1
|
Wumaier R, Zhang K, Zhou J, Wen Z, Chen Z, Luo G, Wang H, Qin J, Du B, Ren H, Song Y, Gao Q, Yan B. Mycobacteria Exploit Host GPR84 to Dampen Pro-Inflammatory Responses and Promote Infection in Macrophages. Microorganisms 2025; 13:110. [PMID: 39858878 PMCID: PMC11767743 DOI: 10.3390/microorganisms13010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Tuberculosis (TB) remains the major cause of mortality and morbidity, causing approximately 1.3 million deaths annually. As a highly successful pathogen, Mycobacterium tuberculosis (Mtb) has evolved numerous strategies to evade host immune responses, making it essential to understand the interactions between Mtb and host cells. G-protein-coupled receptor 84 (GPR84), a member of the G-protein-coupled receptor family, contributes to the regulation of pro-inflammatory reactions and the migration of innate immune cells, such as macrophages. Its role in mycobacterial infection, however, has not yet been explored. We found that GPR84 is induced in whole blood samples from tuberculosis patients and Mycobacterium marinum (Mm)-infected macrophage models. Using a Mm-wasabi infection model in mouse tails, we found that GPR84 is an important determinant of the extent of tissue damage. Furthermore, from our studies in an in vitro macrophage Mm infection model, it appears that GPR84 inhibits pro-inflammatory cytokines expression and increases intracellular lipid droplet (LD) accumulation, thereby promoting intracellular bacterial survival. Our findings suggest that GPR84 could be a potential therapeutic target for host-directed anti-TB therapeutics.
Collapse
Affiliation(s)
- Reziya Wumaier
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200433, China;
| | - Ke Zhang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China;
| | - Jing Zhou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (J.Z.); (Z.W.); (Z.C.); (G.L.); (H.W.); (Y.S.)
| | - Zilu Wen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (J.Z.); (Z.W.); (Z.C.); (G.L.); (H.W.); (Y.S.)
| | - Zihan Chen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (J.Z.); (Z.W.); (Z.C.); (G.L.); (H.W.); (Y.S.)
- Pathology Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Geyang Luo
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (J.Z.); (Z.W.); (Z.C.); (G.L.); (H.W.); (Y.S.)
| | - Hao Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (J.Z.); (Z.W.); (Z.C.); (G.L.); (H.W.); (Y.S.)
| | - Juliang Qin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China; (J.Q.); (B.D.); (H.R.)
| | - Bing Du
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China; (J.Q.); (B.D.); (H.R.)
| | - Hua Ren
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China; (J.Q.); (B.D.); (H.R.)
| | - Yanzheng Song
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (J.Z.); (Z.W.); (Z.C.); (G.L.); (H.W.); (Y.S.)
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200433, China;
| | - Bo Yan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (J.Z.); (Z.W.); (Z.C.); (G.L.); (H.W.); (Y.S.)
| |
Collapse
|
2
|
Ward R, Wood GA, Pye C, Karimi K, Yu A, St-Denis M, Blake K, Raj S, Oladokun S, Sharif S. Analysis of the immunomodulatory properties of mycobacterium cell wall fraction on the cytokine production of peripheral blood mononuclear cells of healthy dogs. Vet Dermatol 2024; 35:595-604. [PMID: 39140285 DOI: 10.1111/vde.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/11/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Mycobacterium cell wall fraction (MCWF) is derived from nonpathogenic Mycobacterium phlei and is used as an immunomodulatory compound in clinical practice, yet its mode-of-action requires further research. OBJECTIVE To evaluate the host response to MCWF in canine peripheral blood mononuclear cells (PBMCs) by using enzyme-linked immunosorbent assays (ELISA) and quantitative reverse transcription (qRT)-PCR for assessment of cytokines. ANIMALS Eight healthy Labrador retrievers. MATERIALS AND METHODS PBMCs were isolated from whole blood using density centrifugation. The cells were cultured with different concentrations of MCWF or a potent stimulator of cytokine production, phorbol 12-myristate 13-acetate/ionomycin, or left in cell culture medium for 24, 48 and 72 h. Cytokines were measured by ELISA for interleukin (IL)-4, IL-10 and interferon-gamma (IFN-γ), and by qRT-PCR for IL-4, IL-10, IL-13, IFN-γ, tumour necrosis factor alpha (TNF-α) and transforming growth factor-beta. RESULTS A significant increase of IL-10 messenger ribonucleic acid (mRNA) was detected at all time points for all concentrations of MCWF (p < 0.05). Protein analysis reflected this finding, with a maximum IL-10 concentration of 300.6 ± 38.3 μg/mL. Compared to the negative control, post-stimulation elevation of IFN-γ mRNA was noted at 24 h with all concentrations of MCWF (p < 0.01), and TNF-α mRNA was increased for 0.5 μg/dL MCWF only at 72 h (p < 0.05). CONCLUSIONS AND CLINICAL RELEVANCE MCWF stimulation of PBMCs results in the elevation of both proinflammatory and regulatory cytokine mRNA. Further research into the role of MCWF as a systemically administered regulatory immunomodulator or adjuvant to allergen-specific immunotherapy should be considered.
Collapse
Affiliation(s)
- Robert Ward
- Veterinary Allergy Dermatology and Ear Referral Clinic, Morriston, Ontario, Canada
- Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Geoffrey A Wood
- Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Charlotte Pye
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, P.E.I, Canada
| | - Khalil Karimi
- Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Anthony Yu
- Veterinary Allergy Dermatology and Ear Referral Clinic, Morriston, Ontario, Canada
| | - Myles St-Denis
- Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Katherine Blake
- Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Sugandha Raj
- Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Samson Oladokun
- Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Shayan Sharif
- Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
3
|
Bhat SA, Elnaggar M, Hall TJ, McHugo GP, Reid C, MacHugh DE, Meade KG. Preferential differential gene expression within the WC1.1 + γδ T cell compartment in cattle naturally infected with Mycobacterium bovis. Front Immunol 2023; 14:1265038. [PMID: 37942326 PMCID: PMC10628470 DOI: 10.3389/fimmu.2023.1265038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
Bovine tuberculosis (bTB), caused by infection with Mycobacterium bovis, continues to cause significant issues for the global agriculture industry as well as for human health. An incomplete understanding of the host immune response contributes to the challenges of control and eradication of this zoonotic disease. In this study, high-throughput bulk RNA sequencing (RNA-seq) was used to characterise differential gene expression in γδ T cells - a subgroup of T cells that bridge innate and adaptive immunity and have known anti-mycobacterial response mechanisms. γδ T cell subsets are classified based on expression of a pathogen-recognition receptor known as Workshop Cluster 1 (WC1) and we hypothesised that bTB disease may alter the phenotype and function of specific γδ T cell subsets. Peripheral blood was collected from naturally M. bovis-infected (positive for single intradermal comparative tuberculin test (SICTT) and IFN-γ ELISA) and age- and sex-matched, non-infected control Holstein-Friesian cattle. γδ T subsets were isolated using fluorescence activated cell sorting (n = 10-12 per group) and high-quality RNA extracted from each purified lymphocyte subset (WC1.1+, WC1.2+, WC1- and γδ-) was used to generate transcriptomes using bulk RNA-seq (n = 6 per group, representing a total of 48 RNA-seq libraries). Relatively low numbers of differentially expressed genes (DEGs) were observed between most cell subsets; however, 189 genes were significantly differentially expressed in the M. bovis-infected compared to the control groups for the WC1.1+ γδ T cell compartment (absolute log2 FC ≥ 1.5 and FDR P adj. ≤ 0.1). The majority of these DEGs (168) were significantly increased in expression in cells from the bTB+ cattle and included genes encoding transcription factors (TBX21 and EOMES), chemokine receptors (CCR5 and CCR7), granzymes (GZMA, GZMM, and GZMH) and multiple killer cell immunoglobulin-like receptor (KIR) proteins indicating cytotoxic functions. Biological pathway overrepresentation analysis revealed enrichment of genes with multiple immune functions including cell activation, proliferation, chemotaxis, and cytotoxicity of lymphocytes. In conclusion, γδ T cells have important inflammatory and regulatory functions in cattle, and we provide evidence for preferential differential activation of the WC1.1+ specific subset in cattle naturally infected with M. bovis.
Collapse
Affiliation(s)
- Sajad A. Bhat
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Dunsany, Ireland
| | - Mahmoud Elnaggar
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Dunsany, Ireland
| | - Thomas J. Hall
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Gillian P. McHugo
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Cian Reid
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Dunsany, Ireland
| | - David E. MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Kieran G. Meade
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- UCD Institute of Food and Health, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Sousa FDMD, Souza IDP, Amoras EDSG, Lima SS, Cayres-Vallinoto IMV, Ishak R, Vallinoto ACR, Queiroz MAF. Low levels of TNFA gene expression seem to favor the development of pulmonary tuberculosis in a population from the Brazilian Amazon. Immunobiology 2023; 228:152333. [PMID: 36630812 DOI: 10.1016/j.imbio.2023.152333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
TNF-α is a Th1 cytokine profile active in the control of Mycobacterium tuberculosis infection, IL-10 is associated with persistence of bacterial infection. The aim of the study was to investigate the association of TNFA -308G/A and IL10 -819C/T polymorphisms and TNFA and IL10 gene expression levels with pulmonary and extrapulmonary tuberculosis (n = 200) and control (n = 200). The individuals were submitted to genotyping and quantification of gene expression performed by real-time quantitative polymerase chain reaction (qPCR). No association was observed between the frequencies of polymorphisms evaluated and pulmonary tuberculosis. The frequency of polymorphic genotypes for TNFA -308G/A were associated with the extrapulmonary tuberculosis (p = 0.0445). The levels of TNFA expression were lower in the pulmonary tuberculosis group than in the control (p = 0.0009). There was a positive correlation between the levels of TNFA and IL10 in patients with pulmonary tuberculosis (r = 0.560; p = 0.0103). Reduced levels of TNFA expression may promote the formation of an anti-inflammatory microenvironment, favoring the persistence of the bacillus in the host, contributing to the establishment of pulmonary tuberculosis.
Collapse
Affiliation(s)
- Francisca Dayse Martins de Sousa
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66.075-110, Brazil; Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Iury de Paula Souza
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66.075-110, Brazil; Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Ednelza da Silva Graça Amoras
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66.075-110, Brazil
| | - Sandra Souza Lima
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66.075-110, Brazil
| | | | - Ricardo Ishak
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66.075-110, Brazil
| | | | - Maria Alice Freitas Queiroz
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66.075-110, Brazil.
| |
Collapse
|
5
|
Choi SW, Kim S, Park HT, Park HE, Choi JS, Yoo HS. MicroRNA profiling in bovine serum according to the stage of Mycobacterium avium subsp. paratuberculosis infection. PLoS One 2021; 16:e0259539. [PMID: 34735546 PMCID: PMC8568169 DOI: 10.1371/journal.pone.0259539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease (JD), and it causes diarrhea and weakness in cattle. During a long subclinical stage, infected animals without clinical signs shed pathogens through feces. For this reason, the diagnosis of JD during the subclinical stage is very important. Circulating miRNAs are attracting attention as useful biomarkers in various veterinary diseases because of their expression changes depending on the state of the disease. Based on current knowledge, circulating miRNAs extracted from bovine serum were used to develop a diagnostic tool for JD. In this study, the animals were divided into 4 groups according to fecal shedding, the presence of antibodies, and clinical signs. Gene expression was analyzed by performing miRNA sequencing for each group, and it was identified that the miRNA expression changed more as the MAP infection progressed. The eight miRNAs that were differentially expressed in all infected groups were selected as biomarker candidates based on their significant differences compared to the control group. These biomarker candidates were validated by qRT-PCR. Considering the sequencing data, two upregulated miRNAs and two downregulated miRNAs showed the same trend in the validation results. Network analysis was also conducted and the results showed that mRNAs (IL-10, TGF-β1) associated with regulatory T cells were predicted to be activated in the subclinical stage. Taken together, our data suggest that two miRNAs (bta-miR-374b, bta-miR-2887) may play major roles in the immune response to MAP infection during the subclinical stage.
Collapse
Affiliation(s)
- Sung-Woon Choi
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Suji Kim
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hong-Tae Park
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Eui Park
- Department of Microbiology, Research Institute of Life Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Jeong-Soo Choi
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Jagatia H, Tsolaki AG. The Role of Complement System and the Immune Response to Tuberculosis Infection. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:84. [PMID: 33498555 PMCID: PMC7909539 DOI: 10.3390/medicina57020084] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 11/30/2022]
Abstract
The complement system orchestrates a multi-faceted immune response to the invading pathogen, Mycobacterium tuberculosis. Macrophages engulf the mycobacterial bacilli through bacterial cell surface proteins or secrete proteins, which activate the complement pathway. The classical pathway is activated by C1q, which binds to antibody antigen complexes. While the alternative pathway is constitutively active and regulated by properdin, the direct interaction of properdin is capable of complement activation. The lectin-binding pathway is activated in response to bacterial cell surface carbohydrates such as mannose, fucose, and N-acetyl-d-glucosamine. All three pathways contribute to mounting an immune response for the clearance of mycobacteria. However, the bacilli can reside, persist, and evade clearance by the immune system once inside the macrophages using a number of mechanisms. The immune system can compartmentalise the infection into a granulomatous structure, which contains heterogenous sub-populations of M. tuberculosis. The granuloma consists of many types of immune cells, which aim to clear and contain the infection whilst sacrificing the affected host tissue. The full extent of the involvement of the complement system during infection with M. tuberculosis is not fully understood. Therefore, we reviewed the available literature on M. tuberculosis and other mycobacterial literature to understand the contribution of the complement system during infection.
Collapse
Affiliation(s)
- Heena Jagatia
- Department for Respiratory Sciences, University of Leicester, Leicester LE1 9HN, UK
| | - Anthony G. Tsolaki
- Department of Life Sciences, College of Health and Life Sciences, Brunel University of London, Uxbridge UB8 3PN, UK;
| |
Collapse
|
7
|
Naz F, Arish M. GPCRs as an emerging host-directed therapeutic target against mycobacterial infection: From notion to reality. Br J Pharmacol 2020; 179:4899-4909. [PMID: 33150959 DOI: 10.1111/bph.15315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/12/2020] [Accepted: 10/22/2020] [Indexed: 11/26/2022] Open
Abstract
Mycobacterium tuberculosis (M. tb) is one of the successful pathogens and claim millions of deaths across the globe. The emergence of drug resistance in M. tb has created new hurdles in the tuberculosis elimination programme worldwide. Hence, there is an unmet medical need for alternative therapy, which could be achieved by targeting the host's critical signalling pathways that are compromised during M. tb infection. In this review, we have summarized some of the findings involving the modulation of host GPCRs in the regulation of the mycobacterial infection. Understanding the role of these GPCRs not only unravels signalling pathways during infection but also provides clues for targeting critical signalling intermediates for the development of GPCR-based host-directive therapy.
Collapse
Affiliation(s)
- Farha Naz
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohd Arish
- JH-Institute of Molecular Medicine, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.,Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
8
|
The ESX-1 Virulence Factors Downregulate miR-147-3p in Mycobacterium marinum-Infected Macrophages. Infect Immun 2020; 88:IAI.00088-20. [PMID: 32253249 DOI: 10.1128/iai.00088-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
As important virulence factors of Mycobacterium tuberculosis, EsxA and EsxB not only play a role in phagosome rupture and M. tuberculosis cytosolic translocation but also function as modulators of host immune responses by modulating numerous microRNAs (miRNAs). Recently, we have found that mycobacterial infection downregulated miR-148a-3p (now termed miR-148) in macrophages in an ESX-1-dependent manner. The upregulation of miR-148 reduced mycobacterial intracellular survival. Here, we investigated miR-147-3p (now termed miR-147), a negative regulator of inflammatory cytokines (e.g., interleukin-6 [IL-6] and IL-10), in mycobacterial infection. We infected murine RAW264.7 macrophages with Mycobacterium marinum, a surrogate model organism for M. tuberculosis, and found that the esxBA-knockout strain (M. marinum ΔesxBA) upregulated miR-147 to a level that was significantly higher than that induced by the M. marinum wild-type (WT) strain or by the M. marinum ΔesxBA complemented strain, M. marinum ΔesxBA/pesxBA, suggesting that the ESX-1 system (potentially EsxBA and/or other codependently secreted factors) is the negative regulator of miR-147. miR-147 was also downregulated by directly incubating the macrophages with the purified recombinant EsxA or EsxB protein or the EsxBA heterodimer, which further confirms the role of the EsxBA proteins in the downregulation of miR-147. The upregulation of miR-147 inhibited the production of IL-6 and IL-10 and significantly reduced M. marinum intracellular survival. Interestingly, inhibitors of either miR-147 or miR-148 reciprocally compromised the effects of the mimics of their counterparts on M. marinum intracellular survival. This suggests that miR-147 and miR-148 share converged downstream pathways in response to mycobacterial infection, which was supported by data indicating that miR-147 upregulation inhibits the Toll-like receptor 4/NF-κB pathway.
Collapse
|
9
|
Kelly AM, McLoughlin RM. Target the Host, Kill the Bug; Targeting Host Respiratory Immunosuppressive Responses as a Novel Strategy to Improve Bacterial Clearance During Lung Infection. Front Immunol 2020; 11:767. [PMID: 32425944 PMCID: PMC7203494 DOI: 10.3389/fimmu.2020.00767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
The lung is under constant pressure to protect the body from invading bacteria. An effective inflammatory immune response must be tightly orchestrated to ensure complete clearance of any invading bacteria, while simultaneously ensuring that inflammation is kept under strict control to preserve lung viability. Chronic bacterial lung infections are seen as a major threat to human life with the treatment of these infections becoming more arduous as the prevalence of antibiotic resistance becomes increasingly commonplace. In order to survive within the lung bacteria target the host immune system to prevent eradication. Many bacteria directly target inflammatory cells and cytokines to impair inflammatory responses. However, bacteria also have the capacity to take advantage of and strongly promote anti-inflammatory immune responses in the host lung to inhibit local pro-inflammatory responses that are critical to bacterial elimination. Host cells such as T regulatory cells and myeloid-derived suppressor cells are often enhanced in number and activity during chronic pulmonary infection. By increasing suppressive cell populations and cytokines, bacteria promote a permissive environment suitable for their prolonged survival. This review will explore the anti-inflammatory aspects of the lung immune system that are targeted by bacteria and how bacterial-induced immunosuppression could be inhibited through the use of host-directed therapies to improve treatment options for chronic lung infections.
Collapse
Affiliation(s)
- Alanna M Kelly
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Ellwanger JH, Kaminski VDL, Rodrigues AG, Kulmann-Leal B, Chies JAB. CCR5 and CCR5Δ32 in bacterial and parasitic infections: Thinking chemokine receptors outside the HIV box. Int J Immunogenet 2020; 47:261-285. [PMID: 32212259 DOI: 10.1111/iji.12485] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022]
Abstract
The CCR5 molecule was reported in 1996 as the main HIV-1 co-receptor. In that same year, the CCR5Δ32 genetic variant was described as a strong protective factor against HIV-1 infection. These findings led to extensive research regarding the CCR5, culminating in critical scientific advances, such as the development of CCR5 inhibitors for the treatment of HIV infection. Recently, the research landscape surrounding CCR5 has begun to change. Different research groups have realized that, since CCR5 has such important effects in the chemokine system, it could also affect other different physiological systems. Therefore, the effect of reduced CCR5 expression due to the presence of the CCR5Δ32 variant began to be further studied. Several studies have investigated the role of CCR5 and the impacts of CCR5Δ32 on autoimmune and inflammatory diseases, various types of cancer, and viral diseases. However, the role of CCR5 in diseases caused by bacteria and parasites is still poorly understood. Therefore, the aim of this article is to review the role of CCR5 and the effects of CCR5Δ32 on bacterial (brucellosis, osteomyelitis, pneumonia, tuberculosis and infection by Chlamydia trachomatis) and parasitic infections (toxoplasmosis, leishmaniasis, Chagas disease and schistosomiasis). Basic information about each of these infections was also addressed. The neglected role of CCR5 in fungal disease and emerging studies regarding the action of CCR5 on regulatory T cells are briefly covered in this review. Considering the "renaissance of CCR5 research," this article is useful for updating researchers who develop studies involving CCR5 and CCR5Δ32 in different infectious diseases.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Valéria de Lima Kaminski
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Andressa Gonçalves Rodrigues
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Bruna Kulmann-Leal
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| |
Collapse
|
11
|
Lim HS, Lee SI, Park S. Association between Tuberculosis Case and CD44Gene Polymorphism. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2019. [DOI: 10.15324/kjcls.2019.51.3.323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Hee-Seon Lim
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Korea
| | - Sang-In Lee
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Korea
| | - Sangjung Park
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Korea
| |
Collapse
|
12
|
Villaseñor T, Madrid-Paulino E, Maldonado-Bravo R, Pérez-Martínez L, Pedraza-Alva G. Mycobacterium bovis BCG promotes IL-10 expression by establishing a SYK/PKCα/β positive autoregulatory loop that sustains STAT3 activation. Pathog Dis 2019; 77:5512589. [PMID: 31175361 DOI: 10.1093/femspd/ftz032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/05/2019] [Indexed: 01/02/2023] Open
Abstract
Mycobacterium ensures its survival inside macrophages and long-term infection by subverting the innate and adaptive immune response through the modulation of cytokine gene expression profiles. Different Mycobacterium species promote the expression of TGFβ and IL-10, which, at the early stages of infection, block the formation of the phagolysosome, thereby securing mycobacterial survival upon phagocytosis, and at later stages, antagonize IFNγ production and functions. Despite the key role of IL-10 in mycobacterium infection, the signal transduction pathways leading to IL-10 expression in infected macrophages are poorly understood. Here, we report that Mycobacterium bovis BCG promotes IL-10 expression and cytokine production by establishing a SYK/PKCα/β positive feedback loop that leads to STAT3 activation.
Collapse
Affiliation(s)
- Tomás Villaseñor
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62271, México
| | - Edgardo Madrid-Paulino
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62271, México
| | - Rafael Maldonado-Bravo
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62271, México
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62271, México
| | - Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62271, México
| |
Collapse
|
13
|
Depressed Gamma Interferon Responses and Treatment Outcomes in Tuberculosis Patients: a Prospective Cohort Study. J Clin Microbiol 2018; 56:JCM.00664-18. [PMID: 30068533 DOI: 10.1128/jcm.00664-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/17/2018] [Indexed: 01/07/2023] Open
Abstract
Immunosuppression induced by Mycobacterium tuberculosis is important in the pathogenesis of active tuberculosis (TB). However, the impact of depressed TB-specific and non-TB-specific gamma interferon (IFN-γ) response on the treatment outcomes of TB patients remains uncertain. In this prospective cohort study, culture- or pathology-proven active TB patients were enrolled and QuantiFERON-TB Gold In-Tube (QFT-GIT) assays were performed before the initiation of anti-TB treatment. TB-specific IFN-γ responses (TB antigen tube subtracted from the nil tube) and non-TB-specific IFN-γ responses (mitogen tube subtracted from the nil tube) were measured and associated with treatment outcomes, including 2-month culture conversion and on-treatment mortality. A total of 212 active TB patients were included in the analysis. We observed a close correlation between decreased lymphocyte count and lower non-TB-specific IFN-γ responses but not TB-specific IFN-γ responses. Patients with lower non-TB-specific IFN-γ responses had lower 2-month culture conversion rate (71.1% versus 84.7%, respectively; P = 0.033) and higher on-treatment mortality (22.6% versus 5.7%, respectively; P = 0.001) than those with higher non-TB-specific IFN-γ responses. In multivariate analysis, depressed non-TB-specific IFN-γ response was an independent factor associated with 2-month sputum culture nonconversion (odds ratio [OR], 2.49; 95% CI [95% confidence interval], 1.05 to 5.90) and on-treatment mortality (hazard ratio [HR], 2.76; 95% CI, 1.15 to 6.62). In contrast, depressed TB-specific IFN-γ responses were significantly associated with higher on-treatment mortality in univariate analysis but not in multivariate analysis. Our findings suggest that depressed non-TB-specific responses, but not TB-specific IFN-γ responses, as measured by QFT-GIT before the initiation of anti-TB treatment, were significantly associated with worse treatment outcomes in TB patients.
Collapse
|
14
|
Gao Q, Xiang SD, Wilson K, Madondo M, Stephens AN, Plebanski M. Sperm Protein 17 Expression by Murine Epithelial Ovarian Cancer Cells and Its Impact on Tumor Progression. Cancers (Basel) 2018; 10:cancers10080276. [PMID: 30127274 PMCID: PMC6115966 DOI: 10.3390/cancers10080276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
The cancer testis antigen sperm protein 17 (Sp17) is a promising antigenic target in epithelial ovarian cancer (EOC) vaccine development. However, its role in ovarian cancer is unclear. We isolated and expanded Sp17+ and Sp17− clones from the murine EOC cell line ID8, and compared their in-vitro cell growth characteristics and in-vivo tumorigenicity. We also examined the potential co-expression of molecules that may influence cancer cell survival and interaction with immune cells. These include stimulatory and immunosuppressive molecules, such as major histocompatibility class I molecules (MHC I), MHC II, cytotoxic T lymphocyte associated antigen-4 (CTLA-4), CD73, CD39, tumor necrosis factor receptor II (TNFRII), signal transducer and activator of transcription 3 (STAT3) and programmed death-ligand 1 (PD-L1). Whilst the presence of Sp17 was not correlated with the ID8 cell proliferation/growth capacity in vitro, it was critical to enable progressive tumor formation in vivo. Flow cytometry revealed that Sp17+ ID8 cells displayed higher expression of both STAT3 and PD-L1, whilst MHC II expression was lower. Moreover, Sp17high (PD-L1+MHCII−) cell populations showed significantly enhanced resistance to Paclitaxel-induced cell death in vitro compared to Sp17low (PD-L1−MHCII+) cells, which was associated in turn with increased STAT3 expression. Together, the data support Sp17 as a factor associated with in-vivo tumor progression and chemo-resistance, validating it as a suitable target for vaccine development.
Collapse
Affiliation(s)
- Qian Gao
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria 3004, Australia.
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Sue D Xiang
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria 3004, Australia.
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria 3168, Australia.
| | - Kirsty Wilson
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria 3004, Australia.
| | - Mutsa Madondo
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria 3004, Australia.
| | - Andrew N Stephens
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria 3168, Australia.
| | - Magdalena Plebanski
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria 3004, Australia.
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
15
|
Yi Z, Gao K, Li R, Fu Y. Changed immune and miRNA response in RAW264.7 cells infected with cell wall deficient mycobacterium tuberculosis. Int J Mol Med 2018; 41:2885-2892. [PMID: 29436601 DOI: 10.3892/ijmm.2018.3471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/31/2018] [Indexed: 11/06/2022] Open
Abstract
Cell wall deficient (CWD) forms of Mycobacterium tuberculosis (Mtb) confers a marked resistance to immune system of the host. However, there is limit data on the effect of intracellular CWD-Mtb infection on macrophages. In the study, effects of CWD-Mtb on cell viability, cytokine response and miRNA expression of macrophages were analyzed. Cell viability was reduced, levels of interleukin-1α (IL-1α), IL-1β, IL-6, IL-10 and interferon-γ (IFN-γ) were also significantly changed after infection of RAW264.7 cells with CWD-Mtb. A total of 105 miRNAs were deregulated between CWD-Mtb and wild Mtb group, and among them, miR-29b was upregulated in CWD-Mtb group. Downregulation of miR-29b resulted in significant elevation level of IFN-γ mRNA. Involved signaling pathways of potential target genes of differentially expressed miRNAs mainly focused on T cell receptor signaling pathway, MAPK signaling pathway, neurotrophin signaling pathway, and regulation of actin cytoskeleton. Taken together, the results showed that cytokine production of CWD-Mtb infected macrophages was altered and many miRNAs were involved in regulation of macrophage response to CWD-Mtb infection, which probably determined the differential outcome following different phenotype Mtb infection. These findings open up a new and interesting avenue for an improved understanding of pathogenesis of CWD-Mtb.
Collapse
Affiliation(s)
- Zhengjun Yi
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong and Medical Priority Speciality of Clinical Laboratory in Shandong Province, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Kunshan Gao
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong and Medical Priority Speciality of Clinical Laboratory in Shandong Province, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Ruifang Li
- Department of Medical Microbiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yurong Fu
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong and Medical Priority Speciality of Clinical Laboratory in Shandong Province, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
16
|
Sendra Gisbert L, Miguel Matas A, Sabater Ortí L, Herrero MJ, Sabater Olivas L, Montalvá Orón EM, Frasson M, Abargues López R, López-Andújar R, García-Granero Ximénez E, Aliño Pellicer SF. Efficacy of hydrodynamic interleukin 10 gene transfer in human liver segments with interest in transplantation. Liver Transpl 2017; 23:50-62. [PMID: 27783460 DOI: 10.1002/lt.24667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/29/2016] [Indexed: 12/15/2022]
Abstract
Different diseases lead, during their advanced stages, to chronic or acute liver failure, whose unique treatment consists in organ transplantation. The success of intervention is limited by host immune response and graft rejection. The use of immunosuppressant drugs generally improve organ transplantation, but they cannot completely solve the problem. Also, their management is delicate, especially during the early stages of treatment. Thus, new tools to set an efficient modulation of immune response are required. The local expression of interleukin (IL) 10 protein in transplanted livers mediated by hydrodynamic gene transfer could improve the organ acceptance by the host because it presents the natural ability to modulate the immune response at different levels. In the organ transplantation scenario, IL10 has already demonstrated positive effects on graft tolerance. Hydrodynamic gene transfer has been proven to be safe and therapeutically efficient in animal models and could be easily moved to the clinic. In the present work, we evaluated efficacy of human IL10 gene transfer in human liver segments and the tissue natural barriers for gene entry into the cell, employing gold nanoparticles. In conclusion, the present work shows for the first time that hydrodynamic IL10 gene transfer to human liver segments ex vivo efficiently delivers a human gene into the cells. Indexes of tissue protein expression achieved could mediate local pharmacological effects with interest in controlling the immune response triggered after liver transplantation. On the other hand, the ultrastructural study suggests that the solubilized plasmid could access the hepatocyte in a passive manner mediated by the hydric flow and that an active mechanism of transportation could facilitate its entry into the nucleus. Liver Transplantation 23:50-62 2017 AASLD.
Collapse
Affiliation(s)
- Luis Sendra Gisbert
- Pharmacogenetics Unit, Instituto de Investigación Sanitaria La Fe and Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia
- Gene Therapy Unit, Pharmacology Department, Medicine Faculty, Universidad de Valencia, Valencia, Spain
| | - Antonio Miguel Matas
- Gene Therapy Unit, Pharmacology Department, Medicine Faculty, Universidad de Valencia, Valencia, Spain
| | - Luis Sabater Ortí
- General and Digestive Surgery Department, Hospital Clínico Universitario, Valencia, Spain
| | - María José Herrero
- Pharmacogenetics Unit, Instituto de Investigación Sanitaria La Fe and Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia
| | | | - Eva María Montalvá Orón
- Hepatobiliopancreatic Surgery and Transplantation Unit, General Surgery Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Matteo Frasson
- Coloproctology Unit, General Surgery Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Rafael López-Andújar
- Hepatobiliopancreatic Surgery and Transplantation Unit, General Surgery Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Salvador Francisco Aliño Pellicer
- Pharmacogenetics Unit, Instituto de Investigación Sanitaria La Fe and Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia
- Gene Therapy Unit, Pharmacology Department, Medicine Faculty, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
17
|
Das S, Chowdhury BP, Goswami A, Parveen S, Jawed J, Pal N, Majumdar S. Mycobacterium indicus pranii (MIP) mediated host protective intracellular mechanisms against tuberculosis infection: Involvement of TLR-4 mediated signaling. Tuberculosis (Edinb) 2016; 101:201-209. [PMID: 27865392 DOI: 10.1016/j.tube.2016.09.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 01/09/2023]
Abstract
Mycobacterium tuberculosis infection inflicts the disease Tuberculosis (TB), which is fatal if left untreated. During M. tuberculosis infection, the pathogen modulates TLR-4 receptor down-stream signaling, indicating the possible involvement of TLR-4 in the regulation of the host immune response. Mycobacterium indicus pranii (MIP) possesses immuno-modulatory properties which induces the pro-inflammatory responses via induction of TLR-4-mediated signaling. Here, we observed the immunomodulatory properties of MIP against tuberculosis infection. We have studied the detailed signaling mechanisms employed by MIP in order to restore the host immune response against the in vitro tuberculosis infection. We observed that in infected macrophages MIP treatment significantly increased the TLR-4 expression as well as activation of its downstream signaling, facilitating the activation of P38 MAP kinase. MIP treatment was able to activate NF-κB via involvement of TLR-4 signaling leading to the enhanced pro-inflammatory cytokine and NO generation in the infected macrophages and generation of protective immune response. Therefore, we may suggest that, TLR4 may represent a novel therapeutic target for the activation of the innate immune response during Tuberculosis infection.
Collapse
Affiliation(s)
- Shibali Das
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII- M, Kolkata, 700 054, India
| | - Bidisha Paul Chowdhury
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII- M, Kolkata, 700 054, India
| | - Avranil Goswami
- Dept. of Microbiology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Shabina Parveen
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII- M, Kolkata, 700 054, India
| | - Junaid Jawed
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII- M, Kolkata, 700 054, India
| | - Nishith Pal
- Dept. of Microbiology, N.R.S Medical College, Kolkata, India
| | - Subrata Majumdar
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII- M, Kolkata, 700 054, India.
| |
Collapse
|
18
|
Velappan AB, Charan Raja MR, Datta D, Tsai YT, Halloum I, Wan B, Kremer L, Gramajo H, Franzblau SG, Kar Mahapatra S, Debnath J. Attenuation of Mycobacterium species through direct and macrophage mediated pathway by unsymmetrical diaryl urea. Eur J Med Chem 2016; 125:825-841. [PMID: 27750200 DOI: 10.1016/j.ejmech.2016.09.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/23/2016] [Accepted: 09/25/2016] [Indexed: 11/19/2022]
Abstract
Tuberculosis is a major threat for mankind and the emergence of resistance strain of Mycobacterium tuberculosis (Mtb) against first line antibiotics makes it lethal for human civilization. In this study, we have synthesized different diaryl urea derivatives targeting the inhibition of mycolic acid biosynthesis. Among the 39 synthesized molecules, compounds 46, 57, 58 and 86 showed MIC values ≤ 10 μg/ml against H37Rv and mc26030 strains. The best molecule with a methyl at ortho position of the first aromatic ring and prenyl group at the meta position of the second aromatic ring showed the MIC value of 5.2 μg/ml and 1 μg/ml against H37Rv and mc26030 respectively, with mammalian cytotoxicity of 163.4 μg/ml. The effective compounds showed selective inhibitory effect on mycolic acid (epoxy mycolate) biosynthesis in 14C-radiolabelled assay. At the same time these molecules also executed their potent immunomodulatory activity by up-regulation of IFN-γ and IL-12 and down-regulation of IL-10.
Collapse
Affiliation(s)
- Anand Babu Velappan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Tamilnadu 613401, India
| | - Mamilla R Charan Raja
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA University, Tamilnadu 613401, India
| | - Dhrubajyoti Datta
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Maharashtra 411008, India
| | - Yi Ting Tsai
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Iman Halloum
- Centre d'étude des Pathogènes pour la Biotechnologie et la Santé CNRS FRE3689, Université de Montpellier, 34293 Montpellier cedex 5, France
| | - Baojie Wan
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St. Chicago, IL 60612, USA
| | - Laurent Kremer
- Centre d'étude des Pathogènes pour la Biotechnologie et la Santé CNRS FRE3689, Université de Montpellier, 34293 Montpellier cedex 5, France; INSERM, CPBS, 34293 Montpellier Cedex 05, France
| | - Hugo Gramajo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St. Chicago, IL 60612, USA
| | - Santanu Kar Mahapatra
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA University, Tamilnadu 613401, India
| | - Joy Debnath
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Tamilnadu 613401, India.
| |
Collapse
|
19
|
Abdalla AE, Lambert N, Duan X, Xie J. Interleukin-10 Family and Tuberculosis: An Old Story Renewed. Int J Biol Sci 2016; 12:710-7. [PMID: 27194948 PMCID: PMC4870714 DOI: 10.7150/ijbs.13881] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/15/2016] [Indexed: 02/06/2023] Open
Abstract
The interleukin-10 (IL-10) family of cytokines consists of six immune mediators, namely IL-10, IL-19, IL-20, IL-22, IL-24 and IL-26. IL-10, IL-22, IL-24 and IL-26 are critical for the regulation of host defense against Mycobacterium tuberculosis infections. Specifically, IL-10 and IL-26 can suppress the antimycobacterial immunity and promote the survival of pathogen, while IL-22 and IL-24 can generate protective responses and inhibit the intracellular growth of pathogen. Knowledge about the new players in tuberculosis immunology, namely IL-10 family, can inform novel immunity-based countermeasures and host directed therapies against tuberculosis.
Collapse
Affiliation(s)
- Abualgasim Elgaili Abdalla
- 1. Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
- 2. Department of Clinical Microbiology, College of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman, Khartoum, Sudan
| | - Nzungize Lambert
- 1. Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Xiangke Duan
- 1. Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Jianping Xie
- 1. Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
20
|
Martin-Blondel G, Brassat D, Bauer J, Lassmann H, Liblau RS. CCR5 blockade for neuroinflammatory diseases — beyond control of HIV. Nat Rev Neurol 2016; 12:95-105. [DOI: 10.1038/nrneurol.2015.248] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Bandyopadhyay S, Kar Mahapatra S, Paul Chowdhury B, Kumar Jha M, Das S, Halder K, Bhattacharyya Majumdar S, Saha B, Majumdar S. Toll-Like Receptor 2 Targeted Rectification of Impaired CD8⁺ T Cell Functions in Experimental Leishmania donovani Infection Reinstates Host Protection. PLoS One 2015; 10:e0142800. [PMID: 26559815 PMCID: PMC4641719 DOI: 10.1371/journal.pone.0142800] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/27/2015] [Indexed: 12/29/2022] Open
Abstract
Leishmania donovani, a protozoan parasite, causes the disease visceral leishmanisis (VL), characterized by inappropriate CD8+ T-cell activation. Therefore, we examined whether the Toll-like Receptor 2 (TLR2) ligand Ara-LAM, a cell wall glycolipid from non-pathogenic Mycobacterium smegmatis, would restore CD8+ T-cell function during VL. We observed that by efficient upregulation of TLR2 signaling-mediated NF-κB translocation and MAPK signaling in CD8+ T-cells (CD25+CD28+IL-12R+IFN-γR+), Ara-LAM triggered signaling resulted in the activation of T-bet, which in turn, induced transcription favourable histone modification at the IFN-γ, perforin, granzyme-B promoter regions in CD8+ T-cells. Thus, we conclude that Ara-LAM induced efficient activation of effector CD8+ T-cells by upregulating the expression of IFN-γ, perforin and granzyme-B in an NF-κB and MAPK induced T-bet dependent manner in VL.
Collapse
Affiliation(s)
| | | | | | | | - Shibali Das
- The Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Kuntal Halder
- The Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Subrata Majumdar
- The Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
22
|
Halder K, Banerjee S, Ghosh S, Bose A, Das S, Chowdhury BP, Majumdar S. Mycobacterium indicus pranii (Mw) inhibits invasion by reducing matrix metalloproteinase (MMP-9) via AKT/ERK-1/2 and PKCα signaling: A potential candidate in melanoma cancer therapy. Cancer Biol Ther 2015; 18:850-862. [PMID: 26390181 DOI: 10.1080/15384047.2015.1078024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Invasion and metastasis via induction of matrix metalloproteinases are the main causes of death in melanoma cancer. In this study, we investigated the inhibitory effects of heat killed saprophytic bacterium Mycobacterium indicus pranii (Mw) on B16F10 melanoma cell invasion. Mw reported to be an immunomodulator has antitumor activity however, its effect on cancer cell invasion has not been studied. Highly invasive B16F10 melanoma was found sensitive to Mw which downregulated MMP-9 expression. Mw treatment inhibited nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) transcriptional activity and respective DNA binding to MMP-9 promoter. Moreover, Mw also overcame the promoting effects of PMA on B16F10 cell invasion. Mw decreased PMA-induced transcriptional activation of NF-κB and AP-1 by inhibiting phosphorylation of AKT and ERK-1/2. Furthermore, Mw strongly suppressed PMA-induced membrane localization of protein kinase C α (PKCα) since PKCα inhibition caused a marked decrease in PMA-induced MMP-9 secretion as well as AKT/ERK-1/2 activation. These results suggest that Mw may be a promising anti-invasive agent as it blocks tumor growth and inhibits B16F10 cell invasion by reducing MMP-9 activation through inhibition of PKCα/ AKT/ ERK-1/2 phosphorylation and NF-κB/AP-1 activation.
Collapse
Affiliation(s)
- Kuntal Halder
- a Division of Molecular Medicine; Bose Institute ; Kolkata , India
| | | | - Sweta Ghosh
- a Division of Molecular Medicine; Bose Institute ; Kolkata , India
| | - Anamika Bose
- a Division of Molecular Medicine; Bose Institute ; Kolkata , India
| | - Shibali Das
- a Division of Molecular Medicine; Bose Institute ; Kolkata , India
| | | | - Subrata Majumdar
- a Division of Molecular Medicine; Bose Institute ; Kolkata , India
| |
Collapse
|
23
|
Host ICAMs play a role in cell invasion by Mycobacterium tuberculosis and Plasmodium falciparum. Nat Commun 2015; 6:6049. [PMID: 25586702 DOI: 10.1038/ncomms7049] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/05/2014] [Indexed: 12/19/2022] Open
Abstract
Intercellular adhesion molecules (ICAMs) belong to the immunoglobulin superfamily and participate in diverse cellular processes including host-pathogen interactions. ICAM-1 is expressed on various cell types including macrophages, whereas ICAM-4 is restricted to red blood cells. Here we report the identification of an 11-kDa synthetic protein, M5, that binds to human ICAM-1 and ICAM-4, as shown by in vitro interaction studies, surface plasmon resonance and immunolocalization. M5 greatly inhibits the invasion of macrophages and erythrocytes by Mycobacterium tuberculosis and Plasmodium falciparum, respectively. Pharmacological and siRNA-mediated inhibition of ICAM-1 expression also results in reduced M. tuberculosis invasion of macrophages. ICAM-4 binds to P. falciparum merozoites, and the addition of recombinant ICAM-4 to parasite cultures blocks invasion of erythrocytes by newly released merozoites. Our results indicate that ICAM-1 and ICAM-4 play roles in host cell invasion by M. tuberculosis and P. falciparum, respectively, either as receptors or as crucial accessory molecules.
Collapse
|
24
|
Liang C, DU W, Dong Q, Liu X, Li W, Wang Y, Gao G. Expression levels and genetic polymorphisms of interleukin-2 and interleukin-10 as biomarkers of Graves' disease. Exp Ther Med 2015; 9:925-930. [PMID: 25667655 PMCID: PMC4316959 DOI: 10.3892/etm.2015.2180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 12/11/2014] [Indexed: 01/09/2023] Open
Abstract
The aim of the present study was to determine whether the expression levels of interleukin (IL)-2 and IL-10 may be used as biological markers in Graves’ disease (GD) patients. A total of 256 individuals, including 118 GD patients and 138 healthy individuals, were enrolled into the study. Blood samples were collected from each patient and healthy individual, which were then subjected to enzyme-linked immunosorbent assay (ELISA). Total RNA and total proteins were determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis, respectively. In addition, restriction fragment length polymorphism (RFLP) analysis was performed to detect the presence of genetic polymorphisms. The ELISA results indicated that the IL-2 and IL-10 serum levels in the GD patients were increased by ~5.2 and ~7-fold when compared with the levels in the healthy controls. The results of RT-qPCR indicated that the mRNA expression levels of IL-2 and IL-10 were upregulated in the GD patients when compared with the healthy controls. Furthermore, the western blot analysis results revealed that the protein expression levels of IL-2 and IL-10 were significantly increased in the GD patients. RFLP analysis indicated that the increased number of GG single nucleotide polymorphisms (SNPs) in the GD group were detected in the −330 locus of the IL-2 promoter and the −1082 locus of the IL-10 promoter. In addition, the results indicated that the relatively high rates of homozygous GG SNPs (IL-2 −330T/G and IL-10 −1082A/G polymorphisms) on the alleles may be associated with the incidence of GD. The serum, mRNA and protein expression levels of IL-2 and IL-10 were significantly increased in GD patients when compared with the levels in the healthy controls. In conclusion, the expression levels and genetic polymorphisms of IL-2 and IL-10 may be potential biomarkers for the incidence of Graves’ disease in the population studied.
Collapse
Affiliation(s)
- Cuige Liang
- Department of Endocrinology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Wenhua DU
- Department of Endocrinology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Qingyu Dong
- Department of Endocrinology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Xiaomeng Liu
- Department of Endocrinology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Wenxia Li
- Department of Endocrinology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Yueli Wang
- Department of Endocrinology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Guanqi Gao
- Department of Endocrinology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|