mining impacts on soil abiotic and bacterial community properties as shown by restoration chronosequence. Restor Ecol 2017. [DOI: 10.1111/rec.12631] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Michael R. Ngugi
- Queensland Herbarium; Brisbane Botanic Gardens; Mt Coot-tha Road, Toowong Brisbane Queensland 4066 Australia
| | - Paul G. Dennis
- School of Earth and Environmental Sciences; The University of Queensland; St Lucia QLD 4072 Australia
| | - Victor J. Neldner
- Queensland Herbarium; Brisbane Botanic Gardens; Mt Coot-tha Road, Toowong Brisbane Queensland 4066 Australia
| | - David Doley
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute; The University of Queensland; Brisbane Queensland 4072 Australia
| | - Nigel Fechner
- Queensland Herbarium; Brisbane Botanic Gardens; Mt Coot-tha Road, Toowong Brisbane Queensland 4066 Australia
| | - Angus McElnea
- Chemistry Centre, Department of Science, Information Technology and Innovation; EcoSciences Precinct; 41 Boggo Road Dutton Park Queensland 4102 Australia
| |
Collapse
|
25
|
Oja J, Vahtra J, Bahram M, Kohout P, Kull T, Rannap R, Kõljalg U, Tedersoo L. Local-scale spatial structure and community composition of orchid mycorrhizal fungi in semi-natural grasslands. MYCORRHIZA 2017; 27:355-367. [PMID: 28039600 DOI: 10.1007/s00572-016-0755-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/30/2016] [Indexed: 05/20/2023]
Abstract
Orchid mycorrhizal (OrM) fungi play a crucial role in the ontogeny of orchids, yet little is known about how the structure of OrM fungal communities varies with space and environmental factors. Previous studies suggest that within orchid patches, the distance to adult orchids may affect the abundance of OrM fungi. Many orchid species grow in species-rich temperate semi-natural grasslands, the persistence of which depends on moderate physical disturbances, such as grazing and mowing. The aim of this study was to test whether the diversity, structure and composition of OrM fungal community are influenced by the orchid patches and management intensity in semi-natural grasslands. We detected putative OrM fungi from 0 to 32 m away from the patches of host orchid species (Orchis militaris and Platanthera chlorantha) in 21 semi-natural calcareous grasslands using pyrosequencing. In addition, we assessed different ecological conditions in semi-natural grasslands but primarily focused on the effect of grazing intensity on OrM fungal communities in soil. We found that investigated orchid species were mostly associated with Ceratobasidiaceae and Tulasnellaceae and, to a lesser extent, with Sebacinales. Of all the examined factors, the intensity of grazing explained the largest proportion of variation in OrM fungal as well as total fungal community composition in soil. Spatial analyses showed limited evidence for spatial clustering of OrM fungi and their dependence on host orchids. Our results indicate that habitat management can shape OrM fungal communities, and the spatial distribution of these fungi appears to be weakly structured outside the orchid patches.
Collapse
Affiliation(s)
- Jane Oja
- Institute of Ecology and Earth Sciences, University of Tartu, 14A Ravila, 50411, Tartu, Estonia.
| | - Johanna Vahtra
- Institute of Ecology and Earth Sciences, University of Tartu, 14A Ravila, 50411, Tartu, Estonia
| | - Mohammad Bahram
- Institute of Ecology and Earth Sciences, University of Tartu, 14A Ravila, 50411, Tartu, Estonia
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, SE 75236, Uppsala, Sweden
| | - Petr Kohout
- Institute of Ecology and Earth Sciences, University of Tartu, 14A Ravila, 50411, Tartu, Estonia
- Institute of Botany, Academy of Sciences of the Czech Republic, 252 43, Průhonice, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, CZ-128 01, Prague 2, Czech Republic
| | - Tiiu Kull
- Institute of Agricultural and Environmental Sciences Estonian, University of Life Sciences, 5 Kreutzwaldi, 51014, Tartu, Estonia
| | - Riinu Rannap
- Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise, 51014, Tartu, Estonia
| | - Urmas Kõljalg
- Institute of Ecology and Earth Sciences, University of Tartu, 14A Ravila, 50411, Tartu, Estonia
| | - Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, 14A Ravila, 50411, Tartu, Estonia
| |
Collapse
|
26
|
Santalahti M, Sun H, Jumpponen A, Pennanen T, Heinonsalo J. Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil. FEMS Microbiol Ecol 2016; 92:fiw170. [DOI: 10.1093/femsec/fiw170] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2016] [Indexed: 11/14/2022] Open
|
27
|
Reinhart KO, Vermeire LT. Soil Aggregate Stability and Grassland Productivity Associations in a Northern Mixed-Grass Prairie. PLoS One 2016; 11:e0160262. [PMID: 27467598 PMCID: PMC4965036 DOI: 10.1371/journal.pone.0160262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/16/2016] [Indexed: 11/19/2022] Open
Abstract
Soil aggregate stability data are often predicted to be positively associated with measures of plant productivity, rangeland health, and ecosystem functioning. Here we revisit the hypothesis that soil aggregate stability is positively associated with plant productivity. We measured local (plot-to-plot) variation in grassland community composition, plant (aboveground) biomass, root biomass, % water-stable soil aggregates, and topography. After accounting for spatial autocorrelation, we observed a negative association between % water-stable soil aggregates (0.25-1 and 1-2 mm size classes of macroaggregates) and dominant graminoid biomass, and negative associations between the % water-stable aggregates and the root biomass of a dominant sedge (Carex filifolia). However, variation in total root biomass (0-10 or 0-30 cm depths) was either negatively or not appreciably associated with soil aggregate stabilities. Overall, regression slope coefficients were consistently negative thereby indicating the general absence of a positive association between measures of plant productivity and soil aggregate stability for the study area. The predicted positive association between factors was likely confounded by variation in plant species composition. Specifically, sampling spanned a local gradient in plant community composition which was likely driven by niche partitioning along a subtle gradient in elevation. Our results suggest an apparent trade-off between some measures of plant biomass production and soil aggregate stability, both known to affect the land's capacity to resist erosion. These findings further highlight the uncertainty of plant biomass-soil stability associations.
Collapse
Affiliation(s)
- Kurt O. Reinhart
- United States Department of Agriculture-Agricultural Research Service, Fort Keogh Livestock & Range Research Laboratory, Miles City, Montana, United States of America
| | - Lance T. Vermeire
- United States Department of Agriculture-Agricultural Research Service, Fort Keogh Livestock & Range Research Laboratory, Miles City, Montana, United States of America
| |
Collapse
|
28
|
Girdling by the Hispid Cotton Rat as a Significant Source of Mortality in a Loblolly Pine (Pinus taeda) Successional Forest. AMERICAN MIDLAND NATURALIST 2015. [DOI: 10.1674/0003-0031-174.1.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Liu T, Li CM, Han YL, Chiang TY, Chiang YC, Sung HM. Highly diversified fungi are associated with the achlorophyllous orchid Gastrodia flavilabella. BMC Genomics 2015; 16:185. [PMID: 25886817 PMCID: PMC4371811 DOI: 10.1186/s12864-015-1422-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/28/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Mycoheterotrophic orchids are achlorophyllous plants that obtain carbon and nutrients from their mycorrhizal fungi. They often show strong preferential association with certain fungi and may obtain nutrients from surrounding photosynthetic plants through ectomycorrhizal fungi. Gastrodia is a large genus of mycoheterotrophic orchids in Asia, but Gastrodia species' association with fungi has not been well studied. We asked two questions: (1) whether certain fungi were preferentially associated with G. flavilabella, which is an orchid in Taiwan and (2) whether fungal associations of G. flavilabella were affected by the composition of fungi in the environment. RESULTS Using next-generation sequencing, we studied the fungal communities in the tubers of Gastrodia flavilabella and the surrounding soil. We found (1) highly diversified fungi in the G. flavilabella tubers, (2) that Mycena species were the predominant fungi in the tubers but minor in the surrounding soil, and (3) the fungal communities in the G. flavilabella tubers were clearly distinct from those in the surrounding soil. We also found that the fungal composition in soil can change quickly with distance. CONCLUSIONS G. flavilabella was associated with many more fungi than previously thought. Among the fungi in the tuber of G. flavilabella, Mycena species were predominant, different from the previous finding that adult G. elata depends on Armillaria species for nutritional supply. Moreover, the preferential fungus association of G. flavilabella was not significantly influenced by the composition of fungi in the environment.
Collapse
Affiliation(s)
- Tsunglin Liu
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan.
| | - Ching-Min Li
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan.
| | - Yue-Lun Han
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan.
| | - Tzen-Yuh Chiang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan.
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Huang-Mo Sung
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
30
|
Ranelli LB, Hendricks WQ, Lynn JS, Kivlin SN, Rudgers JA. Biotic and abiotic predictors of fungal colonization in grasses of the Colorado Rockies. DIVERS DISTRIB 2015. [DOI: 10.1111/ddi.12310] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Luciana B. Ranelli
- The Rocky Mountain Biological Laboratory; Crested Butte CO 81224 USA
- Division of Science and Mathematics; University of Minnesota, Morris; Morris MN 56267 USA
| | - Will Q. Hendricks
- The Rocky Mountain Biological Laboratory; Crested Butte CO 81224 USA
| | - Joshua S. Lynn
- The Rocky Mountain Biological Laboratory; Crested Butte CO 81224 USA
- Department of Biology; University of New Mexico; Albuquerque NM 87131 USA
| | - Stephanie N. Kivlin
- The Rocky Mountain Biological Laboratory; Crested Butte CO 81224 USA
- Section of Integrative Biology; University of Texas; Austin TX 78712 USA
| | | |
Collapse
|